RSA

LABORATORIES

PKCS#11 M echanismsv2.30: Cryptoki —Draft 7

RSA Laboratories
29 July 2009
Table of Contents
1 INTRODUCTIONttt sttt ettt e bt e st esesaebesessebesesaesesssebensssesenssneteneen 11
2 S O @] PSSR 11
3 REFERENCES ..ottt sttt sttt ettt e st b e et b e se st et e s et s e e st ete s senens 11
4 [I N I N 16
5 GENERAL OVERVIEW ...ttt sttt sttt ss sttt sebenssnstennsnanas 18
51 INTRODUCTIONtiueeteasteeseeuseeusesssasseessesssesasesaeesaeesaeesseasseanseasseaasesseesbeeabeansesseeasesanesneesseensesnns 18
6 YT o N NS 18
6.1 RS A ettt e Rt ARt AR Rt AR e Rt E e Rt AR et e b eRe e Re e Eereneneenenenrn 19
L300 R B T 7 4 T 1o =TSSP 20
6.1.2 RSAPUDIICKEY ODJECES.... .o et nne s 20
6.1.3 RSAPFIVALE KEY ODJECESeveivieeeeeeeeeries e sttt e et e et re et sresre e e enaeeenaesrenrens 21
6.1.4 PKCS#1 RSAKEY pair geNErationccccceeeiieeeierienesesesessesseeaeseessesessesseseesessessessessens 23
6.1.5 X9.31 RSA KEY PAIl GENEIAtION.ccuirierteieisterieeteeeeseseestestesaeesesseeseessessessessesseseessensessessessens 24
B.1.6 PKCSHLVLE RSA... .ottt sttt se st et seseseese e eesesessesesessesesessesesessenessnss 24
6.1.7 PKCS#1 RSA OAEP mechaniSm ParametersS........cccvoeieriereeerieesiesesesessessesseessesssssessessens 26
¢ CK_RSA PKCS MGF _TYPE; CK_RSA PKCS MGF_TYPE PTR....cccccceitiiiirieteesisieiesnnas 26
¢ CK_RSA PKCS OAEP_SOURCE_TYPE; CK_RSA PKCS OAEP_SOURCE_TYPE_PTR... 26
¢ CK_RSA PKCS OAEP_PARAMS, CK_RSA PKCS OAEP_PARAMS PTR.......ccccovvieiiiinas 27
6.1.8 PKCSHLRSA OAEP ..ottt sttt sttt s sttt se bbb s e betesnebenesnanas 27
6.1.9 PKCS#1 RSA PSSmechaniSm parameterS.........cocoeierererenerneee e se s sreses s seesee e e 28
¢ CK_RSA PKCS PSS PARAMS, CK_RSA PKCS PSS PARAMS PTR.....ccccoovrreririneneens 28
6.1.10 PKCSHL RSAPSS......oiciiretest ettt sttt s e stese e s s e saesanensesens 29
6.1.11 [SOMEC 9796 RSA.......couiiecieirietereseeteeses e sesaetese s se e seeteseseeseseseesesesaesenessesesessnsensssnseneen 30
6.1.12 D0 (=) I A T 30
6.1.13 F S ST = <N 32
6.1.14 PKCS#1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512,
RIPE-MD 128 OF RIPE-MD 160.........ceotiietiireeteeseneeseseeseeseesesesessesesessesessssessssssessssesensssesensssesensssesens 33
6.1.15 PKCS#1 v1.5 RSA signature With SHA-224coccvoiveiireeseere e 34
6.1.16 PKCS#1 RSA PSSsignature With SHA-224..........c.ocoo i 34
6.1.17 PKCS#1 RSA PSSsignature with SHA-1, SHA-256, SHA-384 or SHA-512 35
6.1.18 ANSl X9.31 RSA SIgnatur@ With SHA-Lc.eoveece et 35
6.1.19 TPM 1.1 PKCSHLVLE RSA ..ottt tese s et enssessenenenens 36
6.1.20 TPM 1.1 PKCSHL RSA OAEP........ctiiieieirisee ettt st sesessenesassenenenens 37
6.2 DISA ettt R e Rt A Rt A R e Rt e R e Rt e e R e Rt At et e b eRe e te e Eereneneenenenrn 38

