Cryptographic Token Interface Standard

PKCS#11


Functions

Cryptoki's functions are organized into the following categories:

Table 9-1, Return Values
Return Value Meaning
CKR_ATTRIBUTE_READ_ONLY attribute cannot be modified
CKR_ATTRIBUTE_SENSITIVE attribute is sensitive and cannot be revealed
CKR_ATTRIBUTE_TYPE_INVALID attribute type is invalid
CKR_ATTRIBUTE_VALUE_INVALID attribute value is invalid
CKR_CANCEL function should be canceled
CKR_DATA_INVALID data is invalid
CKR_DATA_LEN_RANGE data length is out of range
CKR_DEVICE_ERROR device error
CKR_DEVICE_MEMORY not enough memory on device
CKR_DEVICE_REMOVED device has been removed
CKR_ENCRYPTED_DATA_INVALID encrypted data is invalid
CKR_ENCRYPTED_DATA_LEN_RANGE encrypted data length is out of range
CKR_FLAGS_INVALID flags are invalid
CKR_FUNCTION_CANCELED function has been canceled
CKR_FUNCTION_NOT_PARALLEL no function is executing in parallel
CKR_FUNCTION_PARALLEL function is executing in parallel
CKR_HOST_MEMORY not enough memory on host
CKR_KEY_HANDLE_INVALID key handle is invalid
CKR_KEY_SENSITIVE key is sensitive and cannot be revealed
CKR_KEY_SIZE_RANGE key size is out of range
CKR_KEY_TYPE_INCONSISTENT key type is inconsistent with mechanism
CKR_MECHANISM_INVALID mechanism is invalid
CKR_MECHANISM_PARAM_INVALID mechanism parameter is invalid
CKR_OBJECT_CLASS_INCONSISTENT object class is inconsistent with mechanism
CKR_OBJECT_CLASS_INVALID object class is invalid
CKR_OBJECT_HANDLE_INVALID object handle is invalid
CKR_OK function has completed successfully
CKR_OPERATION_ACTIVE another operation is already active
CKR_OPERATION_NOT_INITIALIZED operation has not been initialized
CKR_PIN_INCORRECT PIN is incorrect
CKR_PIN_INVALID new PIN contains invalid characters
CKR_PIN_LEN_RANGE new PIN length is out of range (assuming token specifies range)
CKR_SESSION_CLOSED session has been closed
CKR_SESSION_COUNT session limits have been reached
CKR_SESSION_EXCLUSIVE_EXISTS an exclusive session already exists
CKR_SESSION_HANDLE_INVALID session handle is invalid
CKR_SESSION_PARALLEL_NOT_SUPPORTED parallel execution is not supported
CKR_SESSION_READ_ONLY session is read-only
CKR_SIGNATURE_INVALID signature is invalid
CKR_SIGNATURE_LEN_RANGE signature length is out of range
CKR_SLOT_ID_INVALID slot ID is invalid
CKR_TEMPLATE_INCOMPLETE template is incomplete
CKR_TEMPLATE_INCONSISTENT template is inconsistent
CKR_TOKEN_NOT_PRESENT slot does not contain a token
CKR_TOKEN_NOT_RECOGNIZED the token was not recognized
CKR_TOKEN_WRITE_PROTECTED token is write-protected
CKR_UNWRAPPING_KEY_HANDLE_INVALID unwrapping key handle is invalid
CKR_UNWRAPPING_KEY_SIZE_RANGE unwrapping key size is out of range
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT unwrapping key type is inconsistent with mechanism
CKR_USER_ALREADY_LOGGED_IN a user is already logged in
CKR_USER_NOT_LOGGED_IN a user is not logged in
CKR_USER_PIN_NOT_INITIALIZED the user's PIN has not been intialized
CKR_USER_TYPE_INVALID user type is invalid
CKR_WRAPPED_KEY_INVALID wrapped key is invalid
CKR_WRAPPED_KEY_LEN_RANGE wrapped key length is out of range
CKR_WRAPPING_KEY_HANDLE_INVALID wrapping key handle is invalid
CKR_WRAPPING_KEY_SIZE_RANGE wrapping key size is out of range
CKR_WRAPPING_KEY_TYPE_INCONSISTENT wrapping key type is inconsistent with mechanism

General purpose

Cryptoki provides the following general purpose functions.

C_Initialize

CK_RV C_Initialize(
CK_VOID_PTR pReserved
);

C_Initialize initializes the Cryptoki library. C_Initialize should be the first call made by an application. This function is implementation defined; Cryptoki may, for example, initialize its internal memory buffers, or any other resources it may require. The pReserved parameter is reserved for future versions. For this version, it should be set to NULL_PTR.

Returns:
CKR_OK, CKR_HOST_MEMORY
Example:

CK_RV rv;
rv = C_Initialize(NULL_PTR);

C_GetInfo

CK_RV C_GetInfo(
CK_INFO_PTR pInfo
);

C_GetInfo returns general information about Cryptoki.

Parameters:
pInfo points to the location that receives the information.
Returns:
CKR_OK, CKR_HOST_MEMORY
Example:

CK_INFO info;
CK_RV rv;
rv = C_GetInfo(&info);
if( rv == CKR_OK ){
if( info.version.major == 1 ){
.
.
.
}
}

Slot and token management

Cryptoki provides the following functions for slot and token management.

C_GetSlotList

CK_RV C_GetSlotList(
CK_BBOOL tokenPresent,
CK_SLOT_ID_PTR pSlotList,
CK_USHORT_PTR pusCount
);

C_GetSlotList obtains a list of slots in the system.

Parameters:
tokenPresent indicates whether the list includes only those slots with a token present (TRUE), or all slots (FALSE); pSlotList points to the location that receives the list (array) of slot IDs; and pusCount points to the location that receives the number of slots.
The application should call this function twice. The first time, pSlotList should be NULL_PTR. In this case, Cryptoki only returns the number of slots. The second time, pSlotList should point to a location large enough to receive the list of slots. If there are no slot IDs to return, the location that pusCount points to receives 0.

Returns:
CKR_OK, CKR_HOST_MEMORY
Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_RV rv;
rv = C_GetSlotList(FALSE, NULL_PTR, &usCount);
if( (rv == CKR_OK) && (usCount > 0) ){
pSlotList = (CK_SLOT_ID_PTR) malloc(usCount * sizeof(CK_SLOT_ID));
rv = C_GetSlotList(FALSE, pSlotList, &usCount);
if( rv == CKR_OK ){
.
.
.
}
free(pSlotList);
}

C_GetSlotInfo

CK_RV C_GetSlotInfo(
CK_SLOT_ID slotID,
CK_SLOT_INFO_PTR pInfo
);

C_GetSlotInfo obtains information about a particular slot in the system.

