PKCS #11: Cryptographic Token Interface
Standard

An RSA Laboratories Technical Note
Version 2.01
December 22, 1397

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065 USA
(650) 595-7703

fax: (650) 595-4126

email: rsa-| abs atr sa. com

Copyright © 1994-8 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
company. License to copy this document is granted provided that it is identified as “RSA Data
Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document. RSA, RC2, RC4, RC5, MD2, and MD5 are registered trademarks of
RSA Data Security, Inc. The RSA public-key cryptosystem is protected by U.S. Patent #4,405,829.
RSA Data Security, Inc., has patent pending on the RC5 cipher. CAST, CAST3, CAST5, and
CAST128 are registered trademarks of Entrust Technologies. OS/2 and CDMF (Commercial Data
Masking Facility) are registered trademarks of International Business Machines Corporation.
LYNKS is a registered trademark of SPYRUS Corporation. IDEA is a registered trademark of
Ascom Systec. Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is a registered trademark of UNIX System
Laboratories. FORTEZZA is a registered trademark of the National Security Agency.

Page 111

Foreword

As cryptography begins to see wide application and acceptance, one thing is increasingly clear: if
it is going to be as effective as the underlying technology allows it to be, there must be
interoperable standards. Even though vendors may agree on the basic cryptographic techniques,
compatibility between implementations is by no means guaranteed. Interoperability requires
strict adherence to agreed-upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives of
industry, academia and government, a family of standards called Public-Key Cryptography
Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-key
and related technology. It is RSA Laboratories' intention to improve and refine the standards in
conjunction with computer system developers, with the goal of producing standards that most if
not all developers adopt.

The role of RSA Laboratories in the standards-making process is four-fold:

1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or necessary changes
and extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference implementations.
During the process of PKCS development, RSA Laboratories retains final authority on each
document, though input from reviewers is clearly influential. However, RSA Laboratories” goal
is to accelerate the development of formal standards, not to compete with such work. Thus, when
a PKCS document is accepted as a base document for a formal standard, RSA Laboratories
relinquishes its “ownership” of the document, giving way to the open standards development
process. RSA Laboratories may continue to develop related documents, of course, under the
terms described above.
The PKCS family currently includes the following documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.

Copyright © 1994-7 RSA Laboratories

Page IV PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS #12: Personal Information Exchange Syntax Standard. Version 1.0 is under construction.

PKCS documents and information are available online from RSADSI's web server. To get them,
go to RSADSI’s homepage (ht t p: / / www. r sa. com); then go to RSA Laboratories; then go to the
PKCS page. There is an electronic mailing list, “pkcs-tng”, at rsa. com for discussion of
issues relevant to the “next generation” of the PKCS standards. To subscribe to this list, send e-
mail to maj or dond at r sa. comwith the line “subscri be pkcs-tng” in the message body.
To unsubscribe, send e-mail to maj or dono at r sa. comwith the line “unsubscri be pkcs-
t ng” in the message body.

There is also an electronic mailing list, “cr ypt oki ”, at r sa. com specifically for discussion and
development of PKCS #11. To subscribe to this list, send e-mail to maj or dono at r sa. comwith
the line “subscribe cryptoki” in the message body. To unsubscribe, send e-mail to
maj or dono at r sa. comwith the line “unsubscri be crypt oki ” in the message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

PKCS Editor

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065
(650)595-7703

fax: (650)595-4126

email: pkcs-edi tor atrsa. com

It would be difficult to enumerate all the people and organizations who helped to produce
Version 2.01 of PKCS #11. RSA Laboratories is grateful to each and every one of them. Especial
thanks go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA for the many hours
they spent writing up parts of this document.

For Version 1.0, PKCS #11’s document editor was Aram Pérez of International Computer

Services, under contract to RSA Laboratories; the project coordinator was Burt Kaliski of RSA
Laboratories. For Version 2.01, Ray Sidney served as document editor and project coordinator.

Copyright © 1994-7 RSA Laboratories

Page v

Table of Contents

1. SCOPE 1
2. REFERENCES 2
3. DEFINITIONS 5
4. SYMBOLS AND ABBREVIATIONS 8
5. GENERAL OVERVIEW 11
5.1. DESIGIN GOALS ...ttt sttt ettt ettt et ettt st shtesb e et et e eate s bt e bt e bt e bt eabesaaesbeenbeenaeenee 11
5.2. (GENERAL MODELtuuteuteuteuteiesteete st eutete e seestesbesstebtestestensesteabesaeebeestentensensenbesbeebeeneentensensesentens 11
5.3. LOGICAL VIEW OF A TOKEN ...c..ceouttitteteetieitenttenttenteeniestesitesseesteenteentesmeesssenseensessesmsesseesseensesnseenes 13
54. USERS ..ottt bbb 14
5.5. APPLICATIONS AND THEIR USE OF CRYPTOKI.....c.ceuteuteienienienientesieeitetestesteseesieseeeseeeensenseseessenee 14
55.1. APPLICALIONS ANA PFOCESSESvveveiieieiirieieiiieiet sttt 15
5.5.2. Applications And tHYEASccccccvvviveieeieciiiires ettt 15
5.6. SESSIONS......teuteteeteeteeiteut et et e ste s bt et e e st eu b et et e be st e eb e eatesten s et e beeeeebeebeestent e e e besbeebesaeestententensenaeebesnean 16
5.6.1. Read-only Session SHALES..............cccveuiuiiiiiiiiiiiiiceececctt s 17
5.6.2. ReAAWTIEE SESSTON SEALES ..ottt ettt e e s et e e 17
5.6.3. Permitted object ACCESSES DY SESSIONScccuvucuuieiiiiiiiiiiiiiciceeeccct s 18
5.6.4. SESSIOM EUCHLES ... s 19
5.6.5. Session handles and object RANAIES ... 20
5.6.6. CaPADILIHES Of SESSIONS ...ttt et 20
5.6.7. Example 0f 11Se 0f SESSIONScccccuviiviiiueiiiiiiiiiiiiiiiciic et 21
5.7. FUNCTION OVERVIEWeoutiuiiniintinienitettetententestestesaeestestestessensenbeseeesesseeneensensensessessesmeessensensensensens 23
6. SECURITY CONSIDERATIONS 26
7. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR CH+ueeueueeee 28
7.1. STRUCTURE PACKINGcteuteutenientinientteitetetentestessesuteseestestesensensesaeesesstensensensensessessessesseensensensensens 28
7.2. POINTER-RELATED MACROSoovetiiteteretitineiee ettt sttt es s en s 28
¢’ CRLPTR .ottt 28
’ CK_DEFINE_FUNCTIONcccviiiiiiiiiiiiiiiiciciciiittst sttt 28
’ CK_DECLARE_FUNCTION.....ccoctotiisiiiiiiiiiiiiieiciiiitcisisisss sttt 29
’ CK_DECLARE_FUNCTION_POINTERccccecsttiieeiininiiiieeesststtee ettt 29
’ CK_CALLBACK_FUNCTIONccooisiiiiiiiiiiiiiiieiciiiiitsisisiscs sttt 29
’ NULL_PTR ..ottt 29
7.3. SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODEcoovvviiiiererererereneenieesee e eseneseeenns 30
7.3.1. WWITI32 oo s 30
7.3.2. WWIBLLO oo s 30
7.3.3. Generic UNLXccooiiiiiiiiiiiiiiciiiici s 31
8. GENERAL DATA TYPES 32
8.1. GENERAL INFORMATIONuiititiaterutettentententesteatesueestestentensensesbesueeseentensensensensessessesneeseensensensessens 32
¢’ CK_VERSION; CK_VERSION_PTR.....c.cccccecvvimiiiiiviiiiinininiiiisisicisiiticcess s 32
¢’ CK_INFO; CK_INFO_PTR.....cccvviiviniiiiiiiisisisiiiiiiccsiststtis st 32
¢’ CK_NOTIFICATION ..ottt 33

Copyright © 1994-7 RSA Laboratories

Page VI PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01
8.2. SLOT AND TOKEN TYPESccutiittitiateeuteutentetentestestesutestestestesessesbesseeseestensensensensessessesseeseensensessessens 33
¢’ CK_SLOT_ID; CK_SLOT_ID_PTRcceceeeuviiisimiiisiiicisiiicictscisece st 34
¢’ CK_SLOT_INFO; CK_SLOT_INFO_PTR.....cccccecesumiririmiiiiiiisiiicisicicsiceess e 34
¢’ CK_TOKEN_INFO; CK_TOKEN_INFO_PTRcccccecvuviuriviisiniisiiiicisiiicicicsiccsisissiis 35
8.3. SESSION TYPEScttetteuteutentententestesteetteutentestensesteabesseeseestentensesteabesaeebeesteseensenseabesbeebeeneestensansensensens 39
¢’ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTRccccccececevviviviiniiciniisiircnicnas 39
¢’ CK_USER_TYPE ..ottt e 39
¢’ CKLSTATE ...ttt 39
¢’ CK_SESSION_INFO; CK_SESSION_INFO_PTR......cccccccceivivirimiisiicisiiieicincinicsinssiis 40
8.4. OBJECT TYPES ..ttt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeseseeeesasasaeeeeeeeesesesesesseseeaeeteenesseaseseeesesensaseens 40
¢’ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR.....cccccooevuuvimieniisiiiisinicsiericisicias 40
¢’ CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTRcccccooovuviiiiniiiiiiicisiicicinciicssiesicis 41
¢’ CK_KEY_TYPE ..ottt 41
¢’ CK_CERTIFICATE_TYPE.....ccsiiiioiiisiiciiicisicstst st 42
¢’ CK_ATTRIBUTE_TYPE.....ccocsiiiiiiiiiiisiicicits ittt 42
¢’ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR......ccccceisiiiiiniiiiiiiiciiicisicsicsise et 43
¢’ CKLDATE ...ttt 44
8.5. DATA TYPES FOR MECHANISMScoittiiietieitenitenttenieenieetesitesieesteenseensesasesseesseenseensesssesssesseenseenne 44
¢’ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR.......ccccceecevivivviisiriisinicininna. 44
¢’ CK_MECHANISM; CK_MECHANISM_PTR......ccccccceivimiiimiininiiiniiiicisiicicicsiscsisicsiis 47
¢’ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTRcccccccooevivivviininiisinicininna. 47
8.6. FUNCTION TYPES.....ttitteteeteeite sttt ettt ettt et et e bt st st sbtesbe e bt et e eatesbte bt e bt eabeeabesaaesbeenbeenaeenee 49
¢’ CRLRV e 49
¢’ CRUNOTIFY ittt e 50
¢’ CRUC XXX ottt 51
¢’ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR; CK_FUNCTION_LIST_PTR_PTR....51
8.7. LOCKING-RELATED TYPES.....ccttitertteteetieitenitenttenteentestesitesieesteenteeteemsessaenseenbeensesmsesseesbeesseenseenee 53
¢’ CK_CREATEMUTEXceiiiitiiiiiiiisiotiesite ettt 53
¢’ CK_DESTROYMUTEXc.cootisiiiiiisiiiiiisiiisictts sttt 53
¢’ CK_LOCKMUTEX and CK_UNLOCKMUTEXccccccccotmumiimriniiiniiiicisiiieiesnsinsssisieisinias 53
¢’ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR......ccccccecevviviviisiriisinrcninna. 54
9. OBJECTS 56
9.1. CREATING, MODIFYING, AND COPYING OBJECTScestertertenterteeueetetensestestesseesesneensesensenseseessenne 57
9.1.1. Creating ODJECEScccouiuviiiiiiiiiiiiiiiciciec e 57
9.1.2. MOGIfYING ODJECES ...ttt 59
9.1.3. COPYING ODJECES.....c.viiiiiiiiit 59
9.2 COMMON ATTRIBUTESccteitertinterueeieeitetetententesaeesessteseestetensesaessesseestensetensestessessessesneensensensensenne 59
9.3. DIATA OBJECTS .. veeeeeeeeeeeeseeeeeeeeeeeeueeseseseeeeaseseseseseseueeeaeesatsssesesseseseseasasessateteseseseneneneneaesesaesesesesnens 60
94. CERTIFICATE OBJECTS «.evevveeeeeeeeeeeeeeeesetetetaseseseseseseueesesesstsesessesssesenensesesesatesesesesenenenesenssassssesessseens 61
9.4.1. X.509 CETtIfiCate ODJECESveveeiiiiiirieisieeeeeett ettt 61
9.5. KCEY OBJECTS vttt ee et e e et et et et eeeeeeeaeaeeeeee et ee et eeeeseeeeeeee s sses et et eseseneseeeeseseeeateeeeeeeeseeeens 63
9.6. PUBLIC KEY OBJECTS «vevvveeeeeeeeteteeeeeeeeeeeeeeseeeeesessesesesesseseseesesesesesasesesesesesessesesasetessessensesesesessesasaens 65
9.6.1. RSA public key 0bJects.........cocooviviiiiiiiciiiiiiiiciiiiiccccccct s 65
9.6.2. DSA PUDLIC K@Y ODJECES ...ttt 66
9.6.3. ECDSA public Key ODJECtSccccccuvuiieieiiiiiiiiiiiiisiciiiceictt e 67
9.6.4. Diffie-Hellman public key 0BJECESc.c.cceivinirririnieeiciceiiittteieee et 67
9.6.5. KEA public Key ODJECESc.cocueueuiuiiiiiiiiiiiciciiiciciicttcse s 68
97. PRIVATE KEY OBJECTS «.vvveteeeteteteeeeeeeueeeeeeeetetsssesessssesesesensessesesssssesenesenesensesasstsesessesssesenensesesasaens 69
9.7.1. RSA Private KeYy ODJECESc.cucueueueuioiriririsieieeeiettt ettt 70
9.7.2. DSA private Kely ODJECES..........c.cccuiivininiiiiiiiiiiiciciiiiitcics s 71
9.7.3. ECDSA private key OBJECES...........c.oveveueueueiciiiiiiirisiesieeeeettte ettt 72

Copyright © 1994-7 RSA Laboratories

Page vII

9.74. Diffie-Hellman private key 0bJects............ccccccveiiiiiniiiiiiiiiiiccciiininsceeecnccs 73
9.7.5. KEA private Ky OBJECESc.c.cucueuiininirinieiiieieicieettt sttt 74
9.8. SECRET KEY OBJECTS +. vt eueeteteateeeeeteseueeeseeeseeesesesssessetesesesesseseseasesestssesessasesestasessssasesesssesssssseseeses 75
9.8.1. Generic 5ectet Key ODJECES..........ccccuviiiieeiciiiiiiiiiiicicccee 76
9.8.2. RC2 SeCTet KeY ODJECES ...ttt 76
9.8.3. RC4 secret key ObJECES.......c.oovviiiiiiiiiiiiciiiiiiiicic s 77
9.8.4. RC5 SECTEt KEY ODJECES ...ttt 77
9.8.5. DES 5ecret key OBJECESocvviciiiiiiiiiiiiicctt s 78
9.8.6. DES2 SeCtet Key OUJECEScvoveieieieieieieieiciciiiitsnss ettt 79
9.8.7. DES3 5ecret Key OBJECESovviiiiiiiiiiciiciccitt s 79
9.8.8. CAST SECTE KOY ODJECES ...ttt 80
9.8.9. CAST3 5eCtet KeY ODJECESuvuviiiiiiiiiiiiiciciciciciit e 80
9.8.10. CAST128 (CASTDS) SeCtet KeY ODJECESevueeeiiisirisicieeetttteee e 81
9.8.11. IDEA 56ctet KEY ODJECES ...ttt 82
9.8.12. CDME S€CTEE KEY ODJECES ...ttt 82
9.8.13. SKIPJACK sectet Kely ODJECESccvuvueueuiiiiiiiiiiiiiiicicicccccttt e 83
9.8.14. BATON SCTet KEY ODJECES ...ttt 84
9.8.15. JUNIPER sectet key 0bJECts..........cccuvuiuriiiiiiiiiiiiciiiciciciciciistc s 85
10. FUNCTIONS 86
10.1. FUNCTION RETURN VALUESeoutrttriteitetentententesiteteatestestesresseesessteseesessessesaesnesmeeneensensensensenses 87
10.1.1. Universal Cryptoki function returil DALUESc.cceueueueiniririnieieieieeeirciieieeee e 87
10.1.2. Cryptoki function return values for functions that use a session handle..............c.....c.......... 88
10.1.3. Cryptoki function return values for functions that use @ toKet.............coccceeeevvvinrnnnnnns 88
10.1.4. Special return value for application-supplied callbacks..............ccccovvvvvviciinnninniinn, 89
10.1.5. Special return values for mutex-handling fUnNCHONSccccouovvvrveecceciirirnenenes 89
10.1.6. All other Cryptoki function returit DALUES.............ccocvvvivivvciiiiiiiiiiciciiccecccct 89
10.1.7. More on relative priorities Of CrYPLOKI eTFOTScveveveueueueiiiiriririeeeeeeeeetteee e 95
10.1.8. Error code “QOECHAS”ocoviiiiiiiiiiiiiicicicii 96
10.2. CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER........ 96
10.3. DISCLAIMER CONCERNING SAMPLE CODEcoitiuiiiiiiieieieseseseee e 97
10.4. GENERAL-PURPOSE FUNCTIONSoovitititereterercneeeste et sesesese e s s s 97
’ C_INMIEIALIZE ..o 97
’ C_FINALIZE ..o 99
¢’ C_GOIIO .t 99
¢’ C_GetFUNCHONLISEvvvieieievieiectctete e 100
10.5. SLOT AND TOKEN MANAGEMENT FUNCTIONSc.cevitiietereneeneiisiete oo sesesesene s 100
’ C_GEESIOLLISE c.ovvvvvviieictitie e 101
¢’ C_GOLSIOHISO ...t 102
¢’ C_GEtTOKENINSO. ...t 102
¢’ C_WATtFOTSIOtEUENE ...ttt 103
’ C_GetMECRANISTILISEoovovvivevieieiciicrese et 104
¢’ C_GetMechaniSIINLOccccviiiiiiiiiiiiiicccc e 105
’ C_INMIETOKEN.......oovvviiiciee e 106
¢’ C_INMIEPIN ..ottt 107
¢’ C_SEEPIN ..ottt 108
10.6. SESSION MANAGEMENT FUNCTIONScootitimiuiiiiiieieie et esssene s 109
’ C_OPBNSLSSION....ovvviiiiiicictiiet s 110
’ C_ClOSESESSION ...vvvvvvvssiiicseseie et 110
’ C_ClOSEAILSESSIONS ...ttt 111
¢’ C_GeSESSIONINIIO ... 112
’ C_GetOPerationSEALeccvviviiiiiiiiiciiicicc s 113

Copyright © 1994-7 RSA Laboratories

Page VIII PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_SetOperationSEALe...........c.cccvviiicuiiiiiiiiiciic s 114
¢ C_LOGIM i 116
¢ C_LOGOUL ... 117
10.7. OBJECT MANAGEMENT FUNCTIONS ...ttt eeeeeeeeeeeeeeeeeeesesseseseseseseessesesessesesesesessesesesesnens 118
¢ C_CFEALEODJECH ...ttt 118
’ C_COPYODBJECE ...ttt 120
’ C_DESHTOYODJECE ...ttt 121
¢ C_GEODJECESIZE. ...ttt 121
¢ C_GLAMTIDULCVALUC ..ottt e r e e e et e et e e s eae e e sttt e s esneesreaeesens 122
¢ CSCLATIDULCVALUC ... oottt r et e e et e e et e e s ete e e st esesneeereeeesens 124
¢ C_FiNAODJECESINIE ...ttt 125
¢ C_FINAODJECES ...ttt 126
¢ C_FiNAODJECESFINAL.........cocoeeeeeeiiiiiieieie ettt 126
10.8. ENCRYPTION FUNCTIONSoeiiiiiiitvereeeeeeieitaeeeeeeeeeesssseeeseessessissssssesssessssssssessssssmssssssesssssnnsnes 127
’ C_ENCYYPEINIE .o 127
’ C_ENCIYPE ot 128
’ C_ENCYYPLUPAALE. ...t s 128
’ C_ENCHYPEFINAL ...t 129
10.9. DECRYPTION FUNCTIONSvvvviiiiieiiiitereeeeeeieeiiaeereeeeeessisssereesssesssssassssssessmssssssssssssmssssssssssesss 131
’ C_DECTYPEINIE ... 131
’ C_DECIYPE o s 132
’ C_DectyptUPAAte...........ccooivueuiiiiiiiiiiiciiiiiciice s 132
’ C_DeCtyptEiNal........cccouvuiiiiiiiiiiiiiciiiicc ittt s 133
10.10. MESSAGE DIGESTING FUNCTIONS.cuvtttiiieeiiiiereeeeeeeeeiirreereeeeeesssreeesesseemsssssssessssessssssssesssessns 135
¢ C_DiGESHINIE ... s 135
¢ C_DAiGESE ..o 135
’ C_DiGESHUPAALE ...ttt 136
’ C_DiGESEKEY......cuiuiiiiiiiciiiic s 136
¢ C_DIGESEFINAL ...ttt 137
10.11. SIGNING AND MACING FUNCTIONSuvviieittieeeieeeeeeteeeeseeeeesenteeesssseeessnseesssnsseessssssessnnes 138
¢ C_SIGNINIE ..o s 138
’ G TGN i 139
’ C_SIGNUPAALE ... 139
¢ C_SIGNFINAL ..ot s 140
¢ C_SIGNRECOVETINIL ... s 141
¢ C_SIGNMRECOVET ...ttt 141
10.12. FUNCTIONS FOR VERIFYING SIGNATURES AND MACS.......oooiiiiieiiieeee et 142
¢ C_VFIYITIE ...ttt 142
¢ C_VBFUfY ettt 143
’ C_VEFIfYUPAALE. ...ttt 144
¢ C_VEFIfYFINAL.......ooiieeeeeee ettt 144
¢ C_VEFifYRECOVEIINIE ...ttt 145
¢ C_VFIfYRECOUVET ...ttt 146
10.13. DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS........coottuuttrieeeeeiiirerreeeeeeeininreeeeeeesessnreeeseesens 147
’ C_DigestENcryptUPAate............ccviiiviiiiiiiiiiiiciiiiiiciicci s 147
’ C_DecryptDigestUPAate.............cccoviieiiiiiiiiiiiiiiiiiiiciiccii s 149
’ C_SIGNENCTYPIUPAALE ...ttt 152
’ C_Dectypt VerifylPAAtecccoevivieiririeieieieicciiisieseee ettt 154
10.14. KEY MANAGEMENT FUNCTIONS.uvvtiiiiiiiiireeeeeeeeieiitaeereeeeeessssseeseessessssssssesssssssssssssessessnsnes 157
¢ C_GENEIALEKEY ...t s 157
¢ C_GenerateKeYPaircccccvviiiiuiiiiiiiiiiiciiiici s 158

Copyright © 1994-7 RSA Laboratories

’ C_WIAPKEY ... s 159
’ C_UNWIAPKEY ...ttt s 161
¢ C_DEITUEKEY ..ottt s 162
10.15. RANDOM NUMBER GENERATION FUNCTIONS.......ccotterttetinitenreenieenieeiesseseesseesseenseesesmnesseens 164
¢ C_SCOARANAOMI . c.cooeeiiee oottt e e et sttt e e e re sttt et e s e res et ttttessressaraaesessranins 164
¢ C_GNCTALERATIAOM oottt et e r et e e et e et e e r et e e e st esesineesreaeesens 164
10.16. PARALLEL FUNCTION MANAGEMENT FUNCTIONScccutrttrienitenieenieeteeteeitesieenieesieeeesnesaees 165
¢ C GO FUNCHION SEATUS vvvvv oottt ettt e e s e sttt et e e e re sttt et essreseareteeesssessirabesessranins 165
¢ C L CaNCOIFUTICHON .ottt et e et e et e e v et e e st e s et e e s eaaesestetesesneessenaeesens 166
10.17. CALLBACK FUNCTIONScetttttateeutettetententesteetesseettetentensestessessesutentensensessessessesseeneensensensensenns 166
10.17.1. Surrender CallDACKS............ocveveviiiiiiiiiiiieicicicc s 166
10.17.2. Vendor-defined callDACKSc.cccuvuiioininieieieiecciciciisneeee ettt 166
11. MECHANISMS 167
11.1. RSA MECHANISMS.......cutiiiieittetteitettetesteste et ebe st ett et et e be st e ebesbeeuteatentebenteabesbeebeeneensenseneenseee 171
11.1.1. PKCS #1 RSA key pair ENeration.............cccceueurururiiiiiiiiiiieieieieiciiiinisisisiee s 171
11.1.2. PRKCS HT RSA ..ot 172
11.1.3. ISO/TEC 9796 RSA ..ottt 173
11.1.4. X509 (1A10) RSA ..ottt s 173
11.1.5. PKCS #1 RSA signature with MD2, MD5, or SHA-Tccccccevuviininininiiiiiccirci, 175
11.2. DSA MECHANISMSovuimimiririiincseseietesesesstsssssse st cssssss s st sssas st s s s sssaesesesessses 175
11.2.1. DSA key pair QENETALIONcccovvveuiiniiiiiiiciiiiicii s 175
11.2.2. DSA Without HASHING.......c.cocvviiiiiiiiiiiiiiiiiiicct s 176
11.2.3. DSA With SHA-T ...oviiviiiiiiiiiiiiiiiciciicitiss s 176
11.2.4. FORTEZZA tIMEStAMP ...ttt 177
11.3. ABOUT ECDSA ...t 177
11.4. ECDSA MECHANISMSccviitiriieteniteitetetenteneeesesstestetesesestessessesuteseesaesessessessessesseeneesensensenne 178
11.4.1. ECDSA key pair QENerAtionccccouveuriiiiiciiiiiiiiicicisisiis et 178
11.4.2. ECDSA without BASAING..........cccovuiiiiiiiiiiiiiiiiiiiccctt s 178
11.4.3. ECDSA With SHA-T ..ottt 179
11.5. DIFFIE-HELLMAN MECHANISMScoutiitiiiinitenitenieeteenieeteetesitesaeenseetesiteeatesaeenbeenbeensesnsesmees 180
11.5.1. PKCS #3 Diffie-Hellman key pair generationcccoeevveeviiinininininiiiicccscccnas 180
11.5.2. PKCS #3 Diffie-Hellman key derivationcccccoeeevreeueueeeiiininininseeeeessccens 180
11.6. KEA MECHANISM PARAMETERSccuttiittiiinitenitenteenteeteetesieenteenteessessesieesseesseensesnsesmsessaenseens 181
¢’ CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTRccccccccovvvvvivnniniin. 181
11.7. KEA MECHANISMSeittiutieitinitenttesteeie et sitesttesteesteeatesatesbeesbtenbeenbesaaesatesbeenbeensesnseensessaenseens 181
11.7.1. KEA key pair @ENer@tion..........cccvviviviniiiiiiiiieiiiiiiiiitcieieee et 181
11.7.2. KEA KeY AeriUAtION.ceveeeeeiiiiiisseee ettt 182
11.8. GENERIC SECRET KEY MECHANISMS.......ceitirttrtiattrieeutetententesteesesstenteseseensessessesseensensensensessens 182
11.8.1. Generic secret key ENnerationcccccciiivininiiiiiiiiiiiiiiiciiiiieisse e 182
11.9. WRAPPING/ UNWRAPPING PRIVATE KEYS (RSA, DIFFIE-HELLMAN, AND DSA)................. 183
11.10. ABOUT RC2....oiiii e 184
11.11. RC2 MECHANISM PARAMETERSccvuiuitiiiiisiininieseiesitissssintssese sttt 185
’ CK_RC2_PARAMS; CK_RC2_PARAMS_PTRcocvveiviviiiiiieisiciciiiiiineeeeetecnenssie e, 185
’ CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR......cccoovviviviviiiiiiiiininininnnns 185
’ CK_RC2_MAC_GENERAL_PARAMS; CK_RC2_MAC_GENERAL_PARAMS_PIR........ 185
11.12. RC2 MECHANISMSovuiuimimireriisiscsrsesese st stssese s s cs st s st sasss s sssssas s s s ssses 186
11.12.1. RC2 key Generation..........ccoovciniiiiiiiiiciiiiciciiicciic ettt 186
11.12.2. RC2-ECB ...ttt 186
11.12.3. RC2-CBC .ttt 187
11.12.4. RC2-CBC with PKCS padding...........c.cccoovvumeeeiiiiiiiiiisieseiisiiceee e, 188
11.12.5. General-length RC2-MACc.cccovvimirrriieeeiitttetee ettt 189
11.12.6. RC2-MAC ..ottt 189

Copyright © 1994-7 RSA Laboratories

Page X PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.13. RCA MECHANISMS ...ttt ettt este bt sttt s atest et et e be st e ebesbeeat et essenbenteabesbeebeentensenseneenbeee 190
11.13.1. RC4 ey QENETALION.........c.covviviiiiiiiiiiiciiiiiiicie s 190
11.13.2. RCA oo 190

11.14. ABOUT RO 190

11.15. RC5 MECHANISM PARAMETERSc..cetitiittitiatesitettetententeseestesieeuteatestesessesbesbeeseeneensenseneensenee 191
¢’ CK_RC5_PARAMS; CK_RC5_PARAMS_PTRcccceovviviviiiiisisininiiiiccsisisisssssisns 191
¢’ CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR.....ccccccovniviiiininiiiinsinininn, 191
¢’ CK_RC5_MAC_GENERAL_PARAMS; CK_RC5_MAC_GENERAL_PARAMS_PIR........ 191

11.16. ROCS MECHANISMSoitenieieiteeteeiteit et esteste st ebe st et et et e be st e ebesbeeat et entenbenteabesbeabeentensenseneenbeee 192
11.16.1. RC5 kel QENETALION. ..ottt 192
11.16.2. RECB-ECB ..ottt 192
11.16.3. RECB-CBC ..ottt 193
11.16.4. RC5-CBC with PKCS padding...........cccvvivviiiininiiiiniiiiniiccccssisssessiins 194
11.16.5. General-length RC5-MAC ...ttt 195
11.16.6. RCE-MAC ..ottt 195

11.17. GENERAL BLOCK CIPHER MECHANISM PARAMETERScceitiiuiniieiieienienieseesieeieeiteeeneenae e 196
¢’ CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTRcccccovvvuvirirn. 196

11.18. GENERAL BLOCK CIPHER MECHANISMS......ccutittitieiteiteteietestteresiteateteneesteseesbesseensenseneenseseens 196
11.18.1. General block cipher kel GQENEration............cccvviiiviviiiiiiieiciiiiiiinissceeccss 196
11.18.2. General block CIpRer ECBc.ccovonniiieieiciiiiteieee ettt 197
11.18.3. General block cipher CBC ...t 197
11.18.4. General block cipher CBC with PKCS padding.............c.ccccceeeevoevinnnnsieccecicnn. 198
11.18.5. General-length general block cipher MACcccoooiviviviiiiiiiiiiiiiiiicccccc 199
11.18.6. General block CIpRer MACc.coovvrriiieeeiittete ettt 199

11.19. DOUBLE-LENGTH DES MECHANISMSccttitiitietteiieiteienieniesieetesitesteteseesseseessesstessensensesseseens 200
11.19.1. Double-length DES key Qenerationccccocioininiiiiiieiceiiiinininississecsscnns 200

11.20. SKIPJACK MECHANISM PARAMETERSc.uvteiieeitieesireenteeesseessreesseessseesssesssseesssesssseesssessssees 200
’ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR....cccccvvvvvviviniiiicsicininiiicccciisissscin 200
¢’ CK_SKIPJACK_RELAYX_PARAMS; CK_SKIPJACK_RELAYX_PARAMS_PTR............... 201

11.21. SKIPJACK MECHANISMSovvvivtiieieeeeeesseesessssssessssesesesssssssessssesssssssssassssssessssssssssssssssses 202
11.21.1. SKIPJACK key generation............cccceueuciiininiiiiiiiiiciciiiiiniciietiisiee e 202
11.21.2. SKIPJACK-ECBO4 ...ttt 203
11.21.3. SKIPJACK-CBCO4cuoovviviieiiieiiiiiicieiee ettt 203
11.21.4. SKIPJACK-OFBO4 ...ttt 203
11.21.5. SKIPJACK-CFBO4 ...couvvimiiiiiieiitiiiicieiee ettt 204
11.21.6. SKIPJACK-CEB32 ..ottt 204
11.21.7. SKIPJACK-CEBIG ..ottt 204
11.21.8. SKIPJACK-CEBS ..ottt 205
11.21.9. SKIPJACK-WRARP ...ttt 205
11.21.10. SKIPJACK-PRIVATE-WRARP.......ccocvviiviviiiiiiiiiiiciniicccccistssss s 205
11.21.11. SKIPJACK-RELAYX ...ouiiiiisiiicisiicsietccs s 206

11.22. BATON MECHANISMS ...c.ceittrtinteriieitetetententeeresieestetesesessessessesuteneessesessessessessesneeneensensensenne 206
11.22.1. BATON key generationcceciviiuiiniiiiiiniiiiiiicicisisccsiees st 206
11.22.2. BATON-ECBI28 ..ottt s 206
11.22.3. BATON-ECBOGcoovviiiiiiiiiiciiicisiiicics sttt s 206
11.22.4. BATON-CBCI28....oooioiiiiiriieieicictctciee ettt 207
11.22.5. BATON-COUNTER ..ottt 207
11.22.6. BATON-SHUFFLEcccooviiiiiiiiiiiiiiiisicics sttt 207
11.22.7. BATON WRARP......coooviiiviiiiiiiicisiiiicccst s 208

11.23. JUNIPER MECHANISMScvvvviaieieeieeesesesessesesessesesssssssssesssssssssssssssessssssssssssssssssssssssssssasns 208
11.23.1. JUNIPER kel QENeTAtioN.........ccuvuruvuiuiiiiiiiiiiiiciciciciciiiiinisisiss st 208
11.23.2. JUNIPER-ECBI28......ccviviiiiiiiiiiiiiiiiiicssisisttes s 208

Copyright © 1994-7 RSA Laboratories

11.23.3. JUNIPER-CBCI28.....ccoouviiieieirieiiieieieisteittete sttt 209
11.23 4. JUNIPER-COUNTERccvoveieirieiiisieieisstttseiet sttt 209
11.23.5. JUNIPER-SHUFFLEoooeetiieiiinieieinieiiteeetstet ettt 209
11.23.6. JUNIPER WRAP ...ttt ettt 210
11.24. MD2 MECHANISMS........eutietenirietitntetentsiesttsteseststesesessesetstesetssesestsseseessesestssesentasesensesesensenen 210
11.24.1. D2 oot 210
11.24.2. General-length MD2-HMACccccoommieeeiiiieieieeeeeeeeeetstse s 210
11.24.3. MD2-HMAC ...ttt sttt sttt 211
11.24.4. MD2 key erivation.............ceeeueueuruieiiieisieeeeeeeieittet ettt 211
11.25. IMDB5 MECHANISMS........euiietemirietintnietentsieseststesesestesesestesentsteseestesestssesenessesesessesentasesensesesensanen 212
11.25.1. IIDS ..t 212
11.25.2. General-length MD5-HMACcccoomiiieeiiiiieieeeeeeeeettstee s 212
11.25.3. MDBS-HMAC ...ttt sttt sttt st 212
11.25.4. MD5 key erivation.............ccueueueuiuviiiieisieeee ettt 213
11.26. SHA-T MECHANISMS.....cotitetimirtetitntetentrtestteteteststebesestesestssebesesbebeststeseseesebesessesenessesensssesensenen 214
11.26.1. SHAT oottt 214
11.26.2. General-length SHA-T-HMACcooiiieeieiiiisieeee ettt 214
11.26.3. SHA-T-HMAC ..ottt 214
11.26.4. SHA-T key derivationccccueuvueueueueueueueiininisieiseeeeeeett et 214
11.27. FASTHASH MECHANISMScotrtrteiiiieritnietentetestntesesestetesensesesestesesessesesessesesessesesessesesessenes 215
11.27.1. FASTHASH ..ottt 215
11.28. PASSWORD-BASED ENCRYPTION / AUTHENTICATION MECHANISM PARAMETERS................ 216
’ CK_PBE_PARAMS; CK_PBE_PARAMS_PTRcccovvvirimeiimeinireinireiniireiteeeeseenes 216
11.29. PKCS #5 AND PKCS #5-STYLE PASSWORD-BASED ENCRYPTION MECHANISMS................... 216
11.29.1. MD2-PBE for DES-CBCi.....cocoeueiiiiiiiiiieisieieeeeeeeittstet ettt 217
11.29.2. MDS5-PBE for DES-CBCi.......cccoeiiiiiiiiiiiiiiiicicciciiititsssss st 217
11.29.3. MDS5-PBE for CAST-CBC ..ottt 217
11.29.4. MDS5-PBE for CAST3-CBCcciiiiiiiiiiiiiiciciccciiiitisss st 217
11.29.5. MD5-PBE for CAST128-CBC (CAST5-CBC) ..ottt 218
11.29.6. SHA-1-PBE for CAST128-CBC (CAST5-CBC)...cccvueiiiriiiiiiiiiiiiicccciiiinieca 218
11.30. PKCS #12 PASSWORD-BASED ENCRYPTION / AUTHENTICATION MECHANISMS................... 218
11.30.1. SHA-1-PBE for 128-Dit RC4........coveveveieiiiisisiseeeeetttte et 219
11.30.2. SHA-1-PBE for 40-bit RC4........cccoovmviviiiiiiiiiiiiiiiicicicitcetcse e 220
11.30.3. SHA-1-PBE for 3-key triple-DES-CBCccccovviiiiieiciiiiiinieieeeeeeeeeeeeene e 220
11.30.4. SHA-1-PBE for 2-key triple-DES-CBCccccccviiiiiiiiiiiiiiciieieeccciic e 220
11.30.5. SHA-1-PBE for 128-bit RC2-CBC.......cccceceviririririnieieieiiititeteieeee et 221
11.30.6. SHA-1-PBE for 40-bit RC2-CBC.......cccccceoiivininiiiiiiiiiiiciiiiiiistsicieeee e 221
11.30.7. SHA-1-PBA for SHA-T-HMACccceeiiiinisiieeeeeettttststeeee et 221
11.31. SET MECHANISM PARAMETERSc..euetrietimirieteinieteesierentetesentstesestssesesessesestssesensesesenssseseneenen 222
¢ CK_KEY_WRAP_SET_OAEP_PARAMS; CK_KEY WRAP_SET OAEP_PARAMS_PTR222
11.32. SET MECHANISMS......c.eeutuirietenirtetetntetetstesentsteseststesesessesentssesetssesestsseseneesesesessesensesesensesesensene 222
11.32.1. OAEP key wrapping for SETcccccvvciiiiiiniiiiiiiiiiiciiiiicistceceeeccc e 222
11.33. LYNKS MECHANISMSotruevimirieiiinrerestnieniteresesessesetsnesesessesetssesesessesestssesesessesesssnesesessenens 223
11.33.1. LYNKS KeY WFAPPING ...ttt ettt 223
11.34. SSL MECHANISM PARAMETERScueveuirietimtrietentntetetsiesentssesetstesesesseseessesestssesensssesensssesensenen 224
¢ CK_SSL3_RANDOM _DATA ..ottt 224
¢ CK_SSL3_MASTER_KEY_DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTRcccecectriiinimeirieeisieiecinieeisieeinieneiieneenen 224
’ CK_SSL3_KEY_MAT_OUT; CK_SSL3_KEY_MAT OUT_PTRcccovvevrreicireerirreiinen. 225
’ CK_SSL3_KEY_MAT_PARAMS; CK_SSL3_KEY_MAT _PARAMS_PTR........cc.ccecoveuvueu... 225
11.35. SSLMECHANISMScveviuiieienirienietsresetsseneteseseessesesteseseessesesesesesessesesessesesessesessenesessssensasenen 226
11.35.1. Pre_master key QENeration.............ccuouevveeeueueuiiiiieirieieeee ettt 226
11.35.2. Master key derivationccccceiiiiiiiiiiiiiiicccci e 226