Copyright © 1994-2009 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

PKCS#11 MECHANISMSV2.30: CRYPTOKI

L% R B T {1 a1 o] VRSP URSPURRRN 38
6.2.2 DSAPUDIICKEY ODJECES ...ttt sn s 38
6.2.3 DSAPriVate KEY ODJECES....c.ue ittt ettt s sb e e sae e ene s 39
6.24 DSA domain parameter ODJECES........coiii ittt 41
6.2.5 DSAKEY PAIT GENEIALION.eiuiiieieieiierie ettt sttt sbe e s besbesbesbesbe s e e nee e e naeseesaeas 41
6.2.6 DSA domain parameter gENEratioNccoeieeerrieiiere ettt e e seesee e e 42
6.2.7 DSAWIthOUL NASNINGcouiiiiieieeee ettt e et b en s 42
B.2.8 DSAWITN SHA-L ...ttt bbbt b e 43
6.3 ELLIPTIC CURVE ...ttt sttt et st a e sn bbb nn e nr e ns 44
L Nt R = S T 7= LU =S J USSP 45
B.3.2 DEfINITIONS ...ttt b et h et e e b e b e b bt et et e eenre e 46
6.3.3 ECDSA PUDIIC KEY ODJECESottt 46
6.3.4 Elliptic curve private Key ODJECES.oii it 47
6.3.5 Elliptic curve ey pair geNerationc.ccoeieeerrierierie ettt see e e 49
6.3.6 ECDSAWIthOUt NASHINGcouiiiiieiiiee e ene s 49
6.3.7 ECDSAWITN SHA-L ...ttt bbbttt 50
6.3.8 EC MEChaniSM PAraIMELErS........cocuiieiieie ettt sttt e et bbbt e e saesee e 51
6.3.9 Elliptic curve Diffie-Hellman key derivation.............coooveiiirinienene e 54
6.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation............cccooieerinieieiennnne 55
6.3.11 Elliptic curve Menezes-Qu-Vanstone key derivationccoccoereienieneneenese e 56
6.4 DIFFIE-HELLMAN vttt et sr st nn e nr s 57
B.4.1 DEfINITIONS ...ttt et b et b et e e e e e b e be bt sbe e et et e neenrennen 57
6.4.2 Diffie-Hellman public Key ODJECES........ooi i 57
6.4.3 X9.42 Diffie-Hellman public Key ODJECES......cceoiiiieeee e 58
6.4.4 Diffie-Hellman private K&y ODJECEScoiiiiieieieere et 59
6.4.5 X9.42 Diffie-Hellman private K&y ODJECES........ccuiiiiiiiiiiiere e 60
6.4.6 Diffie-Hellman domain parameter ODJECES..........ooiiiiiiiieie e 62
6.4.7 X9.42 Diffie-Hellman domain parameters OhJECESooeiirerieieiene et 63
6.4.8 PKCS#3 Diffie-Hellman key pair generationocoeeereeirieeiesene e 64
6.4.9 PKCS#3 Diffie-Hellman domain parameter generation............ccooevererenesenieesienieneseseens 64
6.4.10 PKCS#3 Diffie-Hellman key derivation...........c.ccooe e 65
6.4.11 X9.42 Diffie-Hellman mechanism parameters..........oovereeerieeie e 66
¢ CK_X9 42 DH1 DERIVE_PARAMS CK_X9 42 DH1 DERIVE_PARAMS PTR............... 66
¢ CK X9 42 DH2 DERIVE_PARAMS, CK_X9 42 DH2 DERIVE_PARAMS PTR............... 67
¢ CK_X9 42 MQV_DERIVE_PARAMS, CK_X9 42_MQV_DERIVE_PARAMS PTR............. 69
6.4.12 X9.42 Diffie-Hellman key pair generation...........ccoevevieveeerieesesesese e seseeeeseeseeseeseens 70
6.4.13 X9.42 Diffie-Hellman domain parameter generation..........cceceveverieresesseesenesieneseens 70
6.4.14 X9.42 Diffie-Hellman key derivationccececererienieieseeieee e see e 71
6.4.15 X9.42 Diffie-Hellman hybrid key derivation............cccoivveeirieecesennse e 72
6.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivationc.cceeveeveeecereninnennens 73
6.5 WRAPPING/UNWRAPPING PRIVATE KEY S...c.vetiiireresereereesneresesnesenesnesesessesesessesesessesssessesssessessnsanes 74
6.6 GENERIC SECRET KEYuvttuerrseessesesessssesessesesesssseesessesessssssssessesessesessssesessssssessssssessssssenssnssesees 77
B.6.1 DEfINITIONS ..ot 77
6.6.2 GENENIC SECTEL KEY ODJECES ... viiuieeeeeiiesie e sttt ettt e sttt resre e e e e enaensennens 77
6.6.3 Generic SECret KEY gENEratioNccevieiiiesieieeeeeese e e s et s e e e st st sre s e enae e e naesresnens 78
6.7 HMAC MECHANISMScoirereuerreretsrereseses s sesrese e sessesesessese e s asessssesesessesssessesssnssessssssesssenes 78
6.8 AAES . Rt r e r e enas 78
B.8.1 DEfINITIONS ..o 79
6.8.2 AESSECIet KEY ODJECESuiiviceieecee ettt et re s r e e e aenrenne s 79
6.8.3 AESKEY GENEIALION.....ccuiiiiieeetieeeeereesiesieste st st ese e e e see e s e s aeese e e es e s sestestesnesresneeneeneensenrenrens 80
B.8.4 AESECB ...t 80
B.8.5 AESCBC ...ttt 81
6.8.6 AESCBC With PKCSPAAiNG.......coererrieirierieieeeereseesiesteseesesseeaeseesse e ssesseseessesssssessessens 82
B.8.7 AESOFB.....o ottt 83