Parameters:
slotID is the ID of the slot;
pInfo points to the location that receives the slot information.
Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_HOST_MEMORY
Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_SLOT_INFO info;
CK_RV rv;
rv = C_GetSlotList(FALSE, NULL_PTR, &usCount);
if( (rv == CKR_OK) && (usCount > 0) ){
pSlotList = (CK_SLOT_ID_PTR) malloc(usCount * sizeof(CK_SLOT_ID));
rv = C_GetSlotList(FALSE, pSlotList, &usCount);
if( rv == CKR_OK ){
rv = C_GetSlotInfo(pSlotList[0], &info);
.
.
.
}
free(pSlotList);
}

C_GetTokenInfo

CK_RV C_GetTokenInfo(
CK_SLOT_ID slotID,
CK_TOKEN_INFO_PTR pInfo
);

C_GetTokenInfo obtains information about a particular token in the system.

Parameters:
slotID is the ID of the token's slot;
pInfo points to the location that receives the token information.
Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_HOST_MEMORY, CKR_TOKEN_NOT_RECONIZED
Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_TOKEN_INFO info;
CK_RV rv;
rv = C_GetSlotList(TRUE, NULL_PTR, &usCount);
if( (rv == CKR_OK) && (usCount > 0) ){
pSlotList = (CK_SLOT_ID_PTR) malloc(usCount * sizeof(CK_SLOT_ID));
rv = C_GetSlotList(TRUE, pSlotList, &usCount);
if( rv == CKR_OK ){
rv = C_GetTokenInfo(pSlotList[0], &info);
.
.
.
}
free(pSlotList);
}

C_GetMechanismList

CK_RV C_GetMechanismList(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE_PTR pMechanismList,
CK_USHORT_PTR pusCount
);

C_GetMechanismList obtains a list of mechanism types supported by a token.

Parameters:
slotID is the ID of the token's slot; pMechanismList points to the location that receives the list (array) of mechanism types; pusCount points to the location that receives the number of mechanisms.
The application should call this function twice. The first time, pMechanismList should be NULL_PTR. In this case, Cryptoki only returns the number of mechanisms supported. The second time, pMechanismList should point to a location large enough to receive the list of mechanism types.

Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_HOST_MEMORY
Example:

CK_SLOT_ID slotID;
CK_MECHANISM_TYPE_PTR pMechanismList;
CK_USHORT usCount;
CK_RV rv;
rv = C_GetMechanismList(slotID, NULL_PTR, &usCount);
if( (rv == CKR_OK) && (usCount > 0) ){
pMechanismList = (CK_MECHANISM_TYPE_PTR) malloc(usCount * sizeof(CK_MECHANISM_TYPE));
rv = C_GetMechanismList(slotID, pMechanismList, &usCount);
if( rv == CKR_OK ){
.
.
.
}
free(pMechanismList);
}

C_GetMechanismInfo

CK_RV C_GetMechanismInfo(
CK_SLOT_ID slotID,
CK_MECHANISM_TYPE type,
CK_MECHANISM_INFO_PTR pInfo
);

C_GetMechanismInfo obtains information about a particular mechanism possibly supported by a token.

Parameters:
slotID is the ID of the token's slot;
type is the type of mechanism;
pInfo points to the location that receives the mechanism information.
Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_HOST_MEMORY
Example:

CK_SLOT_ID_PTR pSlotList;
CK_USHORT usCount;
CK_MECHANISM_INFO info;
CK_RV rv;
rv = C_GetSlotList(TRUE, NULL_PTR, &usCount);
if( (rv == CKR_OK) && (usCount > 0) ){
pSlotList = (CK_SLOT_ID_PTR) malloc(usCount * sizeof(CK_SLOT_ID));
rv = C_GetSlotList(TRUE, pSlotList, &usCount);
if( rv == CKR_OK ){
rv = C_GetMechanismInfo(pSlotList[0], CKM_MD2, &info);
.
.
.
}
free(pSlotList);
}

C_InitToken

CK_RV C_InitToken(
CK_SLOT_ID slotID,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen,
CK_CHAR_PTR pLabel
);

C_InitToken initializes a token.

Parameters:
slotID is the ID of the token's slot;
pPin points to the SO's initial PIN; usPinLen is the length in bytes of the PIN;
pLabel points to the 32-byte label of the token (must be padded with the blank characters).
When a token is initialized, all objects are destroyed that can be destroyed (i.e., all except for "indestructible" objects such as keys built in to the token). Also, access by the normal user is disabled until the SO sets the normal user's PIN. Depending on the token, some "default" objects may be created, and attributes of some objects may be set to default values.

Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_ERROR, CKR_PIN_LEN_RANGE, CKR_TOKEN_NOT_RECOGNIZED
Example:

CK_SLOT_ID slotID;
CK_CHAR pin[] = {"MyPIN"};
CK_CHAR label[32];
CK_RV rv;
memset(label, ' ', sizeof(label));
memcpy(label, "My first token", sizeof("My first token"));
rv = C_InitToken(slotID, pin, sizeof(pin), label);
if( rv == CKR_OK ){
.
.
.
}

C_InitPIN

CK_RV C_InitPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen
);

C_InitPIN initializes the normal user's PIN.

Parameters:
hSession is the session's handle;
pPin points to the normal user's PIN; and usPinLen is the length in bytes of the PIN.
This function can only be called in the "R/W SO Functions" state.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_LEN_RANGE, CKR_PIN_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_CHAR newPin[]= {"NewPIN"};
CK_RV rv;
rv = C_InitPIN(hSession, newPin, sizeof(newPin));
if( rv == CKR_OK ){
.
.
.
}

C_SetPIN

CK_RV C_SetPIN(
CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pOldPin,
CK_USHORT usOldLen,
CK_CHAR_PTR pNewPin,
CK_USHORT usNewLen
);

C_SetPIN modifies the PIN of user that is currently logged in.

Parameters:
hSession is the session's handle;
pOldPin points to the old PIN; usOldLen is the length of the old PIN; pNewPin points to the new PIN; usNewLen is the length of the new PIN.
This function can only be called in the "R/W SO Functions" state or "R/W User Functions" state.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_INCORRECT, CKR_PIN_LEN_RANGE, CKR_PIN_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_CHAR oldPin[] = {"OldPIN"};
CK_CHAR newPin[] = {"NewPIN"};
CK_RV rv;
rv = C_SetPIN(hSession, oldPin, sizeof(oldPin), newPin, sizeof(newPin));
if( rv == CKR_OK ){
.
.
.
}

Session management

Cryptoki provides the following functions for session management.

A typical application would call C_OpenSession after selecting a token and C_CloseSession after completing all operations with the token. Only in special cases, such as when other applications connected to a token have failed, would an application call C_CloseAllSessions.

An application may have concurrent sessions with more than one token. It is also possible that a token may have concurrent sessions with more than one application.

C_OpenSession

CK_RV C_OpenSession(
CK_SLOT_ID slotID,
CK_FLAGS flags,
CK_VOID_PTR pApplication,
CK_RV (*Notify)(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication),
CK_SESSION_HANDLE_PTR phSession
);

C_OpenSession opens a session between an application and a token.

Parameters:
slotID is the slot's ID;
flags indicates the type of session;
pApplication is an application-defined pointer to be passed to the notification callback; Notify is the address of the notification callback function; phSession points to the location that receives the handle for the new session.
The flags parameter consists of the logical-or of zero or more bit flags defined in the CK_SESSION_INFO data type. If no bits are set in the flags parameter, then the session is opened as a shared, read-only session, with the cryptographic functions performed in parallel with the application (assuming the token has this capability"otherwise functions are performed in serial).