Copyright © 1994-7 RSA Laboratories

Page XII PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.35.3. Key and MAC derivation ... 227
11.35.4. MD5 MACING i1 SSL 3.0....c.cviiiiiiiiiiiiiiiiiiiciiicci e 228
11.35.5. SHA-1 MACInG it SSL 3.0 ..ottt 229
11.36. PARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS..............covn.... 229
’ CK_KEY_DERIVATION_STRING_DATA; CK_KEY_DERIVATION_STRING_DATA_PTR229
’ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTRcccocevvviviiiiiiinineiiee, 230
11.37. MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMSccooviiiiniiieiereienenenceneeeeennes 230
11.37.1. Concatenation of a base key and another Kycccccvvvoinnrneeeeceeiirinnnennes 230
11.37.2. Concatenation of a base key and Aata..................cccoovvvviiiiiininiiiiiiiiccciia, 231
11.37.3. Concatenation of data and @ DASE KeYcccuovveeeeueueiiiiininseeeeeeeeeerennnees 232
11.37.4. XORing of a key and datacccccvviiiiiiiiiiiciiiiiii 233
11.37.5. Extraction of one key from another KeY............cccccvovevnreeueiecceinininnnseeeessccenes 234
12. CRYPTOKI TIPS AND REMINDERS 236
12.1. OPERATIONS, SESSIONS, AND THREADSccutrttettruteuteteientesteetesstenteseseessessessessesnsensessesseseens 236
12.2. OBJECTS, ATTRIBUTES, AND TEMPLATES. ... et evteteteeteteeeeeeeseeeeeseeseseeseseesesssessesssenesessenessssenes 236
12.3. SIGNING WITH RECOVERYceutitirtertiaterttettetetentestestesueeseestestensensensessessesseaseensensensensessessessenne 237
APPENDIX A: TOKEN PROFILES 239
APPENDIX B: COMPARISON OF CRYPTOKI AND OTHER APIS 241
List of Figures
FIGURE 1, GENERAL CRYPTOKI MODEL.......ceutiutiieienientesteetteitentestesteseestesieententetessestesbesaeeneentensensensensesaeenes 12
FIGURE 2, OBJECT HIERARCHYevveeeeeeeeeeeeeeeeeeeeeeeeeeeteseueaeeseeeseesesesesseseesseseseesesesseseseneesesesessenesseseseeseenes 13
FIGURE 3, READ-ONLY SESSION STATES......ceuttutttetertentestesteetententenieseessesseestentesessessessesueeseestensensessessessesnes 17
FIGURE 4, READ/ WRITE SESSION STATES.........coeueviieieieieisieeesessesesesesssessssesesssssssssssssssssssssessssssssssssssssssns 18
FIGURE 5, OBJECT ATTRIBUTE HIERARCHYccutitiiiriintintieiteitetenteste st ettt eat et eteste st e sbesaeest et etenseseesbesaeenes 56
FIGURE 6, KEY ATTRIBUTE DETALLotiitiittiitet ettt sttt ettt et be st eae et et st nas 63
List of Tables
TABLE 1, SYMBOLStittttittetteitette e ste sttt et st et et et e be st e eb e s st es e et ent e besbeebeebeebtestentensenteabesbeebeeatentensentenbesaeeneane 8
TABLE 2, PREFIXESeettittittetteutetteterte it ste et et ettete e estesteebe s st estentent e besteebesbeebeestentesestenbesbeebeeatentensensenbesaeeneane 8
TABLE 3, CHARACTER SET...c..eiutiuteuteietenteeteettetteitestentestesbestesbeeatestesenteabesbeebeeseastentensansesseebesseeneentensensensensenee 9
TABLE 4, READ-ONLY SESSION STATEScuteuteuteteientestestesttetentestenieseessesseestentetessessessesaeeneentensensessensessesnes 17
TABLE 5, READ/ WRITE SESSION STATEScoevivvieieieieeeieieeesessesesesesssessssssessesssssssssssssssssssssssssssessssssssns 18
TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONSceceeueeieieieneenne 19
TABLE 7, SESSION EVENTScoutiutetetetesteetestt ettt et te st sttt ett e st et e te st e besbeebe e st es b et et ebesbeebesaeest et ensensensennes 19
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS.......cectrtiiueriiettenteteiententesteeueestestetentesteseesbesseestensensensensennes 23
TABLE 9, SLOT INFORMATION FLAGScutettiiteitiieieniesteet ettt sttt ettt st be st eat et ettt sbe i enis 34
TABLE 10, TOKEN INFORMATION FLAGSciutiutiieieiestesieet ettt sttt ettt st sbe st at ettt sbe b eaes 37
TABLE 11, SESSION INFORMATION FLAGScoutiiiiiiiniietietet ettt sttt 40
TABLE 12, MECHANISM INFORMATION FLAGS ..ottt sttt 48
TABLE 13, C_INITIALIZE PARAMETER FLAGScoitiiiiiiiitieiteteeeee ettt sttt 55
TABLE 14, COMMON OBJECT ATTRIBUTES.eteveteteeeeeeteseeeteseeeeeeseseeessessesesesesessesesesssessssessssssesessssensssssenen 60
TABLE 15, DATA OBJECT ATTRIBUTES ... eteveveeteteteteeeeeeeeseeeeseseeseseseseesssessesesesesessessssessssssssessseesesessssenessesenen 60
TABLE 16, COMMON CERTIFICATE OBJECT ATTRIBUTES .. v.veveveueeeeeeeeeeeeeeeeeeeeeeseeesesesesssesesssesesesseseneseens 61
TABLE 17, X.509 CERTIFICATE OBJECT ATTRIBUTESvveteueeteeeeeeeeeeeeeeeeeeeseseeeesesesesesesssesessssesessseseseseenes 62
TABLE 18, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLES......ccucettettitetteteteiesiesiesieeseenteeeneeseesiesaeenes 63
TABLE 19, COMMON KEY ATTRIBUTESccuteuteutetetestertestesutestentessesseseessesseestentensensessessesaeeneentensensessensessesses 64
TABLE 20, COMMON PUBLIC KEY ATTRIBUTESc.cesttrttaterttettenteteieneentesseeseestentetensensessessesseessensensensensenses 65
TABLE 21, RSA PUBLIC KEY OBJECT ATTRIBUTES.......veutteteeteteeeeeeeseeeseeeeteseseeessesesesesesessesesessesesssesessseenes 65

Copyright © 1994-7 RSA Laboratories

Page X111

TABLE 22, DSA PUBLIC KEY OBJECT ATTRIBUTESvvevvetreeeeeeeeeeeeeseeseseseeeseesesessesesesessssessesesseenessenesees 66
TABLE 23, ECDSA PUBLIC KEY OBJECT ATTRIBUTESvvveeeeeeeeeeeeeeeseseseeeeeeseseseesesesensssesseseseseesessssesees 67
TABLE 24, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTESvvvveeeeeeeeeeeeeeeseeseseeeeeeeeeseseseseeensnsenes 67
TABLE 25, KEA PUBLIC KEY OBJECT ATTRIBUTES «.....vvevveereeeeeeeeeeeseeseeseseseeeseesesessesesessessssessesesseenessenesees 68
TABLE 26, COMMON PRIVATE KEY ATTRIBUTESuevveveteereeeeeeeeueseeseesesesesesessesessesesssessssesssseseseenessesesees 69
TABLE 27, RSA PRIVATE KEY OBJECT ATTRIBUTES.vvevevreeeeeeeeueeeeseeseseseeeseesesessesessnensssessesesesessessesesees 70
TABLE 28, DSA PRIVATE KEY OBJECT ATTRIBUTES «.....vvvereeeeeeeeeeeseeseeseseseseeseesesessesesseessssessesesseesessssesees 71
TABLE 29, ECDSA PRIVATE KEY OBJECT ATTRIBUTESvveeeeeeeeeueeeeeeeseseseeeeeeeseseseesseessssessesesseesessenesees 72
TABLE 30, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES ... veeeeeeeeeeeeeeeeeeeeseeeeeeeseseeseseseeeesseseseos 73
TABLE 31, KEA PRIVATE KEY OBJECT ATTRIBUTES «.....vvveeeeeeeeeeeeeeeeeseeseseseeeeeeseseseesesasnessssessesesseesessssesees 74
TABLE 32, COMMON SECRET KEY ATTRIBUTES ... eveeveveteeeereeeeeeeeeeeseeseeseseseesesessesessesesaesessssessesesseenessesesees 75
TABLE 33, GENERIC SECRET KEY OBJECT ATTRIBUTESvvveeeeeeeeeeeeeeeeeeseseeeeeeseseseesesesensssesseseseseesessesesees 76
TABLE 34, RC2 SECRET KEY OBJECT ATTRIBUTES.......vveveveereeeeeeeeeeeeeeseesesesesseesesesessesesesnessssesseseseseesessesesees 76
TABLE 35, RC4 SECRET KEY OBJECT «..vreeeeeeeeeeeeeeeeeeeeseeeeeeeeseseesesaeesesseseeseseseeesessesessesasasnsnesssesssessseenesssnes 77
TABLE 36, RC4 SECRET KEY OBJECT «.vreeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseesesaeereseesessesesesesessssessesesasassesssssssessseenesssses 77
TABLE 37, DES SECRET KEY OBJECT .. eeeeeeeeeeeeeeeeeeeseeeeeeeeseseeseseeeressessesesseseesessssessesesassnesssssssessseesssssnes 78
TABLE 38, DES2 SECRET KEY OBJECT ATTRIBUTES.......veveveereeeeeeeeeeeeeeseeseseseeeeeesesessesesseensssesseseseseesessenesees 79
TABLE 39, DES3 SECRET KEY OBJECT ATTRIBUTES........vevveereeeeeeeeeeeeeeseeseseseeesesesessesesseessssesseseseseesessenesees 79
TABLE 40, CAST SECRET KEY OBJECT ATTRIBUTESvveereeeeeeeeeeeeeseeseseseeeeeesesessesesseessssesseseseseenessssesees 80
TABLE 41, CAST3 SECRET KEY OBJECT ATTRIBUTES........vevreeeeeeeeeeeeeeeereseseeeeesesessesessessssesseseseseesessesesenes 80
TABLE 42, CAST128 (CAST5) SECRET KEY OBJECT ATTRIBUTESccvorveieniessesssssssssssnssssssssssosssssssssssoss 81
TABLE 43, IDEA SECRET KEY OBJECT .reeeeevereeeeeteeeseeeeeeeseseesesaeeesseseesesesasesessssessesasasesnesssssssesesssesessenes 82
TABLE 44, CDMF SECRET KEY OBJECTeeeevereeeeeeeeeeeeeeeeseseseeseseeeseseeeeesesesesessssesessesasasssnesssssssesesssesensenes 82
TABLE 45, SKIPJACK SECRET KEY OBJECT.......coovvieiieeeeeeeseeeeseeeeeeseseseesesesesessssesessssesessesessssesessssessssssesees 83
TABLE 46, BATON SECRET KEY OBJECT «.e.vevveveeeeeeeeeteeeeeeeeeeeseeteeeeeeseseeeseseseseeesessesessesesasenesssssssesesssenssseses 84
TABLE 47, JUNIPER SECRET KEY OBJECTcuovivieieieeeeeeeeseeeeeeeeeeseees s eses s esesseses s ssssenesssssassenenees 85
TABLE 48, MECHANISMS VS. FUNCTIONSvovtveeteeeeeeeeeeeeeeeeseseseeeeeeesesesseesesessesessesaeaesenssssssesesessensssenes 168
TABLE 49, PKCS #1 RSA: KEY AND DATA LENGTH ..ot eeeesereseeeeeseseeseseseseeneeseeseseseene 172
TABLE 50, ISO/IEC 9796 RSA: KEY AND DATA LENGTHovuiviveeeeeeeeeeeeeeeeeseseeesseeeesseesensssssesanen 173
TABLE 51, X.509 (RAW) RSA: KEY AND DATA LENGTHcovuiverieiierisinissiessssessssssessesssssssssessssessnans 174
TABLE 52, PKCS #1 RSA SIGNATURES WITH MD2, MD5, OR SHA-1: KEY AND DATA LENGTH.......... 175
TABLE 53, DSA: KEY AND DATA LENGTH.......ovoveveeeeeeeeeeeeeeeeeeseeeeeeeeeeesesseseseseessesesesseseseenessessesessaens 176
TABLE 54, DSA WITH SHA-1: KEY AND DATA LENGTH ...t eeeeeee e eeeeee s eeeseeseseseeeeeesenes 177
TABLE 55, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH.....vveveveveeeeeeeeeeeeeeeeeeeeseseeeeeeesesenesens 177
TABLE 56, ECDSA: KEY AND DATA LENGTH ...vveeeeteeeeeeeeeeeeeeeeeeeeee e eeeeeeeseseseeeseseseesessesenessessesesesaens 179
TABLE 57, ECDSA WITH SHA-1: KEY AND DATA LENGTH ...ttt eeeeeeeeeeeeeeeeeeeeeeeeeseseseeeeesenes 179
TABLE 58, RC2-ECB: KEY AND DATA LENGTH. ..o eeeetereeeeeeeeeeeeeeseeeeeeeeeseeseseseesseseseeseseseseesseseeseseseens 187
TABLE 59, RC2-CBC: KEY AND DATA LENGTH ...veeeeeeeeeeeeeee e e e eeeeseseseeeeeseseeseseseseenseseeseseseens 188
TABLE 60, RC2-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.....oeveeeeeeeeeeeeeeeeeeeeeeeeeeeverenene 188
TABLE 61, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH.....vveeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeserenene 189
TABLE 62, RC2-MAC: KEY AND DATA LENGTH. ... eeteteeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseeeseseseesesseseessssseseseseens 189
TABLE 63, RC4: KEY AND DATA LENGTH. ... oveveeteeeeeeeeeeeeeeeeeseeeeeeeeeesesesaeseesssessssesesaesesssseesesesssensesenes 190
TABLE 64, RC5-ECB: KEY AND DATA LENGTH. ..o eeeeteteeeeeeeeeeeeeeseeeeeeeeeseeseseseesseseseesesesesenessesseseseseens 193
TABLE 65, RC5-CBC: KEY AND DATA LENGTH ...veeeeeeeeeeeeeee et eeeeeeeeseseseeeseseseeseseseeeensessesessaene 194
TABLE 66, RC5-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.....oeveveeeeeeeeeeeeeeeeeeeeeeeeeeeverenene 195
TABLE 67, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH......veeeeeeeeeeeeeeeeeeeeeeeeseeeeeesenenene 195
TABLE 68, RC5-MAC: KEY AND DATA LENGTH......oeeeveteeeeeeeeeeeeeeeeeeeeeeeeeseseseesseseseesesseseenssseeseseseens 196
TABLE 69, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH......veveeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseresene 197
TABLE 70, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH ...vveeeeeeeeeeeeeeeeeeeeeeeeeeeeeevenenene 198
TABLE 71, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING: KEY AND DATA LENGTH................ 199
TABLE 72, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH......cooeee..... 199
TABLE 73, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH.....oveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererenens 200

Copyright © 1994-7 RSA Laboratories

Page XIV PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

TABLE 74, SKIPJACK-ECB64: DATA AND LENGTH........ooviuieeiereeeesiseeseeseseesesseseesssessesssesae s sesessnaseens 203
TABLE 75, SKIPJACK-CBC64: DATA AND LENGTHooovivieeierieeesiseessiesaesssesaesssessesesseseesesassessnssnens 203
TABLE 76, SKIPJACK-OFB64: DATA AND LENGTH..........cviuieeterieieeiniesesseseesssessesssessesessesaesssesessesasnens 204
TABLE 77, SKIPJACK-CFB64: DATA AND LENGTH.......ccoitetiiteitienieeteereereeeeseesseesseessessesssesssesssessesnns 204
TABLE 78, SKIPJACK-CFB32: DATA AND LENGTH......coouoviuieeienieeeeiniesessesaessseseesessessesssesee s sesessenasnens 204
TABLE 79, SKIPJACK-CFB16: DATA AND LENGTH......coouoviuieeiereeeeeeneeeeeseseessseseesssessessseseesssesessnasnens 205
TABLE 80, SKIPJACK-CFB8: DATA AND LENGTH........cooetruieerereeeesisiesesesaesssesaesssessesesseseesessesessnsenens 205
TABLE 81, BATON-ECB128: DATA AND LENGTHcvouieriieeieeieeeeieseesesesaessseseesssessessseseesssesessssenens 206
TABLE 82, BATON-ECB96: DATA AND LENGTHouovuiuieeiieeieriesesiesaesessesaesssessesessessessseseesssenesssssenens 207
TABLE 83, BATON-CBC128: DATA AND LENGTH........c0ourtrtieevereeeesiraesesseseessseseesssessesesseseesessesessnsenens 207
TABLE 84, BATON-COUNTER: DATA AND LENGTHoouiueveriiesirieseeseneesesseseesssessesesseseesessesessnseeens 207
TABLE 85, BATON-SHUFFLE: DATA AND LENGTHocviuieiverieieeesieseeseseessseseesssessesessessesessesessnsenens 208
TABLE 86, JUNIPER-ECB128: DATA AND LENGTH.....c.oooviuieeieeeeeeesniesesesaessseseesssessesssesee s sesessenssnens 209
TABLE 87, JUNIPER-CBC128: DATA AND LENGTHoovuivieeiereeesiseeseseseesessesaesssessesessessesssssessenssnens 209
TABLE 88, JUNIPER-COUNTER: DATA AND LENGTH......ccceeetiiieiieriienieereeteeeeseeesteesseesessessnessnessnenns 209
TABLE 89, JUNIPER-SHUFFLE: DATA AND LENGTH........cccuiiotiiientietieteeteeeeeeesteesseessessnesssesseesssensesnns 210
TABLE 90, MD2: DATA LENGTHcomouiaieieciieeeeeteeeeees e ses et ses s s s st nae s s sesassessesessssassssanens 210
TABLE 91, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH........coovevueierireeeeeeereesenieseseenaeen. 211
TABLE 92, MD5: DATA LENGTH........comiuvaieieciceeeeeteeee s iesee st ses s s st saesas s sssassesaessssnassasanens 212
TABLE 93, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH........cocvmueveerceeeseereeerieeesenaeen. 212
TABLE 94, SHA-1: DATA LENGTHcoouvieieciieeeeeieeeeees s eses s ses s sas s senaesassessesassesaesessenessananens 214
TABLE 95, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH.......coovueveerereereeeeeenieeeenneeen. 214
TABLE 96, FASTHASH: DATA LENGTHovuvuierteeeeeeteees s see s ses s ses s ses s sasssssssas s sssassasasnansans 216
TABLE 97, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH........ouovueirueeeeieeeeeieneeeeseeseess s 229
TABLE 98, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH......c.coovrurieereeeeeeieneeseeseseess e 229

Copyright © 1994-7 RSA Laboratories

Page 1

1. Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to devices
which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface,” follows a simple object-
based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a
common, logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and functions
will typically be provided via C header files by the supplier of a Cryptoki library. Generic ANSI
C header files for Cryptoki are available from RSADSI’s webserver. To get them, go to RSADSI's
homepage (htt p://ww. rsa. con); then go to RSA Laboratories; then go to the PKCS page.
This document and up-to-date errata for Cryptoki will also be available from the same place.

Additional documents may provide a generic, language-independent Cryptoki interface and/or
bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application
does not have to change to interface to a different type of device or to run in a different
environment; thus, the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, although some conventions for the support of multiple types of
device will be addressed here and possibly in a separate document.

A number of cryptographic mechanisms (algorithms) are supported in this version. In addition,
new mechanisms can be added later without changing the general interface. It is possible that
additional mechanisms will be published from time to time in separate documents; it is also
possible for token vendors to define their own mechanisms (although, for the sake of
interoperability, registration through the PKCS process is preferable).

Cryptoki Version 2.01 is intended for cryptographic devices associated with a single user, so some
features that might be included in a general-purpose interface are omitted. For example,
Cryptoki Version 2.01 does not have a means of distinguishing multiple users. The focus is on a
single user’s keys and perhaps a small number of public-key certificates related to them.
Moreover, the emphasis is on cryptography. While the device may perform useful non-
cryptographic functions, such functions are left to other interfaces.

Copyright © 1994-7 RSA Laboratories

Page 2

2. References

ANSI C

ANSI X9.9

ANSI X9.17

ANSI X9.31

ANSI X9.42

ANSI X9.62

CDPD

FIPS PUB 46-2

FIPS PUB 74

FIPS PUB 81

FIPS PUB 113

FIPS PUB 180-1

FIPS PUB 186

FORTEZZA CIPG

GCS-API

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

ANSI/ISO. ANSI/ISO 9899: American National Standard for Programming
Languages - C. 1990.

ANSI. American National Standard X9.9: Financial Institution Message
Authentication Code. 1982.

ANSI. American National Standard X9.17: Financial Institution Key Management
(Wholesale). 1985.

Accredited Standards Committee X9. Public Key Cryptography Using
Reversible Algorithms for the Financial Services Industry: Part 1: The RSA
Signature Algorithm. Working draft, March 7, 1993.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Management of Symmetric Algorithm Keys Using Diffie-
Hellman. Working draft, September 21, 1994.

Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA)®O.
Working draft, November 17, 1997.

Ameritech Mobile Communications et al. Cellular Digital Packet Data System
Specifications: Part 406: Airlink Security. 1993.

National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 46-2: Data Encryption Standard. December 30, 1993.

National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April 1, 1981.

National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 81: DES Modes of Operation. December 1980.

National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 113: Computer Data Authentication. May 30, 1985.

National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard. April 17, 1995.

National Institute of Standards and Technology. FIPS PUB 186: Digital
Signature Standard. May 19, 1994.

NSA, Workstation Security Products. FORTEZZA Cryptologic Interface
Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base -
Draft 2. February 14, 1995.

Copyright © 1994-7 RSA Laboratories

ISO 7816-1

ISO 7816-4

1SO/IEC 9796

PCMCIA

PKCS #1

PKCS #3

PKCS #5

PKCS #7

PKCS #8

PKCS #12 draft

RFC 1319

RFC 1321

RFC 1421

RFC 1423

REC 1508

REC 1509

X.500

Page 3

ISO. International Standard 7816-1: Identification Cards — Integrated Circuit(s)
with Contacts — Part 1: Physical Characteristics. 1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts — Part 4: Inter-
industry Commands for Interchange. Committee draft, 1993.

ISO/IEC. International Standard 9796: Digital Signature Scheme Giving Message
Recovery. July 1991.

Personal Computer Memory Card International Association. PC Card
Standard. Release 2.1, July 1993.

RSA Laboratories. RSA Encryption Standard. Version 1.5, November 1993.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

RSA Laboratories. Password-Based Encryption Standard. Version 1.5,
November 1993.

RSA Laboratories. Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

RSA Laboratories. Private-Key Information Syntax Standard. Version 1.2,
November 1993.

RSA Laboratories. Personal Information Exchange Syntax Standard. Version 1.0
draft, April 1997.

B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories,
April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures. 1AB IRTF PSRG, IETF PEM
WG, February 1993.

D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part
III: Algorithms, Modes, and Identifiers. TIS and IAB IRTF PSRG, IETF PEM WG,
February 1993.

J. Linn. RFC 1508: Generic Security Services Application Programming Interface.
Geer Zolot Associates, September 1993.

J. Wray. RFC 1509: Generic Security Services API: C-bindings. Digital
Equipment Corporation, September 1993.

ITU-T (formerly CCITT). Recommendation X.500: The Directory — Overview of
Concepts and Services. 1988.

Copyright © 1994-7 RSA Laboratories

Page 4

X.509

X.680

X.690

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

ITU-T (formerly CCITT). Recommendation X.509: The Directory —
Authentication Framework. 1993. (Proposed extensions to X.509 are given in
ISO/IEC 9594-8 PDAM 1: Information Technology— Open Systems
Interconnection — The Directory: Authentication Framework — Amendment 1:
Certificate Extensions. 1994.)

ITU-T (formerly CCITT). Recommendation X.680: Information Technology--
Abstract Syntax Notation One (ASN.1): Specification of Basic Notation. July 1994.

ITU-T (formerly CCITT). Recommendation X.690: Information Technology —
ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER), and Distinguished Encoding Rules (DER). July 1994.

Copyright © 1994-7 RSA Laboratories

3. Definitions

Page 5

For the purposes of this standard, the following definitions apply:

API
Application
ASN.1
Attribute
BATON
BER

CAST
CAST3

CAST5

CAST128
CBC

CDMF

Certificate

Cryptographic Device

Cryptoki

Cryptoki library

DER
DES
DSA

ECB

Application programming interface.

Any computer program that calls the Cryptoki interface.
Abstract Syntax Notation One, as defined in X.680.

A characteristic of an object.

MISSI’'s BATON block cipher.

Basic Encoding Rules, as defined in X.690.

Entrust Technologies” proprietary symmetric block cipher.
Entrust Technologies” proprietary symmetric block cipher.

Another name for Entrust Technologies” symmetric block
cipher CAST128. CAST128 is the preferred name.

Entrust Technologies” symmetric block cipher.
Cipher-Block Chaining mode, as defined in FIPS PUB 81.
Commercial Data Masking Facility, a block encipherment
method specified by International Business Machines
Corporation and based on DES.

A signed message binding a subject name and a public key.
A device storing cryptographic information and possibly
performing cryptographic functions. May be implemented
as a smart card, smart disk, PCMCIA card, or with some
other technology, including software-only.

The Cryptographic Token Interface defined in this standard.

A library that implements the functions specified in this
standard.

Distinguished Encoding Rules, as defined in X.690.
Data Encryption Standard, as defined in FIPS PUB 46-2.
Digital Signature Algorithm, as defined in FIPS PUB 186.

Electronic Codebook mode, as defined in FIPS PUB 81.

Copyright © 1994-7 RSA Laboratories

Page 6

ECDSA
FASTHASH
IDEA
JUNIPER
KEA
LYNKS
MAC

MD2

MD5

Mechanism
OAEP

Object

PIN
RSA
RC2

RC4

RC5

Reader

Session
SET

SHA-1

Slot
SKIPJACK

SSL

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Elliptic Curve DSA, as in ANSI X9.62.

MISSI's FASTHASH message-digesting algorithm.
Ascom Systec’s symmetric block cipher.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPYRUS.

Message Authentication Code, as defined in ANSI X9.9.

RSA Data Security, Inc.'s MD2 message-digest algorithm, as
defined in RFC 13109.

RSA Data Security, Inc.'s MD5 message-digest algorithm, as
defined in RFC 1321.

A process for implementing a cryptographic operation.
Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a certificate,
or a key.

Personal Identification Number.
The RSA public-key cryptosystem.
RSA Data Security’s RC2 symmetric block cipher.

RSA Data Security’s proprietary RC4 symmetric stream
cipher.

RSA Data Security’s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logical connection between an application and a token.
The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in FIPS
PUB 180-1.

A logical reader that potentially contains a token.
MISSI's SKIPJACK block cipher.

The Secure Sockets Layer 3.0 protocol.

Copyright © 1994-7 RSA Laboratories

Subject Name

SO

Token

User

Page 7

The X.500 distinguished name of the entity to which a key is
assigned.

A Security Officer user.

The logical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to Cryptoki.

Copyright © 1994-7 RSA Laboratories

Page 8 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

4. Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes
Prefix Description
C_ Function
CK_ Data type or general constant

CKA_ Attribute

CKC_ Certificate type
CKF_ Bit flag

CKK_ Key type

CKM_ | Mechanism type
CKN_ Notification
CKO_ Object class

CKS_ Session state

CKR_ Return value

CKU_ | User type

h a handle

ul a CK_ULONG

P a pointer

pb a pointer to a CK_BYTE
ph a pointer to a handle

pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit val ue */
t ypedef unsi gned char CK BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK CHAR

Copyright © 1994-7 RSA Laboratories

Page 9

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
t ypedef unsigned | ong int CK ULONG

/* a signed value, the sane size as a CK _ULONG */
typedef long int CK LONG

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d, which are
implementation-dependent. These pointer types are:

CK BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */
CK_ULONG_PTR /* Pointer to a CK ULONG */
CK VO D PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-dependent:
CK_VO D_PTR_PTR /* Pointer to a CK_ VO D_PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid pointer:
NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to
another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However,
these details should not affect an application, assuming it is compiled with Cryptoki header files
consistent with the Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by
“0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters | !“# % &“ ()*+,-./:;<=>?2[\]1"_{|}~

i

Blank character

In Cryptoki, a flag is a Boolean flag that can be TRUE or FALSE. A zero value means the flag is
FALSE, and a nonzero value means the flag is TRUE. Cryptoki defines these macros, if needed:

#i f ndef FALSE
#defi ne FALSE O
#endi f

Copyright © 1994-7 RSA Laboratories

Page 10 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

#i f ndef TRUE
#defi ne TRUE (! FALSE)
#endi f

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are ideal
tools for implementing public-key cryptography, as they provide a way to store the private-key
component of a public-key/private-key pair securely, under the control of a single user. With
such a device, a cryptographic application, rather than performing cryptographic operations
itself, utilizes the device to perform the operations, with sensitive information such as private
keys never being revealed. As more applications are developed for public-key cryptography, a
standard programming interface for these devices becomes increasingly valuable. This standard
addresses this need.

Copyright © 1994-7 RSA Laboratories

Page 11

5. General overview

51. Design goals

Cryptoki was intended from the beginning to be an interface between applications and all kinds
of portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and smart
diskettes. There are already standards (de facto or official) for interfacing to these devices at
some level. For instance, the mechanical characteristics and electrical connections are well-
defined, as are the methods for supplying commands and receiving results. (See, for example,
ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It would
not be enough simply to define command sets for each kind of device, as that would not solve the
general problem of an application interface independent of the device. To do so is still a long-term
goal, and would certainly contribute to interoperability. The primary goal of Cryptoki was a
lower-level programming interface that abstracts the details of the devices, and presents to the
application a common model of the cryptographic device, called a “cryptographic token” (or
simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems become
more popular, a single device should be shared between more than one application. In addition,
an application should be able to interface to more than one device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or security
services, although one certainly could build such operations and services with the functions that
Cryptoki provides. Cryptoki is intended to complement, not compete with, such emerging and
evolving interfaces as “Generic Security Services Application Programming Interface” (RFC 1508
and RFC 1509) and “Generic Cryptographic Service API” (GCS-API) from X/Open.

5.2. General model

Cryptoki's general model is illustrated in the following figure. The model begins with one or
more applications that need to perform certain cryptographic operations, and ends with one or
more cryptographic devices, on which some or all of the operations are actually performed. A
user may or may not be associated with an application.

Copyright © 1994-7 RSA Laboratories

Page 12

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Application 1

Application k

v

v

Other Security Lavers

Other Security Lavers

v

v

Cryptoki

Cryptoki

_l

l_l

Device Contention/Synchronization

l_l

\—i

Slot 1

Slotn

1L

1L

Token 1
(Device 1)

Token n
(Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the system
through a number of “slots”. Each slot, which corresponds to a physical reader or other device
interface, may contain a token. A token is typically “present in the slot” when a cryptographic
device is present in the reader. Of course, since Cryptoki provides a logical view of slots and
tokens, there may be other physical interpretations. It is possible that multiple slots may share
the same physical reader. The point is that a system has some number of slots, and applications
can connect to tokens in any or all of those slots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for instance
PCMCIA card services or socket services. Cryptoki makes each cryptographic device look
logically like every other device, regardless of the implementation technology. Thus the
application need not interface directly to the device drivers (or even know which ones are
involved); Cryptoki hides these details. Indeed, the underlying “device” may be implemented
entirely in software (for instance, as a process running on a server)—no special hardware is
necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface, and
applications will be linked to the library. An application may be linked to Cryptoki directly;
alternatively, Cryptoki can be a so-called “shared” library (or dynamic link library), in which case
the application would link the library dynamically. Shared libraries are fairly straightforward to
produce in operating systems such as Microsoft Windows and OS/2, and can be achieved
without too much difficulty in UNIX and DOS systems.

Copyright © 1994-7 RSA Laboratories

Page 13

The dynamic approach certainly has advantages as new libraries are made available, but from a
security perspective, there are some drawbacks. In particular, if a library is easily replaced, then
there is the possibility that an attacker can substitute a rogue library that intercepts a user’s PIN.
From a security perspective, therefore, direct linking is generally preferable, although code-
signing techniques can prevent many of the security risks of dynamic linking. In any case,
whether the linking is direct or dynamic, the programming interface between the application and
a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.
This standard specifies only the interface to the library, not its features. In particular, not all
libraries will support all the mechanisms (algorithms) defined in this interface (since not all
tokens are expected to support all the mechanisms), and libraries will likely support only a subset
of all the kinds of cryptographic devices that are available. (The more kinds, the better, of course,
and it is anticipated that libraries will be developed supporting multiple kinds of token, rather
than just those from a single vendor.) It is expected that as applications are developed that
interface to Cryptoki, standard library and token “profiles” will emerge.

5.3. Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: data, certificates, and keys. A data object is
defined by an application. A certificate object stores a public-key certificate. A key object stores a
cryptographic key. The key may be a public key, a private key, or a secret key; each of these types
of keys has subtypes for use in specific mechanisms. This view is illustrated in the following
figure:

Object

Data Key Certificate

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects” are visible to
all applications connected to the token that have sufficient permission, and remain on the token
even after the “sessions” (connections between an application and the token) are closed and the
token is removed from its slot. “Session objects” are more temporary: whenever a session is
closed by any means, all session objects created by that session are automatically destroyed. In
addition, session objects are only visible to the application which created them.

Further classification defines access requirements. Applications are not required to log into the

token to view “public objects”; however, to view “private objects”, a user must be authenticated
to the token by a PIN or some other token-dependent method (for example, a biometric device).

Copyright © 1994-7 RSA Laboratories

Page 14 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

See Table 6 on page 19 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random number
generator.

It is important to distinguish between the logical view of a token and the actual implementation,
because not all cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will simply have fixed storage places for
keys of a fixed algorithm, and be able to do a limited set of operations. Cryptoki's role is to
translate this into the logical view, mapping attributes to fixed storage elements and so on. Not all
Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles” will be developed, specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki, there are
general attributes, such as whether the object is private or public. There are also attributes that
are specific to a particular type of object, such as a modulus or exponent for RSA keys.

5.4. Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer (SO).
The other type is the normal user. Only the normal user is allowed access to private objects on the
token, and that access is granted only after the normal user has been authenticated. Some tokens
may also require that a user be authenticated before any cryptographic function can be performed
on the token, whether or not it involves private objects. The role of the SO is to initialize a token
and to set the normal user’s PIN (or otherwise define, by some method outside the scope of this
version of Cryptoki, how the normal user may be authenticated), and possibly to manipulate
some public objects. The normal user cannot log in until the SO has set the normal user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship between
the SO and a community of users. In particular, the SO and the normal user may be the same
person or may be different, but such matters are outside the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that they are
variable-length strings of characters from the set in Table 3. Any translation to the device’s
requirements is left to the Cryptoki library. The following issues are beyond the scope of
Cryptoki:

e Any padding of PINs.

e How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an application (e.g., PINs entered via a

PINpad on the token) are even more abstract. Cryptoki knows how to wait (if need be) for such a
PIN to be supplied and used, and little more.

5.5. Applications and their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of control
running in it. An application becomes a “Cryptoki application” by calling the Cryptoki function

Copyright © 1994-7 RSA Laboratories

Page 15

C_Initialize (see Section 0) from one of its threads; after this call is made, the application can call
other Cryptoki functions. When the application is done using Cryptoki, it calls the Cryptoki
function C_Finalize (see Section 0) and ceases to be a Cryptoki application.

5.5.1. Applications and processes

In general, on most platforms, the previous paragraph means that an application consists of a
single process.

Consider a UNIX process P which becomes a Cryptoki application by calling C_Initialize, and
then uses the fork() system call to create a child process C. Since P and C have separate
address spaces (or will when one of them performs a write operation, if the operating system
follows the copy-on-write paradigm), they are not part of the same application. Therefore, if C
needs to use Cryptoki, it needs to perform its own C_Initialize call. Furthermore, if C needs to be
logged into the token(s) that it will access via Cryptoki, it needs to log into them even if P already
logged in, since P and C are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application), the
behavior of Cryptoki is undefined if C tries to use it without its own C_Initialize call. Ideally,
such an attempt would return the value CKR_CRYPTOKI_NOT_INITIALIZED; however,
because of the way f or k() works, insisting on this return value might have a bad impact on the
performance of libraries. Therefore, the behavior of Cryptoki in this situation is left undefined.
Applications should definitely not attempt to take advantage of any potential “shortcuts” which
might (or might not!) be available because of this.

In the scenario specified above, C should actually call C_Initialize whether or not it needs to use
Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize immediately thereafter.
This (having the child immediately call C_Initialize and then call C_Finalize if the parent is
using Cryptoki) is considered to be good Cryptoki programming practice, since it can prevent the
existence of dangling duplicate resources that were created at the time of the fork() call;
however, it is not required by Cryptoki.

5.5.2. Applications and threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki Version
2.01 enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki library with
a call to C_Initialize, it can specify one of four possible multi-threading behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from multiple
threads, and so the library need not worry about performing any type of locking for the sake
of thread-safety.

2. The application can specify that it will be accessing the library concurrently from multiple
threads, and the library must be able to use native operation system synchronization
primitives to ensure proper thread-safe behavior.

3. The application can specify that it will be accessing the library concurrently from multiple

threads, and the library must use a set of application-supplied synchronization primitives to
ensure proper thread-safe behavior.

Copyright © 1994-7 RSA Laboratories

Page 16 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

4. The application can specify that it will be accessing the library concurrently from multiple
threads, and the library must use either the native operation system synchronization
primitives or a set of application-supplied synchronization primitives to ensure proper
thread-safe behavior.

The 3 and 4t types of behavior listed above are appropriate for multi-threaded applications
which are not using the native operating system thread model. The application-supplied
synchronization primitives consist of four functions for handling mutex (mutual exclusion) objects
in the application’s threading model. Mutex objects are simple objects which can be in either of
two states at any given time: unlocked or locked. If a call is made by a thread to lock a mutex
which is already locked, that thread blocks (waits) until the mutex is unlocked; then it locks it and
the call returns. If more than one thread is blocking on a particular mutex, and that mutex
becomes unlocked, then exactly one of those threads will get the lock on the mutex and return
control to the caller (the other blocking threads will continue to block and wait for their turn).

See Section 0 for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads executing
library calls may use native operating system calls to spawn new threads.

5.6. Sessions

Cryptoki requires that an application open one or more sessions with a token to gain access to the
token’s objects and functions. A session provides a logical connection between the application
and the token. A session can be a read/write (R/W) session or a read-only (R/O) session.
Read/write and read-only refer to the access to token objects, not to session objects. In both
session types, an application can create, read, write and destroy session objects, and read token
objects. However, only in a read/write session can an application create, modify, and destroy
token objects.

After it opens a session, an application has access to the token’s public objects. All threads of a
given application have access to exactly the same sessions and the same session objects. To gain
access to the token’s private objects, the normal user must log in and be authenticated.

When a session is closed, any session objects which were created in that session are destroyed.
This holds even for session objects which are “being used” by other sessions. That is, if a single
application has multiple sessions open with a token, and it uses one of them to create a session
object, then that session object is visible through any of that application’s sessions. However, as
soon as the session that was used to create the object is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or more
sessions with one or more tokens. In general, a token may have multiple sessions with one or
more applications. A particular token may allow an application to have only a limited number of
sessions—or only a limited number of read/ write sessions-- however.

An open session can be in one of several states. The session state determines allowable access to

objects and functions that can be performed on them. The session states are described in Section 0
and Section 0.

Copyright © 1994-7 RSA Laboratories

Page 17

5.6.1. Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure. When the
session is initially opened, it is in either the “R/O Public Session” state (if the application has no
previously open sessions that are logged in) or the “R/O User Functions” state (if the application
already has an open session that is logged in). Note that read-only SO sessions do not exist.

Close Session/
Device Removed

R/O Public
Session

Open Session

Login User

Close Session/
Device Removed

R/O User
Functions

Open Session

Figure 3, Read-Only Session States
The following table describes the session states:

Table 4, Read-Only Session States

State Description

R/O Public Session The application has opened a read-only session. The application has
read-only access to public token objects and read/write access to public
session objects.

R/O User Functions | The normal user has been authenticated to the token. The application
has read-only access to all token objects (public or private) and
read/write access to all session objects (public or private).

5.6.2. Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure. When the
session is opened, it is in either the “R/W Public Session” state (if the application has no
previously open sessions that are logged in), the “R/W User Functions” state (if the application
already has an open session that the normal user is logged into), or the “R/W SO Functions” state
(if the application already has an open session that the SO is logged into).

Copyright © 1994-7 RSA Laboratories

Page 18 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

R/W SO
Functions

Close Session/

Open Session Device Removed

Open Session Close Session/

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session >
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States
The following table describes the session states:

Table 5, Read/Write Session States

State Description

R/W Public Session The application has opened a read/write session. The application has
read/write access to all public objects.

R/W SO Functions The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the token,
not to private objects. The SO can set the normal user’s PIN.

R/W User Functions | The normal user has been authenticated to the token. The application
has read/write access to all objects.

5.6.3. Permitted object accesses by sessions
The following table summarizes the kind of access each type of session has to each type of object.
A given type of session has either read-only access, read/write access, or no access whatsoever to

a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User
Functions” session cannot create or delete a token object.

Copyright © 1994-7 RSA Laboratories

Page 19

Table 6, Access to Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in Table 6 is limited
to sessions belonging to the application which owns that object (i.e., which created that object).
5.6.4. Session events

Session events cause the session state to change. The following table describes the events:

Table 7, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.

Device Removed the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, all sessions any applications have with the device are closed (this latter behavior
was not present in Version 1.0 of Cryptoki)—an application cannot have a session with a token
which is not present. Realistically, Cryptoki may not be constantly monitoring whether or not the
token is present, and so the token’s absence could conceivably not be noticed until a Cryptoki
function is executed. If the token is re-inserted into the slot before that, Cryptoki might never
know that it was missing.

In Cryptoki Version 2.01, all sessions that an application has with a token must have the same
login/logout status (i.e., for a given application and token, one of the following holds: all sessions
are public sessions; all sessions are SO sessions; or all sessions are user sessions). When an
application’s session logs into a token, all of that application’s sessions with that token become
logged in, and when an application’s session logs out of a token, all of that application’s sessions
with that token become logged out. Similarly, for example, if an application already has a R/O
user session open with a token, and then opens a R/W session with that token, the R/W session is
automatically logged in.

Copyright © 1994-7 RSA Laboratories

Page 20 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

This implies that a given application may not simultaneously have SO sessions and user sessions
open with a given token. It also implies that if an application has a R/W SO session with a token,
then it may not open a R/O session with that token, since R/O SO sessions do not exist. For the
same reason, if an application has a R/O session open, then it may not log any other session into
the token as the SO.

5.6.5. Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is in many ways akin to
a file handle, and is specified to functions to indicate which session the function should act on. All
threads of an application have equal access to all session handles. That is, anything that can be
accomplished with a given file handle by one thread can also be accomplished with that file
handle by any other thread of the same application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki objects.
Object handles are similar to session handles in the sense that visibility of a given object through
an object handle is the same among all threads of a given application. R/O sessions, of course,
only have read-only access to token objects, whereas R/W sessions have read/write access to
token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

#define CK_I NVALI D_HANDLE 0

5.6.6. Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be used to
perform: administrative operations (such as logging in); object management operations (such as
creating or destroying an object on the token); and cryptographic operations (such as computing a
message digest). Cryptographic operations sometimes require more than one function call to the
Cryptoki API to complete. In general, a single session can perform only one operation at a time;
for this reason, it may be desirable for a single application to open multiple sessions with a single
token. For efficiency’s sake, however, a single session on some tokens can perform the following
pairs of operation types simultaneously: message digesting and encryption; decryption and
message digesting; signature or MACing and encryption; and decryption and verifying
signatures or MACs. Details on performing simultaneous cryptographic operations in one
session are provided in Section 0.