Copyright © 2009RSA Security Inc. April 2009

B.8.8 AESCRIBocoiiciiiiieie sttt ettt a et et bt n et st e e nentenen 84
6.8.9 General-1ength AESIMAC ...t st e et sne 84
6.8.10 AESIMAC oottt sttt sttt st sttt st sttt sttt st ettt be st et e e tenans 85
6.9 AESWITH COUNTER ...uttiteettetteueeeueesteasteesteessesssesessseasaeasseaaseasseaaseassssseessesssessesasesanssaeesseansesnns 85
Lo IS R B T 4T o LS 86
6.9.2 AESwith Counter mechaniSm ParamELErSooeieierirere e 86
¢ CK_AES CTR_PARAMS, CK_AES CTR_PARAMS PTR.....cccciiiiriirireneresiesie e 86
6.9.3 AESwith Counter EnCryption / DECIYPHION......cueverereresereeresseeesee e e e sreseeaeseeseeseesnens 87
6.10 AESCBCWITH CIPHER TEXT STEALING CT S .ottt 87
6.10.1 [T 0Tl (o USROS 87
6.10.2 AES CTS MEChani SM ParamELErS........ccveeeeereerereseseseeseeseesseseessesieseesseseessessessessessesses 87
6.11 ADDITIONAL AESIMECHANISMS ... coiiuirieintisieistesieestesterestesae e sbeste e sbesae e st ste e sbestenesbessesesteneens 88
6.11.1 [T 0Tl (o USRNSSR 88
6.11.2 AES GCM and CCM Mechani Sm ParametersS..........cuuereeeereereeresesiesessessesssessessessessesses 88
¢ CK GCM _PARAMS, CK_GCM _PARAMS PTRccccsitiiieirieieisienieesesseesiesaeesessesessessens 88
¢ CK_CCM _PARAMS, CK_CCM _PARAMS PTR....ccoiitriiririeineseiee et 89
6.11.3 AES-GCM authenticated ENcryption / DECIYPLioN........cccveverererere e seeeeeeseesee e see e 20
6.11.4 AES-CCM authenticated Encryption / DECIYPLiONcccveeeeerererese e seesee e nens 91
B.12 AESCMAC ...ttt ettt et bbb e b et bt bbbt be et e 92
6.12.1 [T 0Tl (o USROS 92
6.12.2 MECh@NISIM PArAMELEN'S.......c.eeeeeerieriesie et ese e s e e e et e e eestesresresreese e e eneeneeneeneenns 92
6.12.3 General-1ength AES CMAC ... neenaeneesne s 92
6.12.4 AES CMAC ...ttt sttt st sttt ettt st sttt sttt e et e 93
B.13 AESKEY WRAP......ei ittt sttt sttt sttt sttt sttt st st b e st b e sttt b e et be st nee e 93
6.13.1 [T 0Tl (o USROS 94
6.13.2 AES Key Wrap MeChani Sm parameterS........ccccveieverereeeseeseseesesieseessesesseessessssesssnsees 94
6.13.3 AESKEY WEBD ..ottt sttt st st sttt sttt sttt sttt 94
6.14 KEY DERIVATION BY DATA ENCRYPTION —DES & AES......cccooiiriireesee e 94
6.14.1 [T 0Tl (o USROS 95
6.14.2 MEChANI SIM PArGMELEN'S ..ottt b et sa e ebe e 95
6.14.3 VIS o T= TaTES 00 D T=S o T o (o) o 96
6.15 DOUBLEAND TRIPLE-LENGTH DES.......cceoiiiiiiiiniecsie ettt s 96
6.15.1 [T 0Tl (o USROS 96
6.15.2 DES2 SECTet KEY ODJECES.....cueeeeieiiesesie sttt st a e e e e 97
6.15.3 DESB SECTet KEY ODJECES.....cueiueeieiesiesie sttt nae e e e 98
6.15.4 Double-length DESKEY gENErationcceceeeererieresieseseeeeseeseeseeseesessessesseessessssseseesns 98
6.15.5 Triple-length DES Order of OperationS.........cccuevveveriereseneeeeseesesieseesiesessesseeseeseessesees 99
6.15.6 Triple-length DESIN CBC MOUE.........ccciiiiieieceeeeeiesie st eee et sne e e eae s snesnas 99
6.15.7 DESand Triple length DESIN OFB MOGE........c.ccccviviirereeieneenese e seseeseseesee e see e 100
6.15.8 DESand Triple length DESIN CFB MOGEccccoovieiieereeeseese e 100
6.16 DOUBLEAND TRIPLE-LENGTH DES CMACccuoiiiiriiiriesieiresie ettt 101
6.16.1 (D i1 0Tl (o g SRS 101
6.16.2 MECh@ANI SIM PArAMELEN'S......cveeeeieiesiese e st e e se et s e se et sresre s e eseeeeeeneeseenees 101
6.16.3 General-1ength DESB-MAC ..ottt e e sae e sne s 102
6.16.4 DESS-CMAC ... oottt sttt sttt sttt sttt sttt sttt sttt sttt s bt st se e e b st st e 102
B.17 SHA- Lo e R e Rt bttt b e 103
6.17.1 (D i1 0Tl (o g SO SRP 103
6.17.2 S 1 o o == SO STTORPSTRTPSRPIN 103
6.17.3 General-length SHA-LT-HMAC ..ot nae s 104
6.17.4 SHA-L-HMAC ...ttt sttt sttt st bbbt sbe e ebenbe e 104
6.17.5 S A Yo (= 1Y 11 o] o 104
B.18 SHA-224......oieee ettt b et b et b e 105
6.18.1 (D i1 0Tl (o OSSPSR 106
6.18.2 SHA-224 QIgESL ...ttt sttt b ettt ettt b e b e nr e 106