In a parallel session, cryptographic functions may return control to the application before completing (the return value CKR_FUNCTION_PARALLEL indicates this condition). The application may call C_GetFunctionStatus to obtain updated status of the function, which will be CKR_FUNCTION_PARALLEL until the function completes, and CKR_OK or another return value indicating an error when the function completes. Alternatively, the application can wait until Cryptoki sends notification that the function has completed through the Notify callback. The application may also call C_CancelFunction to cancel the function.

If an application calls another function (cryptographic or otherwise) before one that is executing in parallel completes, Cryptoki will wait until the one that is executing completes. Thus an application can run only one function at any given time in a given session. (To achieve parallel execution of multiple functions, the application should open additional sessions.)

Cryptographic functions running in serial with the application may surrender control through the Notify callback, so that the application may perform other operations or cancel the function.

Non-cryptographic functions always run in serial with the application, and do not surrender control.

There may be a limit on the number of concurrent sessions with the token, which may depend on whether the session is "read-only" or "read/write." There can only be one exclusive session with a token.

If the token is in "write-protected" (as indicated in the CK_TOKEN_INFO structure), then the session also must be "read-only."

The Notify callback function is used by Cryptoki to notify the application of certain events. If the application does not support the callback, it should pass NULL_PTR as the address. The Notify callback function is described in Section .

Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_FLAGS_INVALID, CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_SLOT_ID slotID;
CK_RV rv;
CK_BYTE application;
CK_RV MyNotify(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication);
slotID = 1;
rv = C_OpenSession(slotID, CKF_EXCLUSIVE_SESSION, &application, MyNotify, &hSession);
if( rv == CKR_OK ){
.
.
.
}

C_CloseSession

CK_RV C_CloseSession(
CK_SESSION_HANDLE hSession
);

C_CloseSession closes a session between an application and a token.

Parameters:
hSession is the session's handle.
When a session is closed, session objects created during the session are destroyed automatically, and if a function is running in parallel with the application, it is canceled.

Depending on the token, when the last session with the token is closed, the token may be "ejected" from its reader, assuming this capability exists.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_SLOT_ID slotID;
CK_RV rv;
CK_BYTE application;
CK_RV MyNotify(CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event, CK_VOID_PTR pApplication);
slotID = 1;
rv = C_OpenSession(slotID, CKF_EXCLUSIVE_SESSION, &application, MyNotify, &hSession);
if( rv == CKR_OK ){
.
.
.
C_CloseSession(hSession);
}

C_CloseAllSessions

CK_RV C_CloseAllSessions(
CK_SLOT_ID slotID
);

C_CloseAllSessions closes all sessions with a token.

Parameters:
slotID specifies the token's slot.
This function should only be called when there is no other way to recover control of a token, such as when other applications connected to the token have failed.

Depending on the token, the token may be "ejected" from its reader, assuming this capability exists.

When an application is disconnected from a token in this manner, it receives a CKR_SESSION_CLOSED error on its next call to Cryptoki.

Returns:
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SLOT_ID slotID;
CK_RV rv;
slotID = 1;
rv = C_CloseAllSessions(slotID);

C_GetSessionInfo

CK_RV C_GetSessionInfo(
CK_SESSION_HANDLE hSession,
CK_SESSION_INFO_PTR pInfo
);

C_GetSessionInfo obtains information about the session.

Parameters:
hSession is the session's handle;
pInfo points to the location that receives the session information.
Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED
Example:

CK_SESSION_HANDLE hSession;
CK_SESSION_INFO info;
CK_RV rv;
rv = C_GetSessionInfo(hSession, &info);
if( rv == CKR_OK ){
.
.
.
}

C_Login

CK_RV C_Login(
CK_SESSION_HANDLE hSession,
CK_USER_TYPE userType,
CK_CHAR_PTR pPin,
CK_USHORT usPinLen
);

C_Login logs a user into a token.

Parameters:
hSession is the session's handle;
userType is the user type;
pPin points to the user's PIN; and usPinLen is the length of the PIN. Depending on the user type and the current session type, the state will become one of the following: "R/W SO Functions", "R/O SO Functions", "R/W User Functions", or "R/O User Functions".
Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_USER_ALREADY_LOGGED_IN, CKR_USER_TYPE_INVALID, CKR_PIN_INCORRECT, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_CHAR userPIN[] = {"MyPIN"};
CK_RV rv;
rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN));
if( rv == CKR_OK ){
.
.
.
}

C_Logout

CK_RV C_Logout(
CK_SESSION_HANDLE hSession
);

C_Logout logs a user out from a token.

Parameters:
hSession is the session's handle. Depending on the current user type and the current session type, the state will become either "R/W Public Session" or "R/O Public Session".
Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_CHAR userPIN[] = {"MyPIN"};
CK_RV rv;
rv = C_Login(hSession, CKU_USER, userPIN, sizeof(userPIN));
if( rv == CKR_OK ){
.
.
.
C_Logout(hSession);
}

Object management

Cryptoki provides the following functions for managing objects. Additional functions for managing key objects are described in Section ."

C_CreateObject

CK_RV C_CreateObject(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phObject
);

C_CreateObject creates a new object.

Parameters:
hSession is the session's handle;
pTemplate points to the object's template; usCount is the number of attributes in the template;
phObject points to the location that receives the new object's handle.
Only session object can be created during a read-only session. Only public objects can be created when no user is logged in.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_SESSION_CLOSED, CKR_OBJECT_CLASS_INVALID, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE
hData,
hCertificate,
hKey;
CK_OBJECT_CLASS
dataClass = CKO_DATA,
certificateClass = CKO_CERTIFICATE,
keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {"My Application"};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE dataTemplate[] = {
{CKA_CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &true, 1},
{CKA_APPLICATION, application, sizeof(application)},
{CKA_VALUE, dataValue, sizeof(dataValue)}
};
CK_ATTRIBUTE certificateTemplate[] = {
{CKA_CLASS, &certificateClass, sizeof(certificateClass)},
{CKA_TOKEN, &true, 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_VALUE, certificateValue, sizeof(certificateValue)}
};
CK_ATTRIBUTE keyTemplate[] = {
{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_WRAP, &true, 1},
{CKA_MODULUS, modulus, sizeof(modulus)},
{CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
CK_RV rv;
/* Create a data object */
rv = C_CreateObject(hSession, &dataTemplate, 4, &hData);
if( rv == CKR_OK ){
.
.
.
}
/* Create a certificate object */
rv = C_CreateObject(hSession, &certificateTemplate, 5, &hCertificate);
if( rv == CKR_OK ){
.
.
.
}
/* Create a RSA private key object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if( rv == CKR_OK ){
.
.
.
}

C_CopyObject

CK_RV C_CopyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phNewObject
);

C_CopyObject copies an object, creating a new object for the copy.

Parameters:
hSession is the session's handle;
hObject is the object's handle;
pTemplate points to the template for the new object; usCount is the number of attributes in the template;
phNewObject points to the location that receives the handle for the copy of the object.
The template may specify new values of any attributes of the object that can ordinarily be modified, and it may also specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session object to a token object).