A consequence of the fact that a single session can, in general, perform only one operation at a
time is that an application should never make multiple simultaneous function calls to Cryptoki which use
a common session. If multiple threads of an application attempt to use a common session
concurrently in this fashion, Cryptoki does not define what happens. This means that if multiple
threads of an application all need to use Cryptoki to access a particular token, it might be
appropriate for each thread to have its own session with the token, unless the application can
ensure by some other means (e.g., by some locking mechanism) that no sessions are ever used by
multiple threads simultaneously. This is true regardless of whether or not the Cryptoki library
was initialized in a fashion which permits safe multi-threaded access to it. Even if it is safe to
access the library from multiple threads simultaneously, it is still not necessarily safe to use a
particular session from multiple threads simultaneously.

Copyright © 1994-7 RSA Laboratories

Page 21

5.6.7. Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use of
sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and object
handles.

We caution that our example is decidedly not meant to indicate how multiple applications should
use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s sessions and
objects and handles are permissible. In other words, instead of demonstrating good technique
here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a Cryptoki library to
access a single token T. Each application has two threads running: A has threads A1 and A2, and
B has threads B1 and B2. We assume in what follows that there are no instances where multiple
threads of a single application simultaneously use the same session, and that the events of our
example occur in the order specified, without overlapping each other in time.

1. Al and Bl each initialize the Cryptoki library by calling C_Initialize (the specifics of
Cryptoki functions will be explained in Section 0). Note that exactly one call to C_Initialize
should be made for each application (as opposed to one call for every thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this is the
first session to be opened for A, it is a public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s existing sessions
are public sessions, session 4 is also a public session.

4. Al attempts to log the SO into session 7. The attempt fails, because if session 7 becomes an
SO session, then session 4 does, as well, and R/O SO sessions do not exist. Al receives an
error code indicating that the existence of a R/O session has blocked this attempt to log in
(CKR_SESSION_READ_ONLY_EXISTS).

5. A2 logs the normal user into session 7. This turns session 7 into a R/W user session, and
turns session 4 into a R/O user session. Note that because A1l and A2 belong to the same
application, they have equal access to all sessions, and therefore, A2 is able to perform this
action.

6. A2 opens a R/W session and receives the session handle 9. Since all of A’s existing sessions
are user sessions, session 9 is also a user session.

7. Al closes session 9.
8. Bl attempts to log out session 4. The attempt fails, because A and B have no access rights to
each other’s sessions or objects. B1 receives an error message which indicates that there is no

such session handle (CKR_SESSION_HANDLE_INVALID).

9. B2 attempts to close session 4. The attempt fails in precisely the same way as B1’s attempt to
log out session 4 failed (i.e., B2 receives a CKR_SESSION_HANDLE_INVALID error code).

10. B1 opens a R/W session and receives the session handle 7. Note that, as far as B is

concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s session 7 are
completely different sessions.

Copyright © 1994-7 RSA Laboratories

Page 22 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

B1 logs the SO into [B’s] session 7. This turns B’s session 7 into a R/W SO session, and has no
effect on either of A’s sessions.

B2 attempts to open a R/O session. The attempt fails, since B already has an SO session
open, and R/O SO sessions do not exist. Bl receives an error message indicating that the
existence of an SO session has blocked this attempt to open a R/O session
(CKR_SESSION_READ_WRITE_SO_EXISTS).

A1 uses [A’s] session 7 to create a session object O1 of some sort and receives the object
handle 7. Note that a Cryptoki implementation may or may not support separate spaces of
handles for sessions and objects.

B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the object handle
7. As with session handles, different applications have no access rights to each other’s object
handles, and so B’s object handle 7 is entirely different from A’s object handle 7. Of course,
since B1 is an SO session, it cannot create private objects, and so O2 must be a public object (if
Bl attempted to create a private object, the attempt would fail with error code
CKR_USER_NOT_LOGGED_IN or CKR_TEMPLATE_INCONSISTENT).

B2 uses [B’s] session 7 to perform some operation to modify the object associated with [B’s]
object handle 7. This modifies O2.

A1 uses [A’s] session 4 to perform an object search operation to get a handle for O2. The
search returns object handle 1. Note that A’s object handle 1 and B’s object handle 7 now
point to the same object.

A1 attempts to use [A’s] session 4 to modify the object associated with [A’s] object handle 1.
The attempt fails, because A’s session 4 is a R/O session, and is therefore incapable of
modifying O2, which is a token object. Al receives an error message indicating that the
session is a R/O session (CKR_SESSION_READ_ONLY).

A1 uses [A’s] session 7 to modify the object associated with [A’s] object handle 1. This time,
since A’s session 7 is a R/W session, the attempt succeeds in modifying O2.

B1 uses [B’s] session 7 to perform an object search operation to find O1. Since O1 is a session
object belonging to A, however, the search does not succeed.

A2 uses [A’s] session 4 to perform some operation to modify the object associated with [A’s]
object handle 7. This operation modifies O1.

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1. This
destroys O2.

B1 attempts to perform some operation with the object associated with [B’s] object handle 7.
The attempt fails, since there is no longer any such object. B1 receives an error message
indicating that its object handle is invalid (CKR_OBJECT_HANDLE_INVALID).

A1 logs out [A’s] session 4. This turns A’s session 4 into a R/O public session, and turns A’s
session 7 into a R/W public session.

A1 closes [A’s] session 7. This destroys the session object O1, which was created by A’s
session 7.

Copyright © 1994-7 RSA Laboratories

Page 23

25. A2 attempt to use [A’s] session 4 to perform some operation with the object associated with
[A’s] object handle 7. The attempt fails, since there is no longer any such object. It returns a
CKR_OBJECT_HANDLE_INVALID.

26. A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this point, if A were
to open a new session, the session would not be logged in (i.e., it would be a public session).

27. B2 closes [B’s] session 7. At this point, if B were to open a new session, the session would not
be logged in.

28. A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

5.7. Function overview

The Cryptoki API consists of a number of functions, spanning slot and token management and
object management, as well as cryptographic functions. These functions are presented in the

following table:

Table 8, Summary of Cryptoki Functions

Category Function Description
General C_Initialize initializes Cryptoki
purpose C_Finalize clean up miscellaneous Cryptoki-associated
functions resources
C_GetInfo obtains general information about Cryptoki

C_GetFunctionList

obtains entry points of Cryptoki library functions

Slot and token

C_GetSlotList

obtains a list of slots in the system

management C_GetSlotInfo obtains information about a particular slot
functions C_GetTokenInfo obtains information about a particular token
C_WaitForSlotEvent waits for a slot event (token insertion, removal,
etc.) to occur
C_GetMechanismList obtains a list of mechanisms supported by a
token
C_GetMechanismlInfo obtains information about a particular
mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an application and a
management particular token or sets up an application
functions callback for token insertion

C_CloseSession

closes a session

C_CloseAllSessions

closes all sessions with a token

C_GetSessionInfo

obtains information about the session

C_GetOperationState

obtains the cryptographic operations state of a
session

C_SetOperationState

sets the cryptographic operations state of a

Copyright © 1994-7 RSA Laboratories

Page 24

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Category Function Description
session
C_Login logs into a token
C_Logout logs out from a token
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptlnit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption operation
C_EncryptFinal finishes a multiple-part encryption operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption operation
C_DecryptFinal finishes a multiple-part decryption operation
Message C_DigestInit initializes a message-digesting operation
digesting C_Digest digests single-part data
functions C_DigestUpdate continues a multiple-part digesting operation

C_DigestKey

digests a key

C_DigestFinal

finishes a multiple-part digesting operation

Copyright © 1994-7 RSA Laboratories

Page 25

Category Function Description

Signing C_SignInit initializes a signature operation

and MACing C_Sign signs single-part data

functions C_SignUpdate continues a multiple-part signature operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverInit

initializes a signature operation, where the data
can be recovered from the signature

C_SignRecover

signs single-part data, where the data can be
recovered from the signature

Functions for
verifying
signatures
and MACs

C_Verifylnit

initializes a verification operation

C_Verify

verifies a signature on single-part data

C_VerifyUpdate

continues a multiple-part verification operation

C_VerifyFinal

finishes a multiple-part verification operation

C_VerifyRecoverlnit

initializes a verification operation where the data
is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data, where the
data is recovered from the signature

Dual-purpose

C_DigestEncryptUpdate

continues simultaneous multiple-part digesting

cryptographic and encryption operations
functions C_DecryptDigestUpdate | continues simultaneous multiple-part decryption
and digesting operations
C_SignEncryptUpdate continues simultaneous multiple-part signature
and encryption operations
C_DecryptVerifyUpdate | continues simultaneous multiple-part decryption
and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/ private-key pair
functions C_WrapKey wraps (encrypts) a key

C_UnwrapKey

unwraps (decrypts) a key

C_DeriveKey

derives a key from a base key

Random number
generation

functions

C_SeedRandom

mixes in additional seed material to the random
number generator

C_GenerateRandom

generates random data

Parallel function

C_GetFunctionStatus

legacy function which always returns

management CKR_FUNCTION_NOT_PARALLEL
functions C_CancelFunction legacy function which always returns

CKR_FUNCTION_NOT_PARALLEL
Callback application-supplied function to process
function notifications from Cryptoki

Copyright © 1994-7 RSA Laboratories

Page 26 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

6. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer or
communications system. Two of the particular features of the interface that facilitate such
security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic device
that implements the token may not be sufficient to use it; the PIN may also be needed.

2. Additional protection can be given to private keys and secret keys by marking them as
“sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off the token,
and unextractable keys cannot be revealed off the token even when encrypted (though they
can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other than
Cryptoki (e.g., other programming interfaces, or reverse engineering of the device) would be
difficult.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sensitive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects is
left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the token
can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one component in a
system. While the token itself may be secure, one must also consider the security of the operating
system by which the application interfaces to it, especially since the PIN may be passed through
the operating system. This can make it easy for a rogue application on the operating system to
obtain the PIN; it is also possible that other devices monitoring communication lines to the
cryptographic device can obtain the PIN. Rogue applications and devices may also change the
commands sent to the cryptographic device to obtain services other than what the application
requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well play a
role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,” since a
key that is sensitive will always remain sensitive. Similarly, a key that is unextractable cannot be
modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for a variety
of reasons, including export restrictions and basic security). This is outside the scope of the
present standard, but it can be achieved by distributing the token with a built-in, certified
public/private-key pair, by which the token can prove its identity. The certificate would be
signed by an authority (presumably the one indicating that the token is “legitimate”) whose
public key is known to the application. The application would verify the certificate and challenge
the token to prove its identity by signing a time-varying message with its built-in private key.

Copyright © 1994-7 RSA Laboratories

Page 27

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation supported
by the token. Some tokens may not even require any type of authentication to make use of its
cryptographic functions.

Copyright © 1994-7 RSA Laboratories

Page 28 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

7. Platform- and compiler-dependent directives for C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki header
files. Certain packing- and pointer-related aspects of these types are platform- and compiler-
dependent; these aspects are therefore resolved on a platform-by-platform (or compiler-by-
compiler) basis outside of the Cryptoki header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be issued
before including a Cryptoki header file. These directives are described in the remainder of
Section 0.

7.1. Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on the Win32
and Winl6 platforms, Cryptoki structures should be packed with 1-byte alignment. In a UNIX
environment, it may or may not be necessary (or even possible) to alter the byte-alignment of
structures.

7.2. Pointer-related macros

Because different platforms and compilers have different ways of dealing with different types of
pointers, Cryptoki requires the following 6 macros to be set outside the scope of Cryptoki:

¢ CK_PTR

CK_PTR is the “indirection string” a given platform and compiler uses to make a pointer to an
object. It is used in the following fashion:

typedef CK BYTE CK_PTR CK_BYTE_PTR

¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et ur nType, namne), when followed by a parentheses-enclosed list
of arguments and a function definition, defines a Cryptoki API function in a Cryptoki library.
ret ur nType is the return type of the function, and nane is its name. It is used in the following
fashion:
CK_DEFI NE_FUNCTI ON(CK_RV, C_Initialize)(
CK VO D PTR pReserved

)
{

}

Copyright © 1994-7 RSA Laboratories

Page 29

¢ CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, name), when followed by a parentheses-enclosed list
of arguments and a semicolon, declares a Cryptoki API function in a Cryptoki library.
r et ur nType is the return type of the function, and nane is its name. It is used in the following
fashion:
CK_DECLARE_FUNCTI ON(CK_RV, C_Initialize)(
CK_VO D_PTR pReserved
);

¢ CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a variable or type which is a pointer to a
Cryptoki API function in a Cryptoki library. ret ur nType is the return type of the function, and
nane is its name. It can be used in either of the following fashions to define a function pointer
variable, nyC_I niti al i ze, which can point to a C_Initialize function in a Cryptoki library
(note that neither of the following code snippets actually assigns a value tonyC_| ni ti al i ze):
CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC_Initialize)(
CK_VO D_PTR pReserved
);

or:

t ypedef CK DECLARE _FUNCTI ON_ PO NTER(CK RV, nyC InitializeType)(
CK VO D PTR pReserved

)1
nyC InitializeType nyClnitialize;

¢ CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTI ON(r et urnType, name), when followed by a parentheses-enclosed
list of arguments and a semicolon, declares a variable or type which is a pointer to an application
callback function that can be used by a Cryptoki API function in a Cryptoki library.
ret ur nType is the return type of the function, and namne is its name. It can be used in either of
the following fashions to define a function pointer variable, myCal | back, which can point to an
application callback which takes arguments ar gs and returns a CK_RV (note that neither of the
following code snippets actually assigns a value to nyCal | back):

CK_CALLBACK FUNCTI ON(CK_RV, nyCal | back) (args);

or:
t ypedef CK CALLBACK FUNCTI ON(CK RV, nycCal | backType) (args);
nyCal | backType nyCal | back;

¢ NULL_PTR

NULL_PTR s the value of a NULL pointer. In any ANSI C environment—and in many others as
well —NULL_PTR should be defined simply as 0.

Copyright © 1994-7 RSA Laboratories

Page 30 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

7.3. Sample platform- and compiler-dependent code

7.3.1. Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which implements or
makes use of a Win32 Cryptoki .dIl might issue the following directives before including any
Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#defi ne CK PTR *

#def i ne CK_DEFI NE_FUNCTI ON(r et ur nType, nane) \
returnType _ decl spec(dl | export) nane

#defi ne CK_DECLARE _FUNCTI ON(returnType, nane) \
returnType _ decl spec(dllinport) nane

#def i ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType _ decl spec(dllinport) (* nane)

#def i ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* name)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

After including any Cryptoki header files, they might issue the following directives to reset the
structure packing to its earlier value:

#pragma pack(pop, cryptoki)

7.3.2. Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++ code
which implements or makes use of a Winl6é Cryptoki .dll might issue the following directives
before including any Cryptoki header files:

#pragma pack(1)
#define CK PTR far *

#def i ne CK_DEFI NE_FUNCTI ON(r et ur nType, nane) \
returnType _ _export _far _pascal name

#def i ne CK_DECLARE _FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal name

#def i ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType __export _far _pascal (* nane)

#def i ne CK_CALLBACK FUNCTI ON(r et urnType, name) \
returnType _far _pascal (* name)

#i f ndef NULL_PTR
#define NULL_PTR O

Copyright © 1994-7 RSA Laboratories

Page 31

#endi f

7.3.3. Generic UNIX

Developers performing generic UNIX development might issue the following directives before
including any Cryptoki header files:

#define CK PTR *

#def i ne CK_DEFI NE_FUNCTI ON(r et ur nType, nane) \
returnType nane

#def i ne CK_DECLARE _FUNCTI ON(returnType, nane) \
returnType nane

#def i ne CK_DECLARE_FUNCTI ON_PO NTER(returnType, nane) \
returnType (* name)

#def i ne CK_CALLBACK FUNCTI ON(r et urnType, name) \
returnType (* name)

#i f ndef NULL_PTR

#defi ne NULL_PTR O
#endi f

Copyright © 1994-7 RSA Laboratories

Page 32 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

8. General data types

The general Cryptoki data types are described in the following subsections. The data types for
holding parameters for various mechanisms, and the pointers to those parameters, are not
described here; these types are described with the information on the mechanisms themselves, in
Section 0.

A C or C++ source file in a Cryptoki application or library can define all these types (the types
described here and the types that are specifically used for particular mechanism parameters) by
including the top-level Cryptoki include file, pkcs11. h. pkcs11. h, in turn, includes the other
Cryptoki include files, pkcs1lt. h and pkcs1lf.h. A source file can also include just
pkcsllt. h (instead of pkcs11. h); this defines most (but not all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor directives
indicated in Section 0.

8.1. General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library,
or an SSL implementation, or the hardware or firmware version of a slot or token. It is defined as
follows:

t ypedef struct CK_VERSI ON {
CK_BYTE mmgj or;
CK_BYTE mi nor;;

} CK_VERSI ON;

The fields of the structure have the following meanings:

major major version number (the integer portion of the version)
minor minor version number (the hundredths portion of the
version)

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10. Minor
revisions of the Cryptoki standard are always upwardly compatible within the same major
version number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

¢ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

Copyright © 1994-7 RSA Laboratories

Page 33

typedef struct CK I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_CHAR manuf acturerl D] 32];
CK_FLAGS fl ags;
CK _CHAR libraryDescription[32];
CK_VERSI ON | i braryVersi on;

} CK_INFG

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility with
future revisions of this interface

manufacturerlD ID of the Cryptoki library manufacturer. Must be padded
with the blank character ("). Should not be null-terminated.

flags bit flags reserved for future versions. Must be zero for this
version

libraryDescription character-string description of the library. Must be padded
with the blank character ("). Should not be null-terminated.

library Version Cryptoki library version number

For libraries written to this document, the value of cryptokiVersion should be 2.01; the value of
library Version is the version number of the library software itself.

CK_INFO_PTR is a pointer to a CK_INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It
is defined as follows:

typedef CK_ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:
#defi ne CKN_SURRENDER 0

The notifications have the following meanings:
CKN_SURRENDER Cryptoki is surrendering the execution of a function
executing in a session so that the application may perform
other operations. After performing any desired operations,

the application should indicate to Cryptoki whether to
continue or cancel the function (see Section 0).

8.2. Slot and token types

Cryptoki represents slot and token information with the following types:

Copyright © 1994-7 RSA Laboratories

Page 34 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows:
typedef CK ULONG CK SLOT I D;

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of CK_SLOT_ID can
be a valid slot identifier —in particular, a system may have a slot identified by the value 0. It need
not have such a slot, however.

CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT_ I NFO {
CK_CHAR sl ot Descri ption[64];
CK_CHAR manuf acturerl D] 32];
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnar eVer si on;
} CK_SLOT_I NFG,

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be padded
with the blank character ("). Should not be null-terminated.

manufacturerlD ID of the slot manufacturer. Must be padded with the blank
character (“ ‘). Should not be null-terminated.

flags bits flags that provide capabilities of the slot. The flags are
defined below

hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’s firmware
The following table defines the flags field:

Table 9, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 | TRUE if a token is present in the slot (e.g., a
device is in the reader)

CKF_REMOVABLE_DEVICE | 0x00000002 | TRUE if the reader supports removable devices

CKF_HW_SLOT 0x00000004 | TRUE if the slot is a hardware slot, as opposed
to a software slot implementing a “soft token”

Copyright © 1994-7 RSA Laboratories

Page 35

For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes. In addition, if
this flag is not set for a given slot, then the CKF_TOKEN_PRESENT flag for that slot is always
set. That is, if a slot does not support a removable device, then that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK TOKEN I NFO {
CK_CHAR | abel [32];
CK_CHAR manuf acturerl D] 32];
CK_CHAR nodel [16];
CK_CHAR seri al Nunber[16];
CK_FLAGS fl ags;
CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePri vat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnar eVer si on;
CK_CHAR ut cTi ne[16] ;

} CK_TOKEN_I NFG,

The fields of the structure have the following meanings:

label application-defined label, assigned during token
initialization. Must be padded with the blank character (" *).
Should not be null-terminated.

manufacturerlD ID of the device manufacturer. Must be padded with the
blank character (* ‘). Should not be null-terminated.

model model of the device. Must be padded with the blank
character (“ ‘). Should not be null-terminated.

serial Number character-string serial number of the device. Must be
padded with the blank character (* ¥). Should not be null-
terminated.
flags bit flags indicating capabilities and status of the device as

defined below

ulMaxSessionCount maximum number of sessions that can be opened with the
token at one time by a single application (see note below)

Copyright © 1994-7 RSA Laboratories

Page 36

ulSessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ulTotal PublicMemory

ulFreePublicMemory

ulTotal PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

number of sessions that this application currently has open
with the token (see note below)

maximum number of read /write sessions that can be
opened with the token at one time by a single application
(see note below)

number of read/write sessions that this application
currently has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytes in which
public objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for public objects (see note below)

the total amount of memory on the token in bytes in which
private objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for private objects (see note below)

version number of hardware
version number of firmware

current time as a character-string of length 16, represented
in the format YYYYMMDDhhmmssxx (4 characters for the
year; 2 characters each for the month, the day, the hour, the
minute, and the second; and 2 additional reserved ‘0’
characters). The value of this field only makes sense for
tokens equipped with a clock, as indicated in the token
information flags (see Table 10)

Copyright © 1994-7 RSA Laboratories

The following table defines the flags field:

Table 10, Token Information Flags

Page 37

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

TRUE if the token has its
own random number
generator

CKF_WRITE_PROTECTED

0x00000002

TRUE if the token is write-
protected (see below)

CKF_LOGIN_REQUIRED

0x00000004

TRUE if there are some
cryptographic functions that
a user must be logged in to
perform

CKF_USER_PIN_INITTIALIZED

0x00000008

TRUE if the normal user’s
PIN has been initialized

CKF_RESTORE_KEY_NOT_NEEDED

0x00000020

TRUE if a successful save of
a session’s cryptographic
operations state always
contains all keys needed to
restore the state of the
session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has its own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has a
“protected authentication
path”, whereby a user can
log into the token without
passing a PIN through the
Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

TRUE if a single session with
the token can perform dual
cryptographic operations
(see Section 0)

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An
application may be unable to perform certain actions on a write-protected token; these actions can
include any of the following, among others:

Creating/modifying/deleting any object on the token.

Creating/modifying/deleting a token object on the token.

Changing the SO’s PIN.

Changing the normal user’s PIN.

Copyright © 1994-7 RSA Laboratories

Page 38 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount, ulRwSessionCount,
ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and ulFreePrivateMemory can
have the special value CK_UNAVAILABLE INFORMATION, which means that the token
and/or library is unable or unwilling to provide that information. In addition, the fields
ulMaxSessionCount ~ and ulMaxRwSessionCount ~ can have the special value
CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the number of
sessions (resp. R/W sessions) an application can have open with the token.

These values are defined as

#def i ne CK_UNAVAI LABLE_| NFORMATI ON (~0UL)
#def i ne CK_EFFECTI VELY_I NFI NI TE 0

It is important to check these fields for these special values. This is particularly true for
CK_EFFECTIVELY_INFINITE, since an application seeing this value in the ulMaxSessionCount or
ulMaxRwSessionCount field would otherwise conclude that it can’t open any sessions with the
token, which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the ulMaxSessionCount field
is something along the lines of the following:

CK_TOKEN_| NFO i nf o;

if ((CK_LONG i nfo.ul MaxSessi onCount
== CK_UNAVAI LABLE_| NFORMATI ON) {
/* Token refuses to give val ue of ul MaxSessi onCount */

} él se if (info.ul MaxSessi onCount == CK_EFFECTI VELY_ I NFI NI TE) {
/* Application can open as nmany sessions as it wants */

} else {
/* ul MaxSessi onCount really does contain what it should */

CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

Copyright © 1994-7 RSA Laboratories

Page 39

8.3. Session types

Cryptoki represents session information with the following types:

¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as
follows:

typedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
defines the following symbolic value:

#defi ne CK_I NVALI D_HANDLE 0

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

¢ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 0. It is defined as
follows:

typedef CK_ULONG CK_USER TYPE;

For this version of Cryptoki, the following types of users are defined:

#define CKU SO O
#define CKU USER 1

¢ CK_STATE

CK_STATE holds the session state, as described in Sections 0 and 0. It is defined as follows:
t ypedef CK ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

#define CKS_RO_PUBLI C_SESSI ON 0
#define CKS_RO_USER_FUNCTI ONS 1
#defi ne CKS_RW PUBLI C_SESSI ON 2
#defi ne CKS_RW USER_FUNCTI ONS 3
#define CKS_RW SO FUNCTIONS 4

Copyright © 1994-7 RSA Laboratories

Page 40 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK SESSI ON | NFO {
CK SLOT_ID slotlD;
CK_STATE st at e;
CK_FLAGS fl ags;
CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFO,

The fields of the structure have the following meanings:
slotID ID of the slot that interfaces with the token
state the state of the session

flags bit flags that define the type of session; the flags are defined
below

ulDeviceError an error code defined by the cryptographic device. Used
for errors not covered by Cryptoki.

The following table defines the flags field:

Table 11, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE if
the session is read-only

CKF_SERIAL_SESSION 0x00000004 | This flag is provided for backward
compatibility, and should always be set to
TRUE

CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

8.4. Object types

Cryptoki represents object information with the following types:

¢ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:
t ypedef CK ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an object
handle for that application’s sessions to use to access it. A particular object on a token does not
necessarily have a handle which is fixed for the lifetime of the object; however, if a particular
session can use a particular handle to access a particular object, then that session will continue to

Copyright © 1994-7 RSA Laboratories

Page 41

be able to use that handle to access that object as long as the session continues to exist, the object
continues to exist, and the object continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’ convenience, Cryptoki
defines the following symbolic value:

#defi ne CK_I NVALI D_HANDLE 0

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.

¢ CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki
recognizes. Itis defined as follows:

typedef CK_ULONG CK_OBJECT CLASS;

For this version of Cryptoki, the following classes of objects are defined:

#define CKO_DATA 0x00000000
#define CKO_CERTI FI CATE 0x00000001
#define CKO_PUBLI C_KEY 0x00000002
#define CKO_PRI VATE_KEY 0x00000003
#define CKO_SECRET_KEY 0x00000004

#defi ne CKO VENDOR_DEFI NED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their object classes through the PKCS
process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

¢ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:
typedef CK_ULONG CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:

#define CKK_RSA 0x00000000
#define CKK_DSA 0x00000001
#define CKK_DH 0x00000002
#defi ne CKK_ECDSA 0x00000003
#defi ne CKK_KEA 0x00000005
#defi ne CKK_GENERI C_SECRET 0x00000010
#defi ne CKK_RC2 0x00000011
#defi ne CKK_RC4 0x00000012
#defi ne CKK_DES 0x00000013
#defi ne CKK_DES2 0x00000014
#defi ne CKK_DES3 0x00000015
#defi ne CKK_CAST 0x00000016
#define CKK_CAST3 0x00000017
#defi ne CKK_CAST5 0x00000018
#define CKK_CAST128 0x00000018

Copyright © 1994-7 RSA Laboratories

Page 42 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

#def i ne CKK_RC5 0x00000019
#def i ne CKK_| DEA 0x0000001A
#def i ne CKK_SKI PJACK 0x0000001B
#def i ne CKK_BATON 0x0000001C
#def i ne CKK_JUNI PER 0x0000001D
#def i ne CKK_CDVF 0x0000001E
#def i ne CKK_VENDOR_DEFI NED 0x80000000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their key types through the PKCS process.

¢ CK_CERTIFICATE _TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:
t ypedef CK _ULONG CK_CERTI FI CATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:

#define CKC_X_509 0x00000000
#define CKC_VENDOR DEFI NED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their certificate types through the PKCS

process.

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

typedef CK ULONG CK_ATTRI BUTE_TYPE;

For this version of Cryptoki, the following attribute types are defined:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKA_CLASS
CKA_TOKEN
CKA_PRI VATE
CKA_LABEL
CKA_APPLI CATI ON
CKA_VALUE

CKA_CERTI FI CATE_TYPE

CKA_I SSUER
CKA_SERI AL_NUMBER
CKA_KEY_TYPE
CKA_SUBJECT
CKA_ID

CKA_SENSI TI VE
CKA_ENCRYPT
CKA_DECRYPT
CKA_WRAP
CKA_UNVIRAP

CKA_SI GN

CKA_SI GN_RECOVER
CKA_VER! FY
CKA_VERI FY_RECOVER

Copyright © 1994-7 RSA Laboratories

0x00000000
0x00000001
0x00000002
0x00000003
0x00000010
0x00000011
0x00000080
0x00000081
0x00000082
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000106
0x00000107
0x00000108
0x00000109
0x0000010A
0x0000010B

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKA_DERI VE
CKA_START_DATE
CKA_END_DATE
CKA_MODULUS
CKA_MODULUS_BI TS
CKA_PUBLI C_EXPONENT
CKA_PRI VATE_EXPONENT
CKA_PRI VE_1

CKA_PRI VE_2
CKA_EXPONENT _1
CKA_EXPONENT_2
CKA_COEFFI Cl ENT
CKA_PRI MVE
CKA_SUBPRI VE
CKA_BASE
CKA_VALUE_BI TS
CKA_VALUE_LEN
CKA_EXTRACTABLE
CKA_LOCAL

CKA_NEVER_EXTRACTABLE

CKA_ALWAYS_SENSI TI VE
CKA_MODI FI ABLE
CKA_ECDSA_PARANVS
CKA_EC_POI NT
CKA_VENDOR _DEFI NED

0x0000010C
0x00000110
0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000126
0x00000127
0x00000128
0x00000130
0x00000131
0x00000132
0x00000160
0x00000161
0x00000162
0x00000163
0x00000164
0x00000165
0x00000170
0x00000180
0x00000181
0x80000000

Page 43

Section 0 defines the attributes for each object class. Attribute types CKA_VENDOR_DEFINED
and above are permanently reserved for token vendors. For interoperability, vendors should
register their attribute types through the PKCS process.

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute. It is
defined as follows:

typedef struct CK ATTRI BUTE {

CK_ATTRI BUTE_TYPE type;
CK_ VO D _PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTRI BUTE;

The fields of the structure have the following meanings:

type the attribute type

pValue pointer to the value of the attribute

ulValueLen

length in bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant. An array of
CK_ATTRIBUTE:s is called a “template” and is used for creating, manipulating and searching for
objects. The order of the attributes in a template never matters, even if the template contains

vendor-specific attributes.

Note that pValue is a “void” pointer, facilitating the passing of

arbitrary values. Both the application and Cryptoki library must ensure that the pointer can be

safely cast to the expected type (i.e., without word-alignment errors).

Copyright © 1994-7 RSA Laboratories

Page 44 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

¢ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK DATE {
CK_CHAR year[4];
CK_CHAR nont h[2] ;
CK_CHAR day][2];

} CK_DATE;

The fields of the structure have the following meanings:
year the year (“1900” - “9999”)
month the month (“01” - “12”)
day the day (“01” - “31”)

The fields hold numeric characters from the character set in Table 3, not the literal byte values.

8.5. Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

¢ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:
t ypedef CK_ULONG CK_MECHANI SM TYPE;

For Cryptoki Version 2.01, the following mechanism types are defined:

#defi ne CKM_RSA_PKCS_KEY_PAI R_GEN 0x00000000
#defi ne CKM_RSA_PKCS 0x00000001
#defi ne CKM_RSA_9796 0x00000002
#defi ne CKM_RSA_X_509 0x00000003
#defi ne CKM_MD2_RSA_PKCS 0x00000004
#defi ne CKM_MD5_RSA_PKCS 0x00000005
#defi ne CKM_SHAL RSA_PKCS 0x00000006
#defi ne CKM_DSA KEY_PAI R_GEN 0x00000010
#def i ne CKM_DSA 0x00000011
#def i ne CKM_DSA_SHAL 0x00000012
#defi ne CKM DH_PKCS_KEY_PAI R_GEN 0x00000020
#defi ne CKM_DH_PKCS_DERI VE 0x00000021
#defi ne CKM_RC2_KEY_GEN 0x00000100
#defi ne CKM_RC2_ECB 0x00000101
#defi ne CKM_RC2_CBC 0x00000102
#defi ne CKM_RC2_MAC 0x00000103
#def i ne CKM_RC2_MAC_GENERAL 0x00000104
#defi ne CKM_RC2_CBC_PAD 0x00000105
#defi ne CKM_RC4_KEY_GEN 0x00000110

Copyright © 1994-7 RSA Laboratories

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM RC4

CKM DES_KEY_GEN
CKM_DES_ECB
CKM_DES_CBC
CKM_DES_MAC

CKM DES_MAC_GENERAL
CKM_DES_CBC_PAD

CKM DES2_KEY_GEN

CKM _DES3_KEY_GEN

CKM _DES3_ECB
CKM_DES3_CBC

CKM DES3_MAC

CKM _DES3_MAC_GENERAL
CKM_DES3_CBC_PAD
CKM_CDVF_KEY_GEN
CKM_CDVF_ECB
CKM_CDMF_CBC
CKM_CDVF_MAC
CKM_CDVF_MAC_GENERAL
CKM_CDMF_CBC_PAD
CKM_MD2

CKM_MD2_HVAC
CKM_MD2_HVAC_GENERAL
CKM_MD5

CKM_MD5_HVAC
CKM_MD5_HVAC_GENERAL
CKM_SHA_ 1

CKM SHA_1_HMVAC
CKM_SHA_1_HMAC_GENERAL
CKM_CAST_KEY_GEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY_GEN
CKM_CAST128_KEY_GEN
CKM_CAST5_ECB
CKM_CAST128_ECB
CKM_CAST5_CBC
CKM_CAST128_CBC
CKM_CAST5_MAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128_MAC_GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128_CBC_PAD
CKM_RC5_KEY_GEN
CKM_RC5_ECB
CKM_RC5_CBC
CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD
CKM_| DEA_KEY_GEN
CKM_| DEA_ECB

0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000135
0x00000136
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000200
0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000300
0x00000301
0x00000302
0x00000303
0x00000304
0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000320
0x00000321
0x00000321
0x00000322
0x00000322
0x00000323
0x00000323
0x00000324
0x00000324
0x00000325
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341

Page 45

Copyright © 1994-7 RSA Laboratories

Page 46

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CBC

MVAC

DEA_MAC_GENERAL

CKM_| DEA_CBC_PAD
CKM_GENERI C_SECRET_KEY_GEN
CKM_CONCATENATE_BASE_AND_KEY

CKM | DEA
CKM_| DEA_
CKMI

CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM KEY
CKM_SSL3_PRE_MASTER KEY_GEN
CKM_SSL3_MASTER _KEY_DERI VE
CKM_SSL3_KEY_AND_MAC _DERI VE
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL_MAC
CKM_MD5_KEY_DERI VATI ON
CKM_MD2_KEY_DERI VATI ON
CKM_SHAL_KEY_DERI VATI ON
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHAL1 CAST5_CBC
CKM_PBE_SHA1_CAST128_CBC
CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PBA_SHA1_W TH_SHA1_HMVAC
CKM_KEY_W\RAP_LYNKS
CKM_KEY_\W\RAP_SET_OAEP
CKM_SKI PJACK_KEY_GEN
CKM_SKI PJACK_ECB64

CKM_SKI PJACK_CBC64

CKM_SKI PJACK_OFB64

CKM_SKI PJACK_CFB64

CKM_SKI PJACK_CFB32

CKM_SKI PJACK_CFB16

CKM_SKI PJACK_CFBS8

CKM_SKI PJACK_WRAP

CKM_SKI PJACK_PRI VATE_\\RAP
CKM_SKI PJACK_RELAYX
CKM_KEA KEY_PAI R_GEN
CKM_KEA_KEY_DERI VE
CKM_FORTEZZA_TI MESTAMVP
CKM_BATON_KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_VRAP
CKM_ECDSA_KEY_PAI R_GEN
CKM_ECDSA

CKM_ECDSA_SHA1

CKM_JUNI PER_KEY_GEN
CKM_JUNI PER_ECB128

Copyright © 1994-7 RSA Laboratories

0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000380
0x00000381
0x00000390
0x00000391
0x00000392
0x000003A0
0x000003A1
0x000003A2
0x000003A3
0x000003A4
0x000003A4
0x000003A5
0x000003A5
0x000003A6
0x000003A7
0x000003A8
0x000003A9
0x000003AA
0x000003AB
0x000003C0
0x00000400
0x00000401
0x00001000
0x00001001
0x00001002
0x00001003
0x00001004
0x00001005
0x00001006
0x00001007
0x00001008
0x00001009
0x0000100a
0x00001010
0x00001011
0x00001020
0x00001030
0x00001031
0x00001032
0x00001033
0x00001034
0x00001035
0x00001036
0x00001040
0x00001041
0x00001042
0x00001060
0x00001061

Page 47

#defi ne CKM_JUNI PER_CBC128 0x00001062
#defi ne CKM_JUNI PER_COUNTER 0x00001063
#defi ne CKM_JUNI PER_SHUFFLE 0x00001064
#defi ne CKM_JUNI PER_WRAP 0x00001065
#def i ne CKM_FASTHASH 0x00001070
#def i ne CKM_VENDOR_DEFI NED 0x80000000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their mechanism types through the PKCS
process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

¢ CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any parameters it
requires. It is defined as follows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK VO D_PTR pPar anet er ;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

The fields of the structure have the following meanings:

mechanism the type of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and the Cryptoki library must ensure that the pointer can be safely cast to the
expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

¢ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism.
It is defined as follows:

typedef struct CK_MECHANI SM | NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM_| NFO,

The fields of the structure have the following meanings:

Copyright © 1994-7 RSA Laboratories

Page 48

ulMinKeySize

ulMaxKeySize

flags

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

the minimum size of the key for the mechanism (whether

this is measured in bits or in bytes is mechanism-

dependent)

the maximum size of the key for the mechanism (whether

this is measured in bits or in bytes is mechanism-

dependent)

bit flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.

The following table defines the flags field:

Table 12, Mechanism Information Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 | TRUE if the mechanism is performed by the
device; FALSE if the mechanism is performed
in software

CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used with
C_Encryptlnit

CKF_DECRYPT 0x00000200 | TRUE if the mechanism can be used with
C_Decryptlnit

CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used with
C_DigestInit

CKF_SIGN 0x00000800 | TRUE if the mechanism can be used with
C_Signlnit

CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used with
C_SignRecoverlnit

CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used with
C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used with
C_VerifyRecoverlnit

CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x00020000 | TRUE if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used with
C_DeriveKey

CKF_EXTENSION 0x80000000 | TRUE if there is an extension to the flags;

FALSE if no extensions. Must be FALSE for

this version.

Copyright © 1994-7 RSA Laboratories

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

8.6. Function types

Cryptoki represents information about functions with the following data types:

¢ CK_RV

Page 49

CK_RYV is a value that identifies the return value of a Cryptoki function. It is defined as follows:

t ypedef

CK_ULONG CK_RV:

For this version of Cryptoki, the following return values are defined:

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

CKR_OK
CKR_CANCEL

CKR_HOST_MVEMORY

CKR_SLOT_I D_| NVALI D
CKR_GENERAL_ERROR

CKR_FUNCTI ON_FAI LED
CKR_ARGUVENTS_BAD
CKR_NO_EVENT
CKR_NEED_TO_CREATE_THREADS
CKR_CANT_LOCK

CKR_ATTRI BUTE_READ ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_| NVALI D
CKR_ATTRI BUTE_VALUE_| NVALI D
CKR_DATA_| NVALI D
CKR_DATA_LEN_RANGE

CKR_DEVI CE_ERROR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED_DATA_| NVALI D
CKR_ENCRYPTED_DATA LEN_RANGE
CKR_FUNCTI ON_CANCELED
CKR_FUNCTI ON_NOT_PARAL LEL
CKR_FUNCTI ON_NOT_SUPPORTED
CKR_KEY_HANDLE_| NVALI D
CKR_KEY_S| ZE_RANGE
CKR_KEY_TYPE_| NCONSI STENT
CKR_KEY_NOT_NEEDED
CKR_KEY_CHANGED
CKR_KEY_NEEDED

CKR_KEY_| NDI GESTI BLE
CKR_KEY_FUNCTI ON_NOT_PERM TTED
CKR_KEY_NOT_WRAPPABLE
CKR_KEY_UNEXTRACTABLE
CKR_MECHANI SM_| NVALI D
CKR_MECHANI SM_PARAM | NVALI D
CKR_OBJECT _HANDLE_| NVALI D
CKR_OPERATI ON_ACTI VE
CKR_OPERATI ON_NOT_| NI TI ALI ZED
CKR_PI N_I NCORRECT

CKR_PI N_I NVALI D

CKR_PI N_LEN_RANGE

CKR_PI N_EXPI RED

0x00000000
0x00000001
0x00000002
0x00000003
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x00000010
0x00000011
0x00000012
0x00000013
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000040
0x00000041
0x00000050
0x00000051
0x00000054
0x00000060
0x00000062
0x00000063
0x00000064
0x00000065
0x00000066
0x00000067
0x00000068
0x00000069
0x0000006A
0x00000070
0x00000071
0x00000082
0x00000090
0x00000091
0x000000A0
0x000000A1
0x000000A2
0x000000A3

Copyright © 1994-7 RSA Laboratories

Page 50

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

Section 0 defines the meaning of each CK_RV value. Return values CKR_VENDOR_DEFINED
and above are permanently reserved for token vendors.