April 2009 Copyright © 2009 RSA Security Inc.

iv PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.18.3 General-length SHA-224-HMAC........cco ittt 106
6.18.4 SHA224-HIMAC ...ttt e ettt et b e 107
6.18.5 SHA-224 KEY AEIIVALION ...ttt sttt se e e e 107
B.19 SHA--25B.. .ttt ettt e b b £ b e b b e ARt e bRt e b e Rt ne b e ke ne e ne e enas 107
6.19.1 DEFINITIONS. ...t bbbttt e et bt st s e e e e e e e e e neas 107
6.19.2 SHA256 QIgESE ...ttt sttt ettt n e 108
6.19.3 General-length SHA-256-HMAC ...ttt e 108
6.19.4 SHA256-HIMAC ...ttt ettt et 108
6.19.5 SHA-256 KEY AEIIVALIONceeieeeeeie sttt st sb e se e e e e 109
B.20 SHA--3BA. it b b e b e b bR ARt e bRt bbbt e b b e e ne e enas 109
6.20.1 DEFINITIONS. ...t bbbttt e et bt st s e e e e e e e e e neas 109
6.20.2 SHABBA QIGESE ...ttt ettt b e 109
6.20.3 General-length SHA-384-HMAC........cco ittt 110
6.20.4 SHAIBA-HIMAC ...ttt e bbbttt et b et 110
6.20.5 SHA-384 KEY AENIVALION ...ttt bbb e e b e 110
B.21 SHA-BL2...c e bbb e bbbt e bRt e bk e e ne e e 110
6.21.1 DEFINITIONS. ...t bbbttt e et bt st s e e e e e e e e e neas 110
6.21.2 SHASL2 QIgESE ...ttt ettt 111
6.21.3 General-length SHA-512-HMAC........ccoiiirrieineriee et 111
6.21.4 SHABL2-HIMAC ...ttt et b ettt b e b s 111
6.21.5 SHA-512 KEY AENIVALION ...ttt se e e b e 111
6.22 PKCS#5 AND PKCS#5-STYLE PASSWORD-BASED ENCRYPTION (PBE)......ccccvoiieiieieienieene 111
6.22.1 DEFINITIONS. ...t bbbt e et bt b et se e e e ee e e eeas 112
6.22.2 Passwor d-based encryption/authentication mechanism parameters..........ccoceecevenenee. 112
¢ CK_PBE_PARAMS, CK_PBE_PARAMS PTR.....cccciiirrreininerennreenes e 112
6.22.3 PKCS#5 PBKDF2 key generation mechanism parameters........ccocvveeeveeeeveereeseesennens 113
¢ CK PKCS5_PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR.....ccccoeiiirireerieeneseieeieiee 113
¢ CK _PKCS5_PBKDF2_SALT_SOURCE_TYPE;
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE_PTR ..ot 114
¢ CK_PKCS5_PBKD2_PARAMS, CK_PKCS5 _PBKD2 _PARAMS PTR......ccccvmiinirieinenas 114
6.22.4 PKCS#5 PBKD2 KeY gENEIatioN.........ciueeuirieieiesiesie sttt sttt see e e e 115
6.23 PK CS#12 PASSWORD-BASED ENCRY PTION/AUTHENTICATION MECHANISMS.....ccoeovriirieenienee 115
6.23.1 SHA-1-PBE for 3-key triple-DES CBC........ccccooeoirririenirieenesiee e 117
6.23.2 SHA-1-PBE for 2-key triple-DES CBC........ccccooeoirririnirieeesiee e 117
6.23.3 SHA-1-PBATOr SHA-L-HMAC ..ottt 117
B.24 SSL it b b e b b A AR £ Rk e £ A et R b e b e e bRt e b et e be et 118
6.24.1 DEFINITIONS. ...t bbbttt e et bt e b et e e e e e e e e e eeas 118
6.24.2 S MeChani SM PArAMELErS.........ciiierieriere ettt e ebe e se e e e 118
¢ CK_SSL3 RANDOM_DATA.....o ottt nnas 118
¢ CK_SS.3 MASTER KEY_DERIVE_PARAMS,
CK_SSL.3 MASTER KEY_DERIVE_PARAMS PTR.....coiiinirieiierieene st iese e 119
¢ CK_SSL3 KEY_MAT_OUT; CK_SSL3 KEY_MAT_OUT_PTR ..ot 119
¢ CK_SSL3 KEY_MAT_PARAMS CK_SS 3 KEY_MAT_PARAMS PTR......cccconiirririnennns 120
6.24.3 Pre_master Key generation ... iiiiiieie et 121
6.24.4 MasSter KEY AEriVaLiONcooeiiirieiiiie sttt bt 121
6.24.5 Master key derivation for Diffie-Hellman...........cooooo i, 122
6.24.6 Key and MAC deriVationccooeiereiieieeee e s see e e 124
6.24.7 MD5 MACING 1N SSL 3.0 ..ttt ettt b e se et es 125
6.24.8 SHA-L MACING IN SSL 3.0ttt 125
B.25 T Sttt b b e AR e b b £ AR £ R b e R A et e b e b e e e bRt e b ebe et e e 126
6.25.1 DEFINITIONS. ...t bbbt e et bt b et se e e e ee e e eeas 126
6.25.2 TLS MEChaNi SM PArAMELENS.ccueiieeierie ettt sttt se e b sbe e saee e e neeseeseeas 127
¢ CK_TLS PRF_PARAMS, CK_TLS PRF_PARAMS PTR.......ccceirrreirenreenenreenes e 127