Only session objects can be created during a read-only session. Only public objects can be created when no user is logged in.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_OBJECT_HANDLE hNewKey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BYTE id[] = {...};
CK_BYTE keyValue[] = {...};
CK_BYTE false = FALSE;
CK_BYTE true = TRUE;
CK_ATTRIBUTE keyTemplate[] = {
{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &false, 1},
{CKA_ID, id, sizeof(id)},
{CKA_VALUE, keyValue, sizeof(keyValue)}
};
CK_ATTRIBUTE copyTemplate[] = {
{CKA_TOKEN, &true, 1}
};
CK_RV rv;
/* Create a DES secret key session object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if( rv == CKR_OK ){
/* Create a copy on the token */
rv = C_CopyObject(hSession, hKey, &copyTemplate, 1, &hNewKey);
.
.
.
}

C_DestroyObject

CK_RV C_DestroyObject(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject
);

C_DestroyObject destroys an object.

Parameters:
hSession is the session's handle;
hObject is the object's handle.
Only session objects can be destroyed during a read-only session. Only public objects can be destroyed when no user is logged in.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_CHAR application[] = {"My Application"};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &true, 1},
{CKA_APPLICATION, application, sizeof(application)},
{CKA_VALUE, value, sizeof(value)}
};
CK_RV rv;
rv = C_CreateObject(hSession, &template, 4, &hObject);
if( rv == CKR_OK ){
.
.
.
C_DestroyObject(hSession, hObject);
}

C_GetObjectSize

CK_RV C_GetObjectSize(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_USHORT_PTR pusSize
);

C_GetObjectSize gets the size of an object in bytes.

Parameters:
hSession is the session's handle;
hObject is the object's handle; pusSize points to the location that receives the size in bytes of the object.
Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_CHAR application[] = {"My Application"};
CK_BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BYTE true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &true, 1},
{CKA_APPLICATION, application, sizeof(application)},
{CKA_VALUE, value, sizeof(value)}
};
CK_USHORT usSize;
CK_RV rv;
rv = C_CreateObject(hSession, &template, 4, &hObject);
if( rv == CKR_OK ){
rv = C_GetObjectSize(hSession, hObject, &usSize);
.
.
.
C_DestroyObject(hSession, hObject);
}

C_GetAttributeValue

CK_RV C_GetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount
);

C_GetAttributeValue obtains the value of one or more object attributes.

Parameters:
hSession is the session's handle;
hObject is the object's handle;
pTemplate points to a template that specifies which attribute values are to be obtained, and receives the attribute values; usCount is the number of attributes in the template.
The application must ensure that the location that receives a attribute value can hold the value. If it does not know the length of the value, then the application should pass NULL_PTR as the pValue parameter for the attribute in the template and C_GetAttributeValue will only return the length of the value. See Section for more details on attributes.

If the object is marked "sensitive", it may not be possible to obtain the value of the attribute.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_SENSITIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_BYTE_PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {
{CKA_MODULUS, NULL_PTR, 0},
{CKA_PUBLIC_EXPONENT, NULL_PTR, 0}
};
CK_RV rv;
rv = C_GetAttributeValue(hSession, hObject, &template, 2);
if( rv == CKR_OK ){
pModulus = (CK_BYTE_PTR) malloc(template[0].usValueLen);
template[0].pValue = pModulus;
pExponent = (CK_BYTE_PTR) malloc(template[1].usValueLen);
template[1].pValue = pExponent;
rv = C_GetAttributeValue(hSession, hObject, &template, 2);
if( rv == CKR_OK ){
.
.
.
}
free(pModulus);
free(pExponent);
}

C_SetAttributeValue

CK_RV C_SetAttributeValue(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hObject,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount
);

C_SetAttributeValue modifies the value of one or more attributes of an object.

Parameters:
hSession is the session's handle;
hObject is the object's handle;
pTemplate points to a template that specifies which attribute values are to be modified and their new values; usCount is the number of attributes in the template.
Only session objects can be modified during a read-only session.

Not all attributes can be modified; see Section for more details.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_CHAR label[] = {"New label"};
CK_ATTRIBUTE template[] = {
CKA_LABEL, label, sizeof(label)
};
CK_RV rv;
rv = C_SetAttributeValue(hSession, hObject, &template, 1);
if( rv == CKR_OK ){
.
.
.
}

C_FindObjectsInit

CK_RV C_FindObjectsInit(
CK_SESSION_HANDLE hSession,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount
);

C_FindObjectsInit initializes a search for token and session objects that match a template.

Parameters:
hSession is the session's handle;
pTemplate points to a search template that specifies the attribute values to match; usCount is the number of attributes in the search template. The matching criterion is an exact byte-for-byte match with all attributes in the template. To find all objects, set usCount is 0.
After calling C_FindObjectsInit, the application may call C_FindObjects one or more times to obtain the handles of the objects matching the template. At most one search operation may be active at a given time in a given session.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_FindObjects.

C_FindObjects

CK_RV C_FindObjects(
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE_PTR phObject,CK_USHORT usMaxObjectCount,
CK_USHORT_PTR pusObjectCount
);

C_FindObjects continues a search for token and session objects that match a template, obtaining additional object handles.

Parameters:
hSession is the session's handle;
phObject points to the location that receives the list (array) of additional object handles; usMaxObjectCount is the maximum number of object handles to be returned; pusObjectCount points to the location that receives the actual number of object handles returned. If there are no more objects matching the template, then the location that pusObjectCount points to receives 0.
The search must have been initialized with C_FindObjectsInit.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_USHORT usObjectCount;
CK_RV rv;
rv = C_FindObjectsInit(hSession, NULL_PTR, 0);
if( rv == CKR_OK ){
while (1) {
rv = C_FindObjects(hSession, &hObject, 1, &usObjectCount);
if (rv != CKR_OK || usObjectCount == 0)
break;
.
.
.
}
}

Encryption and decryption

Cryptoki provides the following functions for encrypting and decrypting data. All these functions run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

C_EncryptInit

CK_RV C_EncryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_EncryptInit initializes an encryption operation.

Parameters:
hSession is the session's handle;
pMechanism points to the encryption mechanism;
hKey is the handle of the encryption key.
The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, must be TRUE.

After calling C_EncryptInit, the application may call C_Encrypt to encrypt data in a single part, or C_EncryptUpdate one or more times followed by C_EncryptFinal to encrypt data in multiple parts. The encryption operation is "active" until the application calls C_Encrypt or C_EncryptFinal. To process additional data (in single or multiple parts), the application must call C_EncryptInit again. At most one cryptographic operation may be active at a given time in a given session. C_EncryptInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-2, Encryption Mechanisms
Mechanism Key type
PKCS #1 RSA1 RSA public
X.509 (raw) RSA1 RSA public
RC2 (ECB and CBC mode) RC2
RC4 RC4
DES (ECB and CBC mode) DES
triple-DES (ECB and CBC mode) double or triple-length DES

1 Single-part only.

Section provides more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_Encrypt.