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKR_PI N_LOCKED

CKR_SESSI ON_CLOSED

CKR_SESSI ON_COUNT

CKR_SESSI ON_HANDLE_| NVALI D
CKR_SESSI ON_PARALLEL_NOT_SUPPORTED
CKR_SESSI ON_READ_ONLY

CKR_SESSI ON_EXI STS

CKR_SESSI ON_READ_ONLY_EXI STS
CKR_SESSI ON_READ_WRI TE_SO EXI STS
CKR_SI GNATURE_| NVALI D

CKR_SI GNATURE_LEN_RANGE
CKR_TEMPLATE_I NCOVPLETE
CKR_TEMPLATE_| NCONSI STENT
CKR_TOKEN_NOT_PRESENT
CKR_TOKEN_NOT_RECOGNI ZED
CKR_TOKEN_W\RI TE_PROTECTED
CKR_UNWRAPPI NG_KEY_HANDLE_| NVALI D
CKR_UNWRAPPI NG_KEY_SI ZE_RANGE
CKR_UNWRAPPI NG_KEY_TYPE_| NCONSI STENT
CKR_USER_ALREADY_LOGGED | N
CKR_USER_NOT_LOGGED | N
CKR_USER_PI N_NOT_I NI TI ALI ZED
CKR_USER_TYPE_| NVALI D
CKR_USER_ANOTHER_ALREADY_LOGGED | N
CKR_USER_TOO_MANY_TYPES
CKR_WRAPPED_KEY_| NVALI D
CKR_WRAPPED_KEY_LEN_RANGE
CKR_WRAPPI NG_KEY_HANDLE_| NVALI D
CKR_WRAPPI NG_KEY_SI ZE_RANGE
CKR_WRAPPI NG_KEY_TYPE_| NCONSI STENT
CKR_RANDOM SEED_NOT_SUPPORTED
CKR_RANDOM NO_RNG

CKR_BUFFER_TOO SMALL

CKR_SAVED STATE_| NVALI D

CKR_I NFORVATI ON_SENSI TI VE
CKR_STATE_UNSAVEABLE

CKR_CRYPTOKI _NOT_I NI TI ALI ZED
CKR_CRYPTOKI _ALREADY_| NI TI ALl ZED
CKR_MUTEX_BAD
CKR_MUTEX_NOT_LOCKED

CKR_VENDOR _DEFI NED

register their return values through the PKCS process.

¢ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification

callbacks. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,

CK VO D_PTR pApplication

)

Copyright © 1994-7 RSA Laboratories

0x000000A4
0x000000B0
0x000000B1
0x000000B3
0x000000B4
0x000000B5
0x000000B6
0x000000B7
0x000000B8
0x000000C0
0x000000C1
0x000000D0
0x000000D1
0x000000EO
0x000000E1
0x000000E2
0x000000F0
0x000000F1
0x000000F2
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000110
0x00000112
0x00000113
0x00000114
0x00000115
0x00000120
0x00000121
0x00000150
0x00000160
0x00000170
0x00000180
0x00000190
0x00000191
0x000001A0
0x000001A1
0x80000000

For interoperability, vendors should

Page 51

The arguments to a notification callback function have the following meanings:
hSession The handle of the session performing the callback
event The type of notification callback

pApplication An application-defined value. This is the same value as was
passed to C_OpenSession to open the session performing
the callback

¢ CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function C_XXX
in the Cryptoki API (there are 68 such functions in Cryptoki Version 2.01; see Section 0 for
detailed information about each of them), Cryptoki defines a type CK_C_XXX, which is a pointer
to a function with the same arguments and return value as C_XXX has. An appropriately-set
variable of type CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.

¢ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to
each function in the Cryptoki APIL. It is defined as follows:
typedef struct CK_FUNCTI ON_LI ST {
CK_VERSI ON ver si on;
CK C.lnitialize Clnitialize;

(@]
I
>
L
N
(9]
(@]
I
>
L
N
(0]

&
=l
o
O
8
5,
°

t Funct i onLi st C CGet Functi onlLi st ;
tSlotList C_ Get Sl ot Li st ;

tSlotlnfo C Cet Sl ot | nf o;

t Tokenl nfo C Cet Tokenl nf o;

t Mechani snLi st C_Get Mechani snli st ;

t Mechani sm nf o C Cet Mechani sm nf o;

it Token C_Ini t Token;

itPIN C_ InitPIN;

tPIN C_ Set PI N;

enSessi on C_OpenSessi on;

oseSessi on C _Cl oseSessi on;

oseAl | Sessions C O oseAl | Sessi ons;

t Sessionlnfo C_ Get Sessi onl nf o;

t Operati onState C Get OperationSt at e;
t OperationState C_Set Oper ati onSt at e;
gin C _Login;

gout C _Logout;

eat ebj ect C Createbject;

pyChj ect C_CopyQbj ect ;

stroyQbj ect C _Dest royOOJ ect;

t Obj ect Si ze C_Get Obj ect Si ze;

tAttri butevValue C Get Attri buteVal ue;
tAttri but evVal ue C Set Attri but eVal ue;
i ndObj ectslnit C FindObjectslnit;

i ndObj ects C_Fi ndObj ect s;

i ndQbj ect sFi nal C_Fi ndOOJ ect sFi nal ;

22222222222

R

R
oooooooooooooodoooooooooooq
333%9999955%99999%55999@@@

222222222229

IQI9

Copyright © 1994-7 RSA Laboratories

Page 52 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

> Encryptlnit C Encryptlnit;

. Encrypt C Encrypt

> Encrypt Updat e C Encrypt Updat e;

> Encrypt Final C _EncryptFinal;

> Decryptlnit C Decryptlnit;

. Decrypt C Decrypt

> Decrypt Updat e C Decrypt Updat e;

crypt Final C DecryptFinal;

i gestinit C Digestlnit;

i gest C _Di gest;

i gest Updat e C_Di gest Updat e;

i gest Key C _Di gest Key;

i gest Fi nal C _Di gestFinal;

igninit CSignlnit;

ign C Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

i gnRecoverlnit C_Si gnRecoverI nit;

i gnRecover C_ Si gnRecover ;

erifylnit C Verifylnit;

erify C Verify;

erifyUpdate C VerifyUpdate;

eri fyFinal C VerifyFinal;

eri fyRecoverlnit C Veri fyRecoverI nit;
erifyRecover C_ Verif yRecover;

gest Encrypt Updat e C_Di gest Encrypt Updat e;
crypt Di gest Updat e C_Decr ypt Di gest Updat e;
i gnEncrypt Updat e C_Si gnEncrypt Updat e;

UUDDOY

<LK LKKKLYLVLYVLOL W

QD

0020000202020222222222222222299999000000000

'l'll(")OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

> Decrypt Veri fyUpdate C Decrypt Veri fyUpdat e;
. Cener at eKey C_Gener at eKey;
> CGener at eKeyPair C _Gener at eKeyPai r;
> W apKey C W apKey;
. Unwr apKey C_Unwr apKey;
> DeriveKey C DeriveKey;
> SeedRandom C_SeedRandom
>~ Gener at eRandom C_Gener at eRandom
>~ Get FunctionStatus C_Get FunctionStatus;
> Cancel Function C_Cancel Functi on;
C Wit For Sl ot Event C Wit For Sl ot Event ;
} CK_FUNCTI ON_LI ST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it (or to a
copy of it which is also owned by the library) may be obtained by the C_GetFunctionList
function (see Section 0). The value that this pointer points to can be used by an application to
quickly find out where the executable code for each function in the Cryptoki APl is located. Every
function in the Cryptoki APl must have an entry point defined in the Cryptoki library’s
CK_FUNCTION_LIST structure. If a particular function in the Cryptoki API is not supported by a
library, then the function pointer for that function in the library’s CK_FUNCTION_LIST
structure ~ should point to a function stub = which simply returns
CKR_FUNCTION_NOT_SUPPORTED.

An application may or may not be able to modify a Cryptoki library’s static
CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do so.

CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

Copyright © 1994-7 RSA Laboratories

Page 53

8.7. Locking-related types

The types in this section are provided solely for applications which need to access Cryptoki from
multiple threads simultaneously. Applications which will not do this need not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function which creates a
new mutex object and returns a pointer to it. It is defined as follows:

typedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUJTEX) (
CK_VO D_PTR PTR ppMit ex

)

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in the
location pointed to by ppMutex. Such a function should return one of the following values:
CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function which
destroys an existing mutex object. It is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_DESTROYMUTEX) (
CK_VO D_PTR pMit ex

)

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be
destroyed. =~ Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which locks an
existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-supplied
function which unlocks an existing mutex object. The proper behavior for these types of
functions is as follows:

o If a CK_LOCKMUTEX function is called on a mutex which is not locked, the calling thread
obtains a lock on that mutex and returns.

o If a CK_LOCKMUTEX function is called on a mutex which is locked by some thread other
than the calling thread, the calling thread blocks and waits for that mutex to be unlocked.

e If a CK_LOCKMUTEX function is called on a mutex which is locked by the calling thread,
the behavior of the function call is undefined.

e If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the calling
thread, that mutex is unlocked and the function call returns. Furthermore:

Copyright © 1994-7 RSA Laboratories

Page 54 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

e If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.

e If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threads is selected somehow. That lucky thread stops blocking, obtains a lock
on the mutex, and its CK_LOCKMUTEX call returns. All other threads blocking on that
particular mutex continue to block.

e If a CK_UNLOCKMUTEX function is called on a mutex which is not locked, then the
function call returns the error code CKR_MUTEX_NOT_LOCKED.

e If a CK_UNLOCKMUTEX function is called on a mutex which is locked by some thread
other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_LOCKMUTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be locked. Such
a function should return one of the following values: CKR_OK, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be
unlocked. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE _ARGS_PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the C_Initialize
function. For this version of Cryptoki, these optional arguments are all concerned with the way
the library deals with threads. CK_C_INITIALIZE_ARGS is defined as follows:

typedef struct CK C IN TIALIZE ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest royMit ex;
CK_LOCKMUTEX LockMut ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS fl ags;
CK VO D PTR pReserved;

} CK_C_ I NITIALI ZE_ARGS;

The fields of the structure have the following meanings:

CreateMutex pointer to a function to use for creating mutex objects

Copyright © 1994-7 RSA Laboratories

Page 55

DestroyMutex pointer to a function to use for destroying mutex objects
LockMutex pointer to a function to use for locking mutex objects
UnlockMutex pointer to a function to use for unlocking mutex objects

flags bit flags specifying options for C_Initialize; the flags are

defined below

pReserved reserved for future use. Should be NULL_PTR for this
version of Cryptoki

The following table defines the flags field:

Table 13, C_Initialize Parameter Flags

Bit Flag

Mask

Meaning

CKF_LIBRARY_CANT_CREATE_OS_THREADS

0x00000001

TRUE if application threads
which are executing calls to
the library may not use native
operating system calls to
spawn new threads; FALSE if
they may

CKF_OS_LOCKING_OK

0x00000002

TRUE if the library can use
the native operation system
threading model for locking;
FALSE otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

Copyright © 1994-7 RSA Laboratories

Page 56 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

9. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data
type. An object consists of a set of attributes, each of which has a given value. Each attribute that
an object possesses has precisely one value. The following figure illustrates the high-level
hierarchy of the Cryptoki objects and some of the attributes they support:

Obiject
Class
Token
Private
Label
Modifiable
Data Certificate Kevy
Application Certificate Type
Value

X.509 Certificate

Subject

ID

Issuer

Serial Number
Value

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and for
obtaining and modifying the values of their attributes. Some of the cryptographic functions (e.g.,
C_GenerateKey) also create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all required
attributes, and the attributes are always consistent with one another from the time the object is
created. This contrasts with some object-based paradigms where an object has no attributes other
than perhaps a class when it is created, and is uninitialized for some time. In Cryptoki, objects
are always initialized.

Copyright © 1994-7 RSA Laboratories

Page 57

Tables throughout most of Section 0 define each Cryptoki attribute in terms of the data type of the
attribute value and the meaning of the attribute, which may include a default initial value. Some
of the data types are defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attribute values
may also take the following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTEs representing an unsigned integer of
arbitrary size, most-significant byte first (e.g., the integer
32768 is represented as the 2-byte string 0x80 0x00)

Local string an unpadded string of CK_CHARs (see Table 3) with no
null-termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to have
exactly the same values for all their attributes.

With the exception of RSA private key objects (see Section 0), each type of object in the Cryptoki
specification possesses a completely well-defined set of Cryptoki attributes. For example, an
X.509 certificate object (see Section 0) has precisely the following Cryptoki attributes:
CKA_CLASS, CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE, CKA_LABEL,
CKA_CERTIFICATE_TYPE, CKA_SUBJECT, CKA_ID, CKA_ISSUER,
CKA_SERIAL_NUMBER, CKA_VALUE. Some of these attributes possess default values, and
need not be specified when creating an object; some of these default values may even be the
empty string (“”). Nonetheless, the object possesses these attributes. A given object has a single
value for each attribute it possesses, even if the attribute is a vendor-specific attribute whose
meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-specific
attributes whose meanings and values are not specified by Cryptoki.

9.1. Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that create
objects (see Section 0) may also contribute some additional attribute values themselves; which
attributes have values contributed by a cryptographic function call depends on which
cryptographic mechanism is being performed (see Section 0). In any case, all the required
attributes supported by an object class that do not have default values must be specified when an
object is created, either in the template or by the function itself.

9.1.1. Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 0),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see Section 0). In
addition, copying an existing object (with the function C_CopyObject) also creates a new object,

but we consider this type of object creation separately in Section 0.

Attempting to create an object with any of these functions requires an appropriate template to be
supplied.

Copyright © 1994-7 RSA Laboratories

Page 58 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

1. If the supplied template specifies a value for an invalid attribute, then the attempt should fail
with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute is valid if it is either
one of the attributes described in the Cryptoki specification or an additional vendor-specific
attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID. The valid values for
Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt should
fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a given Cryptoki
attribute is read-only is explicitly stated in the Cryptoki specification; however, a particular
library and token may be even more restrictive than Cryptoki specifies. In other words, an
attribute which Cryptoki says is not read-only may nonetheless be read-only under certain
circumstances (i.e., in conjunction with some combinations of other attributes) for a particular
library and token. Whether or not a given non-Cryptoki attribute is read-only is obviously
outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute values and
any attribute values contributed to the object by the object-creation function itself, are
insufficient to fully specify the object to create, then the attempt should fail with the error
code CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute values and
any attribute values contributed to the object by the object-creation function itself, are
inconsistent, then the attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT. A set of attribute values is inconsistent if not all of its
members can be satisfied simultaneously by the token, although each value individually is
valid in Cryptoki. One example of an incomplete template would be using a template which
specifies two different values for the same attribute. Another example would be trying to
create an RC4 secret key object (see Section 0) with a CKA_MODULUS attribute (which is
appropriate for various types of public keys (see Section 0) or private keys (see Section 0), but
not for RC4 keys). A final example would be a template for creating an RSA public key with
an exponent of 17 on a token which requires all RSA public keys to have exponent 65537.
Note that this final example of an inconsistent template is token-dependent—on a different
token (one which permits the value of 17 for an RSA public key exponent), such a template
would not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than once (or
the template specifies the same value for a particular attribute that the object-creation
function itself contributes to the object), then the behavior of Cryptoki is not completely
specified. The attempt to create an object can either succeed —thereby creating the same
object that would have been created if the multiply-specified attribute had only appeared
once—or it can fail with error code CKR_TEMPLATE_INCONSISTENT. Library developers
are encouraged to make their libraries behave as though the attribute had only appeared once
in the template; application developers are strongly encouraged never to put a particular
attribute into a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object, then the
error code returned from the attempt can be any of the error codes from above that applies.

Copyright © 1994-7 RSA Laboratories

Page 59

9.1.2. Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 0). The
template supplied to C_SetAttributeValue can contain new values for attributes which the object
already possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may not.
In addition, attributes which Cryptoki specifies are modifiable may actually not be modifiable on
some tokens. That is, if a Cryptoki attribute is described as being modifiable, that really means
only that it is modifiable insofar as the Cryptoki specification is concerned. A particular token might
not actually support modification of some such attributes. Furthermore, whether or not a
particular attribute of an object on a particular token is modifiable might depend on the values of
certain attributes of the object. For example, a secret key object’s CKA_SENSITIVE attribute can
be changed from FALSE to TRUE, but not the other way around.

All the scenarios in Section 0 —and the error codes they return—apply to modifying objects with
C_SetAttributeValue, except for the possibility of a template being incomplete.

9.1.3. Copying objects

Objects may be copied with the Cryptoki function C_CopyObiject (see Section 0). In the process
of copying an object, C_CopyObject also modifies the attributes of the newly-created copy
according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject operation
are the same as the Cryptoki attributes which are described as being modifiable, plus the three
special attributes CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE. To be more
precise, these attributes are modifiable during the course of a C_CopyObject operation insofar as
the Cryptoki specification is concerned. A particular token might not actually support modification
of some such attributes during the course of a C_CopyObject operation. Furthermore, whether
or not a particular attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object. For
example, a secret key object’'s CKA_SENSITIVE attribute can be changed from FALSE to TRUE
during the course of a C_CopyObiject operation, but not the other way around.

All the scenarios in Section 0—and the error codes they return—apply to copying objects with
C_CopyObject, except for the possibility of a template being incomplete.

9.2. Common attributes

The following table defines the attributes common to all objects:

Copyright © 1994-7 RSA Laboratories

Page 60 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 14, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS | Object class (type)

CKA_TOKEN CK_BBOOL TRUE if object is a token object; FALSE if object is
a session object (default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object; FALSE if object

is a public object. Default value is token-specific,
and may depend on the values of other attributes

of the object.
CKA_MODIFIABLE | CK_BBOOL TRUE if object can be modified (default TRUE)
CKA_LABEL Local string Description of the object (default empty)

IMust be specified when object is created

Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN,
CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying
an object, however.)

Cryptoki Version 2.01 supports the following values for CKA_CLASS (i.e., the following classes
(types) of objects): CKO_DATA, CKO_CERTIFICATE, CKO_PUBLIC_KEY,
CKO_PRIVATE_KEY, and CKO_SECRET_KEY.

The CKA_TOKEN attribute identifies whether the object is a token object or a session object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user has
been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.
It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL attribute is intended to assist users in browsing.

9.3. Data objects

Data objects (object class CKO_DATA) hold information defined by an application. Other than
providing access to it, Cryptoki does not attach any special meaning to a data object. The
following table lists the attributes supported by data objects, in addition to the common attributes
listed in Table 14:

Table 15, Data Object Attributes

Attribute Data type Meaning

CKA_APPLICATION | Local string | Description of the application that manages the object
(default empty)

CKA_VALUE Byte array Value of the object (default empty)

Both of these attributes may be modified after the object is created.

Copyright © 1994-7 RSA Laboratories

Page 61

The CKA_APPLICATION attribute provides a means for applications to indicate ownership of
the data objects they manage. Cryptoki does not provide a means of ensuring that only a
particular application has access to a data object, however.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass = CKO DATA;

CK CHAR | abel[] = “A data object”;

CK _CHAR application[] = “An application”;
CK BYTE data[] = “Sanple data”;

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, data, sizeof(data)}

};

9.4. Certificate objects

Certificate objects (object class CKO_CERTIFICATE) hold public-key certificates. Other than
providing access to certificate objects, Cryptoki does not attach any special meaning to
certificates. The following table defines the common certificate object attributes, in addition to the
common attributes listed in Table 14:

Table 16, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE! | CK_CERTIFICATE_TYPE | Type of certificate

IMust be specified when the object is created.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created.

9.4.1. X.509 certificate objects
X.509 certificate objects (certificate type CKC_X_509) hold X.509 certificates. The following table

defines the X.509 certificate object attributes, in addition to the common attributes listed in Table
14 and Table 16:

Copyright © 1994-7 RSA Laboratories

Page 62 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 17, X.509 Certificate Object Attributes

Attribute Data type | Meaning

CKA_SUBJECT!? Byte array | DER-encoding of the certificate subject name

CKA_ID Byte array | Key identifier for public/private key pair
(default empty)

CKA_ISSUER Byte array | DER-encoding of the certificate issuer name
(default empty)

CKA_SERIAL_NUMBER | Byte array | DER-encoding of the certificate serial number
(default empty)

CKA_VALUE! Byte array | BER-encoding of the certificate

IMust be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified
after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as well as identifier, it is possible that keys for different subjects
may have the same CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is not
required that all be stored in the same token). However, Cryptoki does not enforce this
association, or even the uniqueness of the key identifier for a given subject; in particular, an
application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7
and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509
certificates, the key identifier may be carried in the certificate. It is intended that the CKA_ID
value be identical to the key identifier in such a certificate extension, although this will not be
enforced by Cryptoki.

The following is a sample template for creating a certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC X 509;
CK_CHAR l abel [] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subj ect, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}

Copyright © 1994-7 RSA Laboratories

9.5. Key objects

The following figure illustrates details of key objects:

Page 63

Key
Key Type
ID
Start Date
End Date
Derive
Local
Public Kev Private Key Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
Unwrap Wrap
Extractable Unwrap
Always Sensitive Extractable
Never Extractable Always Sensitive
Never Extractable

Figure 6, Key Attribute Detail

Key objects hold encryption or authentication keys, which can be public keys, private keys, or
secret keys. The following common footnotes apply to all the tables describing attributes of keys:

Table 18, Common footnotes for key attribute tables

1 Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.
5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_Unwrap.

Copyright © 1994-7 RSA Laboratories

Page 64 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of
copying object with a C_CopyObiject call. As mentioned previously, however, it is possible
that a particular token may not permit modification of the attribute, or may not permit
modification of the attribute during the course of a C_CopyObject call.

9 Default value is token-specific, and may depend on the values of other attributes.

The following table defines the attributes common to public key, private key and secret key
classes, in addition to the common attributes listed in Table 14:

Table 19, Common Key Attributes

Attribute Data Type Meaning
CKA_KEY_TYPE!3> | CK_KEY_TYPE | Type of key
CKA_ID# Byte array Key identifier for key (default empty)
CKA_START_DATE® | CK_DATE Start date for the key (default empty)
CKA_END_DATE? CK_DATE End date for the key (default empty)
CKA_DERIVES CK_BBOOL TRUE if key supports key derivation (i.e., if other
keys can be derived from this one (default FALSE)
CKA_LOCAL?2%6 CK_BBOOL TRUE only if key was either
e generated locally (i.e., on the token) with a
C_GenerateKey or C_GenerateKeyPair call
e created with a C_CopyObject call as a copy of a
key which had its CKA_LOCAL attribute set to
TRUE

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and
private keys, this field assists in handling multiple keys held by the same subject; the key
identifier for a public key and its corresponding private key should be the same. The key
identifier should also be the same as for the corresponding certificate, if one exists. Cryptoki does
not enforce these associations, however. (See Section 0 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference only;
Cryptoki does not attach any special meaning to them. In particular, it does not restrict usage of a
key according to the dates; doing this is up to the application.

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive other keys
from the key.

The CKA_LOCAL attribute has the value TRUE if and only if the value of the key was originally
generated on the token by a C_GenerateKey or C_GenerateKeyPair call.

Copyright © 1994-7 RSA Laboratories

Page 65

9.6. Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki
recognizes five types of public keys: RSA, DSA, ECDSA, Diffie-Hellman, and KEA. The
following table defines the attributes common to all public keys, in addition to the common
attributes listed in Table 14 and Table 19:

Table 20, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT? Byte array DER-encoding of the key subject name (default
empty)

CKA_ENCRYPT? CK_BBOOL | TRUE if key supports encryption’

CKA_VERIFY? CK_BBOOL | TRUE if key supports verification where the

signature is an appendix to the data®

CKA_VERIFY_RECOVERS CK_BBOOL TRUE if key supports verification where the
data is recovered from the signature®

CKA_WRAPS CK_BBOOL | TRUE if key supports wrapping (i.e., can be
used to wrap other keys)?

It is intended in the interests of interoperability that the subject name and key identifier for a
public key will be the same as those for the corresponding certificate and private key. However,
Cryptoki does not enforce this, and it is not required that the certificate and private key also be
stored on the token.

9.6.1. RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public
keys. The following table defines the RSA public key object attributes, in addition to the common
attributes listed in Table 14, Table 19, and Table 20:

Table 21, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS! 46 Big integer Modulus n
CKA_MODULUS_BITS?36 CK_ULONG | Length in bits of modulus n
CKA_PUBLIC_EXPONENT'3¢ | Big integer Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1 for
more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK CHAR | abel [] = “An RSA public key object”;
CK BYTE nodul us[] = {...};

CK _BYTE exponent[] = {...};

Copyright © 1994-7 RSA Laboratories

Page 66 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, si zeof (exponent)}

}s

9.6.2. DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public
keys. The following table defines the DSA public key object attributes, in addition to the common

attributes listed in Table 14, Table 19, and Table 20:

Table 22, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME?36 Big integer Subprime g (160 bits)

CKA_BASE™36 Big integer Base g

CKA_VALUE 46 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA

parameters”. See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK CHAR | abel [] = “A DSA public key object”;
CK BYTE prinme[] ={...};
CK _BYTE subprinme[] =
CK BYTE base[] ={...};
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{
{
{
{

{...}
}

CKA PRI VE, prinme, sizeof(prine)},

CKA _SUBPRI ME, subprine, sizeof(subprine)},
CKA BASE, base, sizeof(base)},

CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-7 RSA Laboratories

Page 67

9.6.3. ECDSA public key objects

ECDSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_ECDSA) hold
ECDSA public keys. See Section 0 for more information about ECDSA. The following table
defines the ECDSA public key object attributes, in addition to the common attributes listed in
Table 14, Table 19, and Table 20:

Table 23, ECDSA Public Key Object Attributes

Attribute Data type Meaning
CKA_ECDSA_PARAMS!36 | Byte array DER-encoding of an X9.62 ECPar anet er s value
CKA_EC_POINT46 Byte array DER-encoding of X9.62 ECPoi nt value P

The CKA_ECDSA_PARAMS attribute value is known as the “ECDSA parameters”.

The following is a sample template for creating an ECDSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;
CK_CHAR | abel [] = “An ECDSA public key object”;
CK BYTE ecdsaParans[] = {...};
CK BYTE ecPoint[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ECDSA _ PARAI\/B ecdsaPar ans, sizeof (ecdsaParans)},
{ CKA_EC_PO NT, ecPoint, si zeof(ecPoi nt)}

}s

9.6.4. Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold
Diffie-Hellman public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes listed in Table 14, Table 19, and Table 20:

Table 24, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA_PRIME!36 Big integer Prime p
CKA_BASE™36 Big integer Base g
CKA_VALUE 46 Big integer Public value y

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters”. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

Copyright © 1994-7 RSA Laboratories

Page 68 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK DH;
CK_CHAR label [] = “A Diffie-Hellnman public key object”
CK BYTE prinme[] ={...};
CK BYTE base[] ={...};
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType, si zeof (keyType) },
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

};

9.6.5. KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold KEA public
keys. The following table defines the KEA public key object attributes, in addition to the common

attributes listed in Table 14, Table 19, and Table 20:

Table 25, KEA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME?36 Big integer Subprime g (160 bits)

CKA_BASE36 Big integer Base g (512 to 1024 bits, in steps of 64 bits)
CKA_VALUE 46 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA

parameters”.

The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType CKK_KEA;
CK_CHAR | abel [] = “A KEA public key object”

CK BYTE prinme[] ={...};
CK BYTE subprine[] ={...};
CK BYTE base[] ={...};

CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_SUBPRI ME, subprine, sizeof(subprine)},
{ CKA BASE, base, si zeof(base)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-7 RSA Laboratories

Page 69

9.7. Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This version of
Cryptoki recognizes five types of private key: RSA, DSA, ECDSA, Diffie-Hellman, and KEA. The
following table defines the attributes common to all private keys, in addition to the common
attributes listed in Table 14 and Table 19:

Table 26, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT? Byte array DER-encoding of certificate subject name
(default empty)

CKA_SENSITIVE? (see below) CK_BBOOL | TRUE if key is sensitive’

CKA_DECRYPTS CK_BBOOL | TRUE if key supports decryption’

CKA_SIGN8 CK_BBOOL | TRUE if key supports signatures where
the signature is an appendix to the data®

CKA_SIGN_RECOVERS CK_BBOOL | TRUE if key supports signatures where
the data can be recovered from the
signature®

CKA_UNWRAP# CK_BBOOL | TRUE if key supports unwrapping (i.e.,

can be used to unwrap other keys)?
CKA_EXTRACTABLES? (see below) | CK_BBOOL | TRUE if key is extractable®
CKA_ALWAYS_SENSITIVE246 CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE?*¢ | CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the value
TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE attribute may be changed,
but only to the value FALSE. Attempts to make other changes to the values of these attributes
should return the error code CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute is FALSE,
then certain attributes of the private key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of private key in the attribute table in the section
describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.
It is intended in the interests of interoperability that the subject name and key identifier for a
private key will be the same as those for the corresponding certificate and public key. However,

this is not enforced by Cryptoki, and it is not required that the certificate and public key also be
stored on the token.

Copyright © 1994-7 RSA Laboratories

Page 70 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

9.7.1. RSA private key objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA
private keys. The following table defines the RSA private key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 26:

Table 27, RSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_MODULUS! 46 Big integer | Modulus n
CKA_PUBLIC_EXPONENT%¢ Big integer | Public exponent e
CKA_PRIVATE_EXPONENT' 467 | Big integer | Private exponent d
CKA_PRIME_1467 Big integer | Prime p

CKA_PRIME_2467 Big integer | Prime g
CKA_EXPONENT_1467 Big integer | Private exponent d modulo p-1
CKA_EXPONENT_2467 Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT#67 Big integer | CRT coefficient 4! mod p

Depending on the token, there may be limits on the length of the key components. See PKCS #1
for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store
only the CKA_MODULUS and CKA_PRIVATE_EXPONENT values.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token
generates an RSA private key, it stores whichever of the fields in Table 27 it keeps track of. Later,
if an application asks for the values of the key’s various attributes, Cryptoki supplies values only
for attributes whose values it can obtain (i.e., if Cryptoki is asked for the value of an attribute it
cannot obtain, the request fails). Note that a Cryptoki implementation may or may not be able
and/or willing to supply various attributes of RSA private keys which are not actually stored on
the token. E.g., if a particular token stores values only for the CKA_PRIVATE_EXPONENT,
CKA_PRIME 1, and CKA_PRIME_2 attributes, then Cryptoki is certainly able to report values
for all the attributes above (since they can all be computed efficiently from these three values).
However, a Cryptoki implementation may or may not actually do this extra computation. The
only attributes from Table 27 for which a Cryptoki implementation is required to be able to return
values are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 27 are supplied
to the object creation call than are supported by the token, the extra attributes are likely to be
thrown away. If an attempt is made to create an RSA private key object on a token with
insufficient attributes for that particular token, then the object creation call fails and returns
CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS_BITS attribute
specified. This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:

Copyright © 1994-7 RSA Laboratories

Page 71

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK _CHAR |l abel [] =
CK _BYTE subject[] =
CK_BYTE id[] = {123};
CK BYTE nodul us[] = {..
CK _BYTE publ i cExponent [
CK _BYTE pri vat eExponent
CK BYTE prinmel[] ={...
CK BYTE prinme2[] ={...
CK_BYTE exponent 1]]
CK_BYTE exponent 2[]
CK _BYTE coefficient][]

“An RSA private key object”;
{...}

1
1 ={...};
(1 =4{..%
}s
}s

(..}
{...}
={...};

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

}s

9.7.2.

CKA CLASS, &cl ass, sizeof(class)},

CKA KEY_TYPE, &keyType, sizeof (keyType)},

CKA TOKEN, &true, sizeof(true)},

CKA LABEL, | abel, sizeof(label)},

CKA SUBJECT, subject, sizeof(subject)},

CKA ID, id, sizeof(id)},

CKA SENSI Tl VE, &true, sizeof(true)},

CKA DECRYPT, &true, sizeof(true)},

CKA SIGN, &true, sizeof(true)},

CKA MODULUS, nodul us, sizeof (nodul us)},

CKA PUBLI C_EXPONENT, publicExponent, sizeof (publicExponent)},
CKA PRI VATE_EXPONENT, privateExponent, sizeof (privateExponent)},
{CKA PRIME 1, prinel, sizeof(prinel)},

{CKA PRI ME 2, prine2, sizeof(prine2)},

{ CKA_EXPONENT 1, exponentl, sizeof (exponentl)},

{ CKA_EXPONENT_2, exponent2, sizeof (exponent2)},

{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

e T e L e

DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA
private keys. The following table defines the DSA private key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 26:

Table 28, DSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME46 Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME46 Big integer | Subprime g (160 bits)

CKA_BASE46 Big integer | Base g

CKA_VALUE 67 Big integer | Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA
parameters”. See FIPS PUB 186 for more information on DSA keys.

Note that when generating a DSA private key, the DSA parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the
DSA parameters for the pair are specified in the template for the DSA public key.

Copyright © 1994-7 RSA Laboratories

Page 72 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK DSA;
CK_CHAR | abel [] = “A DSA pr| vate key object”
CK_BYTE subj ect ..
CK_BYTE id[] =
CK_BYTE prinme[]
CK_BYTE subpri
CK _BYTE base[] ..
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &class, sizeof(class)},

{ CKA_KEY_TYPE, &keyType si zeof (keyType) },

{ CKA_TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_SUBJECT, subj ect, sizeof(subject)},

{CKA ID, id, sizeof(i d)}

{CKA SENSI TI VE, &true, sizeof(true)},

{CKA SIGN, &true, si zeof(true)},

{CKA PRI ME, prinme, sizeof(prinme)},

{ CKA_SUBPRI ME, subpr| ne, sizeof (subprine)},

{ CKA BASE, base, si zeof(base)}

{CKA VALUE, val ue, sizeof(value)}

}s

9.7.3. ECDSA private key objects

ECDSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_ECDSA) hold
ECDSA private keys. See Section 0 for more information about ECDSA. The following table
defines the ECDSA private key object attributes, in addition to the common attributes listed in
Table 14, Table 19, and Table 26:

Table 29, ECDSA Private Key Object Attributes

Attribute Data type Meaning
CKA_ECDSA_PARAMS!'46 | Byte array DER-encoding of an X9.62 ECPar anet er s value
CKA_VALUE 67 Big integer X9.62 private value d

The CKA_ECDSA_PARAMS attribute value is known as the “ECDSA parameters”.

Note that when generating an ECDSA private key, the ECDSA parameters are not specified in the
key’s template. This is because ECDSA private keys are only generated as part of an ECDSA key
pair, and the ECDSA parameters for the pair are specified in the template for the ECDSA public
key.

The following is a sample template for creating an ECDSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;

CK_CHAR | abel [] = “An ECDSA private key object”;
CK BYTE subject[] =1{...};

CK_BYTE id[] = {123};

CK BYTE ecdsaParans[] = {...};

Copyright © 1994-7 RSA Laboratories

Page 73

CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subj ect, sizeof(subject)},
{CKA ID, id, S|zeof(|d)}
{CKA SENSI TI VE, &true, sizeof(true)},
{ CKA DERI VE, &true, S|zeof(true)},
{ CKA_ECDSA PARAMS, ecdsaParans, si zeof (ecdsaParans)},
{ CKA_VALUE, val ue, sizeof (val ue)}

}s

9.7.4. Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold
Diffie-Hellman private keys. The following table defines the Diffie-Hellman private key object
attributes, in addition to the common attributes listed in Table 14, Table 19, and Table 26:

Table 30, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME!46 Big integer Prime p

CKA_BASE46 Big integer Base g

CKA_VALUE 67 Big integer Private value x
CKA_VALUE_BITS?2¢ | CK_ULONG Length in bits of private value x

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters”. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters are not
specified in the key’s template. This is because Diffie-Hellman private keys are only generated as
part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in
the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK DH;
CK_CHAR | abel [] = “A D|ff| e-Hel | man private key object”

CK_BYTE subjec [1 ={. ;
CK_BYTE i d[] {123};

CK _BYTE prirre[] ={...};
CK BYTE base[] ={...};
CK BYTE value[] ={...};

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType, si zeof (keyType) },
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},

Copyright © 1994-7 RSA Laboratories

Page 74 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, S|zeof(|d)}

{CKA SENSI TI VE, &true, sizeof(true)},

{ CKA DERI VE, &true, S|zeof(true)},
{CKA PRI ME, prinme, sizeof(prinme)},

{ CKA_BASE, base, sizeof (base)},

{CKA VALUE, val ue, sizeof(value)}

}s

9.7.5. KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hold KEA
private keys. The following table defines the KEA private key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 26:

Table 31, KEA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME!#6 Big integer Prime p (512 to 1024 bits, in steps of 64
bits)

CKA_SUBPRIME!#6 | Big integer Subprime g (160 bits)

CKA_BASE 46 Big integer Base g (512 to 1024 bits, in steps of 64 bits)

CKA_VALUE 67 Big integer Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA
parameters”.

Note that when generating a KEA private key, the KEA parameters are not specified in the key’s
template. This is because KEA private keys are only generated as part of a KEA key pair, and the
KEA parameters for the pair are specified in the template for the KEA public key.

The following is a sample template for creating a KEA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK KEA,;
CK_CHAR | abel [] = “A KEA pr| vate key object”
CK_BYTE subj ect ..
CK_BYTE id[] =
CK_BYTE prinme[]
CK_BYTE subpri
CK _BYTE base[] ..
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &class, sizeof(class)},

{ CKA_KEY_TYPE, &keyType si zeof (keyType) },

{ CKA_TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_SUBJECT, subj ect, sizeof(subject)},

{CKA ID, id, S|zeof(|d)}

{CKA SENSI TI VE, &true, sizeof(true)},

{ CKA DERI VE, &true, S|zeof(true)},

{CKA PRI ME, prinme, sizeof(prinme)},

{ CKA_SUBPRI ME, subprinme, sizeof (subprime)},

Copyright © 1994-7 RSA Laboratories

Page 75

{CKA BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

};

9.8. Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of Cryptoki
recognizes the following types of secret key: generic, RC2, RC4, RC5, DES, DES2, DES3, CAST,
CAST3, CAST128 (also known as CAST5), IDEA, CDMF, SKIPJACK, BATON, and JUNIPER. The
following table defines the attributes common to all secret keys, in addition to the common
attributes listed in Table 14 and Table 19:

Table 32, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVE? (see below) CK_BBOOL | TRUE if object is sensitive (default FALSE)
CKA_ENCRYPT? CK_BBOOL | TRUE if key supports encryption’
CKA_DECRYPTS CK_BBOOL | TRUE if key supports decryption’
CKA_SIGN® CK_BBOOL | TRUE if key supports signatures (i.e.,

authentication codes) where the signature
is an appendix to the data®

CKA_VERIFY8 CK_BBOOL | TRUE if key supports verification (i.e., of
authentication codes) where the signature
is an appendix to the data®

CKA_WRAPS CK_BBOOL | TRUE if key supports wrapping (i.e., can
be used to wrap other keys)?
CKA_UNWRAP# CK_BBOOL | TRUE if key supports unwrapping (i.e., can

be used to unwrap other keys)?

CKA_EXTRACTABLES (see below) | CK_BBOOL | TRUE if key is extractable®

CKA_ALWAYS_SENSITIVE246 CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE?24¢ | CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the value
TRUE. Similarly, after an object is created, the CKA_EXTRACTABLE attribute may be changed,
but only to the value FALSE. Attempts to make other changes to the values of these attributes
should return the error code CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute is FALSE,
then certain attributes of the secret key cannot be revealed in plaintext outside the token. Which
attributes these are is specified for each type of secret key in the attribute table in the section
describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

Copyright © 1994-7 RSA Laboratories

Page 76 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

9.8.1. Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET)
hold generic secret keys. These keys do not support encryption, decryption, signatures or
verification; however, other keys can be derived from them. The following table defines the

generic secret key object attributes, in addition to the common attributes listed in Table 14, Table
19, and Table 32:

Table 33, Generic Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (arbitrary length)
CKA_VALUE_LEN236 | CK_ULONG Length in bytes of key value

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERI C_SECRET;
CK CHAR |l abel[] = “A generic secret key object”;
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{CKA DERI VE, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}s

9.8.2. RC2 secret key objects
RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys.
The following table defines the RC2 secret key object attributes, in addition to the common

attributes listed in Table 14, Table 19, and Table 32:

Table 34, RC2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (1 to 128 bytes)
CKA_VALUE_LEN236 [CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK CHAR |l abel [] = “An RC2 secret key object”;
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories

Page 77

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}
b

9.8.3. RC4 secret key objects
RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys.
The following table defines the RC4 secret key object attributes, in addition to the common

attributes listed in Table 14, Table 19, and Table 32:

Table 35, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (1 to 256 bytes)
CKA_VALUE_LEN236 | CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK CHAR | abel [] = “An RC4 secret key object”;
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA VALUE, val ue, sizeof(value)}

};

9.8.4. RC5 secret key objects
RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold RC5 keys.
The following table defines the RC5 secret key object attributes, in addition to the common

attributes listed in Table 14, Table 19, and Table 32:

Table 36, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (0 to 255 bytes)
CKA_VALUE_LEN236 | CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;

CK_CHAR | abel [] “An RC5 secret key object”;
CK_BYTE val ue[] {...};

Copyright © 1994-7 RSA Laboratories

Page 78 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

9.8.5. DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length
DES keys. The following table defines the DES secret key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 32:

Table 37, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 8 bytes long)

DES keys must always have their parity bits properly set as described in FIPS PUB 46-2.
Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK CHAR | abel [] = “A DES secret key object”;
CK BYTE value[8] ={...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

Copyright © 1994-7 RSA Laboratories

Page 79

9.8.6. DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-
length DES keys. The following table defines the DES2 secret key object attributes, in addition to
the common attributes listed in Table 14, Table 19, and Table 32:

Table 38, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 16 bytes long)

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-2 (i.e.,
each of the DES keys comprising a DES2 key must have its parity bits properly set). Attempting
to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;

CK CHAR |l abel [] = “A DES2 secret key object”;
CK BYTE val ue[16] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

9.8.7. DESS3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-
length DES keys. The following table defines the DES3 secret key object attributes, in addition to
the common attributes listed in Table 14, Table 19, and Table 32:

Table 39, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 24 bytes long)

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-2 (i.e.,
each of the DES keys comprising a DES3 key must have its parity bits properly set). Attempting
to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;

CK CHAR | abel [] = “A DES3 secret key object”;
CK BYTE value[24] = {...};

Copyright © 1994-7 RSA Laboratories

Page 80 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

9.8.8. CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hold CAST
keys. The following table defines the CAST secret key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 32:

Table 40, CAST Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN?236 | CK_ULONG | Length in bytes of key value

The following is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;

CK CHAR | abel [] = “A CAST secret key object”;
CK BYTE value[] ={...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

9.8.9. CASTS3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3) hold CAST3
keys. The following table defines the CAST3 secret key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 32:

Table 41, CAST3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (1 to 8 bytes)
CKA_VALUE_LEN236 | CK_ULONG | Length in bytes of key value

The following is a sample template for creating a CAST3 secret key object:

Copyright © 1994-7 RSA Laboratories

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CASTS3;
CK CHAR | abel [] = “A CAST3 secret key object”;
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA VALUE, val ue, sizeof(value)}

};

9.8.10. CAST128 (CASTS5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY, key type
CKK_CAST128 or CKK_CASTS5) hold CAST128 keys. The following table defines the CAST128
secret key object attributes, in addition to the common attributes listed in Table 14, Table 19, and

Table 32:

Table 42, CAST128 (CAST5) Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE 67 Byte array Key value (1 to 16 bytes)
CKA_VALUE_LEN?236 | CK_ULONG | Length in bytes of key value

The following is a sample template for creating a CAST128 (CAST5) secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
CK_CHAR | abel [] = “A CAST128 secret key object”;
CK BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories

Page 82 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}
b

9.8.11. IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold IDEA
keys. The following table defines the IDEA secret key object attributes, in addition to the
common attributes listed in Table 14, Table 19, and Table 32:

Table 43, IDEA Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 16 bytes long)

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_| DEA;
CK CHAR | abel [] = “An | DEA secret key object”;
CK BYTE val ue[16] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA VALUE, val ue, sizeof(value)}

};

9.8.12. CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMEF) hold single-
length CDMF keys. The following table defines the CDMF secret key object attributes, in addition
to the common attributes listed in Table 14, Table 19, and Table 32:

Table 44, CDMF Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 8 bytes long)

CDMF keys must always have their parity bits properly set in exactly the same fashion described
for DES keys in FIPS PUB 46-2. Attempting to create or unwrap a CDMF key with incorrect
parity will return an error.