Copyright © 2009RSA Security Inc. April 2009

6.25.3 TLSPRF (pseudorandom fUNCLION)ccoeieiiriiie e 127
6.25.4 Pre_master KeY generationcooooiieiiieeierere e e 128
6.25.5 MasSter KEY AEriVALTIONcooiiiiieierie sttt bt 128
6.25.6 Master key derivation for Diffie-Hellman...........ccooooiiiniiii e, 129
6.25.7 Key and MAC deriVationcooeiiieieeieeee et sae e e 131
L3022 T YV I I OSSR 132
6.26.1 DEFINITIONS. ...t bbbt e et bt b et se e e e ee e e eeas 132
6.26.2 WTLS MECh@Ni SIM PAr@MELENS.......coueiuieeerieieie ettt s sae e e aeseeseesbe e 133
¢ CK_WTLS RANDOM_DATA; CK_WTLS RANDOM_DATA PTR....ccccovirrireerineereereens 133
¢ CK _WTLS MASTER KEY_DERIVE_PARAMS,
CK_WTLS MASTER KEY DERIVE _PARAMS PTRccoiiiiiiriseseseee e ste s sesasse e e seenens 133
¢ CK_WITLS PRF_PARAMS; CK_WTLS PRF_PARAMS PTR.....cccsotiriririririeerienieeseenenns 134
¢ CK WITLS KEY_MAT _OUT; CK_WTLS KEY_MAT_OUT _PTR.....ccccectrririreeriirieeseniens 135
¢ CK_WITLS KEY_MAT_PARAMS, CK_WTLS KEY_MAT_PARAMS PTR....cccccvcurvrrirnnnns 135
6.26.3 Pre master secret key generation for RSA key exchange SUite..........ccocvvveeevecrcneseene, 136
6.26.4 Master secret Key derivation..........cccvvvieeeeieeerere s 137
6.26.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography...... 138
6.26.6 WTLS PRF (pseudorandom fUNCLiON)ccoervreieiieneciereesese e see e 139
6.26.7 Server Key and MAC derivationccoeveeeeeeiere s eeee et se e e 140
6.26.8 Client key and MAC derivVation.........ccccvvvveeeeieerere s eesee st e e e e e sne s 141
6.27 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS......ctitiiriirieennesieesiesieseeesieseeeseenens 142
6.27.1 [T 0Tl (o g SRS 142
6.27.2 Parameters for miscellaneous simple key derivation mechanisms..........ccccccveveveneenne, 142
¢ CK _KEY_DERIVATION_STRING_DATA; CK_KEY_DERIVATION_STRING_DATA PTR 142
¢ CK_EXTRACT_PARAMS, CK_EXTRACT_PARAMS PTR ..ot 143
6.27.3 Concatenation of a base key and another K&ycccvovvveerieecene s 143
6.27.4 Concatenation of abase key and data..........cccceveverenieiececsce e 144
6.27.5 Concatenation of data and a base KEYccccvevererenie i 145
6.27.6 XORING Of @ key and dat@.........ccceverereriiececece e e 147
6.27.7 Extraction of one key fromanother KEYcccvvvvvieiisinee e 148
B.28 CIMS .. E bR R bR et bRt bt b et ne bt 149
6.28.1 (D i1 0Tl (o g SRS 149
6.28.2 CMS Sgnature Mechani Sm ObJECESccveeereerierieriese e eeeeeee e ee e 150
6.28.3 CMS MECh@NiSM PAr@MELEN'Sccveveereerierieeeeeeete e stese e see st s ese e e eeseeneesreens 151
o CK_CMS SG_PARAMS, CK_CMS SIG_PARAMS PTR.....ccoveirierieesieneniesieseeesiesesessenens 151
6.28.4 L0V ST T = LT TV 152
6.29 BLOWRFISH ...ttt ettt sttt b ettt b e b e e b e e sbe e e e s e e eae e saeeeae e et embeeabesaeesbeenbeenbeennesanas 153
6.29.1 DEFINITIONS. ...ttt bbbt e bbb bt eae e e ee e e eeas 154
6.29.2 BLOWEFISH SeCret KeY ODJECES.......oiuiiieieiieieeeie ettt 154
6.29.3 BlOWFiSh KEY GENEIatioN........ooeiieiesieeie et 155
6.29.4 2o S o T O SRS SP 155
6.29.5 Blowfish -CBC with PKCSPadding........ccccevueirierieienieeeesenesesieese s se e e e e ssessns 156
6.30 TWVOFISH ...ttt ettt ettt et e e ste et et e s ae e e ae e bt e et eabeeaeeeaeeeb e e ebe e be e b e s aeesaeesaeeeaeeabeenbeeareennannnenreens 157
6.30.1 DEFINITIONS. ...t bbbt e et bt b et se e e e ee e e eeas 157
6.30.2 Twofish Secret Key ODJECES.coue i 158
6.30.3 TWOFi S KEY GENEIAtiON ...t e 158
6.30.4 B0 T TR 159
6.30.5 Towfish -CBC With PKCSPaddingccceeviirieiiinieirineisesieesesie s ssens 159
LI N O N VN SRS 159
6.31.1 DEFINITIONS. ...t bbbt e et bt b et se e e e ee e e eeas 159
6.31.2 Camellia secret Key ODJECES. ..o e 160
6.31.3 Camellia Key gENEIratioNoouciiiiieieie et se e e 160
6.31.4 CamEIA-ECB.......c.oiiicireee et sttt st sttt et e be e resre e 161
6.31.5 CamEIA-CBC......cuiiiiieiisieiee ettt st sttt st et te st e e e tesae e et e sbeseeseste e 162

April 2009 Copyright © 2009 RSA Security Inc.