C_Encrypt

CK_RV C_Encrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pEncryptedData,
CK_USHORT_PTR pusEncryptedDataLen
);

C_Encrypt encrypts single-part data.

Parameters:
hSession is the session's handle;
pData points to the data; usDataLen is the length in bytes of the data;
pEncryptedData points to the location that receives the encrypted data; pusEncryptedData points to the location that receives the length in bytes of the encrypted data.
The encryption operation must have been initialized with C_EncryptInit.

For constraints on data length, refer to the description of the encryption mechanism.

C_Encrypt is equivalent to a sequence of C_EncryptUpdate and C_EncryptFinal.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DES_ECB, NULL_PTR, 0
};
CK_BYTE encryptedData[8];
CK_USHORT usEncryptedDataLen;
CK_BYTE data[8];
CK_RV rv;
memset(data, 'A', sizeof(data));
rv = C_EncryptInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_Encrypt(hSession, data, sizeof(data), encryptedData, &usEncryptedDataLen);
}

C_EncryptUpdate

CK_RV C_EncryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen,
CK_BYTE_PTR pEncryptedPart,
CK_USHORT_PTR pusEncryptedPartLen
);

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.

Parameters:
hSession is the session's handle;
pPart points to the data part; usPartLen is the length of the data part;
pEncryptedPart points to the location that receives the encrypted data part; pusEncryptedPart points to the location that receives the length of the encrypted data part.
The encryption operation must have been initialized with C_EncryptInit. This function may be called any number of times in succession.

For constraints on data length, refer to the description of the encryption mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_EncryptFinal.'''

C_EncryptFinal

CK_RV C_EncryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastEncryptedPart,
CK_USHORT_PTR pusEncryptedPartLen
);

C_EncryptFinal finishes a multiple-part encryption operation.

Parameters:
hSession is the session's handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any; pusLastEncryptedPartLen points to the location that receives the length of the last encrypted data part.
The encryption operation must have been initialized with C_EncryptInit.

For constraints on data length, refer to the description of the encryption mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

#define BUF_SZ 512
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM_DES_CBC, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_USHORT usEncryptedDataLen;
CK_BYTE data[2*BUF_SZ];
CK_RV rv;
memset(iv, 0, sizeof(iv));
memset(data, 'A', 2*BUF_SZ);
rv = C_EncryptInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
C_EncryptUpdate(hSession, &data[0], BUF_SZ, encryptedData, &usEncryptedDataLen);
.
.
.
C_EncryptUpdate(hSession, &data[BUF_SZ], BUF_SZ, encryptedData, &usEncryptedDataLen);
.
.
.
C_EncryptFinal(hSession, encryptedData, &usEncryptedDataLen);
}

C_DecryptInit

CK_RV C_DecryptInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_DecryptInit initializes a decryption operation.

Parameters:
hSession is the session's handle;
pMechanism points to the decryption mechanism;
hKey is the handle of the decryption key.
The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports decryption, must be TRUE.

After calling C_DecryptInit, the application may call C_Decrypt to encrypt data in a single part, or C_DecryptUpdate one or more times followed by C_DecryptFinal to encrypt data in multiple parts. The decryption operation is "active" until the application calls C_Decrypt or C_DecryptFinal. To process additional data (in single or multiple parts), the application must call C_DecryptInit again. At most one cryptographic operation may be active at a given time in a given session. C_DecryptInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-3, Decryption Mechanisms
Mechanism Key type
PKCS #1 RSA1 RSA public
X.509 (raw) RSA1 RSA public
RC2 (ECB and CBC mode) RC2
RC4 RC4
DES (ECB and CBC mode) DES
triple-DES (ECB and CBC mode) double or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_Decrypt.

C_Decrypt

CK_RV C_Decrypt(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData,
CK_USHORT usEncryptedDataLen,
CK_BYTE_PTR pData,
CK_USHORT_PTR pusDataLen
);

C_Decrypt decrypts encrypted data in a single part.

Parameters:
hSession is the session's handle;
pEncryptedData points to the encrypted data; usEncryptedDataLen is the length of the encrypted data;
pData points to the location that receives the recovered data; pusDataLen points to the location that receives the length of the recovered data.
The decryption operation must have been initialized with C_DecryptInit.

For constraints on data length, refer to the description of the decryption mechanism.

C_Decrypt is equivalent to a sequence of C_DecryptUpdate and C_DecryptFinal.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DES_ECB, NULL_PTR, 0
};
CK_BYTE encryptedData[8];
CK_BYTE data[8];
CK_USHORT usDataLen;
CK_RV rv;
memset(encryptedData, 'A', sizeof(encryptedData));
rv = C_DecryptInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_Decrypt(hSession, encryptedData, sizeof(encryptedData), data, &usDataLen);
}

C_DecryptUpdate

CK_RV C_DecryptUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedPart,
CK_USHORT usEncryptedPartLen,
CK_BYTE_PTR pPart,
CK_USHORT_PTR pusPartLen
);

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data part.

Parameters:
hSession is the session's handle;
pEncryptedPart points to the encrypted data part; usEncryptedPartLen is the length of the encrypted data part;
pPart points to the location that receives the recovered data part; pusPartLen points to the location that receives the length of the recovered data part.
The decryption operation must have been initialized with C_DecryptInit. This function may be called any number of times in succession.

For constraints on data length, refer to the description of the decryption mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_DecryptFinal.

C_DecryptFinal

CK_RV C_DecryptFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pLastPart,
CK_USHORT_PTR usLastPartLen
);

C_DecryptFinal finishes a multiple-part decryption operation.

Parameters:
hSession is the session's handle;
pLastPart points to the location that receives the last recovered data part, if any; pusLastPartLen points to the location that receives the length of the last recovered data part.
The decryption operation must have been initialized with C_DecryptInit.

For constraints on data length, refer to the description of the decryption mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

#define BUF_SZ 512
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
CKM_DES_CBC, iv, sizeof(iv)
};
CK_BYTE encryptedData[2*BUF_SZ];
CK_BYTE data[BUF_SZ];
CK_USHORT usDataLen;
CK_RV rv;
memset(iv, 0, sizeof(iv));
memset(encryptedData, 'A', 2*BUF_SZ);
rv = C_DecryptInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
C_DecryptUpdate(hSession, &encryptedData[0], BUF_SZ, data, &usDataLen);
.
.
.
C_DecryptUpdate(hSession, &encryptedData[BUF_SZ], BUF_SZ, data, &usDataLen);
.
.
.
C_DecryptFinal(hSession, data, &usDataLen);
}

Message digesting

Cryptoki provides the following functions for digesting data. All these functions run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

C_DigestInit

CK_RV C_DigestInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism
);

C_DigestInit initializes a message-digesting operation.

Parameters:
hSession is the session's handle;
pMechanism points to the digesting mechanism.
After calling C_DigestInit, the application may call C_Digest to digest in a single part, or C_DigestUpdate one or more times followed by C_DigestFinal to digest data in multiple parts. The message-digesting operation is "active" until the application calls C_Digest or C_DigestFinal. To process additional data (in single or multiple parts), the application must call C_DigestInit again. At most one cryptographic operation may be active at a given time in a given session. C_DigestInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-4, Digesting Mechanisms
Mechanism
MD2
MD5
SHA-1

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_Digest.