The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDIVF;

Copyright © 1994-7 RSA Laboratories

CK CHAR | abel [] = “A CDVF secret key object”;
CK BYTE value[8] ={...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

9.8.13. SKIPJACK secret key objects

Page 83

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type CKK_SKIPJACK) holds
a single-length MEK or a TEK. The following table defines the SKIPJACK secret key object

attributes, in addition to the common attributes listed in Table 14, Table 19, and Table 32:

Table 45, SKIPJACK Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 12 bytes long)

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting to create

or unwrap a SKIPJACK key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to create a

SKIPJACK key with a specified value. Nonetheless, we provide templates for doing so.

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PJACK;

CK _CHAR | abel [] = “A SKIPJACK MEK secret key object”;
CK BYTE val ue[12] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

The following is a sample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PJACK;
CK _CHAR | abel [] = “A SKIPJACK TEK secret key object”;
CK BYTE val ue[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories

Page 84 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

}s

9.8.14. BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON) hold
single-length BATON keys. The following table defines the BATON secret key object attributes,

in addition to the common attributes listed in Table 14, Table 19, and Table 32:

Table 46, BATON Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 40 bytes long)

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to create

or unwrap a BATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to create a

BATON key with a specified value. Nonetheless, we provide templates for doing so.

The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON,
CK CHAR | abel [] = “A BATON MEK secret key object”;
CK _BYTE val ue[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA VALUE, val ue, sizeof(value)}

}s

The following is a sample template for creating a BATON TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON,
CK CHAR | abel [] = “A BATON TEK secret key object”;
CK BYTE val ue[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ CKA_TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true si zeof (true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-7 RSA Laboratories

Page 85
b

9.8.15. JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type CKK_JUNIPER) hold
single-length JUNIPER keys. The following table defines the JUNIPER secret key object
attributes, in addition to the common attributes listed in Table 14, Table 19, Table 32:

Table 47, JUNIPER Secret Key Object

Attribute Data type Meaning
CKA_VALUE 467 Byte array Key value (always 40 bytes long)

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting to create
or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to create a
JUNIPER key with a specified value. Nonetheless, we provide templates for doing so.

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNI PER;

CK _CHAR |l abel [] = “A JUNI PER MEK secret key object”;
CK BYTE val ue[40] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

};

The following is a sample template for creating a JUNIPER TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNI PER;
CK _CHAR |l abel [] = “A JUNI PER TEK secret key object”;
CK BYTE val ue[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-7 RSA Laboratories

Page 86 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

10.Functions

Cryptoki's functions are organized into the following categories:

general-purpose functions (4 functions)

slot and token management functions (9 functions)
session management functions (8 functions)

object management functions (9 functions)
encryption functions (4 functions)

decryption functions (4 functions)

message digesting functions (5 functions)

signing and MACing functions (6 functions)
functions for verifying signatures and MACs (6 functions)
dual-purpose cryptographic functions (4 functions)
key management functions (5 functions)

random number generation functions (2 functions)

parallel function management functions (2 functions)

In addition to these 68 functions in the Cryptoki Version 2.01 API proper, Cryptoki can use
application-supplied callback functions to notify an application of certain events, and can also use
application-supplied functions to handle mutex objects for safe multi-threaded library access.

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function call
accomplishes either its entire goal, or nothing at all.

If a Cryptoki function executes successfully, it returns the value CKR_OK.

If a Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function call. If the
function call was supposed to modify the contents of certain memory addresses on the host
computer, these memory addresses may have been modified, despite the failure of the
function.

In unusual (and extremely unpleasant!) circumstances, a function can fail with the return
value CKR_GENERAL_ERROR. When this happens, the token and/or host computer may
be in an inconsistent state, and the goals of the function may have been partially achieved.

Copyright © 1994-7 RSA Laboratories

Page 87

There are a small number of Cryptoki functions whose return values do not behave precisely as
described above; these exceptions are documented individually with the description of the
functions themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even an
unsupported function must have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s
CK_FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to this stub
function (see Section 0).

10.1. Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section 0, we
enumerate the various possible return values for Cryptoki functions; most of the remainder of
Section 0 details the behavior of Cryptoki functions, including what values each of them may
return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions” return values.
We have attempted to specify the behavior of Cryptoki functions as completely as was feasible;
nevertheless, there are presumably some gaps. For example, it is possible that a particular error
code which might apply to a particular Cryptoki function is unfortunately not actually listed in
the description of that function as a possible error code. It is conceivable that the developer of a
Cryptoki library might nevertheless permit his/her implementation of that function to return that
error code. It would clearly be somewhat ungraceful if a Cryptoki application using that library
were to terminate by abruptly dumping core upon receiving that error code for that function. It
would be far preferable for the application to examine the function’s return value, see that it
indicates some sort of error (even if the application doesn’t know precisely what kind of error),
and behave accordingly.

See Section 0 for some specific details on how a developer might attempt to make an application
that accommodates a range of behaviors from Cryptoki libraries.

10.1.1. Universal Cryptoki function return values
Any Cryptoki function can return any of the following values:

¢ CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst
case, it is possible that the function only partially succeeded, and that the computer and/or
token is in an inconsistent state.

e CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient
memory to perform the requested function.

e CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed
information about why not is not available in this error return. If the failed function uses a
session, it is possible that the CK_SESSION_INFO structure that can be obtained by calling
C_GetSessionInfo will hold useful information about what happened in its ulDeviceError
field. In any event, although the function call failed, the situation is not necessarily totally
hopeless, as it is likely to be when CKR_GENERAL_ERROR is returned. Depending on what

Copyright © 1994-7 RSA Laboratories

Page 88 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

the root cause of the error actually was, it is possible that an attempt to make the exact same
function call again would succeed.

e CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a “universal”
return value; in particular, the legacy functions C_GetFunctionStatus and C_CancelFunction
(see Section 0) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then
CKR_GENERAL_ERROR should be returned.

10.1.2. Cryptoki function return values for functions that use a session handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki
function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, C_GetTokenlInfo, C_WaitForSlotEvent, C_GetMechanismlList,
C_GetMechanismInfo, C_InitToken, C_OpenSession, and C_CloseAllSessions) can return the
following values:

e CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that
the function was invoked. Note that this can happen if the session’s token is removed before the
function invocation, since removing a token closes all sessions with it.

e CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the
function.

e CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note
that, as stated in Section 0, the behavior of Cryptoki is undefined if multiple threads of an
application attempt to access a common Cryptoki session simultaneously. Therefore, there is
actually no guarantee that a function invocation could ever return the value
CKR_SESSION_CLOSED —if one thread is using a session when another thread closes that
session, that is an instance of multiple threads accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate
error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a

distinction between a token being removed before a function invocation and a token being
removed during a function execution.

10.1.3. Cryptoki function return values for functions that use a token
Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList, C_GetSlotInfo, or

C_WaitForSlotEvent) can return any of the following values:

e CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the
requested function.

Copyright © 1994-7 RSA Laboratories

Page 89

e CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error
code can be returned by more than just the functions mentioned above; in particular, it is
possible for C_GetSlotInfo to return CKR_DEVICE_ERROR.

e CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the
function was invoked.

e CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the
function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then
CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token being
removed during a function execution.

10.1.4. Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function. It is:

e CKR_CANCEL: When a function executing in serial with an application decides to give the
application a chance to do some work, it calls an application-supplied function with a
CKN_SURRENDER callback (see Section 0). If the callback returns the value CKR_CANCEL,
then the function aborts and returns CKR_FUNCTION_CANCELED.

10.1.5. Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual Cryptoki
functions. These values may be returned by application-supplied mutex-handling functions, and
they may safely be ignored by application developers who are not using their own threading
model. They are:

e CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions who are
passed a bad mutex object as an argument. Unfortunately, it is possible for such a function
not to recognize a bad mutex object. There is therefore no guarantee that such a function will
successfully detect bad mutex objects and return this value.

e CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was not
locked.

10.1.6. All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the
descriptions of particular error codes, there are in general no particular priorities among the

Copyright © 1994-7 RSA Laboratories

Page 90 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

errors listed below, i.e., if more than one error code might apply to an execution of a function,
then the function may return any applicable error code.

CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the
arguments supplied to the Cryptoki function were in some way not appropriate.

CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which
may not be set by the application, or which may not be modified by the application. See
Section 0 for more information.

CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of
an object which cannot be satisfied because the object is either sensitive or unextractable.

CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template.
See Section 0 for more information.

CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a particular
attribute in a template. See Section 0 for more information.

CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the supplied
buffer.

CKR_CANT_LOCK: This value can only be returned by C_Initialize. It means that the type
of locking requested by the application for thread-safety is not available in this library, and so
the application cannot make use of this library in the specified fashion.

CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has already been initialized (by a previous
call to C_Initialize which did not have a matching C_Finalize call).

CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function other than
C_Initialize and C_GetFunctionList. It indicates that the function cannot be executed
because the Cryptoki library has not yet been initialized by a call to C_Initialize.

CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. At
present, this error only applies to the CKM_RSA_X_509 mechanism; it is returned when
plaintext is supplied that has the same number of bytes as the RSA modulus and is
numerically at least as large as the modulus. This return value has lower priority than
CKR_DATA_LEN_RANGE.

CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad
length. Depending on the operation’s mechanism, this could mean that the plaintext data is
too short, too long, or is not a multiple of some particular blocksize. This return value has
higher priority than CKR_DATA_INVALID.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has
been determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption operation
has been determined to be invalid ciphertext solely on the basis of its length. Depending on
the operation’s mechanism, this could mean that the ciphertext is too short, too long, or is not

Copyright © 1994-7 RSA Laboratories

Page 91

a multiple of some particular blocksize. This return value has higher priority than
CKR_ENCRYPTED_DATA_INVALID.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This happens
to a cryptographic function if the function makes a CKN_SURRENDER application callback
which returns CKR_CANCEL (see CKR_CANCEL).

CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in
the specified session. This is a legacy error code which is only returned by the legacy
functions C_GetFunctionStatus and C_CancelFunction.

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this
Cryptoki library. Even unsupported functions in the Cryptoki API should have a “stub” in
the library; this stub should simply return the value CKR_FUNCTION_NOT_SUPPORTED.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained
because the token considers it sensitive, and is not able or willing to reveal it.

CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It indicates
that one of the keys specified is not the same key that was being used in the original saved
session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a
cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to
use a key for performing encryption, that key must have its CKA_ENCRYPT attribute set to
TRUE (the fact that the key must have a CKA_ENCRYPT attribute implies that the key
cannot be a private key). This return value has lower priority than
CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case
that the specified handle is a valid handle for an object which is not a key. We reiterate here
that 0 is never a valid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey. It
indicates that the value of the specified key cannot be digested for some reason (perhaps the
key isn’t a secret key, or perhaps the token simply can’t digest this kind of key).

CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It indicates that
the session state cannot be restored because C_SetOperationState needs to be supplied with
one or more keys that were being used in the original saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For
example, an attempt was made to restore a session that had been performing a message
digesting operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have
its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the token) is unable to wrap
the key as requested (possibly the token can only wrap a given key with certain types of keys,
and the wrapping key specified is not one of these types). Compare with
CKR_KEY_UNEXTRACTABLE.

Copyright © 1994-7 RSA Laboratories

Page 92 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

e CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it because
the supplied key’s size is outside the range of key sizes that it can handle.

e CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use
with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

e CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because
its CKA_UNEXTRACTABLE attribute is set to TRUE. Compare with
CKR_KEY_NOT_WRAPPABLE.

e CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic
operation. This error code is an appropriate return value if an unknown mechanism was
specified or if the mechanism specified cannot be used in the selected token with the selected
function.

e CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are supported
by a given mechanism can vary from token to token.

e CKR_NEED_TO_CREATE_THREADS: This value can only be returned by C_Initialize. Itis
returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library that
application threads executing calls to the library cannot use native operating system
methods to spawn new threads.

2. The library cannot function properly without being able to spawn new threads in the
above fashion.

e CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is returned when
C_GetSlotEvent is called in non-blocking mode and there are no new slot events to return.

e CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate
here that 0 is never a valid object handle.

e CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the specified operation. For example,
an active object-searching operation would prevent Cryptoki from activating an encryption
operation with C_EncryptInit. Or, an active digesting operation and an active encryption
operation would prevent Cryptoki from activating a signature operation. Or, on a token
which doesn’t support simultaneous dual cryptographic operations in a session (see the
description of the CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

e CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an appropriate type

in the specified session. For example, an application cannot call C_Encrypt in a session
without having called C_EncryptInit first to activate an encryption operation.

Copyright © 1994-7 RSA Laboratories

Page 93

CKR_PIN_EXPIRED: The specified PIN has expired, and cannot be used to authenticate the
user to the token. Whether or not the normal user’s PIN on a token ever expires varies from
token to token.

CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN stored on
the token. More generally-- when authentication to the token involves something other than
a PIN-- the attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only
applies to functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only
applies to functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is, because
some particular number of failed authentication attempts has been reached, the token is
unwilling to permit further attempts at authentication. Depending on the token, the specified
PIN may or may not remain locked indefinitely.

CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number

generator. This return value has higher priority than
CKR_RANDOM_SEED_NOT_SUPPORTED.

CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not accept
seeding from an application. This return value has lower priority than
CKR_RANDOM_NO_RNG.

CKR_SAVED_STATE_INVALID: This value can only be returned by C_SetOperationState.
It indicates that the supplied saved cryptographic operations state is invalid, and so it cannot
be restored to the specified session.

CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It indicates
that the attempt to open a session failed, either because the token has too many sessions
already open, or because the token has too many read/write sessions already open.

CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It indicates that a
session with the token is already open, and so the token cannot be initialized.

CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not support
parallel sessions. This is a legacy error code—in Cryptoki Version 2.01, no token supports
parallel sessions. CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is called in a particular
[deprecated] way.

CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired
action because it is a read-only session. This return value has lower priority than

CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO
cannot be logged in.

Copyright © 1994-7 RSA Laboratories

Page 94 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

e CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a
read-only session cannot be opened.

e CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

e CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value
has lower priority than CKR_SIGNATURE_LEN_RANGE.

e CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

e CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session
cannot be saved for some reason (possibly the token is simply unable to save the current
state). This return value has lower priority than CKR_OPERATION_NOT_INITIALIZED.

e CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 0 for more information.

e CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has
conflicting attributes. See Section 0 for more information.

e CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the
token in the slot.

e CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because
the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

e CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the key handle specified to be used to unwrap another key is
not valid.

e CKR_UNWRAPPING_KEY_SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it because
the supplied key’s size is outside the range of key sizes that it can handle.

e CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by
C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is not
consistent with the mechanism specified for unwrapping.

e CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by C_Login. It
indicates that the specified user cannot be logged into the session, because it is already logged
into the session. For example, if an application has an open SO session, and it attempts to log
the SO into it, it will receive this error code.

e CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session, because
another user is already logged into the session. For example, if an application has an open SO
session, and it attempts to log the normal user into it, it will receive this error code.

Copyright © 1994-7 RSA Laboratories

Page 95

CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in. One example is that a session
cannot be logged out unless it is logged in. Another example is that a private object cannot be
created on a token unless the session attempting to create it is logged in as the normal user. A
final example is that cryptographic operations on certain tokens cannot be performed unless
the normal user is logged in.

CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by C_Login. It
indicates that the normal user’s PIN has not yet been initialized with C_InitPIN.

CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct users
simultaneously logged into the token than the token and/or library permits. For example, if
some application has an open SO session, and another application attempts to log the normal
user into a session, the attempt may return this error. It is not required to, however. Only if
the simultaneous distinct users cannot be supported does C_Login have to return this value.
Note that this error code generalizes to true multi-user tokens.

CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid
types are CKU_SO and CKU_USER.

CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey. It
indicates that the provided wrapped key is not valid. If a call is made to C_UnwrapKey to
unwrap a particular type of key (i.e., some particular key type is specified in the template
provided to C_UnwrapKey), and the wrapped key provided to C_UnwrapKey is
recognizably not a wrapped key of the proper type, then C_UnwrapKey should return
CKR_WRAPPED_KEY_INVALID. This return value has lower priority than
CKR_WRAPPED_KEY_LEN_RANGE.

CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by C_UnwrapKey. It
indicates that the provided wrapped key can be seen to be invalid solely on the basis of its
length. This return value has higher priority than CKR_WRAPPED_KEY_INVALID.

CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another key is not
valid.

CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by C_WrapKey. It
indicates that although the requested wrapping operation could in principle be carried out,
this Cryptoki library (or the token) is unable to actually do it because the supplied wrapping
key’s size is outside the range of key sizes that it can handle.

CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned by
C_WrapKey. It indicates that the type of the key specified to wrap another key is not
consistent with the mechanism specified for wrapping.

10.1.7. More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 0 (other than CKR_OK) take
precedence over error codes from Section 0, which take precedence over error codes from Section
0, which take precedence over error codes from Section 0. One minor implication of this is that
functions that use a session handle (i.e., most functions!) never return the error code

Copyright © 1994-7 RSA Laboratories

Page 96 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKR_TOKEN_NOT_PRESENT (they return CKR_SESSION_HANDLE_INVALID instead).
Other than these precedences, if more than one error code applies to the result of a Cryptoki call,
any of the applicable error codes may be returned. Exceptions to this rule will be explicitly
mentioned in the descriptions of functions.

10.1.8. Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers might
want to be aware of:

1. As mentioned in Sections 0 and 0, a Cryptoki library may not be able to make a distinction
between a token being removed before a function invocation and a token being removed
during a function invocation.

2. As mentioned in Section 0, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE can be
somewhat subtle. Unless an application needs to be able to distinguish between these return
values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between CKR_WRAPPED_KEY_INVALID
and CKR_WRAPPED_KEY_LEN_RANGE, can be subtle, and it may be best to treat these
return values equivalently.

5. Even with the guidance of Section 0, it can be difficult for a Cryptoki library developer to
know which of CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE, or
CKR_TEMPLATE_INCONSISTENT to return. When possible, it is recommended that
application developers be generous in their interpretations of these error codes.

10.2. Conventions for functions returning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic
mechanism. The amount of output returned by these functions is returned in a variable-length
application-supplied buffer. An example of a function of this sort is C_Encrypt, which takes
some plaintext as an argument, and outputs a buffer full of ciphertext.

These functions have some common calling conventions, which we describe here. Two of the
arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a location
which will hold the length of the output produced (say pulBufLen). There are two ways for an
application to call such a function:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a number of
bytes which would suffice to hold the cryptographic output produced from the input to the
function. This number may somewhat exceed the precise number of bytes needed, but
should not exceed it by a large amount. CKR_OK is returned by the function.

2. If pBufis not NULL_PTR, then *pulBufLen must contain the size in bytes of the buffer pointed
to by pBuf. If that buffer is large enough to hold the cryptographic output produced from the

Copyright © 1994-7 RSA Laboratories

Page 97

input to the function, then that cryptographic output is placed there, and CKR_OK is
returned by the function. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL
is returned. In either case, *pulBufLen is set to hold the exact number of bytes needed to hold
the cryptographic output produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always return as
much output as can be computed from what has been passed in to them thus far. As an example,
consider a session which is performing a multiple-part decryption operation with DES in cipher-
block chaining mode with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed
to the C_DecryptUpdate function. The blocksize of DES is 8 bytes, but the PKCS padding makes
it unclear at this stage whether the ciphertext was produced from encrypting a 0-byte string, or
from encrypting some string of length at least 8 bytes. Hence the call to C_DecryptUpdate
should return O bytes of plaintext. If a single additional byte of ciphertext is supplied by a
subsequent call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full
DES block).

10.3. Disclaimer concerning sample code

For the remainder of Section 0, we enumerate the various functions defined in Cryptoki. Most
functions will be shown in use in at least one sample code snippet. For the sake of brevity,
sample code will frequently be somewhat incomplete. In particular, sample code will generally
ignore possible error returns from C library functions, and also will not deal with Cryptoki error
returns in a realistic fashion.

10.4. General-purpose functions

Cryptoki provides the following general-purpose functions:

¢ C Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Initialize)(
CK_ VO D PTR plnitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR or points
to a CK_C_INITIALIZE_ARGS structure containing information on how the library should deal
with multi-threaded access. If an application will not be accessing Cryptoki through multiple
threads simultaneously, it can generally supply the value NULL_PTR to C_Initialize (the
consequences of supplying this value will be explained below).

If pInitArgs is non-NULL_PTR, C_Initialize should cast it to a CK_C_INITIALIZE_ARGS_PTR
and then dereference the resulting pointer to obtain the CK_C_INITIALIZE_ARGS fields
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, flags, and pReserved. For this version of
Cryptoki, the value of pReserved thereby obtained must be NULL_PTR; if it’s not, then
C_Initialize should return with the value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set, that indicates
that application threads which are executing calls to the Cryptoki library are not permitted to use

Copyright © 1994-7 RSA Laboratories

Page 98 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

the native operation system calls to spawn off new threads. In other words, the library’s code
may not create its own threads. If the library is unable to function properly under this restriction,
C_Initialize should return with the value CKR_NEED_TO_CREATE_THREADS.

A call to C_Initialize specifies one of four different ways to support multi-threaded access via the
value of the CKF_OS_LOCKING_OK flag in the flags field and the values of the CreateMutex,
DestroyMutex, LockMutex, and UnlockMutex function pointer fields:

1. If the flag isn't set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application won’t be accessing the Cryptoki library from
multiple threads simultaneously.

2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the value
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki
access, and the library needs to use the native operating system primitives to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return with the
value CKR_CANT_LOCK.

3. If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the supplied function pointers for mutex-
handling to ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_CANT_LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use either the native operating system primitives or
the supplied function pointers for mutex-handling to ensure safe multi-threaded access. If
the library is unable to do this, C_Initialize should return with the value CKR_CANT_LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-NULL_PTR, then
C_Initialize should return with the value CKR_ARGUMENTS_BAD.

A call to C_Initialize with pInitArgs set to NULL_PTR is treated like a call to C_Initialize with
plnitArgs pointing to a CK_C_INITIALIZE_ARGS which has the CreateMutex, DestroyMutex,
LockMutex, UnlockMutex, and pReserved fields set to NULL_PTR, and has the flags field set to 0.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent; typically, it
might cause Cryptoki to initialize its internal memory buffers, or any other resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call to
C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See Section 0 for
more details.

Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NEED_TO_CREATE_THREADS,
CKR_OK.

Example: see C_GetInfo.

Copyright © 1994-7 RSA Laboratories

Page 99

¢ C _Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C Finalize)(
CK VO D PTR pReserved
);

C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should
be the last Cryptoki call made by an application. The pReserved parameter is reserved for future
versions; for this version, it should be set to NULL_PTR (if C_Finalize is called with a non-
NULL_PTR value for pReserved, it should return the value CKR_ARGUMENTS_BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each application’s
call to C_Finalize should be preceded by a single call to C_Initialize; in between the two calls, an
application can make calls to other Cryptoki functions. See Section 0 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe multi-threaded
access to a Cryptoki library, the behavior of C_Finalize is nevertheless undefined if it is called by an
application while other threads of the application are making Cryptoki calls. The exception to this
exceptional behavior of C_Finalize occurs when a thread calls C_Finalize while another of the
application’s threads is blocking on Cryptoki’s C_WaitForSlotEvent function. When this happens, the
blocked thread becomes unblocked and returns the value CKR_CRYPTOKI NOT _INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example: see C_GetInfo.

¢ C_GetInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get I nf 0) (
CK_I NFO_PTR pl nf o

)E

C_GetInfo returns general information about Cryptoki. plnfo points to the location that receives
the information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_INFO i nfo;
CK RV rv;
CK_C INITI ALI ZE_ARGS | ni t Ar gs;

InitArgs. CreateMutex = &WCreat eMut ex;

I nitArgs. DestroyMitex = &WDest royMit ex;
InitArgs. LockMitex = &WLockMit ex;

I nitArgs. Unl ockMut ex = &WUnl ockMut ex;
InitArgs.flags = CKF_OS _LOCKI NG _CK;

I nitArgs. pReserved = NULL_PTR;

rv = Clnitialize((CK VO D PTR) &l nitArgs);
assert(rv == CKR XK);

Copyright © 1994-7 RSA Laboratories

Page 100 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

rv = C Getlnfo(& nfo);
assert(rv == CKR_ (X);
i f(info.version.mgjor == 2) {
/* Do lots of interesting cryptographic things with the token */

}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_ (X);

¢ C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

);

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’s
CK_FUNCTION_LIST structure, which in turn contains function pointers for all the Cryptoki
API routines in the library. The pointer thus obtained may point into memory which is owned by the
Cryptoki library, and which may or may not be writable. Whether or not this is the case, no attempt
should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before calling
C_Initialize. It is provided to make it easier and faster for applications to use shared Cryptoki
libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK.

Example:

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st ;
CK Clnitialize pClnitialize;
CK_RV ryv;

/* 1t’s OKto call C GetFunctionList before calling Clnitialize */
rv = C _Get FunctionLi st (&pFunctionList);

assert(rv == CKR_ (X);

pC Initialize = pFunctionList -> Clnitialize;

/* Call the Clnitialize function in the library */

rv = (*pC.lnitialize)(NULL_PTR);

10.5. Slot and token management functions

Cryptoki provides the following functions for slot and token management:

Copyright © 1994-7 RSA Laboratories

Page 101

¢ C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sl ot Li st) (
CK _BBOOL tokenPresent,
CK _SLOT_I D PTR pSl ot Li st
CK_ULONG_PTR pul Count

);

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list
obtained includes only those slots with a token present (TRUE), or all slots (FALSE); pulCount
points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the
number of slots, without actually returning a list of slots. The contents of the buffer pointed
to by pulCount on entry to C_GetSlotList has no meaning in this case, and the call returns the
value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount must contain the size (in terms of CK_SLOT_ID
elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of
slots, then the list is returned in it, and CKR_OK is returned. If not, then the call to
C_GetSlotList returns the value CKR_BUFFER_TOO SMALL. In either case, the value
*pulCount is set to hold the number of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often call
C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all
slots with a token present, then the number of such slots can (unfortunately) change between
when the application asks for how many such slots there are and when the application asks for
the slots themselves). However, multiple calls to C_GetSlotList are by no means required.

All slots which C_GetSlotList reports must be able to be queried as valid slots by C_GetSlotInfo.
Furthermore, the set of slots accessible through a Cryptoki library is fixed at the time that
C_Initialize is called. If an application calls C_Initialize and C_GetSlotList, and then the user
hooks up a new hardware device, that device cannot suddenly appear as a new slot if
C_GetSlotList is called again. To recognize the new device, C_Initialize needs to be called again
(and to be able to call C_Initialize successfully, C_Finalize needs to be called first). Even if
C_Initialize is successfully called, it may or may not be the case that the new device will then be
successfully recognized. On some platforms, it may be necessary to restart the entire system.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK.

Example:

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK SLOT_I D PTR pSlotList, pSlotWthTokenLi st;
CK_RV ryv;

/* Get list of all slots */
rv = C_GetSlotList(FALSE, NULL_PTR, &ul Sl ot Count);
if (rv == CKR_.K) {
pSl otList =
(CK_SLOT_I D PTR) mal |l oc(ul Sl ot Count *si zeof (CK_SLOT_ID));
rv = C GetSlotlList(FALSE, pSlotList, &ulSlotCount);
if (rv == CKR_.K) {

Copyright © 1994-7 RSA Laboratories

Page 102 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

/* Now use that list of all slots */

}
free(pSlotlList);

/* Get list of all slots ith a token present */
pSl ot Wt hTokenLi st (CK_ LOT I D PTR) nalloc(0);
ul Sl ot Wt hTokenOount = 0;
while (1) {
rv = C GetSlotlList(
TRUE, pSlotWthTokenList, ul Sl otWthTokenCount);
if (rv = CKR_BUFFER_TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == CKR_CK) {
/* Now use that list of all slots with a token present */

}
free(pSl ot Wt hTokenLi st);

¢ C_GetSlotInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot nfo)(
CKSLOT I D slotlD,
CK SLOT I NFO PTR plnfo

);

C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the
slot; pInfo points to the location that receives the slot information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID.

Example: see C_GetTokenlInfo.

¢ C_GetTokenInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Tokenl nf o) (
CK _SLOT_ID slotlD,
CK_TOKEN_I NFO_PTR pl nfo

)s

C_GetTokenlInfo obtains information about a particular token in the system. slotID is the ID of
the token’s slot; pInfo points to the location that receives the token information.

Copyright © 1994-7 RSA Laboratories

Page 103

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:

CK_ULONG ul Count ;

CK _ SLOT_I D PTR pSl ot Li st ;
CK_SLOT_I NFO sl ot I nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_RV ryv;

rv = C_GetSlotList(FALSE, NULL_PTR, &ul Count);

if ((rv == CKR_.OK) && (ul Count > 0)) {
pSlotList = (CK_ SLOT_ID PTR) nmal |l oc(ul Count *si zeof (CK_SLOT_ID));
rv = C GetSlotlList(FALSE, pSlotList, &ul Count);
assert(rv == CKR_ X);

/* Get slot information for first slot */
rv = C GetSlotlInfo(pSlotList[0], &slotlnfo);
assert(rv == CKR XK);

/* Get token information for first slot */

rv = C _Get Tokenlnfo(pSlotList[0], &t okenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) {

free(pSl ot List);

¢ C WaitForSlotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wi t For Sl ot Event) (
CK_FLAGS fl ags,
CK_SLOT_I D _PTR pSl ot,
CK VO D PTR pReserved

);

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to occur.
flags determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits for a slot event to
occur); pSlot points to a location which will receive the ID of the slot that the event occurred in.
pReserved is reserved for future versions; for this version of Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

#defi ne CKF_DONT_BLOCK 1
Internally, each Cryptoki application has a flag for each slot which is used to track whether or not
any unrecognized events involving that slot have occurred. When an application initially calls

C_Initialize, every slot's event flag is cleared. Whenever a slot event occurs, the flag
corresponding to the slot in which the event occurred is set.

Copyright © 1994-7 RSA Laboratories

Page 104 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and
some slot’s event flag is set, then that event flag is cleared, and the call returns with the ID of that
slot in the location pointed to by pSlot. If more than one slot’s event flag is set at the time of the
call, one such slot is chosen by the library to have its event flag cleared and to have its slot ID
returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags argument, and
no slot’s event flag is set, then the call returns with the value CKR_NO_EVENT. In this case, the
contents of the location pointed to by pSlot when C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags argument,
then the call behaves as above, except that it will block. That is, if no slot’s event flag is set at the
time of the call, C_WaitForSlotEvent will wait until some slot’'s event flag becomes set. If a
thread of an application has a C_WaitForSlotEvent call blocking when another thread of that
application calls C_Finalize, the C_WaitForSlotEvent call returns with the value
CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-threaded access to a
Cryptoki library, C_WaitForSlotEvent is exceptional in that the behavior of Cryptoki is undefined if
multiple threads of a single application make simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_NO_EVENT, CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_ID slotl D
CK_SLOT_I NFO sl ot | nf o;

)* Bl ock and wait for a slot event */
rv = C WaitForSlotEvent(flags, &slotlD, NULL_PTR);
assert(rv == CKR_ X);

/* See what’'s up with that slot */

rv = C CGetSlotlnfo(slotlD, &slotlnfo);
assert(rv == CKR_X);

¢ C_GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani snli st) (
CK_SLOT_I D slotlD,
CK_MECHANI SM TYPE_PTR pMechani snii st,
CK_ULONG_PTR pul Count

)

C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is
the ID of the token’s slot; pulCount points to the location that receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

Copyright © 1994-7 RSA Laboratories

Page 105

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in
*pulCount) the number of mechanisms, without actually returning a list of mechanisms. The
contents of *pulCount on entry to C_GetMechanismList has no meaning in this case, and the
call returns the value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. 1f that
buffer is large enough to hold the list of mechanisms, then the list is returned in it, and
CKR_OK is returned. If not, then the call to C_GetMechanismList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number of
mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application will often
call C_GetMechanismList twice. However, this behavior is by no means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:

CK SLOT_ID slotlD

CK_ULONG ul Count ;

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK_RV ryv;

rv = C _Get Mechani sniist(slotl D, NULL_PTR, &ul Count);
if ((rv == CKR_.OK) && (ul Count > 0)) {
pMechani smlLi st =
(CK_MECHANI SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C _Get Mechani snlist(slotlD, pMechanisnlist, &ul Count);
if (rv == CKR_CK) {

}
free(pMechani snlist);

¢ C_GetMechanismInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani sml nf o) (
CK SLOT_ID slotlD,
CK_MECHANI SM TYPE type,
CK_MECHANI SM_| NFO_PTR pl nfo

);

C_GetMechanismInfo obtains information about a particular mechanism possibly supported by
a token. slotID is the ID of the token’s slot; type is the type of mechanism; plnfo points to the
location that receives the mechanism information.

Copyright © 1994-7 RSA Laboratories

Page 106 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:

CK SLOT_ID slotlD
CK_MECHANI SM | NFO i nf o;
CK_RV ryv;

/* Get information about the CKM MD2 nechanismfor this token */
rv = C _Get Mechani sm nfo(slotlD, CKM M2, & nfo);
if (rv == CKR_CK)

if (info.flags & CKF_DI GEST) {

¢ C InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_I ni t Token) (
CK SLOT_ID slotlD,
CK_CHAR_PTR pPi n,
CK_ULONG ul Pi nLen,
CK_CHAR PTR pLabel
);

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial
PIN (which need not be null-terminated); ulPinLen is the length in bytes of the PIN; pLabel points
to the 32-byte label of the token (which must be padded with blank characters, and which must
not be null-terminated).

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for
“indestructible” objects such as keys built into the token). Also, access by the normal user is
disabled until the SO sets the normal user’s PIN. Depending on the token, some “default” objects
may be created, and attributes of some objects may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To initialize a token with such a
protected authentication path, the pPin parameter to C_InitToken should be NULL_PTR. During
the execution of C_InitToken, the SO’s PIN will be entered through the protected authentication
path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitToken can be used to initialize the token.

Copyright © 1994-7 RSA Laboratories

Page 107

A token cannot be initialized if Cryptoki detects that any application has an open session with it;
when a call to C_InitToken is made under such circumstances, the call fails with error
CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is called that some
other application does have an open session with the token, but Cryptoki cannot detect this,
because it cannot detect anything about other applications using the token. If this is the case, then
the consequences of the C_InitToken call are undefined.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED.

Example:

CK SLOT_ID slotlD;

CK_CHAR PTR pin = “MyPIN’;
CK_CHAR | abel [32];

CK_RV ryv;

. 1

nenset (| abel , , Sizeof(label));

mencpy(label, “My first token”, strlen(“My first token”));
rv = CInitToken(slotID, pin, strlen(pin), |abel);

if (rv == CKR_K) {

¢ C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C_InitPIN)(
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the
normal user’s PIN; ulPinLen is the length in bytes of the PIN.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a
session in any other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To initialize the normal user’s PIN on a
token with such a protected authentication path, the pPin parameter to C_InitPIN should be
NULL_PTR. During the execution of C_InitPIN, the SO will enter the new PIN through the
protected authentication path.

Copyright © 1994-7 RSA Laboratories

Page 108 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitPIN can be used to initialize the normal user’s token access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR newPi n[]= {“NewPlI N'};
CK_RV ryv;

rv = C InitPIN(hSession, newPin, sizeof(newPin));
if (rv == CKR_CK) {

¢ C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C_SetPIN) (
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pd dPi n,

CK_ULONG ul A dLen,

CK_CHAR_PTR pNewPi n,

CK_ULONG ul NewLen

);

C_SetPIN modifies the PIN of the user that is currently logged in. hSession is the session’s
handle; pOIldPin points to the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin
points to the new PIN; ulNewLen is the length in bytes of the new PIN.

C_SetPIN can only be called in the “R/W SO Functions” state or “R/W User Functions” state.
An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To modify the current user’s PIN on a
token with such a protected authentication path, the pOldPin and pNewPin parameters to
C_SetPIN should be NULL_PTR. During the execution of C_SetPIN, the current user will enter
the old PIN and the new PIN through the protected authentication path. It is not specified how
the PINpad should be used to enter two PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_SetPIN can be used to modify the current user’s PIN.

Copyright © 1994-7 RSA Laboratories

Page 109

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INCORRECT,
CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR ol dPi n[] {“AdPIN};
CK_CHAR newPi n[] {“NewPI N'};
CK_RV ryv;

rv = C_Set Pl N
hSessi on, ol dPin, sizeof (oldPin), newPin, sizeof(newPin));
if (rv == CKR_CK) {

10.6. Session management functions

A typical application might perform the following series of steps to make use of a token (note that
there are other reasonable sequences of events that an application might perform):

1. Select a token.
2. Make one or more calls to C_OpenSession to obtain one or more sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application has with a token
have a shared login state, C_Login only needs to be called for one of the sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or call
C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one token. It
is also possible for a token to have concurrent sessions with more than one application.

Cryptoki provides the following functions for session management:

Copyright © 1994-7 RSA Laboratories

Page 110 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_OpenSessi on) (
CK SLOT_ID slotlD,
CK_FLAGS fl ags,
CK VO D_PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON_ HANDLE PTR phSessi on

);

C_OpenSession opens a session between an application and a token in a particular slot. slotID is
the slot’s ID; flags indicates the type of session; pApplication is an application-defined pointer to be
passed to the notification callback; Notify is the address of the notification callback function (see
Section 0); phSession points to the location that receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical OR of
zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy reasons, the
CKF_SERIAL_SESSION bit must always be set; if a call to C_OpenSession does not have this
bit set, the call should return unsuccessfully with the error code
CKR_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessions an application may have with the
token, which may depend on whether the session is “read-only” or “read/write”. An attempt to
open a session which does not succeed because there are too many existing sessions of some type
should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-
only sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the token,
then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 0).

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify
parameter. See Section 0 for more information about application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_COUNT,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_CloseSession.

¢ C_CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseSessi on) (
CK_SESSI ON_HANDLE hSessi on

)s

C_CloseSession closes a session between an application and a token. hSession is the session’s
handle.

Copyright © 1994-7 RSA Laboratories

Page 111

When a session is closed, all session objects created by the session are destroyed automatically,
even if the application has other sessions “using” the objects (see Sections 0-0 for more details).

Depending on the token, when the last open session any application has with the token is closed,
the token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It actually indicates the (probably somewhat
unlikely) event that while this function call was executing, another call was made to
C_CloseSession to close this particular session, and that call finished executing first. Such uses of
sessions are a bad idea, and Cryptoki makes little promise of what will occur in general if an
application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK SLOT_ID slotlD

CK_BYTE application;
CK_NOTI FY MyNot i fy;
CK_SESSI ON_HANDLE hSessi on;
CK_RV ryv;

application = 17;

MyNoti fy = &Encrypti onSessi onCal | back;

rv = C _OpenSessi on(
slotl D, CKF_RWSESSION (CK VO D PTR) &application, MyNotify,
&hSessi on) ;

if (rv == CKR_CK) {

C_CI oseSessi on(hSessi on) ;

}

¢ C _CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseAl |l Sessions) (
CK SLOT_ID slotID

);

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the
token’s slot.

When a session is closed, all session objects created by the session are destroyed automatically.

Depending on the token, when the last open session any application has with the token is closed,
the token may be “ejected” from its reader (if this capability exists).

Copyright © 1994-7 RSA Laboratories

Page 112 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT.