Vi PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.31.6 Camellia-CBC with PKCS Padaingcooeeerrierierierieniese e 163
6.31.7 General-length Camellia-MAC ..o e 164
6.31.8 (02100 < 1 TT= 1Y 165
6.32 KEY DERIVATION BY DATA ENCRYPTION = CAMELLIA.......ciiiiitiieeetieeeecieeeecteeeeeteeeeenreeeeeaneeeas 165
6.32.1 DEfINITIONS. ... eeeitie ettt e e te e e et e e e be e s beeenbeeebaeebeeesbeeeneeenres 165
6.32.2 MEChaNISM PAramMELErScveiiiee ettt sttt ee et e beeebe e e ebaeeneeenres 165
6.33 ARIA et e bt et et e ebae e b e et e et e e beaaeaaeeabeeateebeerteebaeareea 166
6.33.1 DEfINITIONS.....veeitie ettt e e st e e be e e e be e e be e e beeenbeesabaeebeeeabeeeneeenres 166
6.33.2 Aria SECret KEY ODJECESottt e bt nee s 167
6.33.3 ARIA KEY JENEIALION ...ttt ettt sttt s st ae b e e e s e neenbesnen 167
6.33.4 ARIACECB . ..ottt sttt ettt et e bbb e e be e be st e sae e sreesbe e beebeerbeereeareens 168
6.33.5 ARIACCBC......oi ittt ettt st st s ettt e et e e b e s beesbaesbesebesatssaeesbeesteebeenbeeseesreesbeens 169
6.33.6 ARIA-CBC With PKCSPaAiNGcovvvirieiriirieirisieieesesise et saese s snns 170
6.33.7 General-length ARIA-MAC ...ttt st se st e resrenens 171
6.33.8 ARIA-MAGC ..ottt ettt et s bt et e et eebe e s bt e s beesbeebesabssaeesbeesbeebeenbesseesreesbeens 172
6.34 KEY DERIVATION BY DATA ENCRYPTION - ARIA ...t 172
6.34.1 DEfINITIONS.....eeeitie ettt st e e te e et eebe e s beeebeeebaeebeeesbeeeneeenres 172
6.34.2 MEChaNISM PAramMELErSc.veiiieeciee ettt st et ebee et e e baeebe e e ebeeeneeenres 172
6.35 R 0 TS 173
6.35.1 DEfINITIONS.....eeeitiectee ettt e e e st e e be e et eebe e s beeenbeeebaeebeeesbeeeneeenres 174
6.35.2 SEED SeCret KeY ODJECES.....coueieieeee e e e 174
6.35.3 SEED KEY gENEIAtIONoiueiueiuieieiesie sttt sttt st se e bbbt e e neesnesne e 175
6.35.4 Sl 1 T 175
6.35.5 Sl I = 175
6.35.6 SEED-CBC With PKCSPaddingcccevierieiiierieiisiesieeseseeiesieseeeseesessessesessessesessessesens 175
6.35.7 General-length SEED-MAC.........cooiiieiiiiiee e se ettt sae e ste e e st see e ssesessessenens 176
6.35.8 Sl B 1Y Y 176
6.36 KEY DERIVATION BY DATA ENCRYPTION = SEEDccoooiiiiiiie ettt 176
6.36.1 DEfINITIONS.....eeeitie ettt st e et e et eebe e s beeenbeesbaeebeeesbeeeneeeares 176