C_Digest

CK_RV C_Digest(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pDigest,
CK_USHORT_PTR pusDigestLen
);

C_Digest digests data in a single part.

Parameters:
hSession is the session's handle, pData points to the data; usDataLen is the length of the data;
pDigest points to the location that receives the message digest; pusDigestLen points to the location that receives the length of the message digest.
The digest operation must have been initialized with C_DigestInit.

For constraints on data length, refer to the description of the message-digesting mechanism.

C_Digest is equivalent to a sequence of C_DigestUpdate and C_DigestFinal.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {
CKM_MD2, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_USHORT usDigestLen;
CK_RV rv;
rv = C_DigestInit(hSession, &mechanism);
if( rv == CKR_OK ){
rv = C_Digest(hSession, data, sizeof(data), digest, &usDigestLen);
}

C_DigestUpdate

CK_RV C_DigestUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen
);

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part.

Parameters:
hSession is the session's handle, pPart points to the data part; usPartLen is the length of the data part.
The message-digesting operation must have been initialized with C_DigestInit. This function may be called any number of times in succession.

For constraints on data length, refer to the description of the message-digesting mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_DigestFinal.

C_DigestFinal

CK_RV C_DigestFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pDigest,
CK_USHORT_PTR pusDigestLen
);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest.

Parameters:
hSession is the session's handle;
pDigest points to the location that receives the message digest; pusDigestLen points to the location that receives the length of the message digest.
The message-digesting operation must have been initialized with C_DigestInit.

For constraints on data length, refer to the description of the message-digesting mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Cryptoki provides the following functions for digesting data.
Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {
CKM_MD2, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_USHORT usDigestLen;
CK_RV rv;
rv = C_DigestInit(hSession, &mechanism);
if( rv == CKR_OK ){
rv = C_DigestUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_DigestFinal(hSession, digest, &usDigestLen);
}

Signature and verification

Cryptoki provides the following functions for signing data and verifying signatures. (For the purposes of Cryptoki, these operations also encompass data authentication codes.) All these functions run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

C_SignInit

CK_RV C_SignInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_SignInit initializes a signature operation, where the signature is an appendix to the data.

Parameters:
hSession is the session's handle;
pMechanism points to the signature mechanism;
hKey is the handle of the signature key.
The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with appendix, must be TRUE.

After calling C_SignInit, the application may call C_Sign to sign in a single part, or C_SignUpdate one or more times followed by C_SignFinal to sign data in multiple parts. The signature operation is "active" until the application calls C_Sign or C_SignFinal. To process additional data (in single or multiple parts), the application must call C_SignInit again. At most one cryptographic operation may be active at a given time in a given session. C_SignInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-5, Signature Mechanisms
Mechanism Key type
PKCS #1 RSA1 RSA private
ISO/IEC 9796 RSA1 RSA private
X.509 (raw) RSA1 RSA private
DSA1 DSA private
RC2-MAC RC2
DES-MAC DES
triple-DES-MAC double-length or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_Sign.

C_Sign

CK_RV C_Sign(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen
);

C_Sign signs data in a single part, where the signature is an appendix to the data.

Parameters:
hSession is the session's handle;
pData points to the data; usDataLen is the length of the data;
pSignature points to the location that receives the signature; pusSignatureLen points to the location that receives the length of the signature.
The signature operation must have been initialized with C_SignInit.

For constraints on data length, refer to the description of the signature mechanism.

C_Sign is equivalent to a sequence of C_SignUpdate and C_SignFinal.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DSA, NULL_PTR, 0
};
CK_BYTE data[20] = {...};
CK_BYTE signature[40];
CK_USHORT usSignatureLen;
CK_RV rv;
rv = C_SignInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_Sign(hSession, data, sizeof(data), signature, &usSignatureLen);
}

C_SignUpdate

CK_RV C_SignUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen
);

C_SignUpdate continues a multiple-part signature operation, processing another data part.

Parameters:
hSession is the session's handle, pPart points to the data part; usPartLen is the length of the data part.
The signature operation must have been initialized with C_SignInit. This function may be called any number of times in succession.

For constraints on data length, refer to the description of the signature mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_SignFinal.

C_SignFinal

CK_RV C_SignFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen
);

C_SignFinal finishes a multiple-part signature operation, returning the signature.

Parameters:
hSession is the session's handle;
pSignature points to the location that receives the signature; pusSignatureLen points to the location that receives the length of the signature.
The signature operation must have been initialized with C_SignInit.

For constraints on data length, refer to the description of the signature mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_USHORT usMacLen;
CK_RV rv;
rv = C_SignInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_SignUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_SignFinal(hSession, mac, &usMacLen);
}

C_SignRecoverInit

CK_RV C_SignRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_SignRecoverInit initializes a signature operation, where the data can be recovered from the signature.

Parameters:
hSession is the session's handle;
pMechanism points to the structure that specifies the signature mechanism;
hKey is the handle of the signature key.
The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports signatures where the data can be recovered from the signature, must be TRUE.

After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a single part. The signature operation is "active" until the application calls C_SignRecover. At most one cryptographic operation may be active at a given time in a given session. C_SignRecoverInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-6, Signature With Recovery Mechanisms
Mechanism Key type
PKCS #1 RSA
RSA private
ISO/IEC 9796 RSA
RSA private
X.509 (raw) RSA
RSA private

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_SignRecover.

C_SignRecover

CK_RV C_SignRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT_PTR pusSignatureLen
);

C_SignRecover signs data in a single operation, where the data can be recovered from the signature.

Parameters:
hSession is the session's handle;
pData points to the data; usDataLen is the length of the data;
pSignature points to the location that receives the signature; pusSignatureLen points to the location that receives the length of the signature.
The signature operation must have been initialized with C_SignRecoverInit.

For constraints on data length, refer to the description of the signature mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE signature[128];
CK_USHORT usSignatureLen;
CK_RV rv;
rv = C_SignRecoverInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_SignRecover(hSession, data, sizeof(data), signature, &usSignatureLen);
}

C_VerifyInit

CK_RV C_VerifyInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_VerifyInit initializes a verification operation, where the signature is an appendix to the data.

Parameters:
hSession is the session's handle;
pMechanism points to the structure that specifies the verification mechanism;
hKey is the handle of the verification key.
The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification where the signature is an appendix to the data, must be TRUE.

After calling C_VerifyInit, the application may call C_Verify to verify a signature on data in a single part, or C_VerifyUpdate one or more times followed by C_VerifyFinal to verify a signature on data in multiple parts. The verification operation is "active" until the application calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the application must call C_VerifyInit again. At most one cryptographic operation may be active at a given time in a given session. C_VerifyInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-7, Verification Mechanisms
Mechanism Key type
PKCS #1 RSA1 RSA public
ISO/IEC 9796 RSA1 RSA public
X.509 (raw) RSA1 RSA public
DSA1 DSA public
RC2-MAC RC2
DES-MAC DES
triple-DES-MAC double-length or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_Verify.