Example:

CK SLOT_ID slotlD
CK_RV ryv;

'rv = C C oseAl | Sessions(slotID);

¢ C_GetSessionInfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Sessi onl nf o) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_| NFO_PTR plnfo

);

C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pInfo
points to the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK_RV ryv;

'rv = C_Get Sessi onl nfo(hSession, & nfo);
if (rv == CKR_.K) {
if (info.state == CKS_RW USER FUNCTI ONS) {

Copyright © 1994-7 RSA Laboratories

Page 113

¢ C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C GetOperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQperati onSt at e,
CK_ULONG_PTR pul Oper ati onSt at eLen

);

C_GetOperationState obtains a copy of the cryptographic operations state of a session, encoded
as a string of bytes. hSession is the session’s handle; pOperationState points to the location that
receives the state; pulOperationStateLen points to the location that receives the length in bytes of
the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention described in
Section 0 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from token to
token; however, this state is what is provided as input to C_SetOperationState to restore the
cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the session
is using the CKM_SHA_1 mechanism). Suppose that the message digest operation was
initialized properly, and that precisely 80 bytes of data have been supplied so far as input to
SHA-1. The application now wants to “save the state” of this digest operation, so that it can
continue it later. In this particular case, since SHA-1 processes 512 bits (64 bytes) of input at a
time, the cryptographic operations state of the session most likely consists of three distinct parts:
the state of SHA-1’s 160-bit internal chaining variable; the 16 bytes of unprocessed input data;
and some administrative data indicating that this saved state comes from a session which was
performing SHA-1 hashing. Taken together, these three pieces of information suffice to continue
the current hashing operation at a later time.

Consider next a session which is performing an encryption operation with DES (a block cipher
with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the
CKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in addition to an IV for
the CBC mode) have been supplied so far as input to DES, which means that the first two 8-byte
blocks of ciphertext have already been produced and output. In this case, the cryptographic
operations state of the session most likely consists of three or four distinct parts: the second 8-byte
block of ciphertext (this will be used for cipher-block chaining to produce the next block of
ciphertext); the 6 bytes of data still awaiting encryption; some administrative data indicating that
this saved state comes from a session which was performing DES encryption in CBC mode; and
possibly the DES key being used for encryption (see C_SetOperationState for more information
on whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section 0), then the
cryptographic operations state of the session will contain all the necessary information to restore
both operations.

An attempt to save the cryptographic operations state of a session which does not currently have
some active saveable cryptographic operation(s) (encryption, decryption, digesting, signing
without message recovery, verification without message recovery, or some legal combination of
two of these) should fail with the error CKR_OPERATION_NOT_INITIALIZED.

Copyright © 1994-7 RSA Laboratories

Page 114 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of various
reasons (certain necessary state information and/or key information can’t leave the token, for
example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE.

Example: see C_SetOperationState.

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C SetOperationState)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQper ationStat e,
CK_ULONG ul Operati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cat i onKey

);

C_SetOperationState restores the cryptographic operations state of a session from a string of
bytes obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points
to the location holding the saved state; ulOperationStateLen holds the length of the saved state;
hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or
decryption operation in the restored session (or 0 if no encryption or decryption key is needed,
either because no such operation is ongoing in the stored session or because all the necessary key
information is present in the saved state); hAuthenticationKey holds a handle to the key which will
be used for an ongoing signature, MACing, or verification operation in the restored session (or 0
if no such key is needed, either because no such operation is ongoing in the stored session or
because all the necessary key information is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it is being
restored to (the “destination session”). However, the source session and destination session
should have a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a
common token. There is also no guarantee that cryptographic operations state may be carried
across logins, or across different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state which it
can determine is not valid saved state (or is cryptographic operations state from a session with a
different session state, or is cryptographic operations state from a different token), it fails with the
error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain information
about keys in use for ongoing cryptographic operations. If a saved cryptographic operations state
has an ongoing encryption or decryption operation, and the key in use for the operation is not
saved in the state, then it must be supplied to C_SetOperationState in the hEncryptionKey
argument. If it is not, then C_SetOperationState will fail and return the error
CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can be
supplied in the hEncryptionKey argument, but this is not required.

Copyright © 1994-7 RSA Laboratories

Page 115

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the state, then it must
be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is not, then
C_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key in use for the
operation is saved in the state, then it can be supplied in the hAuthenticationKey argument, but this
is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is
submitted in the hEncryptionKey argument, but the saved cryptographic operations state supplied
does not have an ongoing encryption or decryption operation, then C_SetOperationState fails
with the error CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can
somehow detect that this key was not the key being used in the source session for the supplied
cryptographic operations state (it may be able to detect this if the key or a hash of the key is
present in the saved state, for example), then C_SetOperationState fails with the error
CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the
CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles
to C_SetOperationState calls. If this flag is TRUE, then a call to C_SetOperationState never
needs a key handle to be supplied to it. If this flag is FALSE, then at least some of the time,
C_SetOperationState requires a key handle, and so the application should probably always pass
in any relevant key handles when restoring cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session even if
that session has active cryptographic or object search operations when C_SetOperationState is
called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_CHANGED, CKR_KEY_NEEDED,
CKR_KEY_NOT_NEEDED, CKR_OK, CKR_SAVED_STATE_INVALID,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at elLen;

CK _BYTE datal[] {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK_BYTE dat a3[] {0x10, OxOF, OxOE, O0x0D, 0x0C};
CK_BYTE pDi gest [20];

CK_ULONG ul Di gest Len;

CK_RV ryv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMechanism;
assert(rv == CKR K);

/* Start hashing */
rv = C _Di gest Updat e(hSessi on, datal, sizeof(datal));

Copyright © 1994-7 RSA Laboratories

Page 116 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

assert(rv == CKR XK);

/* Find out how big the state might be */
rv = C GetOperationState(hSession, NULL_PTR, &ul Statelen);
assert(rv == CKR_ (X);

/* Allocate sonme nenory and then get the state */
pState = (CK BYTE_PTR) nual |l oc(ul StatelLen);
rv = C GetOperationState(hSession, pState, &ul StatelLen);

/* Continue hashing */
rv = C _Di gest Updat e(hSessi on, data2, sizeof(data2));
assert(rv == CKR_(X);

/* Restore state. No key handl es needed */
rv = C SetOperationState(hSession, pState, ul StateLen, 0, 0);
assert(rv == CKR_ (X);

/* Continue hashing fromwhere we saved state */
rv = C _Di gest Updat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_ (X);

/* Concl ude hashi ng operation */
ul Di gestLen = si zeof (pDi gest);
rv = C _DigestFinal (hSession, pDigest, &ulDigestlLen);
if (rv == CKR_CK) {
/* pDigest[] now contains the hash of 0x01030507100FOEODOC */

¢ C_Login

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logi n) (
CK_SESSI ON_HANDLE hSessi on,
CK_USER_TYPE user Type,
CK_CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin
points to the user’s PIN; ulPinLen is the length of the PIN.

Depending on the user type, if the call succeeds, each of the application’s sessions will enter
either the “R/W SO Functions” state, the “R/W User Functions” state, or the “R/O User
Functions” state.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. Or the user might not even use a
PIN —authentication could be achieved by some fingerprint-reading device, for example. To log
into a token with a protected authentication path, the pPin parameter to C_Login should be
NULL_PTR. When C_Login returns, whatever authentication method supported by the token
will have been performed; a return value of CKR_OK means that the user was successfully

Copyright © 1994-7 RSA Laboratories

Page 117

authenticated, and a return value of CKR_PIN_INCORRECT means that the user was denied
access.

If there are any active cryptographic or object finding operations in an application’s session, and
then C_Login is successfully executed by that application, it may or may not be the case that
those operations are still active. Therefore, before logging in, any active operations should be
finished.

If the application calling C_Login has a R/O session open with the token, then it will be unable to
log the SO into a session (see Section 0). An attempt to do this will result in the error code
CKR_SESSION_READ_ONLY_EXISTS.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_EXPIRED,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS,
CKR_USER_ALREADY_LOGGED_IN, CKR_USER_ANOTHER_ALREADY_LOGGED_IN,
CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TOO_MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_Logout.

¢ C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_HANDLE hSessi on
);

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions will
enter either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private objects become
invalid (even if a user is later logged back into the token, those handles remain invalid). In
addition, all private session objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session, and
then C_Logout is successfully executed by that application, it may or may not be the case that
those operations are still active. Therefore, before logging out, any active operations should be
finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR userPIN[] = {“M/PIN'};
CK_RV ryv;

Copyright © 1994-7 RSA Laboratories

Page 118 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

rv = C Logi n(hSession, CKU USER, userPIN, sizeof(userPIN));
if (rv == CKR_CK) {

'rv == C_Logout (hSessi on);
if (rv == CKR.OK) {

10.7. Object management functions

Cryptoki provides the following functions for managing objects. Additional functions provided
specifically for managing key objects are described in Section 0.

¢ C_CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C CreateObject) (
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE _PTR phQbj ect
);

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the
object’s template; ulCount is the number of attributes in the template; phObject points to the
location that receives the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail and
return without creating any object.

If C_CreateObject is used to create a key object, the key object will have its CKA_LOCAL
attribute set to FALSE.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE

hDat a,

hCertificate,

hKey;

Copyright © 1994-7 RSA Laboratories

Page 119

CK_OBJECT_CLASS
dat aCl ass = CKO_DATA,
certificateC ass = CKO_CERTI FI CATE,
keyCl ass = CKO PUBLI C KEY;
CK_KEY_TYPE keyType = CKK RSA;
CK_CHAR applicati on[] {“My Application”};
CK_BYTE dat aVal ue[] = {. },
CK_BYTE subj ect [1 {.
CK_ BYTE id[] = {. }
CK _BYTE certifi cateVaI ue[] =1{...};
CK_BYTE nodul us[] = {...};
CK _BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &dataCl ass, sizeof (datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof(dataVal ue)}
1
CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass, sizeof(certificateC ass)},
{CKA TOKEN, &true, si zeof(true)},
{ CKA_SUBJECT, subj ect, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA VALUE, certificateVal ue, sizeof(certificateValue)}

1
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, si zeof (exponent)}
1
CK_RV rv;

)* Create a data object */
rv = C Create(bject(hSession, &dataTenplate, 4, &hData);
if (rv == CKR_.K) {

}

/* Create a certificate object */
rv = C Createject(

hSession, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_CK) {

}

/* Create an RSA public key object */
rv = C Createlhject(hSession, &eyTenplate, 5, &hKey);
if (rv == CKR_CK) {

Copyright © 1994-7 RSA Laboratories

Page 120 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyOhj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQnvj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phNewObj ect
);

C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to the template for the new object; ulCount
is the number of attributes in the template; phNewObject points to the location that receives the
handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may
be changed from TRUE to FALSE, but not the other way around. If this change is made, the new
key’s CKA_NEVER_EXTRACTABLE attribute will have the value FALSE. Similarly, the
template may specify that the new key’s CKA_SENSITIVE attribute be TRUE; the new key will
have the same value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may
also specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a
session object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

If a call to C_CopyObiject cannot support the precise template supplied to it, it will fail and return
without creating any object.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CKBYTE id[] ={...};
CK BYTE keyValue[] ={...};
CK BYTE fal se = FALSE;
CK_BYTE true = TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories

Page 121

{CKA TOKEN, &fal se, sizeof(false)},

{CKA_ID, id, sizeof(id)},

{CKA VALUE, keyVal ue, sizeof (keyVal ue)}
1
CK_ATTRI BUTE copyTenpl ate[] = {

{CKA TOKEN, &true, sizeof(true)}
1
CK_RV ryv;

/* Create a DES secret key session object */
rv = C Createlhject(hSession, &eyTenplate, 5, &hKey);
if (rv == CKR_.K) {
/* Create a copy which is a token object */
rv = C _Copynhj ect (hSessi on, hKey, ©Tenplate, 1, &hNewKey);

¢ C_DestroyObiject

CK_DEFI NE_FUNCTI ON(CK_RV, C DestroyObject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQnj ect

);

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s
handle.

Only session objects can be destroyed during a read-only session. Only public objects can be
destroyed unless the normal user is logged in.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID,
CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

¢ C_GetODbjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Obj ect Si ze) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQnvj ect,

CK_ULONG_PTR pul Si ze
);

C_GetODbijectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the
object’s handle; pulSize points to the location that receives the size in bytes of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it is some
measure of how much token memory the object takes up. If an application deletes (say) a private

Copyright © 1994-7 RSA Laboratories

Page 122 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

object of size S, it might be reasonable to assume that the ulFreePrivateMemory field of the token’s
CK_TOKEN_INFO structure increases by approximately S.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_INFORMATION_SENSITIVE,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hnvj ect ;

CK_OBJECT_CLASS dat aCll ass = CKO_DATA,

CK CHAR application[] = {“My Application”};

CK BYTE dataVvalue[] = {...};

CK BYTE value[] ={...};

CK_BYTE true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &dataCl ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, val ue, sizeof(value)}

}1
CK_ULONG ul Si ze;
CK_RV ryv;

rv = C Createlbject(hSession, &enplate, 4, &hbject);
if (rv == CKR_.K) {

rv = C Get Qbj ect Si ze(hSessi on, hQoject, &ulSize);

if (rv !I'= CKR_I NFORMATI ON_SENSI TI VE) {

}
rv = C DestroyObject(hSession, hQhject);

¢ C_GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Attri buteVal ue)(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hnvj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count
);

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which
attribute values are to be obtained, and receives the attribute values; ulCount is the number of
attributes in the template.

Copyright © 1994-7 RSA Laboratories

Page 123

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue performs the
following algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be
revealed because the object is sensitive or unextractable, then the ulValueLen field in that
triple is modified to hold the value -1 (i.e., when it is cast to a CK_LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not possess such
an attribute), then the ulValueLen field in that triple is modified to hold the value -1.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is modified
to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of the
specified attribute for the object, then that attribute is copied into the buffer located at pValue,
and the ulValueLen field is modified to hold the exact length of the attribute.

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call
should return the value CKR_ATTRIBUTE_TYPE INVALID. If case 5 applies to any of the
requested attributes, then the call should return the value CKR_BUFFER_TOO_SMALL. As
usual, if more than one of these error codes is applicable, Cryptoki may return any of them. Only
if none of them applies to any of the requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID,
and CKR_BUFFER_TOO_SMALL do not denote true errors for C_GetAttributeValue. If a call
to C_GetAttributeValue returns any of these three values, then the call must nonetheless have
processed every attribute in the template supplied to C_GetAttributeValue. Each attribute in the
template whose value can be returned by the call to C_GetAttributeValue will be returned by the
call to C_GetAttributeValue.

Return values: CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OBJECT_HANDLE_INVALID,
CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;

CK BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenplate[] = {

{ CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}
1
CK_RV ryv;

'rv = C GetAttributeVal ue(hSessi on, hChject, & enplate, 2);
if (rv == CKR_.K) {

Copyright © 1994-7 RSA Laboratories

Page 124 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

pModul us = (CK BYTE_PTR) mal | oc(tenpl ate[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = pMdul us;
/* tenplate[0].ul Val ueLen was set by C GetAttributeVal ue */

pExponent = (CK BYTE PTR) nal |l oc(tenpl ate[1]. ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenplate[1].ul Val ueLen was set by C GetAttributeVal ue */

rv = C GetAttributeVal ue(hSession, hCObject, &enplate, 2);
if (rv == CKR_CK) {

}
free(pModul us);
free(pExponent);

¢ C_SetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C SetAttributeVal ue)(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hnvj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count
);

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which
attribute values are to be modified and their new values; ulCount is the number of attributes in
the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified. If the
template specifies a value of an attribute which is incompatible with other existing attributes of
the object, the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 0 for more details.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, | abel, sizeof (Il abel)
1
CK_RV ryv;

Copyright © 1994-7 RSA Laboratories

Page 125

'rv = C SetAttributeVal ue(hSessi on, hChject, & enplate, 1);
if (rv == CKR_K) {

¢ C_FindObjectsInit

CK_DEFI NE_FUNCTI ON(CK_RV, C _FindQbjectslnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

);

C_FindObjectsInit initializes a search for token and session objects that match a template.
hSession is the session’s handle; pTemplate points to a search template that specifies the attribute
values to match; ulCount is the number of attributes in the search template. The matching
criterion is an exact byte-for-byte match with all attributes in the template. To find all objects, set
ulCount to 0.

After calling C_FindObjectsInit, the application may call C_FindObjects one or more times to
obtain handles for objects matching the template, and then eventually call C_FindObjectsFinal to
finish the active search operation. At most one search operation may be active at a given time in a
given session.

The object search operation will only find objects that the session can view. For example, an
object search in an “R/W Public Session” will not find any private objects (even if one of the
attributes in the search template specifies that the search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the search template
for the active search operation, then those objects may or may not be found by the search
operation. Note that this means that, under these circumstances, the search operation may return
invalid object handles.

Even though C_FindObjectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and
CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search
template with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it
can initialize a search operation which will match no objects and return CKR_OK.

Return values: CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

Copyright © 1994-7 RSA Laboratories

Page 126 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phObj ect,

CK_ULONG ul Maxbj ect Count ,
CK_ULONG_PTR pul Obj ect Count

);

C_FindObjects continues a search for token and session objects that match a template, obtaining
additional object handles. hSession is the session’s handle; phObject points to the location that
receives the list (array) of additional object handles; uIMaxObjectCount is the maximum number of
object handles to be returned; pulObjectCount points to the location that receives the actual
number of object handles returned.

If there are no more objects matching the template, then the location that pulObjectCount points to
receives the value 0.

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OXK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _Fi ndbj ectsFinal) (
CK_SESSI ON_HANDLE hSessi on
);

C_FindObjectsFinal terminates a search for token and session objects. hSession is the session’s
handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK_ULONG ul Obj ect Count ;
CK_RV ryv;

'rv = C Findojectslnit(hSession, NULL PTR, 0);
assert(rv == CKR_ (X);
while (1) {

Copyright © 1994-7 RSA Laboratories

Page 127

rv = C_Fi ndoj ects(hSession, &Object, 1, &ul ObjectCount);
if (rv != CKR K || ul ObjectCount == 0)
br eak;

}

rv = C_Fi ndQoj ect sFi nal (hSessi on);
assert(rv == CKR_ (X);

10.8. Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle; pMechanism
points to the encryption mechanism; hiKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, must be TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt data in a single
part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data
in multiple parts. The encryption operation is active until the application uses a call to C_Encrypt
or C_EncryptFinal fo actually obtain the final piece of ciphertext. To process additional data (in
single or multiple parts), the application must call C_EncryptInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

Copyright © 1994-7 RSA Laboratories

Page 128 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncrypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

);

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
ulDataLen is the length in bytes of the data; pEncryptedData points to the location that receives the
encrypted data; pulEncryptedDatalen points to the location that holds the length in bytes of the
encrypted data.

C_Encrypt uses the convention described in Section 0 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to C_Encrypt
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the ciphertext.

For some encryption mechanisms, the input plaintext data has certain length constraints (either
because the mechanism can only encrypt relatively short pieces of plaintext, or because the
mechanism’s input data must consist of an integral number of blocks). If these constraints are not
satisfied, then C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData
point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate operations
followed by C_EncryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

¢ C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK _BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

);

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data
part; pEncryptedPart points to the location that receives the encrypted data part;

Copyright © 1994-7 RSA Laboratories

Page 129

pulEncryptedPartLen points to the location that holds the length in bytes of the encrypted data
part.

C_EncryptUpdate uses the convention described in Section 0 on producing output.

The encryption operation must have been initialized with C_EncryptInit. This function may be
called any number of times in succession. A call to C_EncryptUpdate which results in an error
other than CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The encryption operation must have been initialized with C_EncryptInit. A call to C_Encrypt
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the ciphertext.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart
point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

¢ C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C EncryptFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR plLast Encrypt edPart,
CK_ULONG_PTR pul Last Encrypt edPart Len

);

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 0 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of blocks. If
these constraints are not satisfied, then C_EncryptFinal will fail with return code
CKR_DATA_LEN_RANGE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,

CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

Copyright © 1994-7 RSA Laboratories

Page 130 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#def i ne PLAI NTEXT_BUF_SZ 200
#def i ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK BYTE iv][8];
CK_MECHANI SM nmechani sm = {

CKM DES _CBC PAD, iv, sizeof(iv)
1
CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;
CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Encrypt edDat allen;
CK_ULONG ul Encrypt edDat a2Len;
CK_ULONG ul Encrypt edDat a3Len;
CK_RV ryv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT BUF_Sz-firstPi ecelLen;
rv = C Encryptlnit(hSession, &rechanism hKey);
if (rv == CKR_CK) {
/* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[0], firstPiecelen,
&encrypt edDat a[0], &ul Encrypt edDat allLen);
if (rv 1= CKR.K) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) - ul Encrypt edDat allen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[firstPi eceLen], secondPi ecelLen,
&encrypt edDat a[ul Encrypt edDat alLen], &ul Encrypt edDat a2Len);
if (rv 1= CKR.K) {

}

/* Get last little encrypted bit */
ul Encrypt edDat a3Len =

si zeof (encrypt edDat a) - ul Encr ypt edDat allLen- ul Encrypt edDat a2Len;
rv = C EncryptFinal (

hSessi on,

&encr ypt edDat a[ul Encr ypt edDat alLen+ul Encrypt edDat a2Len],

&ul Encrypt edDat a3Len) ;

Copyright © 1994-7 RSA Laboratories

Page 131

if (rv != CKR.OK) {

10.9. Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

);

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle; pMechanism
points to the decryption mechanism; iKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, must be TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt data in a single
part; or call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data
in multiple parts. The decryption operation is active until the application uses a call to
C_Decrypt or C_DecryptFinal to actually obtain the final piece of plaintext. To process additional
data (in single or multiple parts), the application must call C_DecryptInit again

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal.

Copyright © 1994-7 RSA Laboratories

Page 132 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C _Decrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG_PTR pul Dat aLen
);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDataLen is the length of the encrypted
data; pData points to the location that receives the recovered data; pulDatalen points to the
location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section 0 on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A call to C_Decrypt
always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the plaintext.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData
point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may
be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate operations
followed by C_DecryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DecryptFinal for an example of similar functions.

¢ C_DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul PartLen
);

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted
data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part;
ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that

Copyright © 1994-7 RSA Laboratories

Page 133

receives the recovered data part; pulPartLen points to the location that holds the length of the
recovered data part.

C_DecryptUpdate uses the convention described in Section 0 on producing output.

The decryption operation must have been initialized with C_DecryptInit. This function may be
called any number of times in succession. A call to C_DecryptUpdate which results in an error
other than CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart
point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: See C_DecryptFinal.

¢ C_DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DecryptFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_ULONG_PTR pul Last PartLen

);

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen
points to the location that holds the length of the last recovered data part.

C_DecryptFinal uses the convention described in Section 0 on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A call to
C_DecryptFinal always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may
be returned.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:
#def i ne Cl PHERTEXT_BUF_SZ 256

Copyright © 1994-7 RSA Laboratories

Page 134 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPi eceLen, secondEncryptedPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK BYTE iv][8];
CK_MECHANI SM nmechani sm = {
CKM DES _CBC PAD, iv, sizeof(iv)

} y

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len;
CK_RV ryv;

firstEncryptedPi eceLen = 90;
secondEncrypt edPi eceLen = Cl PHERTEXT BUF_SZ-fir st Encrypt edPi ecelLen;
rv = C Decryptlnit(hSession, &rechanism hKey);
if (rv == CKR_CK) {
/* Decrypt first piece */
ul Dat alLen = sizeof (data);
rv = C_Decrypt Updat e(
hSessi on,
&encryptedData[0], firstEncryptedPi ecelLen,
&dat a[0], &ul Datallen);
if (rv 1= CKR.K) {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (data)-ul DatallLen;
rv = C_Decrypt Updat e(
hSessi on,
&encrypt edDat a[fi rst Encrypt edPi eceLen],
secondEncr ypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Data2lLen);
if (rv 1= CKR.K) {

}

/* Get last little decrypted bit */
ul Dat a3Len = si zeof (data)-ul Dat alLen-ul Dat a2Len;
rv = C DecryptFinal (
hSessi on,
&dat a[ul Dat alLen+ul Dat a2Len], &ul Dat a3Len);
if (rv 1= CKR.K) {

Copyright © 1994-7 RSA Laboratories

Page 135

10.10. Message digesting functions

Cryptoki provides the following functions for digesting data:

¢ C_Digestlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM _PTR pMechani sm

)

C_DigestInit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_DigestInit, the application can either call C_Digest to digest data in a single part;
or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in
multiple parts. The message-digesting operation is active until the application uses a call to
C_Digest or C_DigestFinal fo actually obtain the final piece of ciphertext. To process additional
data (in single or multiple parts), the application must call C_DigestInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_DigestFinal.

¢ C_Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C Di gest) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len
);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
ulDataLen is the length of the data; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_Digest uses the convention described in Section 0 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to C_Digest always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the message digest.

The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point
to the same location.

Copyright © 1994-7 RSA Laboratories

Page 136 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by C_DigestFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of similar functions.

¢ C _DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The message-digesting operation must have been initialized with C_DigestInit. Calls to this
function and C_DigestKey may be interspersed any number of times in any order. A call to
C_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C_DigestKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Di gest Key) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

);

C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a
secret key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Calls to this
function and C_DigestUpdate may be interspersed any number of times in any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

Copyright © 1994-7 RSA Laboratories

Page 137

CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C_DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DigestFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message
digest. hSession is the session’s handle; pDigest points to the location that receives the message
digest; pulDigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 0 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to C_DigestFinal
always terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is
a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the message digest.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM nmechani sm = {
CKM MD5, NULL_PTR, O

}E:k_BYTE data[] ={...};
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;
CK_RV ryv;

'rv = C Digestlnit(hSession, &rechanism;
if (rv 1= CKR.K) {

}

rv = C_Di gest Updat e(hSessi on, data, sizeof(data));
if (rv 1= CKR.K) {

Copyright © 1994-7 RSA Laboratories

Page 138 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

}

rv = C_Di gest Key(hSession, hKey);
if (rv 1= CKR.K) {

}

ul Di gestLen = sizeof (di gest);
rv = C _DigestFinal (hSession, digest, &ulD gestlLen);

10.11. Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these
operations also encompass message authentication codes):

¢ C_Signlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Signlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_SignlInit initializes a signature operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the signature mechanism; /Key is the handle
of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be TRUE.

After calling C_SignlInit, the application can either call C_Sign to sign in a single part; or call
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The
signature operation is active until the application uses a call to C_Sign or C_SignFinal to actually
obtain the signature. To process additional data (in single or multiple parts), the application must
call C_SignlInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

Copyright © 1994-7 RSA Laboratories

Page 139

¢ C_Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gn) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_ULONG ul Dat aLen,
CK BYTE_PTR pSi gnature,
CK_ULONG_PTR pul Si gnat ur eLen

);

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; ulDataLen is the length of the data; pSignature points to
the location that receives the signature; pulSignatureLen points to the location that holds the length
of the signature.

C_Sign uses the convention described in Section 0 on producing output.

The signing operation must have been initialized with C_SignInit. A call to C_Sign always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the signature.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations followed
by C_SignFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal for an example of similar functions.

¢ C_SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul PartLen
);

C_SignUpdate continues a multiple-part signature operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data
part.

The signature operation must have been initialized with C_SignInit. This function may be called
any number of times in succession. A call to C_SignUpdate which results in an error terminates
the current signature operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,

CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,

Copyright © 1994-7 RSA Laboratories

Page 140 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal.

¢ C_SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnFi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnature,
CK_ULONG_PTR pul Si gnat ur eLen

);

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; pulSignatureLen
points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 0 on producing output.

The signing operation must have been initialized with C_SignInit. A call to C_SignFinal always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

}1

CK BYTE data[] ={...};
CK_BYTE nmc| 4] ;
CK_ULONG ul MacLen;
CK_RV ryv;

'rv = C_Signlnit(hSession, &rechanism hKey);
if (rv == CKR_CK) {
rv = C_SignUpdat e(hSession, data, sizeof(data));

LII MacLen = si zeof (mac);
rv = C_SignFinal (hSession, nmac, &ul MacLen);

Copyright © 1994-7 RSA Laboratories

Page 141

¢ C_SignRecoverlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

);

C_SignRecoverlnit initializes a signature operation, where the data can be recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
signature mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key
supports signatures where the data can be recovered from the signature, must be TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a single part.
The signature operation is active until the application uses a call to C_SignRecover to actually
obtain the signature. To process additional data in a single part, the application must call
C_SignRecoverlnit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_SignRecover.

¢ C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK BYTE_PTR pSi gnature,
CK_ULONG_PTR pul Si gnat ur eLen
);

C_SignRecover signs data in a single operation, where the data can be recovered from the
signature. hSession is the session’s handle; pData points to the data; uLDataLen is the length of the
data; pSignature points to the location that receives the signature; pulSignatureLen points to the
location that holds the length of the signature.

C_SignRecover uses the convention described in Section 0 on producing output.
The signing operation must have been initialized with C_SignRecoverInit. @A call to
C_SignRecover always terminates the active signing operation unless it returns

CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the signature.

Copyright © 1994-7 RSA Laboratories

Page 142 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM RSA 9796, NULL_PTR, 0

1

CK_BYTE data[] = {...};
CK_BYTE si gnat ur e[128]
CK_ULONG ul Si gnat ur eLen;
CK_RV ryv;

rv = C _SignRecoverlnit(hSession, &mechani sm hKey);
if (rv == CKR_CK) {
ul Si gnatureLen = si zeof (signature);
rv = C_SignRecover (
hSessi on, data, sizeof(data), signature, &ul SignaturelLen);
if (rv == CKR_CK) {

10.12. Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the purposes of
Cryptoki, these operations also encompass message authentication codes):

¢ C_Verifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)E

C_Verifylnit initializes a verification operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the structure that specifies the verification
mechanism; /iKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports
verification where the signature is an appendix to the data, must be TRUE.

After calling C_VerifylInit, the application can either call C_Verify to verify a signature on data
in a single part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify

Copyright © 1994-7 RSA Laboratories

Page 143

a signature on data in multiple parts. The verification operation is active until the application
calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the
application must call C_VerifyInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyFinal.

¢ C Verify

CK_DEFI NE_FUNCTI ON(CK_RV, C Verify)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK BYTE_PTR pSi gnature,
CK_ULONG ul Si gnat ur eLen
);

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the
data. hSession is the session’s handle; pData points to the data; ulDataLen is the length of the data;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit. A call to C_Verify
always terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
signing operation is terminated.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations
followed by C_VerifyFinal.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

Copyright © 1994-7 RSA Laboratories

Page 144 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_VerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Veri fyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data
part.

The verification operation must have been initialized with C_VerifylInit. This function may be
called any number of times in succession. A call to C_VerifyUpdate which results in an error
terminates the current verification operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

¢ C _VerifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnature,
CK_ULONG ul Si gnat ur eLen

);

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is
the session’s handle; pSignature points to the signature; ulSignatureLen is the length of the
signature.

The verification operation must have been initialized with C_VerifyInit. A call to C_VerifyFinal
always terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
verifying operation is terminated.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example:
CK_SESSI ON_HANDLE hSessi on;

Copyright © 1994-7 RSA Laboratories

Page 145

CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {
CKM DES MAC, NULL_PTR, O
1
CK BYTE data[] ={...};
CK_BYTE nmc| 4] ;

CK_RV ryv;

'rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_K) {
rv = C VerifyUpdate(hSession, data, sizeof(data));

'rv = C VerifyFinal (hSession, mac, sizeof(mac));

¢ C_VerifyRecoverlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

);

C_VerifyRecoverlnit initializes a signature verification operation, where the data is recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; iKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key
supports verification where the data is recovered from the signature, must be TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify a
signature on data in a single part. The verification operation is active until the application uses a
call to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,

CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyRecover.

Copyright © 1994-7 RSA Laboratories

Page 146 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C _VerifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnat ure,
CK_ULONG ul Si gnat ureLen,
CK_BYTE_PTR pDat a,
CK_ULONG_PTR pul Dat aLen
);

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from
the signature. hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is
the length of the signature; pData points to the location that receives the recovered data; and
pulDataLen points to the location that holds the length of the recovered data.

C_VerifyRecover uses the convention described in Section 0 on producing output.

The verification operation must have been initialized with C_VerifyRecoverInit. A call to
C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the recovered data.

A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE _LEN_RANGE should be returned. The return codes
CKR_SIGNATURE_INVALID and CKR_SIGNATURE_LEN_RANGE have a higher priority than
the return code CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGTE,
CKR_SIGNATURE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, 0

}1

CK BYTE data[] ={...};
CK_ULONG ul Dat aLen;

CK _BYTE si gnature[128];
CK_RV ryv;

rv = C VerifyRecoverlnit(hSession, &mechanism hKey);
if (rv == CKR_.K) {

ul Dat aLen = si zeof (dat a);

rv = C VerifyRecover (

Copyright © 1994-7 RSA Laboratories

Page 147

hSessi on, signature, sizeof(signature), data, &ul Datalen);

10.13. Dual-function cryptographic functions
Cryptoki provides the following functions to perform two cryptographic operations

“simultaneously” within a session. These functions are provided so as to avoid unnecessarily
passing data back and forth to and from a token.

¢ C_DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing
another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the
length of the data part; pEncryptedPart points to the location that receives the digested and
encrypted data part; pulEncryptedPartLen points to the location that holds the length of the
encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 0 on producing output. If a
C_DigestEncryptUpdate call does not produce encrypted output (because an error occurs, or
because pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to
hold the entire encrypted part output), then no plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized with
C_DigestInit and C_EncryptlInit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and
C_EncryptUpdate calls (it would be somewhat wunusual to intersperse «calls to
C_DigestEncryptUpdate with calls to C_DigestKey, however).

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITTALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#defi ne BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv][8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, 0

Copyright © 1994-7 RSA Laboratories

Page 148 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

1

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encrypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[(2* BUF_SZ) +8] ;

CK_RV ryv;

int i;

nmenset (iv, 0, sizeof(iv));

nenset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm hKey);
if (rv 1= CKR.K) {

}
rv = C Digestlnit(hSession, &digestMechanism;
if (rv 1= CKR.K) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The |l ast portion of the buffer needs to be handled with

* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the digest on the buffer */
rv = C_Di gest Updat e(hSessi on, &data[BUF_Sz*2], 5);

LII Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulDi gestlLen);

Copyright © 1994-7 RSA Laboratories

Page 149

/* Then, pad last part with 3 0x00 bytes, and conplete encryption */
for(i=0;i<3;i++)
dat a[((BUF_SZ*2) +5) +i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get last piece of ciphertext (should have Iength 0, here) */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Fi nal (hSessi on, encryptedData, &ul EncryptedDatalen);

¢ C_DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul PartLen
);

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation,
processing another data part. hSession is the session’s handle; pEncryptedPart points to the
encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to
the location that receives the recovered data part; pulPartLen points to the location that holds the
length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 0 on producing output. If a
C_DecryptDigestUpdate call does not produce decrypted output (because an error occurs, or
because pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire
decrypted part output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations must both be active (they must have been initialized with
C_DecryptlInit and C_DigestlInit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and
C_DigestKey calls (it would be somewhat unusual to intersperse calls to
C_DigestEncryptUpdate with calls to C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because
when C_DigestEncryptUpdate is called, precisely the same input is passed to both the active
digesting operation and the active encryption operation, however, when
C_DecryptDigestUpdate is called, the input passed to the active digesting operation is the output
of the active decryption operation. This issue comes up only when the mechanism used for
decryption performs padding.

Copyright © 1994-7 RSA Laboratories

Page 150 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext
with DES in CBC mode with PKCS padding. Consider an application which will simultaneously
decrypt this ciphertext and digest the original plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns
exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext
coming, or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed
into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that
there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However,
since the active decryption and digesting operations are linked only through the
C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the
plaintext, not the message digest of the entire plaintext. It is crucial that, before C_DigestFinal is
called, the last 2 bytes of plaintext get passed into the active digesting operation via a
C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active
digesting operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptDigestUpdate.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:
#defi ne BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

3

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

1

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;

CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;

CK RV rv;

hEnset(iv, 0, sizeof(iv));

Copyright © 1994-7 RSA Laboratories

Page 151

menmset (encryptedData, ‘A, ((2*BUF_SZ)+8));
rv = C Decryptlnit(hSession, &decryptionMechani sm hKey);
if (rv 1= CKR.K) {

}
rv = C Digestlnit(hSession, &digestMechanism;
if (rv I= CKR_X){

}

ul Dat aLen = si zeof (dat a);

rv = C Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

ul Dat aLen = si zeof (data);

rv = C Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul Datalen);

/*
* The |l ast portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

dat a, &ul Last Updat eSi ze);

/* Get last piece of plaintext (should have |length 0, here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C Decrypt Final (hSessi on, &data[ul Last Updat eSi ze], &ul Dat aLen);
if (rv 1= CKR.K) {

}

/* Digest last bit of plaintext */
rv = C_Di gest Updat e(hSessi on, &data[BUF_Sz*2], 5);
if (rv 1= CKR.K) {

Copyright © 1994-7 RSA Laboratories

Page 152 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

ul Di gestLen = sizeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulD gestlLen);
if (rv 1= CKR.K) {

¢ C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

);

C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation,
processing another data part. hSession is the session’s handle; pPart points to the data part;
ulPartLen is the length of the data part; pEncryptedPart points to the location that receives the
digested and encrypted data part; and pulEncryptedPart points to the location that holds the
length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 0 on producing output. If a
C_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or
because pEncryptedPart has the value NULL_PTR, or because pulEncryptedPartLen is too small to
hold the entire encrypted part output), then no plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized with
C_SignInit and C_Encryptlnit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#defi ne BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK BYTE iv][8];
CK_MECHANI SM si gnMechani sm = {

CKM DES_MAC, NULL_PTR, O

}1

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encrypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE MAC 4];

CK_ULONG ul MacLen;

Copyright © 1994-7 RSA Laboratories

Page 153

CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_RV ryv;
int i;

nmenset (iv, 0, sizeof(iv));

nenset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encrypti onMechani sm hEncryptionKey);
if (rv 1= CKR.K) {

}
rv = C_Signlnit(hSession, &signMechani sm hMacKey);
if (rv 1= CKR.CK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The last portion of the buffer needs to be handled with

* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_Sz*2], 5);

LII MacLen = si zeof (MAC);
rv = C _DigestFinal (hSession, MAC, &ul MacLen);

/* Then pad last part with 3 0x00 bytes, and conplete encryption */
for(i=0;i<3;i++)
dat a[((BUF_SZ*2) +5) +i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

Copyright © 1994-7 RSA Laboratories

Page 154 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

rv = C_Encrypt Updat e(
hSessi on,
&dat a[BUF_SZ*2], 8,
encrypt edDat a, &ul Encrypt edDat aLen);

/* Get last piece of ciphertext (should have Iength 0, here) */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Fi nal (hSessi on, encryptedData, &ul EncryptedDatalen);

¢ C_DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt VerifyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul PartLen
);

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the session’s handle; pEncryptedPart points to
the encrypted data; ulEncryptedPartLen is the length of the encrypted data; pPart points to the
location that receives the recovered data; and pulPartLen points to the location that holds the
length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 0 on producing output. If a
C_DecryptVerifyUpdate call does not produce decrypted output (because an error occurs, or
because pPart has the value NULL_PTR, or because pulPartLen is too small to hold the entire
encrypted part output), then no plaintext is passed to the active verification operation.

Decryption and signature operations must both be active (they must have been initialized with
C_DecryptlInit and C_Verifylnit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using
C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when
C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing
operation and the active encryption operation; however, when C_DecryptVerifyUpdate is called,
the input passed to the active verifying operation is the output of the active decryption operation.
This issue comes up only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext
with DES in CBC mode with PKCS padding. Consider an application which will simultaneously
decrypt this ciphertext and verify a signature on the original plaintext thereby obtained.

After initializing decryption and verification operations, the application passes the 24-byte

ciphertext (3 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly
16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming,

Copyright © 1994-7 RSA Laboratories

Page 155

or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed into the
active verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that
there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However,
since the active decryption and verification operations are linked only through the
C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed on to the verification
mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid
signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before
C_VerifyFinal is called, the last 2 bytes of plaintext get passed into the active verification
operation via a C_VerifyUpdate call.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active
verification operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptVerifyUpdate.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITTALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#defi ne BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;
CK_BYTE iv][8];
CK_MECHANI SM decr ypti onMechani sm = {

CKM DES ECB, iv, sizeof(iv)

1

CK_MECHANI SM veri f yMechani sm = {
CKM_DES_MAC, NULL_PTR, O

1

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;

CK_BYTE MAC 4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;

CK RV rv;

menset (i v, 0, sizeof(iv));

nmenset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decrypti onMechani sm hDecrypti onKey);
if (rv I= CKR.OX) {

Copyright © 1994-7 RSA Laboratories

Page 156 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

}
r
i

v
if

}

ul
rv

ul
rv

/*

*
*

/*
ul
rv

/*
ul
rv
i f

}

/*
rv
i f

rv
if

= C Ver nit (hSession, &verifyMechani sm hMacKey);
(rv I= X {

Dat aLen = si zeof (data);

= C _Decrypt Veri f yUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

Dat aLen = si zeof (data);

= C _Decrypt Veri f yUpdat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
data, &ul datalen);

The | ast portion of the buffer needs to be handled with
separate calls to deal with padding issues in ECB node
/

First, conplete the decryption of the buffer */
Last Updat eSi ze = si zeof (data);
= C_Decrypt Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ*2], 8,
dat a, &ul Last Updat eSi ze);

Get last little piece of plaintext. Should have Iength 0 */

Dat aLen = si zeof (data) - ul Last Updat eSi ze;
= C _Decrypt Final (hSessi on, &dat a[ul Last Updat eSi ze], &ul Dat aLen);
(rv = CKR.XX) {

Send | ast bit of plaintext to verification operation */
= C VerifyUpdat e(hSessi on, &data[BUF_Sz*2], 5);
(rv = CKR. XX) {

= C VerifyFinal (hSession, MAC, ul MaclLen);
(rv == CKR_SI GNATURE_| NVALI D) {

Copyright © 1994-7 RSA Laboratories

Page 157

10.14. Key management functions

Cryptoki provides the following functions for key management:

¢ C_GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_GCener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phKey
);

C_GenerateKey generates a secret key, creating a new key object. hSession is the session’s handle;
pMechanism points to the key generation mechanism; pTemplate points to the template for the new
key; ulCount is the number of attributes in the template; phKey points to the location that receives
the handle of the new key.