6.36.2 MEChaNISM PAramMEtErScvei ittt ettt st ettt e et e ebe e e sbeeeneeenres 176
6.37 L@ 1 1 S 177
6.37.1 USAOE OVENVIBIW ...ttt sttt sae et se et et et sb e et entese e besbesbeebesaeeae e e enbeseesaeeeas 177
6.37.2 Case 1: Generation Of OTP VAIUES.........ccocuieiiie ettt ettt saee et esne e sraeeeaeeenes 177
6.37.3 Case 2: Verification of provided OTP VAIUES..........cccoverirerieeierese e 178
6.37.4 Case 3: Generation Of OTP KEYS.......ccoiiiiirerieiere ettt sre e e see e 179
6.37.5 L@ o] o] ox £SO 179
6.37.6 OTP-related NOLIfiCAtIONSeoiiiiiee et e sbe e e eaeeeres 182
6.37.7 OTP MECNANISITIS ...ttt ettt et e st e e s bee e saee e baeesaeeebeeenneeenes 182
CK L PARAM TYPE ...ttt te sttt st sae e e e e et e tesaestesneeneeneensenrennens 183
¢ CK OTP_PARAM; CK_OTP_PARAM PTR.....cciiiicieieeece ettt sttt sne st sreene 185
CK_OTP_PARAMS;, CK_OTP_PARAMS PTRoociiiceeese ettt sttt 186
CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO PTR....cccccceeiirireeeetieeeee e 187
6.37.8 L AN <o o 1 I LSO 188
6.37.9 RSA SeCUrD KEY GENEIALTION.oviieiieieeeiceeeee ettt e s 189
6.37.10 RSA SecurlD OTP generation and validation ... 189
6.37.11 REIUIMN VAIUBS ...ttt ettt ettt ebe e et eeebe e s beeenbeeesbeeeneeennes 189
6.37.12 (@72 1 1 (O 1 1 = 190
6.37.13 ACHVIAENTITY ACTT oottt sttt sttt st ettt e e stesae e esesee e 191
6.37.14 ACTI OTP generation and Validation............cccooeiirineneeeesese e 193
6.38 (O I = TS 193
6.38.1 PrinCiples Of OPeration....... ..o e e 194
6.38.2 Y =0l 0= T e TS 1R 194
6.38.3 DEfINITIONS.....eeeitiectee ettt e e e st e e be e et eebe e s beeenbeeebaeebeeesbeeeneeenres 195
6.38.4 CT-KIP Mechani SM ParameterScoeeeeeeerieeiere et sre e e e e e 195

Copyright © 2009RSA Security Inc. April 2009

Vii

¢ CK_KIP_PARAMS, CK_KIP_PARAMS PTRcocctiiirireririinieinie e seens 195
6.38.5 CT-KIP KEY DErVALIONeeieeceeeeeiesie et seee et te e e e e sae st tesne s e e e naense s e 196
6.38.6 CT-KIP key Wrap and K&Y UNWIAPccereeeeeeierieseesiesseesesseesseseessessessessessssssessessessenes 196
6.38.7 CT-KIP SIgNature geNErationcccceeeeieeerieereeseeseesiesseesesseesseseessessessessessssssessessesseses 196