C_Verify

CK_RV C_Verify(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_USHORT usDataLen,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen
);

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data.

Parameters:
hSession is the session's handle;
pData points to the data; usDataLen is the length of the data;
pSignature points to the signature; usSignatureLen is the length of the signature.
The verification operation must have been initialized with C_VerifyInit.

For constraints on data length, refer to the description of the verification mechanism.

C_Verify is equivalent to a sequence of C_VerifyUpdate and C_VerifyFinal.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DSA, NULL_PTR, 0
};
CK_BYTE data[20] = {...};
CK_BYTE signature[40];
CK_RV rv;
rv = C_VerifyInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_Verify(hSession, data, sizeof(data), signature, sizeof(signature));
}

C_VerifyUpdate

CK_RV C_VerifyUpdate(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen
);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part.

Parameters:
hSession is the session's handle, pPart points to the data part; usPartLen is the length of the data part.
The verification operation must have been initialized with C_VerifyInit. This function may be called any number of times in succession.

For constraints on data length, refer to the description of the verification mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_VerifyFinal.

C_VerifyFinal

CK_RV C_VerifyFinal(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen
);

C_VerifyFinal finishes a multiple-part verification operation, checking the signature.

Parameters:
hSession is the session's handle;
pSignature points to the signature; usSignatureLen is the length of the signature.
The verification operation must have been initialized with C_VerifyInit.

For constraints on data length, refer to the description of the verification mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;
rv = C_VerifyInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_VerifyUpdate(hSession, data, sizeof(data));
.
.
.
rv = C_VerifyFinal(hSession, mac, sizeof(mac));
}

C_VerifyRecoverInit

CK_RV C_VerifyRecoverInit(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);

C_VerifyRecoverInit initializes a signature verification operation, where the data is recovered from the signature.

Parameters:
hSession is the session's handle;
pMechanism points to the structure that specifies the verification mechanism;
hKey is the handle of the verification key.
The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports verification where the data is recovered from the signature, must be TRUE.

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify a signature on data in a single part. The verification operation is "active" until the application calls C_VerifyRecover. At most one cryptographic operation may be active at a given time in a given session. C_VerifyRecoverInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-8, Verification With Recovery Mechanisms
Mechanism Key type
PKCS #1 RSA RSA public
ISO/IEC 9796 RSA RSA public
X.509 (raw) RSA RSA public

Section 10 gives more details on the mechanisms.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_VerifyRecover.

C_VerifyRecover

CK_RV C_VerifyRecover(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSignature,
CK_USHORT usSignatureLen,
CK_BYTE_PTR pData,
CK_USHORT_PTR pusDataLen
);

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the signature.

Parameters:
hSession is the session's handle;
pSignature points to the signature; usSignatureLen is the length of the signature;
pData points to the location that receives the recovered data; pusDataLen points to the location that receives the length of the recovered data.
The verification operation must have been initialized with C_VerifyRecoverInit.

For constraints on data length, refer to the description of the verification mechanism.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID, CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_USHORT usDataLen;
CK_BYTE signature[128];
CK_RV rv;
rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);
if( rv == CKR_OK ){
rv = C_VerifyRecover(hSession, signature, sizeof(signature), data, &usDataLen);
}

Key management

Cryptoki provides the following functions for key management. All these functions run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

C_GenerateKey

CK_RV C_GenerateKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phKey
);

C_GenerateKey generates a secret key, creating a new key object.

Parameters:
hSession is the session's handle;
pMechanism points to the key generation mechanism;
pTemplate points to the template for the new key; usCount is the number of attributes in the template;
phKey points to the location that receives the handle of the new key.
The following mechanisms are supported in this version:

Table 9-9, Key Generation Mechanisms
Mechanism Key type
RC2 key generation RC2
RC4 key generation RC4
DES key generation DES1
double-length DES key generation double-length DES1
triple-length DES key generation triple-length DES1

1 No known "weak" or "semi-weak" DES keys are generated (see FIPS PUB 74).

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
CKM_DES_KEY_GEN, NULL_PTR, 0
};
CK_RV rv;
rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0, &hKey);
if( rv == CKR_OK ){
.
.
.
}

C_GenerateKeyPair

CK_RV C_GenerateKeyPair(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_ATTRIBUTE_PTR pPublicKeyTemplate,
CK_USHORT usPublicKeyAttributeCount,
CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
CK_USHORT usPrivateKeyAttributeCount,
CK_OBJECT_HANDLE_PTR phPrivateKey,
CK_OBJECT_HANDLE_PTR phPublicKey
);

C_GenerateKeyPair generates a public-key/private-key pair, creating new key objects. On input, hSession is the session's handle;

Parameters:
pMechanism points to the key generation mechanism;
pPublicKeyTemplate points to the template for the public key; usPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key; usPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.
The following mechanisms are supported in this version:

Table 9-10, Key Pair Generation Mechanisms
Mechanism Key types
PKCS #1 RSA key pair generation RSA public and private
DSA key pair generation DSA public and private
PKCS #3 Diffie-Hellman key pair generation DH public and private

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_USHORT modulusBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ENCRYPT, &true, 1},
{CKA_VERIFY, &true, 1},
{CKA_WRAP, &true, 1},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_TOKEN, &true, 1},
{CKA_PRIVATE, &true, 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, 1},
{CKA_DECRYPT, &true, 1},
{CKA_SIGN, &true, 1},
{CKA_UNWRAP, &true, 1}
};
CK_RV rv;
rv = C_GenerateKeyPair(hSession, &mechanism, publicKeyTemplate, 5, privateKeyTemplate, 8, &hPublicKey, &hPrivateKey);
if( rv == CKR_OK ){
.
.
.
}

C_WrapKey

CK_RV C_WrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pWrappedKey,
CK_USHORT_PTR pusWrappedKeyLen
);

C_WrapKey wraps (i.e., encrypts) a key.

Parameters:
hSession is the session's handle;
pMechanism points to the wrapping mechanism;
hWrappingKey is the handle of the wrapping key; hKey is the handle of the key to be wrapped;
pWrappedKey points to the location that receives the wrapped key; and pusWrappedKeyLen points to the location that receives the length of the wrapped key.
The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping, must be TRUE.

The following mechanisms are supported in this version:

Table 9-11, Wrapping Mechanisms
Mechanism Wrapping key type Type of key to be wrapped
PKCS #1 RSA RSA public RC2, RC4, DES, double or triple-length DES
X.509 (raw) RSA RSA public RC2, RC4, DES, double or triple-length DES
RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-length DES
DES (ECB mode) DES RC2, RC4, DES
triple-DES (ECB mode) double or triple-length DES RC2, RC4, DES, double or triple-length DES

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_TYPE_INCONSISTENT, CKR_WRAPPING_KEY_SIZE_RANGE, CKR_KEY_SENSITIVE, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8];
CK_USHORT usWrappedKeyLen;
CK_RV rv;
rv = C_WrapKey(hSession, &mechanism, hWrappingKey, hKey, wrappedKey, &usWrappedKeyLen);
if( rv == CKR_OK ){
.
.
.
}

C_UnwrapKey

CK_RV C_UnwrapKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hUnwrappingKey,
CK_BYTE_PTR pWrappedKey,
CK_USHORT usWrappedKeyLen,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usAttributeCount,
CK_OBJECT_HANDLE_PTR phKey
);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new key object.