Since the type of key to be generated is implicit in the key generation mechanism, the template
does not need to supply a key type. If it does supply a key type which is inconsistent with the
key generation mechanism, C_GenerateKey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail and
return without creating any key object.

The key object created by a successful call to C_GenerateKey will have its CKA_LOCAL
attribute set to TRUE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES _KEY_GEN, NULL_PTR, O
1
CK_RV ryv;

.rv = C_Cener at eKey(hSessi on, &rechanism NULL_PTR, 0, &hKey);
if (rv == CKR.X) {

Copyright © 1994-7 RSA Laboratories

Page 158 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_GenerateKeyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eKeyPai r) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE PTR phPri vat eKey

);

C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points
to the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the
public-key template; pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template; phPublicKey
points to the location that receives the handle of the new public key; phPrivateKey points to the
location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism, the
templates do not need to supply key types. If one of the templates does supply a key type which
is inconsistent with the key generation mechanism, C_GenerateKeyPair fails and returns the
error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it will fail and
return without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail, and create
no keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL
attributes set to TRUE.

Note carefully the order of the arquments to C_GenerateKeyPair. The last two arquments do not have
the same order as they did in the original Cryptoki Version 1.0 document. The order of these two
arguments has caused some unfortunate confusion.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

Copyright © 1994-7 RSA Laboratories

Page 159

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey;
CK_MECHANI SM mechani sm = {
CKM RSA PKCS KEY _PAIR GEN, NULL_PTR, 0
1
CK_ULONG nodul usBits = 768;
CK _BYTE publicExponent[] ={ 3 };
CK BYTE subject[] =1{...};
CK_BYTE id[] = {123};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenmpl ate[] = {
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_MODULUS_BI TS, &nmodul usBits, sizeof (nmodul usBits)},
{ CKA_PUBLI C_EXPONENT, publ i cExponent, sizeof (publicExponent)}

1

CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)},
{CKA PRI VATE, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKAID, id, sizeof(id)},
{CKA SENSI TI VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, &rue, sizeof(true)},
{ CKA_UNWRAP, &true, sizeof(true)}

1

CK_RV rv;

rv = C _CGenerat eKeyPai r (
hSessi on, &nmechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&hPubl i cKey, &hPri vat eKey);
if (rv == CKR_.K) {

¢ C_WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_W apKey) (

)s

CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle;
pMechanism points to the wrapping mechanism; hWWrappingKey is the handle of the wrapping key;
hKey is the handle of the key to be wrapped; pWrappedKey points to the location that receives the
wrapped key; and pulWrappedKeyLen points to the location that receives the length of the
wrapped key.

C_WrapKey uses the convention described in Section 0 on producing output.

Copyright © 1994-7 RSA Laboratories

Page 160 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports
wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped must
also be TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and
mechanism solely because of its length, then C_WrapKey fails with error code
CKR_KEY_SIZE_RANGE.

C_WrapKey can be used in the following situations:
e To wrap any secret key with an RSA public key.

e To wrap any secret key with any other secret key other than a SKIPJACK, BATON, or
JUNIPER key.

e To wrap a SKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON, or
JUNIPER key (the two keys need not be the same type of key).

e To wrap an RSA, Diffie-Hellman, or DSA private key with any secret key other than a
SKIPJACK, BATON, or JUNIPER key.

e To wrap a KEA or DSA private key with a SKIPJACK key.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

Return Values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE,
CKR_KEY_SIZE RANGE, CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE RANGE, CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {
CKM_DES3_ECB, NULL_PTR, O
1
CK_BYTE wr appedKey| 8] ;
CK_ULONG ul W appedKeyLen;
CK_RV ryv;

ul W appedKeyLen = si zeof (w appedKey) ;
rv = C_WapKey(

hSessi on, &nmechani sm

hW appi ngKey, hKey,

Copyright © 1994-7 RSA Laboratories

Page 161

wr appedKey, &ul W appedKeyLen);
if (rv == CKR_.CK) {

¢ C_UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unwr apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key
object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism;
hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key;
ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new
key; ulAttributeCount is the number of attributes in the template; phKey points to the location that
receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to FALSE, and the
CKA_EXTRACTABLE attribute set to TRUE.

When C_UnwrapKey is used to unwrap a key with the CKM_KEY WRAP_SET_OAEP
mechanism (see Section 0), additional “extra data” is decrypted at the same time that the key is
unwrapped. The return of this data follows the convention in Section 0 on producing output. If
the extra data is not returned from a call to C_UnwrapKey (either because the call was only to
find out how large the extra data is, or because the buffer provided for the extra data was too
small), then C_UnwrapKey will not create a new key, either.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail and
return without creating any key object.

The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute
set to FALSE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_UNWRAPPING_KEY_HANDLE_INVALID,

Copyright © 1994-7 RSA Laboratories

Page 162 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKR_UNWRAPPING_KEY_SIZE RANGE, CKR_UNWRAPPING_KEY_TYPE INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID,
CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM _DES3_ECB, NULL_PTR, 0

1
CK_BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}

1
CK_RV ryv;

rv = C_Unw apKey(

hSessi on, &mrechani sm hUnw appi ngKey,

wr appedKey, sizeof (wrappedKey), tenplate, 4, &hKey);
if (rv == CKR_.CK) {

¢ C_DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Deri veKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is
the handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is
the number of attributes in the template; and phKey points to the location that receives the handle
of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS_SENSITIVE, CK_EXTRACTABLE, and
CK_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes
can hold for the newly-derived key. See the description of each particular key-derivation
mechanism in Section 0 for any constraints of this type.

Copyright © 1994-7 RSA Laboratories

Page 163

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail and return
without creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute
set to FALSE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on

CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey, hKey;

CK_MECHANI SM keyPai r Mechani sm = {
CKM_DH_PKCS_KEY_PAI R_CGEN, NULL_PTR, 0

1

CK BYTE prinme[] ={...};
CK_BYTE base[] = {...}:
CK_BYTE publ|cVaIue[128]
CK_BYTE otherPubI|cVaIue[128];
CK_MECHANI SM nmechani sm = {
CKM DH _PKCS _DERI VE, ot her PublicVal ue, sizeof (otherPublicVal ue)

1
CK_ATTRI BUTE pTenpl ate[] = {

CKA VALUE, &publicVal ue, sizeof (publicVval ue)}
1

CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenmpl ate[] = {
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA BASE, base, sizeof(base)}

} y
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA DERI VE, &true, sizeof(true)}

}1

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)}

1

CK_RV ryv;

rv = C _CGenerat eKeyPai r (
hSessi on, &keyPai r Mechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,

Copyright © 1994-7 RSA Laboratories

Page 164 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

&hPubl i cKey, &hPri vat eKey);
if (rv == CKR_CK)
rv = C GetAttributeVal ue(hSession, hPublicKey, &pTenplate, 1);
if (rv == CKR_CK) {
/* Put other guy’'s public value in otherPublicValue */

rv = C DeriveKey(
hSessi on, &nrechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKR_K) {

10.15. Random number generation functions

Cryptoki provides the following functions for generating random numbers:

¢ C_SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

)

C_SeedRandom mixes additional seed material into the token’s random number generator.
hSession is the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in
bytes of the seed material.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_SEED_NOT_SUPPORTED,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example: see C_GenerateRandom.

¢ C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eRandon) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

)

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s handle;
pRandomData points to the location that receives the random data; and ulRandomLen is the length
in bytes of the random or pseudo-random data to be generated.

Copyright © 1994-7 RSA Laboratories

Page 165

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_BYTE seed[] = {...};
CK_BYTE randonData[] ={...};
CK_RV rv;

'rv = C_SeedRandom hSessi on, seed, sizeof(seed));
if (rv 1= CKR.K) {

}
rv = C _CGenerat eRandom(hSessi on, randonData, sizeof(randonData));
if (rv == CKR_.K) {

10.16. Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of cryptographic
functions. These functions exist only for backwards compatibility.

¢ C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Functi onSt at us) (
CK_SESSI ON_HANDLE hSessi on

)E

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function running
in parallel with an application. Now, however, C_GetFunctionStatus is a legacy function which
should simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

Copyright © 1994-7 RSA Laboratories

Page 166 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

¢ C_CancelFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on

)s

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in parallel with
an application. Now, however, C_CancelFunction is a legacy function which should simply
return the value CKR_FUNCTION_NOT PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

10.17. Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the application of
certain events.

10.17.1. Surrender callbacks

Cryptographic functions (i.e,, any functions falling under one of these categories: encryption
functions; decryption functions; message digesting functions; signing and MACing functions;
functions for verifying signatures and MACs; dual-purpose cryptographic functions; key
management functions; random number generation functions) executing in Cryptoki sessions can
periodically surrender control to the application who called them if the session they are executing
in had a notification callback function associated with it when it was opened. They do this by
calling the session’s callback with the arguments (hSession, CKN_SURRENDER,
pAppl i cati on), where hSessi on is the session’s handle and pAppl i cat i on was supplied to
C_OpenSession when the session was opened. Surrender callbacks should return either the
value CKR_OK (to indicate that Cryptoki should continue executing the function) or the value
CKR_CANCEL (to indicate that Cryptoki should abort execution of the function). Of course,
before returning one of these values, the callback function can perform some computation, if
desired.

A typical use of a surrender callback might be to give an application user feedback during a
lengthy key pair generation operation. Each time the application receives a callback, it could
display an additional “.” to the user. It might also examine the keyboard’s activity since the last
surrender callback, and abort the key pair generation operation (probably by returning the value
CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

10.17.2. Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each callback they
receive, and if they are unfamiliar with the type of that callback, they should immediately give
control back to the library by returning with the value CKR_OK.

Copyright © 1994-7 RSA Laboratories

Page 167

11.Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a
subset of the mechanisms listed. There is also no guarantee that a token which supports one
mechanism for some operation supports any other mechanism for any other operation (or even
supports that same mechanism for any other operation). For example, even if a token is able to
create RSA digital signatures with the CKM_RSA_PKCS mechanism, it may or may not be the
case that the same token can also perform RSA encryption with CKM_RSA_PKCS.

Copyright © 1994-7 RSA Laboratories

Page 168 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 48, Mechanisms vs. Functions

Functions

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap

CKM_RSA_PKCS_KEY_PAIR_GEN v
CKM_RSA_PKCS V2 V2 v v
CKM_RSA_9796 V2
CKM_RSA_X_509 V2 V2 v v
CKM_MD2_RSA_PKCS 4
CKM_MD5_RSA_PKCS v
CKM_SHA1_RSA_PKCS 4
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA V2
CKM_DSA_SHA1 v
CKM_FORTEZZA_TIMESTAMP V2
CKM_ECDSA_KEY_PAIR_GEN v
CKM_ECDSA V2
CKM_ECDSA_SHA1 v
CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_DERIVE v
CKM_KEA_KEY_PAIR_GEN v
CKM_KEA_KEY_DERIVE v
CKM_GENERIC_SECRET_KEY_GEN v
CKM_RC2_KEY_GEN v
CKM_RC2_ECB v 4
CKM_RC2_CBC v v
CKM_RC2_CBC_PAD v 4
CKM_RC2_MAC_GENERAL v
CKM_RC2_MAC 4
CKM_RC4_KEY_GEN v
CKM_RC4 v
CKM_RC5_KEY_GEN v
CKM_RC5_ECB v 4
CKM_RC5_CBC v v
CKM_RC5_CBC_PAD v 4
CKM_RC5_MAC_GENERAL v
CKM_RC5_MAC 4
CKM_DES_KEY_GEN v
CKM_DES_ECB v 4
CKM_DES_CBC v v
CKM_DES_CBC_PAD v 4
CKM_DES_MAC_GENERAL v
CKM_DES_MAC 4
CKM_DES2_KEY_GEN v
CKM_DES3_KEY_GEN v
CKM_DES3_ECB v v
CKM_DES3_CBC v 4
CKM_DES3_CBC_PAD v v

<

Copyright © 1994-7 RSA Laboratories

Page 169

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Digest

Gen.
Key/

Pair

Wrap

Unwrap

Derive

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

CKM_CAST_KEY_GEN

CKM_CAST_ECB

CKM_CAST_CBC

CKM_CAST_CBC_PAD

CKM_CAST_MAC_GENERAL

CKM_CAST_MAC

CKM_CAST3_KEY_GEN

CKM_CAST3_ECB

CKM_CAST3_CBC

CKM_CAST3_CBC_PAD

CKM_CAST3_MAC_GENERAL

CKM_CAST3_MAC

CKM_CAST128_KEY_GEN
(CKM_CAST5_KEY_GEN)

CKM_CAST128_ECB (CKM_CAST5_ECB)

CKM_CAST128_CBC (CKM_CAST5_CBC)

CKM_CAST128_CBC_PAD
(CKM_CAST5_CBC_PAD)

CKM_CAST128_MAC_GENERAL
(CKM_CAST5_MAC_GENERAL)

CKM_CAST128_MAC (CKM_CAST5_MAC)

CKM_IDEA_KEY_GEN

CKM_IDEA_ECB

CKM_IDEA_CBC

AN

<

CKM_IDEA_CBC_PAD

CKM_IDEA_MAC_GENERAL

CKM_IDEA_MAC

CKM_CDMF_KEY_GEN

CKM_CDMF_ECB

CKM_CDMEF_CBC

AN

<

CKM_CDMF_CBC_PAD

CKM_CDMF_MAC_GENERAL

CKM_CDMF_MAC

CKM_SKIPJACK_KEY_GEN

CKM_SKIPJACK_ECB64

CKM_SKIPJACK_CBC64

CKM_SKIPJACK_OFB64

CKM_SKIPJACK_CFB64

CKM_SKIPJACK_CFB32

CKM_SKIPJACK_CFB16

CKM_SKIPJACK_CFB8

ANERNERNERNERN BN BN

CKM_SKIPJACK_WRAP

CKM_SKIPJACK_PRIVATE_WRAP

CKM_SKIPJACK_RELAYX

V3

Copyright © 1994-7 RSA Laboratories

Page 170 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Functions

Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap

CKM_BATON_KEY_GEN v
CKM_BATON_ECB128
CKM_BATON_ECB9%6
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP 4
CKM_JUNIPER_KEY_GEN v
CKM_JUNIPER_ECB128
CKM_JUNIPER_CBC128
CKM_JUNIPER_COUNTER
CKM_JUNIPER_SHUFFLE
CKM_JUNIPER_WRAP 4
CKM_MD2 v
CKM_MD2_HMAC_GENERAL 4
CKM_MD2_HMAC v
CKM_MD2_KEY_DERIVATION 4
CKM_MD5 v
CKM_MD5_HMAC_GENERAL 4
CKM_MD5_HMAC v
CKM_MD5_KEY_DERIVATION 4
CKM_SHA_1 v
CKM_SHA_1_HMAC_GENERAL 4
CKM_SHA_1_HMAC v
CKM_SHA1_KEY_DERIVATION 4
CKM_FASTHASH v
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC

CKM_PBE_MD5_CAST128_CBC
(CKM_PBE_MD5_CAST5_CBC)

CKM_PBE_SHA1_CAST128_CBC
(CKM_PBE_SHA1_CAST5_CBC)

CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PBA_SHA1_WITH_SHA1_HMAC
CKM_KEY_WRAP_SET_OAEP v
CKM_KEY_WRAP_LYNKS 4
CKM_SSL3_PRE_MASTER_KEY_GEN v
CKM_SSL3_MASTER_KEY_DERIVE 4
CKM_SSL3_KEY_AND_MAC_DERIVE v

ANERNERNERN BRN

ANERNERNERN

ANERNERN BN ERN

AN

ANERNERNERNERN BN BN

Copyright © 1994-7 RSA Laboratories

Page 171

Functions
Encrypt | Sign SR Gen. Wrap
Mechanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_SSL3_MD5_MAC 4
CKM_SSL3_SHA1_MAC v

CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY

NNV RN

1SR = SignRecover, VR = VerifyRecover.
2 Single-part operations only.
3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section 0 will present in detail the mechanisms supported by Cryptoki Version
2.01 and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the
CK_MECHANISM_INFO structure, then those fields have no meaning for that particular
mechanism.

11.1. RSA mechanisms

11.1.1. PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted
CKM_RSA_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on the RSA
public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits
and public exponent, as specified in the CKA_MODULUS_BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS
and CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the
following attributes to the new private key: CKA_MODULUS, CKA_PUBLIC_EXPONENT,
CKA_PRIVATE_EXPONENT, CKA_PRIME_ 1, CKA_PRIME_2, CKA_EXPONENT.1,
CKA_EXPONENT_2, CKA_COEFFICIENT (see Section 0). Other attributes supported by the
RSA public and private key types (specifically, the flags indicating which functions the keys
support) may also be specified in the templates for the keys, or else are assigned default initial
values.

Copyright © 1994-7 RSA Laboratories

Page 172 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Keys generated with this mechanism can be used with the following mechanisms: PKCS #1 RSA;
ISO/IEC 9796 RSA; X.509 (raw) RSA; PKCS #1 RSA with MD2; PKCS #1 RSA with MD5; PKCS
#1 RSA with SHA-1; and OAEP key wrapping for SET.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

11.1.2. PKCS #1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports
single-part encryption and decryption; single-part signatures and verification with and without
message recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the
part of PKCS #1 that involves RSA; it does not compute a message digest or a DigestInfo
encoding as specified for the nd2w t hRSAEncryption and md5w t hRSAEncrypti on
algorithms in PKCS #1.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type or any other information about the key, except the key length; the application must
convey these separately. In particular, the mechanism contributes only the CKA_CLASS and
CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during
unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may

begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 49, PKCS #1 RSA: Key And Data Length

Function Key type Input length | Output length Comments

C_Encrypt! RSA public key <k-11 k block type 02
C_Decrypt! RSA private key k <k-11 block type 02
C_Sign! RSA private key <k-11 k block type 01
C_SignRecover RSA private key <k-11 k block type 01
C_Verify! RSA public key <k-11, k2 N/A block type 01
C_VerifyRecover | RSA public key k <k-11 block type 01
C_WrapKey RSA public key <k-11 k block type 02
C_UnwrapKey RSA private key k <k-11 block type 02

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

Copyright © 1994-7 RSA Laboratories

Page 173

11.1.3. ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A. This mechanism is
compatible with the draft ANSI X9.31 (assuming the length in bits of the X9.31 hash value is a
multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-significant bit
of the leading byte of the byte string as the leftmost bit of the bit string, and the least-
significant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this
assumes the length in bits of the data is a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on the left
with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the
resulting bit string as above; it is converted from a byte string to a bit string by converting the
byte string as above, and removing bits from the left so that the resulting length in bits is the
same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus.

Table 50, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input length | Output length
C_Sign! RSA private key <lk/2] k
C_SignRecover RSA private key <[k/2] k
C_Verify! RSA public key <lk/2] k2 N/A
C_VerifyRecover | RSA public key k <lk/2]

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

11.1.4. X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_ 509, is a multi-purpose mechanism
based on the RSA public-key cryptosystem. It supports single-part encryption and decryption;
single-part signatures and verification with and without message recovery; key wrapping; and
key unwrapping. All these operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant
byte first, applying “raw” RSA exponentiation, and converting the result to a byte string, most-

Copyright © 1994-7 RSA Laboratories

Page 174 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

significant byte first. The input string, considered as an integer, must be less than the modulus;
the output string is also less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type, key length, or any other information about the key; the application must convey
these separately, and supply them when unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this
mechanism, padding should be performed by prepending plaintext data with 0-valued bytes. In
effect, to encrypt the sequence of plaintext bytes by by ... b, (n < k), Cryptoki forms P=2n1b;+2n-
2by+...+bs. This number must be less than the RSA modulus. The k-byte ciphertext (k is the
length in bytes of the RSA modulus) is produced by raising P to the RSA public exponent modulo
the RSA modulus. Decryption of a k-byte ciphertext C is accomplished by raising C to the RSA
private exponent modulo the RSA modulus, and returning the resulting value as a sequence of
exactly k bytes. If the resulting plaintext is to be used to produce an unwrapped key, then
however many bytes are specified in the template for the length of the key are taken from the end
of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus
and is numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if
ciphertext is supplied which has the same length as the RSA modulus and is numerically at least
as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus.

Table 51, X.509 (Raw) RSA: Key And Data Length

Function Key type Input length Output length
C_Encrypt! RSA public key <k k

C_Decrypt! RSA private key k k

C_Sign! RSA private key <k k
C_SignRecover RSA private key <k k

C_Verify! RSA public key <k, k2 N/A
C_VerifyRecover | RSA public key k k
C_WrapKey RSA public key <k k
C_UnwrapKey RSA private key k <k (specified in template)

1 Single-part operations only.

2 Data length, signature length.

Copyright © 1994-7 RSA Laboratories

Page 175

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or
ISO/IEC 9796 block formats.

11.1.5. PKCS #1 RSA signature with MD2, MD5, or SHA-1

The PKCS #1 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery.
The operations performed are as described in PKCS #1 with the object identifier
md2WithRSAEncryption.

Similarly, the PKCS #1 RSA signature with MD5 mechanism, denoted CKM_MD5_RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier
md5WithRSAEncryption. The PKCS #1 RSA signature with SHA-1 mechanism, denoted
CKM_SHA1_RSA_PKCS, performs the same operations, except that it uses the hash function
SHA-1, instead of MD2 or MD5.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 RSA
signature with MD2 and PKCS #1 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 RSA signature with SHA-1 mechanism, k must be at least 31.

Table 52, PKCS #1 RSA Signatures with MD2, MD5, or SHA-1: Key And Data Length

Function Key type Input length | Output length Comments
C_Sign RSA private key any k block type 01
C_Verity RSA public key any, k2 N/A block type 01

2 Data length, signature length.
For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.

11.2. DSA mechanisms

11.2.1. DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair
generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186.

This mechanism does not have a parameter.

The mechanism generates DSA public/ private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the

Copyright © 1994-7 RSA Laboratories

Page 176 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these DSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the DSA public and private key types (specifically, the flags indicating which functions the keys
support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

11.2.2. DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-part
signatures and verification based on the Digital Signature Algorithm defined in FIPS PUB 186.
(This mechanism corresponds only to the part of DSA that processes the 20-byte hash value; it
does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 53, DSA: Key And Data Length

Function Key type Input length | Output length
C_Sign! DSA private key 20 40
C_Verify! DSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

11.2.3. DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single- and
multiple-part signatures and verification based on the Digital Signature Algorithm defined in
FIPS PUB 186. This mechanism computes the entire DSA specification, including the hashing
with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Copyright © 1994-7 RSA Laboratories

Page 177

Constraints on key types and the length of data are summarized in the following table:

Table 54, DSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign DSA private key any 40
C_Verify DSA public key any, 402 N/A

2 Data length, signature length.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

11.2.4. FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP, is a
mechanism for single-part signatures and verification. The signatures it produces and verifies are
DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table. The input
and output data may begin at the same location in memory.

Table 55, FORTEZZA Timestamp: Key And Data Length

Function Key type Input length | Output length
C_Sign! DSA private key 20 40
C_Verify! DSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

11.3. About ECDSA

The ECDSA (Elliptic Curve Digital Signature Algorithm) in this document is the one described in
the ANSI X9.62 working draft specification of November 17, 1997. It is hoped that the parts of
this document that Cryptoki references will not change in the final ANSI X9.62 document, but
there is no guarantee that this will be the case.

In this working draft, there are 3 different varieties of ECDSA defined:

1. ECDSA using a field with an odd prime number of elements.

2. ECDSA using a field of characteristic 2 whose elements are represented using a polynomial
basis.

Copyright © 1994-7 RSA Laboratories

Page 178 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

3. ECDSA using a field of characteristic 2 whose elements are represented using an optimal
normal basis.

An ECDSA key in Cryptoki contains information about which variety of ECDSA it is suited for. It
is preferable that a Cryptoki library which can perform ECDSA mechanisms be capable of
performing operations with all 3 varieties of ECDSA; however, this is not required.

If an attempt to create, generate, derive, or unwrap an ECDSA key of an unsupported variety (or
of an unsupported size of a supported variety) is made, that attempt should fail with the error
code CKR_TEMPLATE_INCONSISTENT.

11.4. ECDSA mechanisms

11.4.1. ECDSA key pair generation

The ECDSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key
pair generation mechanism for ECDSA.

This mechanism does not have a parameter.

The mechanism generates ECDSA public/private key pairs with particular ECDSA parameters,
as specified in the CKA_ECDSA_PARAMS attribute of the template for the public key. Note
that this version of Cryptoki does not include a mechanism for generating these ECDSA
parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY TYPE, and CKA_EC_POINT
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_ECDSA_PARAMS and CKA_CKA_VALUE attributes to the new private key. Other
attributes supported by the ECDSA public and private key types (specifically, the flags indicating
which functions the keys support) may also be specified in the templates for the keys, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the minimum and maximum supported number of bits in the field sizes,
respectively. For example, if a Cryptoki library supports only ECDSA using a field of
characteristic 2 which has between 220 and 230 elements, then ulMinKeySize = 201 and
ulMaxKeySize = 301 (when written in binary notation, the number 220 consists of a 1 bit followed
by 200 0 bits. It is therefore a 201-bit number. Similarly, 23% is a 301-bit number).

11.4.2. ECDSA without hashing
The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part
signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA

that processes the 20-byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, an ECDSA signature is a 40-byte string, corresponding to the
concatenation of the ECDSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Copyright © 1994-7 RSA Laboratories

Page 179

Constraints on key types and the length of data are summarized in the following table:

Table 56, ECDSA: Key And Data Length

Function Key type Input length | Output length
C_Sign! ECDSA private key 20 40
C_Verify! ECDSA public key 20, 402 N/A

1 Single-part operations only.
2Data length, signature length.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the minimum and maximum supported number of bits in the field sizes,
respectively. For example, if a Cryptoki library supports only ECDSA using a field of
characteristic 2 which has between 2200 and 23% elements (inclusive), then ulMinKeySize = 201 and
ulMaxKeySize = 301 (when written in binary notation, the number 22% consists of a 1 bit followed
by 200 0 bits. It is therefore a 201-bit number. Similarly, 23% is a 301-bit number).

11.4.3. ECDSA with SHA-1
The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for single-
and multiple-part signatures and verification for ECDSA. This mechanism computes the entire

ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, an ECDSA signature is a 40-byte string, corresponding to the
concatenation of the ECDSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 57, ECDSA with SHA-1: Key And Data Length

Function Key type Input length | Output length
C_Sign ECDSA private key any 40
C_Verify ECDSA public key any, 40? N/A

2 Data length, signature length.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the minimum and maximum supported number of bits in the field sizes,
respectively. For example, if a Cryptoki library supports only ECDSA using a field of
characteristic 2 which has between 220 and 230 elements, then ulMinKeySize = 201 and
ulMaxKeySize = 301 (when written in binary notation, the number 22% consists of a 1 bit followed
by 200 0 bits. It is therefore a 201-bit number. Similarly, 23% is a 301-bit number).

Copyright © 1994-7 RSA Laboratories

Page 180 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.5. Diffie-Hellman mechanisms

11.5.1. PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase I”.

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and
base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the public
key. If the CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the
length in bits of the private value, as described in PKCS #3. Note that this version of Cryptoki
does not include a mechanism for generating a prime and base.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_VALUE (and the CKA_VALUE_BITS attribute, if it is not already provided in the
template) attributes to the new private key; other attributes required by the Diffie-Hellman public
and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

11.5.2. PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is
a mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3.
This is what PKCS #3 calls “phase I11”.

It has a parameter, which is the public value of the other party in the key agreement protocol,
represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of
the other party. It computes a Diffie-Hellman secret value from the public value and private key
according to PKCS #3, and truncates the result according to the CKA_KEY_TYPE attribute of the
template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the
template. (The truncation removes bytes from the leading end of the secret value.) The
mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
values of the CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify that the
derived key should have the CKA_SENSITIVE attribute set to FALSE; similarly, if the base key
has the CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_EXTRACTABLE attribute set to TRUE.

Copyright © 1994-7 RSA Laboratories

Page 181

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

11.6. KEA mechanism parameters

¢ CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTR

CK_KEA_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_KEA_DERIVE mechanism. It is defined as follows:

typedef struct CK _KEA DERI VE_PARAMS {
CK _BBOOL i sSender;
CK_ULONG ul Randomien;
CK_BYTE_PTR pRandomh;
CK_BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_KEA DERI VE_PARANS;

The fields of the structure have the following meanings:
isSender Option for generating the key (called a TEK). The value is
TRUE if the sender (originator) generates the TEK, FALSE if
the recipient is regenerating the TEK.
ulRandomLen size of random Ra and Rb, in bytes
pRandomA pointer to Ra data
pRandomB pointer to Rb data
ulPublicDataLen other party’s KEA public key size

pPublicData pointer to other party’s KEA public key value

CK_KEA_DERIVE_PARAMS_PTR is a pointer to a CK_KEA_DERIVE_PARAMS.

11.7. KEA mechanisms

11.7.1. KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, is a key pair
generation mechanism

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the

Copyright © 1994-7 RSA Laboratories

Page 182 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the KEA public and private key types (specifically, the flags indicating which functions the keys
support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of KEA prime sizes, in bits.

11.7.2. KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, is a mechanism for key
derivation based on KEA, the Key Exchange Algorithm.

It has a parameter, a CK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of
the new key; other attributes required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
values of the CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify that the
derived key should have the CKA_SENSITIVE attribute set to FALSE; similarly, if the base key
has the CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of KEA prime sizes, in bits.

11.8. Generic secret key mechanisms

11.8.1. Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is
used to generate generic secret keys. The generated keys take on any attributes provided in the
template passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the
length of the key to be generated.

It does not have a parameter.

Copyright © 1994-7 RSA Laboratories

Page 183

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template
specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS = CKO_SECRET_KEY;
CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of key sizes, in bits.

11.9. Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA)

Cryptoki Version 2.01 allows the use of secret keys for wrapping and unwrapping RSA private
keys, Diffie-Hellman private keys, and DSA private keys. For wrapping, a private key is BER-
encoded according to PKCS #8's PrivateKeyInfo ASN.1 type. PKCS #8 requires an algorithm
identifier for the type of the secret key. The object identifiers for the required algorithm
identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgreenment OBJECT IDENTIFIER ::= { pkcs-3 1}
i d-dsa OBJECT IDENTIFIER ::= {

i so(1) nenber-body(2) us(840) x9-57(10040) x9cm(4) 1}

where

pkcs-1 OBJECT IDENTIFIER ::= {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 1}

pkcs-3 OBJECT I DENTIFIER ::= {
i so(1) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 3}

These parameters for the algorithm identifiers have the following types, respectively:
NULL

DHPar amet er :: = SEQUENCE {
prime | NTEGER, -- p
base I NTEGER, -- g
privat eVal ueLengt h | NTEGER OPTI ONAL

}

Dss-Parns ::= SEQUENCE {
p | NTEGER
g | NTEGER,
g | NTEGER

}

Within the PrivateKeylInfo type:

e RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1 type. This
type requires values to be present for all the attributes specific to Cryptoki’s RSA private key
objects. In other words, if a Cryptoki library does not have values for an RSA private key’s
CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,

Copyright © 1994-7 RSA Laboratories

Page 184 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CKA_PRIME_1, CKA_PRIME 2, CKA_EXPONENT 1, CKA_EXPONENT2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of the key,
and so it cannot prepare it for wrapping.

o Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
e DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string of bytes
is encrypted with the secret key. This encryption must be done in CBC mode with PKCS
padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext
is decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeyInfo type, and the wrapped key is produced. An error will result if the original
wrapped key does not decrypt properly, or if the decrypted unpadded data does not parse
properly, or its type does not match the key type specified in the template for the new key. The
unwrapping mechanism contributes only those attributes specified in the PrivateKeyInfo type to
the newly-unwrapped key; other attributes must be specified in the template, or will take their
default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm12 }
al gorithm OBJECT I DENTIFIER ::= {
iso(l) identifier-organization(3) oiw(14) secsig(3) algorithm2) }

with associated parameters

DSAPar anet ers ::= SEQUENCE {
primel INTEGER, -- nodulus p
prime2 INTEGER, -- nmodulus q
base I NTEGER -- base ¢

}

for wrapping DSA private keys. Note that although the two structures for holding DSA
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

11.10. About RC2

RC2 is a block cipher which is trademarked by RSA Data Security. It has a variable keysize and
an additional parameter, the “effective number of bits in the RC2 search space”, which can take
on values in the range 1-1024, inclusive. The effective number of bits in the RC2 search space is
sometimes specified by an RC2 “version number”; this “version number” is not the same thing as
the “effective number of bits”, however. There is a canonical way to convert from one to the
other.

Copyright © 1994-7 RSA Laboratories

Page 185

11.11. RC2 mechanism parameters

¢ CK_RC2 PARAMS; CK_RC2 PARAMS_PTR

CK_RC2_PARAMS provides the parameters to the CKM_RC2 ECB and CKM_RC2 MAC
mechanisms. It holds the effective number of bits in the RC2 search space. It is defined as
follows:

typedef CK ULONG CK_RC2_PARAMS;

CK_RC2_PARAMS_PTR is a pointer to a CK_RC2_PARAMS.

¢ CK_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC and
CKM_RC2_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK _RC2_CBC PARAMS {
CK _ULONG ul EffectiveBits;
CK_BYTE iv][8];

} CK_RC2_CBC_PARAMS;

The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space
iv the initialization vector (IV) for cipher block chaining mode

CK_RC2_CBC_PARAMS_PTR is a pointer to a CK_RC2_CBC_PARAMS.

¢ CK_RC2_ MAC_GENERAL_PARAMS;
CK_RC2_MAC_GENERAL_PARAMS_PTR

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to the
CKM_RC2_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK RC2_MAC GENERAL PARAMS {
CK_ULONG ul Ef fectiveBits;
CK_ULONG ul MacLengt h;

} CK_RC2_MAC_GENERAL_PARANS;

The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space
ulMacLength length of the MAC produced, in bytes

CK_RC2_MAC_GENERAL_PARAMS_PTR is a pointer to a
CK_RC2_MAC_GENERAL_PARAMS.

Copyright © 1994-7 RSA Laboratories

Page 186 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.12. RC2 mechanisms

11.12.1. RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation
mechanism for RSA Data Security’s block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the RC2 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 key sizes, in bits.

11.12.2. RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher RC2
and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits in the RC2
search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 187

Table 58, RC2-ECB: Key And Data Length

Function Key type | Input length Output length Comments
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey | RC2 multiple of 8 | determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

11.12.3. RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher
RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the
effective number of bits in the RC2 search space, and the next field is the initialization vector for
cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 188 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 59, RC2-CBC: Key And Data Length

Function Key type | Input length Output length Comments
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey | RC2 multiple of 8 | determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

11.124. RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA
Data Security’s block cipher RC2; cipher-block chaining mode as defined in FIPS PUB 81; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the
effective number of bits in the RC2 search space, and the next field is the initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section 0 for details). The entries in Table 60 for
data length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 60, RC2-CBC with PKCS Padding: Key And Data Length

Function Key type Input length Output length
C_Encrypt RC2 any input length rounded up to
multiple of 8
C_Decrypt RC2 multiple of 8 | between 1 and 8 bytes shorter
than input length
C_WrapKey RC2 any input length rounded up to
multiple of 8
C_UnwrapKey | RC2 multiple of 8 | between 1 and 8 bytes shorter
than input length

Copyright © 1994-7 RSA Laboratories

Page 189

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

11.12.5. General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on RSA Data Security’s block cipher RC2 and
data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which specifies the
effective number of bits in the RC2 search space and the output length desired from the
mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher block
produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 61, General-length RC2-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC2 any 0-8, as specified in parameters
C_Verify RC2 any 0-8, as specified in parameters

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

11.12.6. RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length RC2-MAC
mechanism (see Section 0). Instead of taking a CK_RC2_MAC_GENERAL _PARAMS
parameter, it takes a CK_RC2_PARAMS parameter, which only contains the effective number of
bits in the RC2 search space. RC2-MAC always produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 62, RC2-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC2 any 4
C_Verity RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

Copyright © 1994-7 RSA Laboratories

Page 190 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.13. RC4 mechanisms

11.13.1. RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key generation
mechanism for RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the RC4 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are

assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

11.13.2. RC4

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 63, RC4: Key And Data Length

Function Key type | Inputlength Output length Comments
C_Encrypt RC4 any same as input length | no final part
C_Decrypt RC4 any same as input length | no final part

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

11.14. About RC5

RC5 is a parametrizable block cipher for which RSA Data Security has patent pending. It has a
variable wordsize, a variable keysize, and a variable number of rounds. The blocksize of RC5 is
always equal to twice its wordsize.

Copyright © 1994-7 RSA Laboratories

Page 191

11.15. RC5 mechanism parameters

¢ CK_RC5_PARAMS; CK_RC5_PARAMS_PTR

CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and CKM_RC5_MAC
mechanisms. It is defined as follows:

typedef struct CK _RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;

} CK_RC5_PARAMS;

The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment

CK_RC5_PARAMS_PTR is a pointer to a CK_RC5_PARAMS.

¢ CK_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the CKM_RC5_CBC and
CKM_RC5_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK _RC5_CBC PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} CK_RC5_CBC_PARAMES;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment
plv pointer to initialization vector (IV) for CBC encryption
ullvLen length of initialization vector (must be same as blocksize)

CK_RC5_CBC_PARAMS_PTR is a pointer to a CK_RC5_CBC_PARAMS.

¢ CK_RC5_MAC_GENERAL_PARAMS;
CK_RC5_MAC_GENERAL_PARAMS_PTR

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to the
CKM_RC5 _MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK RC5_MAC GENERAL PARAMS {

Copyright © 1994-7 RSA Laboratories

Page 192 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;

} CK_RC5_MAC_GENERAL_PARANS;

The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment
ulMacLength length of the MAC produced, in bytes

CK_RC5_MAC_GENERAL_PARAMS_PTR is a pointer to a
CK_RC5_MAC_GENERAL_PARAMS.

11.16. RC5 mechanisms

11.16.1. RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key generation
mechanism for RSA Data Security’s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the RC5 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC5 key sizes, in bytes.

11.16.2. RC5-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher RC5
and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5_PARAMS, which indicates the wordsize and number of rounds of
encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with null bytes so that the resulting length is a multiple of the cipher blocksize (twice the

Copyright © 1994-7 RSA Laboratories

Page 193

wordsize). The output data is the same length as the padded input data. It does not wrap the key
type, key length, or any other information about the key; the application must convey these
separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 64, RC5-ECB: Key And Data Length

Function Key type Input Iength Output length Comments
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of determined by type of key
blocksize being unwrapped or

CKA_VALUE_LEN

11.16.3. RC5-CBC

RC5-CBC, denoted CKM_RC5_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher
RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initialization vector for cipher block
chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 194 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 65, RC5-CBC: Key And Data Length

Function Key type | Input length Output length Comments
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of determined by type of key
blocksize being unwrapped or

CKA_VALUE_LEN

11.16.4. RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA
Data Security’s block cipher RC5; cipher-block chaining mode as defined in FIPS PUB 81; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initialization vector for cipher block
chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section0 for details). The entries in Table 66 for
data length constraints when wrapping and unwrapping keys do not apply to wrapping and

unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 195

Table 66, RC5-CBC with PKCS Padding: Key And Data Length

Function Key type Input length Output length
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C_Decrypt RC5 multiple of between 1 and blocksize bytes
blocksize shorter than input length
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of between 1 and blocksize bytes
blocksize shorter than input length
11.16.5. General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on RSA Data Security’s block cipher RC5 and
data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC5_MAC_GENERAL_PARAMS structure, which specifies the
wordsize and number of rounds of encryption to use and the output length desired from the

mechanism.

The output bytes from this mechanism are taken from the start of the final RC5 cipher block
produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 67, General-length RC2-MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign RC2 any 0-blocksize, as specified in parameters

C_Verify RC2 any 0-blocksize, as specified in parameters
11.16.6. RC5-MAC

RC5-MAC, denoted by CKM_RC5_MAC, is a special case of the general-length RC5-MAC
mechanism (see Section 0). Instead of taking a CK_RC5_MAC_GENERAL_PARAMS
parameter, it takes a CK_RC5_PARAMS parameter. RC5-MAC always produces and verifies
MAC:s half as large as the RC5 blocksize.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 196 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 68, RC5-MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign RC5 any RC5 wordsize = [blocksize/2
C_Verity RC5 any RC5 wordsize = [blocksize/2

11.17. General block cipher mechanism parameters

¢ CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing
mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128 (CAST5), IDEA, and CDMF
ciphers. It holds the length of the MAC that these mechanisms will produce. It is defined as
follows:

typedef CK_ULONG CK_MAC_GENERAL_PARANS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.

11.18. General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CAST3, CAST128
(CASTS), IDEA, and CDMF block ciphers will be described together here. Each of these ciphers
has the following mechanisms, which will be described in a templatized form:

11.18.1. General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME>_KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in
FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of the DES keys comprising it
has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible for
“weak” or “semi-weak” keys to be generated. Similarly, when triple-DES keys are generated, it is
token dependent whether or not it is possible for any of the component DES keys to be “weak” or
“semi-weak” keys.

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the secret key
must specify a CKA_VALUE_LEN attribute.

Copyright © 1994-7 RSA Laboratories

Page 197

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure may or may not be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have
variable key sizes, and so for the key generation mechanisms for these ciphers, the ulMinKeySize
and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range
of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and CDMEF ciphers, these fields are
not used.

11.18.2. General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with null bytes so that the resulting length is a multiple of <NAME>'s blocksize. The output data
is the same length as the padded input data. It does not wrap the key type, key length or any
other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 69, General Block Cipher ECB: Key And Data Length

Function Key type | Inputlength Output length Comments

C_Encrypt <NAME> multiple of same as input length no final part
blocksize

C_Decrypt <NAME> multiple of same as input length no final part
blocksize

C_WrapKey <NAME> any input length rounded up to

multiple of blocksize

C_UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

11.18.3. General block cipher CBC
Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted

CKM_<NAME>_CBC. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

Copyright © 1994-7 RSA Laboratories

Page 198 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

It has a parameter, an initialization vector for cipher block chaining mode. The initialization
vector has the same length as <NAME>'s blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 70, General Block Cipher CBC: Key And Data Length

Function Key type | Inputlength Output length Comments

C_Encrypt <NAME> multiple of same as input length no final part
blocksize

C_Decrypt <NAME> multiple of same as input length no final part
blocksize

C_WrapKey <NAME> any input length rounded up to

multiple of blocksize

C_UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

11.18.4. General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC with
PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping with <NAME>.
All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The initialization
vector has the same length as <NAME>'s blocksize.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section 0 for details). The entries in Table 71 for
data length constraints when wrapping and unwrapping keys do not apply to wrapping and

unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 199

Table 71, General Block Cipher CBC with PKCS Padding: Key And Data Length

Function Key type Input length Output length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C_Decrypt <NAME> multiple of between 1 and blocksize bytes
blocksize shorter than input length
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C_UnwrapKey | <NAME> multiple of between 1 and blocksize bytes
blocksize shorter than input length
11.18.5. General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-MAC”,
denoted CKM_<NAME>_ MAC_GENERAL. It is a mechanism for single- and multiple-part
signatures and verification.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the output.

The output bytes from this mechanism are taken from the start of the final cipher block produced
in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 72, General-length General Block Cipher MAC: Key And Data Length

Function Key type Data length Signature length

C_Sign <NAME> any 0-blocksize, depending on parameters

C_Verify <NAME> any 0-blocksize, depending on parameters
11.18.6. General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted
CKM_<NAME> MAC. This mechanism is a special case of the
CKM_<NAME>_MAC_GENERAL mechanism described in Section 0. It always produces an
output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 200 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 73, General Block Cipher MAC: Key And Data Length

Function Key type Data length Signature length
C_Sign <NAME> any Lblocksize/2]
C_Verity <NAME> any Lblocksize/2]

11.19. Double-length DES mechanisms

11.19.1. Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length
DES key both have their parity bits set properly, as specified in FIPS PUB 46-2.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the double-length DES key type (specifically, the flags
indicating which functions the key supports) may be specified in the template for the key, or else
are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES_ECB, CKM_DES_CBC, CKM_DES_CBC_PAD, CKM_DES_MAC_GENERAL, and
CKM_DES_MAC (these mechanisms are described in templatized form in Section 0). Triple-DES
encryption with a double-length DES key consists of three steps: encryption with the first DES
key; decryption with the second DES key; and encryption with the first DES key.

When double-length DES keys are generated, it is token-dependent whether or not it is possible
for either of the component DES keys to be “weak” or “semi-weak” keys.

11.20. SKIPJACK mechanism parameters

¢ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE WRAP_PARAMS_PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as follows:

typedef struct CK_SKI PJACK PRI VATE WRAP_PARAMS {
CK_ULONG ul Passwor dLen;
CK _BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandGL.en;
CK_ULONG ul QLen;
CK_ULONG ul Randormlen;
CK_BYTE_PTR pRandon;

Copyright © 1994-7 RSA Laboratories

Page 201

CK_BYTE_PTR pPri meP;
CK_BYTE_PTR pBaseG
CK _BYTE_PTR pSubpri mreQ

} CK_SKI PJACK_PRI VATE_WRAP_PARAMNS;

The fields of the structure have the following meanings:

ulPasswordLen length of the password
pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDataLen other party’s key exchange public key size

pPublicData pointer to other party’s key exchange public key value

ulPandGLen length of prime and base values
ulQLen length of subprime value
ulRandomLen size of random Ra, in bytes

pRandomA pointer to Ra data
pPrimeP pointer to Prime, p, value
pBaseG pointer to Base, g, value
pSubprimeQ pointer to Subprime, g, value

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR is a pointer to a
CK_PRIVATE_WRAP_PARAMS.

¢ CK_SKIPJACK_RELAYX_PARAMS;
CK_SKIPJACK_RELAYX_PARAMS_PTR

CK_SKIPJACK_RELAYX_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_RELAYX mechanism. It is defined as follows:

typedef struct CK_SKI PJACK RELAYX PARAMS {
CK_ULONG ul O dW appedXLen;
CK_BYTE_PTR pQd dW appedX;
CK_ULONG ul A dPasswor dLen;
CK_BYTE_PTR pd dPasswor d;
CK_ULONG ul A dPubl i cDat aLen;
CK_BYTE_PTR pd dPubl i cDat a;
CK_ULONG ul A dRandonLen;
CK_BYTE_PTR pQd dRandomA,;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandonLen;
CK_BYTE_PTR pNewRandomh;

Copyright © 1994-7 RSA Laboratories

Page 202

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

} CK_SKI PJACK_RELAYX_PARAMNE;

The fields of the structure have the following meanings:

ulOldWrappedXLen
pOIldWrappedX
ulOldPasswordLen

pOldPassword

ulOldPublicDataLen
pOIldPublicData
ulOldRandomLen
pOldRandomA
ulNewPasswordLen

pNewPassword

ulNewPublicDataLen
pNewPublicData
ulNewRandomLen

pNewRandomA

CK_SKIPJACK_RELAYX_PARAMS_PTR is a

length of old wrapped key in bytes
pointer to old wrapper key
length of the old password

pointer to the buffer which contains the old user-supplied
password

old key exchange public key size

pointer to old key exchange public key value
size of old random Ra in bytes

pointer to old Ra data

length of the new password

pointer to the buffer which contains the new user-supplied
password

new key exchange public key size

pointer to new key exchange public key value
size of new random Ra in bytes

pointer to new Ra data

pointer to a

CK_SKIPJACK_RELAYX_PARAMS.

11.21. SKIPJACK mechanisms

11.21.1.

SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is a key
generation mechanism for SKIPJACK. The output of this mechanism is called a Message

Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to

the new key.

Copyright © 1994-7 RSA Laboratories

Page 203

11.21.2. SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit electronic codebook mode as defined in
FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 74, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part
11.21.3. SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit cipher-block chaining mode as defined
in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 75, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part
11.21.4. SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in
FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV

when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 204

Table 76, SKIPJACK-OFB64: Data and Length

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part
11.21.5. SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as defined in FIPS
PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 77, SKIPJACK-CFB64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part
11.21.6. SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as defined in FIPS
PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 78, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part
11.21.7. SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as defined in FIPS
PUB 185.

Copyright © 1994-7 RSA Laboratories

Page 205

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 79, SKIPJACK-CFB16: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part
11.21.8. SKIPJACK-CFB8

SKIPJACK-CFBS, denoted CKM_SKIPJACK_CEFBS, is a mechanism for single- and multiple-part
encryption and decryption with SKIPJACK in 8-bit cipher feedback mode as defined in FIPS PUB
185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 80, SKIPJACK-CFBS8: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part

C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part
11.21.9. SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap and
unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and JUNIPER keys.

It does not have a parameter.

11.21.10. SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted CKM_SKIPJACK_PRIVATE_WRAP, is
used to wrap and unwrap a private key. It can wrap KEA and DSA private keys.

It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure.

Copyright © 1994-7 RSA Laboratories

Page 206 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.21.11. SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used with the
C_WrapKey function to “change the wrapping” on a private key which was wrapped with the
SKIPJACK-PRIVATE-WRAP mechanism (see Section 0).

It has a parameter, a CK_SKIPJACK_RELAYX_PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs from other
key-wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of the
arguments to C_WrapKey; however, for the SKIPJACK_RELAYX mechanism, the [always

invalid] value 0 should be passed as the key handle for C_WrapKey, and the already-wrapped
key should be passed in as part of the CK_SKIPJACK_RELAYX_PARAMS structure.

11.22. BATON mechanisms

11.22.1. BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key generation
mechanism for BATON. The output of this mechanism is called a Message Encryption Key
(MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key.

11.22.2. BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 128-bit electronic codebook mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 81, BATON-ECB128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 16 same as input length no final part

C_Decrypt BATON multiple of 16 same as input length no final part
11.22.3. BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 96-bit electronic codebook mode.

Copyright © 1994-7 RSA Laboratories

Page 207

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 82, BATON-ECB96: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 12 same as input length no final part

C_Decrypt BATON multiple of 12 same as input length no final part
11.22.4. BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 128-bit cipher-block chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 83, BATON-CBC128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 16 | same as input length no final part

C_Decrypt BATON multiple of 16 | same as input length no final part
11.22.5. BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single- and
multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 84, BATON-COUNTER: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 16 | same as input length no final part

C_Decrypt BATON multiple of 16 | same as input length no final part
11.22.6. BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single- and multiple-

part encryption and decryption with BATON in shuffle mode.

Copyright © 1994-7 RSA Laboratories

Page 208 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 85, BATON-SHUFFLE: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 16 | same as input length no final part

C_Decrypt BATON multiple of 16 | same as input length no final part
11.22.7. BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a function used
to wrap and unwrap a secret key (MEK). It can wrap and unwrap SKIPJACK, BATON, and
JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
and CKA_VALUE attributes to it.

11.23. JUNIPER mechanisms

11.23.1. JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a key
generation mechanism for JUNIPER. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key.

11.23.2. JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and multiple-
part encryption and decryption with JUNIPER in 128-bit electronic codebook mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table. For

encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Copyright © 1994-7 RSA Laboratories

Table 86, JUNIPER-ECB128: Data and Length

Page 209

Function Key type Input length Output length Comments

C_Encrypt JUNIPER multiple of 16 same as input length no final part

C_Decrypt JUNIPER multiple of 16 same as input length no final part
11.23.3. JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and multiple-
part encryption and decryption with JUNIPER in 128-bit cipher-block chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in

memory.

Table 87, JUNIPER-CBC128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt JUNIPER multiple of 16 same as input length no final part

C_Decrypt JUNIPER multiple of 16 same as input length no final part
11.23.4. JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Table 88, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments

C_Encrypt JUNIPER multiple of 16 same as input length no final part

C_Decrypt JUNIPER multiple of 16 same as input length no final part
11.23.5. JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in shuffle mode.

Copyright © 1994-7 RSA Laboratories

Page 210 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token —in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular IV when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Table 89, JUNIPER-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multiple of 16 same as input length no final part
C_Decrypt JUNIPER multiple of 16 same as input length no final part

11.23.6. JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a function
used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON, and JUNIPER
keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
and CKA_VALUE attributes to it.

11.24. MD2 mechanisms

11.24.1. MD2

The MD2 mechanism, denoted CKM_MD?2, is a mechanism for message digesting, following the
MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.
Constraints on the length of data are summarized in the following table:

Table 90, MD2: Data Length

Function Data length | Digest length
C_Digest any 16

11.24.2. General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted CKM_MD2_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the MD2
hash function. The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-16 (the output size of MD2 is 16 bytes).

Copyright © 1994-7 RSA Laboratories

Page 211

Signatures (MACs) produced by this mechanism will be taken from the start of the full 16-byte
HMAC output.

Table 91, General-length MD2-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 0-16, depending on parameters

C_Verity generic secret any 0-16, depending on parameters
11.24.3. MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2_HMAGC, is a special case of the general-
length MD2-HMAC mechanism in Section 0.

It has no parameter, and always produces an output of length 16.

11.24.4. MD2 key derivation

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism which provides
the capability of deriving a secret key by digesting the value of another secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of MD2).

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key

can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

Copyright © 1994-7 RSA Laboratories

Page 212 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set

to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

11.25. MD5 mechanisms

11.25.1. MD5

The MD5 mechanism, denoted CKM_MDS5, is a mechanism for message digesting, following the
MD?5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For
single-part digesting, the data and the digest may begin at the same location in memory.

Table 92, MD5: Data Length

Function Data length | Digest length
C_Digest any 16

11.25.2. General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted CKM_MD5_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the MD5
hash function. The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-16 (the output size of MD5 is 16 bytes).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 16-byte
HMAC output.

Table 93, General-length MD5-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 0-16, depending on parameters

C_Verify generic secret any 0-16, depending on parameters
11.25.3. MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5_HMAC, is a special case of the general-
length MD5-HMAC mechanism in Section 0.

Copyright © 1994-7 RSA Laboratories

Page 213

It has no parameter, and always produces an output of length 16.

11.25.4. MD?5 key derivation

MDS5 key derivation, denoted CKM_MD5_KEY_DERIVATION, is a mechanism which provides
the capability of deriving a secret key by digesting the value of another secret key with MD5.

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of MD5).

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

o If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

Copyright © 1994-7 RSA Laboratories

Page 214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.26. SHA-1 mechanisms

11.26.1. SHA-1

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following
the Secure Hash Algorithm defined in FIPS PUB 180-1.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For
single-part digesting, the data and the digest may begin at the same location in memory.

Table 94, SHA-1: Data Length

Function Input length | Digest length
C_Digest any 20

11.26.2. General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1
hash function. The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-20 (the output size of SHA-1 is 20 bytes).
Signatures (MACs) produced by this mechanism will be taken from the start of the full 20-byte
HMAC output.

Table 95, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data length Signature length

C_Sign generic secret any 0-20, depending on parameters

C_Verify generic secret any 0-20, depending on parameters
11.26.3. SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA_1_HMAUG, is a special case of the general-
length SHA-1-HMAC mechanism in Section 0.

It has no parameter, and always produces an output of length 20.

11.26.4. SHA-1 key derivation
SHA-1 key derivation, denoted CKM_SHA1 KEY DERIVATION, is a mechanism which

provides the capability of deriving a secret key by digesting the value of another secret key with
SHA-1.

Copyright © 1994-7 RSA Laboratories

Page 215

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 20 bytes (the output size of SHA-1).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 20 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

11.27. FASTHASH mechanisms

11.27.1. FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message digesting,
following the U. S. government’s algorithm.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories

Page 216 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Table 96, FASTHASH: Data Length

Function Input length | Digest length
C_Digest any 40

11.28. Password-based encryption/authentication mechanism parameters

¢ CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the
CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation
mechanisms) and the CKM_PBA_SHA1 WITH_SHA1 _HMAC mechanism. It is defined as

follows:

typedef struct CK _PBE PARAMS {
CK_CHAR_PTR pl ni t Vector;
CK_CHAR _PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_CHAR PTR pSal t;
CK_ULONG ul Sal tLen;
CK _ULONG ul Iteration;

} CK_PBE_PARAMES;

The fields of the structure have the following meanings:

plnitVector pointer to the location that receives the 8-byte initialization
vector (IV), if an IV is required;

pPassword points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;
pSalt points to the salt to be used in the PBE key generation;
ulSaltLen length in bytes of the salt information;
ullteration number of iterations required for the generation.

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.
11.29. PKCS #5 and PKCS #5-style password-based encryption mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption. The method used to generate keys and IVs is specified in PKCS #5.

Copyright © 1994-7 RSA Laboratories

Page 217

11.29.1. MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2 DES CBC, is a mechanism used for
generating a DES secret key and an IV from a password and a salt value by using the MD2 digest
algorithm and an iteration count. This functionality is defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

11.29.2. MD?5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is a mechanism used for
generating a DES secret key and an IV from a password and a salt value by using the MD5 digest
algorithm and an iteration count. This functionality is defined in PKCS#5.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

11.29.3. MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism used for
generating a CAST secret key and an IV from a password and a salt value by using the MD5
digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS#5
for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes.

11.29.4. MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism used for
generating a CAST3 secret key and an IV from a password and a salt value by using the MD5
digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS#5
for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer

which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes.

Copyright © 1994-7 RSA Laboratories

Page 218 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.29.5. MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_MD5_CAST128 CBC or
CKM_PBE_MD5_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret
key and an IV from a password and a salt value by using the MD5 digest algorithm and an
iteration count. This functionality is analogous to that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

11.29.6. SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_SHA1_CAST128_CBC or
CKM_PBE_SHA1_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret
key and an IV from a password and a salt value by using the SHA-1 digest algorithm and an
iteration count. This functionality is analogous to that defined in PKCS#5 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

11.30. PKCS #12 password-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-based
encryption or authentication. The method used to generate keys and IVs is based on a method
that was specified in the original draft of PKCS #12.

We specify here a general method for producing various types of pseudo-random bits from a
password, p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to
be produced is identified by an identification byte, ID, the meaning of which will be discussed
later.

Let H be a hash function built around a compression function f: Z* x Z,* — Z»* (that is, H has a
chaining variable and output of length u bits, and the message input to the compression function
of H is v bits). For MD2 and MD5, =128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password
and salt strings and the number n of pseudo-random bits required. In addition, # and v are of

course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

Copyright © 1994-7 RSA Laboratories

Page 219

2. Concatenate copies of the salt together to create a string S of length v{ s/v | bits (the final copy
of the salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length v p/v| bits (the
final copy of the password may be truncated to create P). Note that if the password is the
empty string, then so is P.

4. Set =S| |P to be the concatenation of S and P.
5. Setj=[n/ul.
6. Fori=1,2, ...], do the following:

a) Set A=H«D| |I), the cth hash of D | |I. That is, compute the hash of D | | ; compute the
hash of that hash; etc.; continue in this fashion until a total of ¢ hashes have been
computed, each on the result of the previous hash.

b) Concatenate copies of A; to create a string B of length v bits (the final copy of A; may be
truncated to create B).

c) Treating I as a concatenation Iy, [, ..., It1 of v-bit blocks, where k=|—s/v—|+|—p/v—|, modify [
by setting I;=(I;+B+1) mod 27 for each j. To perform this addition, treat each v-bit block
as a binary number represented most-significant bit first.

7. Concatenate A1, Ay, ..., Aj together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

When the password-based encryption mechanisms presented in this section are used to generate
a key and IV (if needed) from a password, salt, and an iteration count, the above algorithm is
used. To generate a key, the identifier byte ID is set to the value 1; to generate an IV, the
identifier byte ID is set to the value 2.

When the password based authentication mechanism presented in this section is used to generate
a key from a password, salt, and an iteration count, the above algorithm is used. The identifier
byte ID is set to the value 3.

11.30.1. SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1 RC4 128, is a mechanism used for
generating a 128-bit RC4 secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above on
page 218.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the location of
an application-supplied buffer which will receive an IV; for this mechanism, the contents of this
field are ignored, since RC4 does not require an IV.

The key produced by this mechanism will typically be used for performing password-based
encryption.

Copyright © 1994-7 RSA Laboratories

Page 220 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.30.2. SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4_40, is a mechanism used for
generating a 40-bit RC4 secret key from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key is described above on
page 218.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the location of
an application-supplied buffer which will receive an IV; for this mechanism, the contents of this
field are ignored, since RC4 does not require an IV.

The key produced by this mechanism will typically be used for performing password-based
encryption.

11.30.3. SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted CKM_PBE_SHA1 DES3_EDE _CBC, is a
mechanism used for generating a 3-key triple-DES secret key and IV from a password and a salt
value by using the SHA-1 digest algorithm and an iteration count. The method used to generate
the key and IV is described above on page 218. Each byte of the key produced will have its low-
order bit adjusted, if necessary, so that a valid 3-key triple-DES key with proper parity bits is
obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-
based encryption.

11.30.4. SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted CKM_PBE_SHA1 DES2 EDE CBC, is a
mechanism used for generating a 2-key triple-DES secret key and IV from a password and a salt
value by using the SHA-1 digest algorithm and an iteration count. The method used to generate
the key and IV is described above on page 218. Each byte of the key produced will have its low-
order bit adjusted, if necessary, so that a valid 2-key triple-DES key with proper parity bits is
obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer

which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing password-
based encryption.

Copyright © 1994-7 RSA Laboratories

Page 221

11.30.5. SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_128_CBC, is a mechanism
used for generating a 128-bit RC2 secret key and IV from a password and a salt value by using
the SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV
is described above on page 218.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective
number of bits in the RC2 search space should be set to 128. This ensures compatibility with the
ASN.1 Object Identifier ppbeW t hSHA1And128Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing password-
based encryption.

11.30.6. SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_40_CBC, is a mechanism used
for generating a 40-bit RC2 secret key and IV from a password and a salt value by using the SHA-
1 digest algorithm and an iteration count. The method used to generate the key and IV is
described above on page 218.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective
number of bits in the RC2 search space should be set to 40. This ensures compatibility with the
ASN.1 Object Identifier ppeW t hNSHA1And40Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing password-
based encryption.

11.30.7. SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1l_HMAC, is a
mechanism used for generating a 160-bit generic secret key from a password and a salt value by
using the SHA-1 digest algorithm and an iteration count. The method used to generate the key is
described above on page 218.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the location of
an application-supplied buffer which will receive an IV; for this mechanism, the contents of this
field are ignored, since authentication with SHA-1-HMAC does not require an IV.

Copyright © 1994-7 RSA Laboratories

Page 222 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

The key generated by this mechanism will typically be used for computing a SHA-1 HMAC to
perform password-based authentication (not password-based encryption). At the time of this
writing, this is primarily done to ensure the integrity of a PKCS #12 PDU.

11.31. SET mechanism parameters

¢ CK_KEY_WRAP_SET_OAEP_PARAMS;
CK_KEY_WRAP_SET_OAEP_PARAMS_PTR

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters to the
CKM_KEY WRAP_SET_OAEP mechanism. It is defined as follows:
typedef struct CK KEY_WRAP_SET QAEP_PARAMS {
CK_BYTE bBC,
CK_BYTE_PTR pX;
CK_ULONG ul XLen;
} CK _KEY_WRAP_SET_ QOAEP_PARAMS;

The fields of the structure have the following meanings:
bBC block contents byte

pX concatenation of hash of plaintext data (if present) and extra
data (if present)

ulXLen length in bytes of concatenation of hash of plaintext data (if
present) and extra data (if present). 0 if neither is present

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR is a pointer to a
CK_KEY_WRAP_SET_OAEP_PARAMS.

11.32. SET mechanisms

11.32.1. OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is a
mechanism for wrapping and unwrapping a DES key with an RSA key. The hash of some
plaintext data and/or some extra data may optionally be wrapped together with the DES key.
This mechanism is defined in the SET protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This structure holds
the “Block Contents” byte of the data and the concatenation of the hash of plaintext data (if
present) and the extra data to be wrapped (if present). If neither the hash nor the extra data is
present, this is indicated by the ulXLen field having the value 0.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext data (if

present) and the extra data (if present) is returned following the convention described in Section 0
on producing output. Note that if the inputs to C_UnwrapKey are such that the extra data is not

Copyright © 1994-7 RSA Laboratories

Page 223

returned (e.g., the buffer supplied in the CK_KEY_WRAP_SET_OAEP_PARAMS structure is
NULL_PTR), then the unwrapped key object will not be created, either.

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the
parameter supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEDP, it may be preferable
for it simply to allocate a 128-byte buffer for the concatenation of the hash of plaintext data and
the extra data (this concatenation is never larger than 128 bytes), rather than calling
C_UnwrapKey twice. Each call of C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP requires

an RSA decryption operation to be performed, and this computational overhead can be avoided
by this means.

11.33. LYNKS mechanisms

11.33.1. LYNKS key wrapping
The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, is a mechanism for
wrapping and unwrapping secret keys with DES keys. It can wrap any 8-byte secret key, and it
produces a 10-byte wrapped key, containing a cryptographic checksum.
It does not have a parameter.
To wrap a 8-byte secret key K with a DES key WV, this mechanism performs the following steps:
1. Initialize two 16-bit integers, sum; and sum;, to 0.
2. Loop through the bytes of K from first to last.
3. Set sumi= sumi+the key byte (treat the key byte as a number in the range 0-255).
4. Set sumy= sumy+ sums.

5. Encrypt K with Win ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sum;, representing sum; most-significant bit first. The
result is an 8-byte block, T.

7. Encrypt T with Win ECB mode, obtaining an encrypted checksum, C.

8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not check out
properly, an error is returned. In addition, if a DES key or CDMF key is unwrapped with this

mechanism, the parity bits on the wrapped key must be set appropriately. If they are not set
properly, an error is returned.

Copyright © 1994-7 RSA Laboratories

Page 224 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

11.34. SSL mechanism parameters

¢ CK_SSL3_RANDOM_DATA

CK_SSL3_RANDOM_DATA is a structure which provides information about the random data
of a client and a server in an SSL context. This structure is used by both the
CKM_SSL3_MASTER_KEY DERIVE and the CKM_SSL3 KEY AND_MAC_DERIVE
mechanisms. It is defined as follows:

typedef struct CK _SSL3_ RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;

} CK_SSL3_RANDOM DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client’s random data
ulClientRandomLen length in bytes of the client’s random data

pServerRandom pointer to the server’s random data
ulServerRandomLen length in bytes of the server’s random data

¢ CK_SSL3_MASTER_KEY_DERIVE_PARAMS;
CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3 MASTER_KEY DERIVE mechanism. It is defined as follows:

typedef struct CK _SSL3_MASTER KEY_DERI VE_PARAMS {
CK_SSL3_RANDOM DATA Random nf o;
CK_VERSI ON_PTR pVer si on;

} CK_SSL3_MASTER _KEY_DERI VE_PARANS;

The fields of the structure have the following meanings:
RandomlInfo client’s and server’s random data information.

pVersion pointer to a CK_VERSION structure which receives the
SSL protocol version information

CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS.

Copyright © 1994-7 RSA Laboratories

Page 225

¢ CK_SSL3 _KEY_MAT_OUT; CK_SSL3_KEY_MAT_OUT_PTR

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization =~ vectors after = performing a C_DeriveKey function with the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3 KEY_MAT_QUT {
CK_OBJECT_HANDLE hd i ent MacSecret ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl Vd i ent;
CK_BYTE_PTR pl VSer ver;

} CK_SSL3_KEY_NAT_QUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to a location which receives the initialization vector
(IV) created for the client (if any)

plVServer pointer to a location which receives the initialization vector
(IV) created for the server (if any)

CK_SSL3_KEY_MAT_OUT_PTR is a pointer to a CK_SSL3_KEY_MAT_OUT.

¢ CK_SSL3_KEY _MAT PARAMS; CK_SSL3_KEY_MAT_PARAMS_PTR

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3_KEY_MAT_PARAMS {

CK_ULONG ul MacSi zel nBi t's;

CK_ULONG ul KeySi zel nBi ts;

CK_ULONG ul I VSi zel nBi ts;

CK _BBOOL bl sExport;

CK_SSL3_RANDOM DATA Random nf o;

CK _SSL3_KEY_MAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

ulMacSizelnBits the length (in bits) of the MACing keys agreed upon during
the protocol handshake phase

ulKeySizelnBits the length (in bits) of the secret keys agreed upon during the
protocol handshake phase

Copyright © 1994-7 RSA Laboratories

Page 226 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

ull VSizelnBits the length (in bits) of the IV agreed upon during the
protocol handshake phase. If no IV is required, the length
should be set to 0

blsExport a Boolean value which indicates whether the keys have to
be derived for an export version of the protocol

RandomlInfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures which
receives the handles for the keys generated and the IVs

CK_SSL3_KEY_MAT_PARAMS_PTR is a pointer to a CK_SSL3_KEY_MAT_PARAMS.

11.35. SSL mechanisms

11.35.1. Pre_master key generation

Pre_master key generation in SSL 3.0, denoted CKM_SSL3_PRE_MASTER_KEY_GEN, is a
mechanism which generates a 48-byte generic secret key. It is used to produce the "pre_master"
key used in SSL version 3.0.

It has one parameter, a CK_VERSION structure, which provides the client’s SSL version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).
Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure both indicate 48 bytes.

11.35.2. Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_MASTER_KEY_DERIVE, is a mechanism
used to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used
to produce the "master_secret" key used in the SSL protocol from the "pre_master" key. This
mechanism returns the value of the client version which is built into the "pre_master" key as well
as a handle to the derived "master_secret" key.

It has a parameter, a CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure, which allows for
the passing of random data to the token as well as the returning of the protocol version number
which is part of the pre-master key. This structure is defined in Section 0.

Copyright © 1994-7 RSA Laboratories

Page 227

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).
Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

e If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure’s p Version field will be modified by the
C_DeriveKey call. In particular, when the call returns, this structure will hold the SSL version
associated with the supplied pre_master key.

11.35.3. Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3_KEY_AND_MAC_DERIVE, is a
mechanism is used to derive the appropriate cryptographic keying material used by a
"CipherSuite" from the "master_secret" key and random data. This mechanism returns the key
handles for the keys generated in the process, as well as the IVs created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of
random data as well as the characteristic of the cryptographic material for the given CipherSuite
and a pointer to a structure which receives the handles and IVs which were generated. This
structure is defined in Section 0.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs

(if IVs are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

Copyright © 1994-7 RSA Laboratories

Page 228 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

The two MACing keys ("client_write_ MAC_secret" and "server_write_MAC_secret") are always
given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification, and
derivation operations.

The other two keys ('client_write_key" and ‘'server_write_key") are typed according to
information found in the template sent along with this mechanism during a C_DeriveKey
function call. By default, they are flagged as valid for encryption, decryption, and derivation
operations.

IVs will be generated and returned if the ullVSizelnBits field of the
CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their length in
bits will agree with the value in the ullVSizelnBits field.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
template provided to C_DeriveKey may not specify values for any of these attributes which
differ from those held by the base key.

Note that the CK _SSL3_ KEY MAT OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will by modified by the
C_DeriveKey call. In particular, the four key handle fields in the CK_SSL3_KEY_MAT_OUT
structure will be modified to hold handles to the newly-created keys; in addition, the buffers
pointed to by the CK_SSL3_KEY_MAT_OUT structure’s pI VClient and plVServer fields will have
IVs returned in them (if IVs are requested by the caller). Therefore, these two fields must point to
buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a
result of a successful completion. However, since the CKM_SSL3_KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to
by the CK_SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on
the token.

11.354. MD5 MACing in SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSL3_MD5_MAC, is a mechanism for single- and
multiple-part signatures (data authentication) and verification using MD5, based on the SSL 3.0
protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Copyright © 1994-7 RSA Laboratories

Page 229

Table 97, MD5 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any 4-8, depending on parameters
C_Verity generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of generic secret key sizes, in bits.

11.35.5. SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3_SHA1 _MAGC, is a mechanism for single- and
multiple-part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0
protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 98, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data length Signature length
C_Sign generic secret any 4-8, depending on parameters
C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the u/MinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of generic secret key sizes, in bits.

11.36. Parameters for miscellaneous simple key derivation mechanisms

¢ CK_KEY_DERIVATION_STRING_DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA is a structure that holds a pointer to a byte string and
the byte string’s length. It provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE,
and CKM_XOR_BASE_AND_DATA mechanisms. It is defined as follows:

typedef struct CK_KEY_DERI VATI ON_STRI NG_DATA {
CK_BYTE_PTR pbDat a;
CK_ULONG ul Len;

} CK_KEY_DERI VATI ON_STRI NG_DATA,;

The fields of the structure have the following meanings:

Copyright © 1994-7 RSA Laboratories

Page 230 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

pData pointer to the byte string
ulLen length of the byte string

CK_KEY_DERIVATION_STRING_DATA_PTR is a pointer to a
CK_KEY_DERIVATION_STRING_DATA.

¢ CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS_PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base key should be
used as the first bit of the derived key. It is defined as follows:

typedef CK ULONG CK_EXTRACT_PARAVNS;

CK_EXTRACT_PARAMS_PTR is a pointer to a CK_EXTRACT_PARAMS.

11.37. Miscellaneous simple key derivation mechanisms

11.37.1. Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret key from
the concatenation of two existing secret keys. The two keys are specified by handles; the values
of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key
value information which is appended to the end of the base key’s value information (the base key
is the key whose handle is supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string
0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of
the values of the two original keys.

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible

with that key type. The key produced by this mechanism will be of the specified type and
length.

Copyright © 1994-7 RSA Laboratories

Page 231

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the two
original keys’ values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If either of the two original keys has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

e Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to
FALSE, so does the derived key. If not, then the derived key’'s CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if both of
the original keys have their CKA_ALWAYS_SENSITIVE attributes set to TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to
TRUE.

11.37.2. Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by
concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the length and value of the data which will be appended to the base key to derive
another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string
0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of
the value of the original key and the data.

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible

with that key type. The key produced by this mechanism will be of the specified type and
length.

Copyright © 1994-7 RSA Laboratories

Page 232 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the original
key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

11.37.3. Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by
prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the length and value of the data which will be prepended to the base key to
derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string
O0x89ABCDEF01234567.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of
the data and the value of the original key.

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible

with that key type. The key produced by this mechanism will be of the specified type and
length.

Copyright © 1994-7 RSA Laboratories

Page 233

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the data and
the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

11.37 4. XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE _AND_DATA, is a mechanism which
provides the capability of deriving a secret key by performing a bit XORing of a key pointed to by
a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing the string
0x88888888.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of the
lengths of the data and the value of the original key.

e If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

e If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be compatible

with that key type. The key produced by this mechanism will be of the specified type and
length.

Copyright © 1994-7 RSA Laboratories

Page 234 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of the
data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

e The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

e Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

11.37.5. Extraction of one key from another key
Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is a
mechanism which provides the capability of creating one secret key from the bits of another

secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the
original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-
byte value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position
21 (i.e., the value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labelled as by, by, ..., ba.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit bx. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the
end of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for
the derivation to succeed.

e If nolength or key type is provided in the template, then an error will be returned.

Copyright © 1994-7 RSA Laboratories

Page 235

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than the original key has, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

Copyright © 1994-7 RSA Laboratories

Page 236 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

12.Cryptoki tips and reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how Cryptoki
works.

12.1. Operations, sessions, and threads

In Cryptoki, there are several different types of operations which can be “active” in a session. An
active operation is essentially one which takes more than one Cryptoki function call to perform.
The types of active operations are object searching; encryption; decryption; message-digesting;
signature with appendix; signature with recovery; verification with appendix; and verification
with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2 operations active
simultaneously if the token supports this; moreover, those two operations must be one of the four
following pairs of operations: digesting and encryption; decryption and digesting; signing and
encryption; decryption and verification.

If an application attempts to initialize an operation (make it active) in a session, but this cannot be
accomplished because of some other active operation(s), the application receives the error value
CKR_OPERATION_ACTIVE. This error value can also be received if a session has an active
operation and the application attempts to use that session to perform any of various operations
which do not become “active”, but which require cryptographic processing, such as using the
token’s random number generator, or generating/wrapping/unwrapping/deriving a key.

Different threads of an application should never share sessions, unless they are extremely careful
not to make function calls at the same time. This is true even if the Cryptoki library was
initialized with locking enabled for thread-safety.

12.2. Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) always possesses all
possible attributes specified by Cryptoki for an object of its type. This means, for example, that a
Diffie-Hellman private key object always possesses a CKA_VALUE_BITS attribute, even if that
attribute wasn’t specified when the key was generated (in such a case, the proper value for the attribute
is computed during the key generation process).

In general, a Cryptoki function which requires a template for an object needs the template to
specify —either explicitly or implicitly —any attributes that are not specified elsewhere. If a
template specifies a particular attribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a particular value of the attribute from among those
specified and use that value. In any event, object attributes are always single-valued.

Copyright © 1994-7 RSA Laboratories

Page 237

12.3. Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures (“signing with
appendix”) which is supported by certain mechanisms. Recall that for ordinary digital
signatures, a signature of a message is computed as some function of the message and the signer’s
private key; this signature can then be used (together with the message and the signer’s public
key) as input to the verification process, which yields a simple “signature valid/signature
invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private key.
However, to verify this signature, no message is required as input. Only the signature and the
signer’s public key are input to the verification process, and the verification process outputs
either “signature invalid” or — if the signature is valid — the original message.

Consider a simple example with the CKM_RSA_X_509 mechanism. Here, a message is a byte
string which we will consider to be a number modulo 7 (the signer’s RSA modulus). When this
mechanism is used for ordinary digital signatures (signatures with appendix), a signature is
computed by raising the message to the signer’s private exponent modulo n. To verify this
signature, a verifier raises the signature to the signer’s public exponent modulo 7, and accepts the
signature as valid if and only if the result matches the original message.

If CKM_RSA_X_509 is used to create signatures with recovery, the signatures are produced in
exactly the same fashion. For this particular mechanism, any number modulo 7 is a valid
signature. To recover the message from a signature, the signature is raised to the signer’s public
exponent modulo n.

Copyright © 1994-7 RSA Laboratories

APPENDIX A Page 239

Appendix A: Token Profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should support for
various common types of application. It is expected that these sets would be standardized as
parts of the various applications, for instance within a list of requirements on the module that
provides cryptographic services to the application (which may be a Cryptoki token in some
cases). Thus, these profiles are intended for reference only at this point, and are not part of this
standard.

The following table summarizes the mechanisms relevant to two common types of application:

Table A-1, Mechanisms and profiles

Application
Government Cellular Digital
Mechanism Authentication-only Packet Data
CKM_DSA_KEY_PAIR_GEN v
CKM_DSA v

CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_DERIVE
CKM_RC4_KEY_GEN

CKM_RC4

CKM_SHA_1 v

ANERNERNERN

A.1 Government authentication-only
The U.S. government has standardized on the Digital Signature Algorithm as defined in FIPS
PUB 186 for signatures and the Secure Hash Algorithm as defined in FIPS PUB 180-1 for message
digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1

Note that this version of Cryptoki does not have a mechanism for generating DSA parameters.

A.2 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication. The basic
set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)

RC4 key generation (40-128 bits)

Copyright © 1994-7 RSA Laboratories

Page 240 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256 bits, but it
has been recommended that the size be increased to at least 512 bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-Hellman
parameters.

Copyright © 1994-7 RSA Laboratories

APPENDIX B

Page 241

Appendix B: Comparison of Cryptoki and Other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

e ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An
Application Programming Interface, April 29, 1994

e X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. It is at a level similar to
Cryptoki. The following table lists the FORTEZZA CIPG functions, together with the equivalent

Cryptoki functions:

Table B-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki

CI_ChangePIN C_InitPIN, C_SetPIN

CI_CheckPIN C_Login

CI_Close C_CloseSession

CI_Decrypt C_Decryptlnit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal

CI_DeleteCertificate

C_DestroyObject

CI_DeleteKey

C_DestroyObject

CI_Encrypt

C_Encryptlnit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal

CI_ExtractX

C_WrapKey

CI_GeneratelV

C_GenerateRandom

CI_GenerateMEK

C_GenerateKey

CI_GenerateRa

C_GenerateRandom

CI_GenerateRandom

C_GenerateRandom

CI_GenerateTEK

C_GenerateKey

CI_GenerateX

C_GenerateKeyPair

CI_GetCertificate

C_FindObjects

CI_Configuration

C_GetTokenInfo

CI_GetHash

C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

CI_GetlV

No equivalent

CI_GetPersonalityList

C_FindObjects

CI_GetState

C_GetSessionInfo

CI_GetStatus

C_GetTokenInfo

CI_GetTime

C_GetTokenInfo

CI_Hash

C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

CI_Initialize

C_Initialize

CI_InitializeHash

C_DigestInit

Copyright © 1994-7 RSA Laboratories

Page 242

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

FORTEZZA CIPG

Equivalent Cryptoki

CI_InstallX

C_UnwrapKey

CI_LoadCertificate

C_CreateObject

CI_LoadDSAParameters

C_CreateObject

CI_LoadInitValues

C_SeedRandom

CI_LoadlV C_Encryptlnit, C_DecryptInit
CI_LoadK C_SignInit
CI_LoadPublicKeyParameters | C_CreateObject

CI_LoadPIN C_SetPIN

CI_LoadX C_CreateObject

CI_Lock Implicit in session management
CI_Open C_OpenSession

CL_RelayX C_WrapKey

CI_Reset C_CloseAllSessions

CI_Restore Implicit in session management
CI_Save Implicit in session management
CI_Select C_OpenSession
CI_SetConfiguration No equivalent

CI_SetKey C_Encryptlnit, C_DecryptInit
CI_SetMode C_Encryptlnit, C_Decryptlnit
CI_SetPersonality C_CreateObject

CI_SetTime No equivalent

CI_Sign C_SignlInit, C_Sign

CI_Terminate

C_CloseAllSessions

CI_Timestamp

C_SignlInit, C_Sign

CI_Unlock

Implicit in session management

CI_UnwrapKey

C_UnwrapKey

CI_VerifySignature

C_Verifylnit, C_Verify

CL_VerifyTimestamp

C_Verifylnit, C_Verify

CI_WrapKey C_WrapKey
CI_Zeroize C_InitToken
B.2 GCS-API

This proposed standard defines an API to high-level security services such as authentication of
identities and data-origin, non-repudiation, and separation and protection. It is at a higher level
than Cryptoki. The following table lists the GCS-API functions with the Cryptoki functions used
to implement the functions. Note that full support of GCS-API is left for future versions of
Cryptoki.

Copyright © 1994-7 RSA Laboratories

APPENDIX B

Table B-2, GCS-API vs. Cryptoki

Page 243

GCS-API

Cryptoki implementation

retrieve_CC

release_CC

generate_hash

C_DigestInit, C_Digest

generate_random_number

C_GenerateRandom

generate_checkvalue

C_Signlnit, C_Sign, C_SignUpdate, C_SignFinal

verify_checkvalue

C_Verifylnit, C_Verify, C_VerifyUpdate,

C_VerifyFinal

data_encipher

C_Encryptlnit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal

data_decipher

C_Decryptlnit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal

create_CC

derive_key C_DeriveKey
generate_key C_GenerateKey
store_CC

delete_CC

replicate_CC

export_key C_WrapKey
import_key C_UnwrapKey
archive_CC C_WrapKey
restore_CC C_UnwrapKey

set_key_state

generate_key_pattern

verify_key_pattern

derive_clear_key

C_DeriveKey

generate_clear_key

C_GenerateKey

load_key_parts

clear_key_encipher

C_WrapKey

clear_key_decipher

C_UnwrapKey

change_key_context

load_initial_key

generate_initial_key

set_current_master_key

protect_under_new_master_key

protect_under_current_master_key

initialise_random_number_generator

C_SeedRandom

install_algorithm

de_install_algorithm

disable_algorithm

enable_algorithm

set_defaults

Copyright © 1994-7 RSA Laboratories

Page 244 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

Copyright © 1994-7 RSA Laboratories