Parameters:
hSession is the session's handle;
pMechanism points to the unwrapping mechanism;
hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key; usWrappedKeyLen is the length of the wrapped key;
pTemplate points to the template for the new key; usAttributeCount is the number of attributes in the template;
phKey points to the location that receives the handle of the recovered key.
The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports unwrapping, must be TRUE.

The following mechanisms are supported in this version:

Table 9-12, Unwrapping Mechanisms
Mechanism Unwrapping key type Recovered key type
PKCS #1 RSA RSA private RC2, RC4, DES, double or triple-length DES
X.509 (raw) RSA RSA private RC2, RC4, DES, double or triple-length DES
RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-length DES
DES (ECB mode) DES RC2, RC4, DES
triple-DES (ECB mode) double or triple-length DES RC2, RC4, DES, double or triple-length DES

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_UNWRAPPING_KEY_SIZE_RANGE, CKR_WRAPPED_KEY_LEN_RANGE, CKR_WRAPPED_KEY_INVALID, CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, 1},
{CKA_DECRYPT, &true, 1}
};
CK_RV rv;
rv = C_UnwrapKey(hSession, &mechanism, hUnwrappingKey, wrappedKey, sizeof(wrappedKey), template, 4, &hKey);
if( rv == CKR_OK ){
.
.
.
}

C_DeriveKey

CK_RV C_DeriveKey(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,
CK_USHORT usAttributeCount,
CK_OBJECT_HANDLE_PTR phKey
);

C_DeriveKey derives a key from a base key, creating a new key object.

Parameters:
hSession is the session's handle;
pMechanism points to a structure that specifies the key derivation mechanism;
hBaseKey is the handle of the base key;
pTemplate points to the template for the new key; usAttributeCount is the number of attributes in the template;
phKey points to the location that receives the handle of the derived key.
The following mechanisms are supported in this version:

Table 9-13, Key Derivation Mechanisms
Mechanism Base key type Derived key type
Diffie-Hellman key derivation DH private RC2, RC4, DES, double or triple-length DES, or generic

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {
CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publicValue[128];
CK_BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
CKM_DH_PKCS_DERIVE, otherPublicValue, sizeof(otherPublicValue)
};
CK_ATTRIBUTE pTemplate[] = {
CKA_VALUE, &publicValue, sizeof(publicValue)}
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_PRIME, prime, sizeof(prime)},
{CKA_BASE, base, sizeof(base)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_DERIVE, &true, 1}
};
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &keyClass, sizeof(keyClass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_ENCRYPT, &true, 1},
{CKA_DECRYPT, &true, 1}
};
CK_RV rv;
rv = C_GenerateKeyPair(hSession, &keyPairMechanism, publicKeyTemplate, 2, privateKeyTemplate, 1, &hPublicKey, &hPrivateKey);
if( rv == CKR_OK ){
rv = C_GetAttributeValue(hSession, hPublicKey, &pTemplate, 1);
if( rv == CKR_OK ){
.
/* exchange public values */
.
rv = C_DeriveKey(hSession, &mechanism, hPrivateKey, template, 4, &hKey);
if( rv == CKR_OK ){
.
.
.
}
}
}

Random number generation

Cryptoki provides the following functions for generating random numbers. All these functions run in parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token supports parallel execution.

C_SeedRandom

CK_RV C_SeedRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pSeed,
CK_USHORT usSeedLen
);

C_SeedRandom mixes additional seed material into the token's random number generator.

Parameters:
hSession is the session's handle;
pSeed points to the seed material; and usSeedLen is the length in bytes of the seed material.
Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_BYTE seed[] = {...};
CK_RV rv;
rv = C_SeedRandom(hSession, seed, sizeof(seed));
if( rv == CKR_OK ){
.
.
.
}

C_GenerateRandom

CK_RV C_GenerateRandom(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pRandomData,
CK_USHORT usRandomLen
);

C_GenerateRandom generates random data.

Parameters:
hSession is the session's handle;
pRandomData points to the location that receives the random data; and usRandomLen is the length in bytes of the random data to be generated.
Returns:
CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
Example:

CK_SESSION_HANDLE hSession;
CK_BYTE randomData[] = {...};
CK_RV rv;
rv = C_GenerateRandom(hSession, randomData, sizeof(randomData));
if( rv == CKR_OK ){
.
.
.
}

Parallel function management

Cryptoki provides the following functions for managing parallel execution of cryptographic functions.

C_GetFunctionStatus

CK_RV C_GetFunctionStatus(
CK_SESSION_HANDLE hSession
);

C_GetFunctionStatus obtains an updated status of a function running in parallel with an application.

Parameters:
hSession is the session's handle.
An application should call this function repeatedly until the return value is no longer CKR_FUNCTION_NOT_PARALLEL.

Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_FUNCTION_NOT_PARALLEL, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR
See also:
C_CancelFunction.

C_CancelFunction

CK_RV C_CancelFunction(
CK_SESSION_HANDLE hSession
);

C_CancelFunction cancels a function running in parallel with an application.

Parameters:
hSession is the session's handle.
Returns:
CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_FUNCTION_NOT_PARALLEL, CKR_HOST_MEMORY
Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_USHORT modulusBits = 768;
CK_BYTE publicExponent[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
{CKA_ENCRYPT, &true, 1},
{CKA_VERIFY, &true, 1},
{CKA_WRAP, &true, 1},
{CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
{CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
{CKA_TOKEN, &true, 1},
{CKA_PRIVATE, &true, 1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, 1},
{CKA_DECRYPT, &true, 1},
{CKA_SIGN, &true, 1},
{CKA_UNWRAP, &true, 1}
};
CK_RV rv;
rv = C_GenerateKeyPair(hSession, &mechanism, publicKeyTemplate, 5, privateKeyTemplate, 8, &hPublicKey, &hPrivateKey);
while ( rv == CKR_FUNCTION_PARALLEL ) {
/* Check if user want to cancel function */
if( kbhit() ){
 if( getch() == 27 ){ /* If user hit ESCape key */
 C_CancelFunction(hSession);
 break;
 }
}
/* Perform other tasks or delay */
.
.
.
rv = C_GetFunctionStatus(hSession);
}

Callback function

Cryptoki uses the following callback function to notify the application of certain events.

Notify

CK_RV Notify(
CK_SESSION_HANDLE hSession,
CK_NOTIFICATION event,
CK_VOID_PTR pApplication
);

Notify is an application callback that processes events. hSession is the session's handle; event is the event; and pApplication is an application-defined value (the same as passed to C_OpenSession).

When event is CKN_SURRENDER, the callback may return CKR_CANCEL to cancel the operation that is currently active. If the callback returns CKR_OK, Cryptoki continues the operation. For other events, the callback should return CKR_OK.

Returns:
CKR_OK, CKR_CANCEL.

RSA Security Inc. Public-Key Cryptography Standards - PKCS#11 - v100