L1 T @ 5 LTSRS 197
B.40 GOST 28LA7-89oeeieitiieieriinieesies ettt sttt ettt st b e be et b et e b b et be b nbennne 197
6.40.1 [= T o 197
6.40.2 GOST 28147-89 SECret KEY ODJECLS....cviivereeceececierie st se e see st e e e 198
6.40.3 GOST 28147-89 domain parameter ObJECESccvvvvvriereeerieee e 199
6.40.4 GOST 28147-89 KEY JENEIALiONecveiveveieeereeeeiereestesesee s seeeeseesee e sresree e e e seeseesseens 200
6.40.5 GOST 28LA7-89-ECB ..ottt sttt st st st se e be e 200
6.40.6 GOST 28147-89 encryption mode except ECB..........cccovvvreriecierese e 201
6.40.7 GOST 28LA7-8I-MAC ..ottt sttt sttt sttt st se et sbe e ebesaenens 202
6.40.8 [= T o S 203
6.40.9 GOST R 34.11-94 domain parameter ODJECES.........covvvieieeereeere e 204
6.40.10 GOST R34.11-94 IgESt ...ceeverieeererieieiesieneetesie st sttt be e e b sbeseebesaeneebeseenens 205
6.40.11 GOST R34.11-94 HMAC ..ottt sttt sttt st e bbb st ebesaenens 205

B.41 GOST R34.10-200L.......ccucueiuireeuereirieeriesieesiesieesiesaeessesteessesbessesesaessesesbesesesbensesessessenessensens 206
6.41.1 [= T o S 206
6.41.2 GOST R 34.10-2001 public Key ODJECES......eceeeeee e 206
6.41.3 GOST R 34.10-2001 private K&y ODJECES......c.ccvvereereriesereseeereeesee e e eeee e see e 208
6.41.4 GOST R 34.10-2001 domain parameter ODJECES........ccccvveeeereerereesesese s reeeeseesee e 210
6.41.5 GOST R 34.10-2001 mechani Sm Parameters..........ccuvveveererreeserersesessessesseessessessessenns 212
6.41.6 GOST R 34.10-2001 K&y pair gENEIationcccerereserreresieeseeseessesessessesseessessessessenns 213
6.41.7 GOST R 34.10-2001 Without hashingcccvereerinniieneeere e 214
6.41.8 GOST R 34.10-2001 With GOST R34.11-94......couiiiiieiiriereie et seere s 215
6.41.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001............ccccuenee. 215

A MANIFEST CONSTANTS ..ottt et ae e be s e tessesestesenessessens 217
Al OT P DEFINITIONS ..tttitttetesitesesesstesssessssesssesssessssesssteesssesssessssessnsessssessnsessssessnsessssessnsesssens 221
A.2 OBUECT CLASSES ...utttiteteteeitesasesstesssesssesssbesstessssesssteaassessasessasessaseesssessaseesssessseesssessnsenssses 221
A3 LN S I = = TSP 221
A4 IMEECHANISMS ...ttt ctee ettt ettt et e et e b e e bt e ba e e ea e e saee e b ae e aee e b eeeaaeeesabeesaeeessaeesntennnee s 221
A5 A TTRIBUTES ...ttt ttetiteeetessteesssessteessbessssessssessntessssessasesaasesanteesnsessateesssessasensnsesssensssesssensnsensns 221
A.6 ATTRIBUTE CONSTANTS .1ttiutteiteeitesssessssessssesasesssesssessssesssessssessssessssessssessssessnsessssessnsessnsessns 222
A7 OTHER CONSTANTS 1.t tutttiteteteeetesstesssesastesssessseesssesssteasssessseesssessnseesssessnseesssesssessssessnsessssens 222
A.8 INOTIFICATIONS. ...ttt ettt eiteeetee et e et e st e et e et e e s b e e be e e abe e e sbteesaeeesbeeesseeesbeeeaaeeensbeesaeeessseesnseennneas 222
A.9 RETURN VALUESci ittt iittseites sttt ae et e et e e saee e bae e sae e et teasaae et aeensaeesbeeessteesbaeesnaeennteennneennees 222

B. OTP EXAMPLE CODE ..ottt ettt st sttt st sttt st be st st e 223
B.1 DISCLAIMER CONCERNING SAMPLE CODEcutiuiteueetesienesteseesessestenessessenessessesessessesessessenessensens 223
B.2 OTP RETRIEVAL w.uttiteietesteseeteste et steseetesteseetesteeebesteneebesteseesesaeseebestensesestenessestesessesseneesessenens 223
B.3 USER-FRIENDLY MODE OTP TOKEN ...cueiitirieietisieestesieesteseenestestesesteseesestessesessestenessessenessesenns 226
B.4 OTP VERIFICATION ...t teuteteteseetesteeetesteeesesteseesesteseesessessesessessesessessesessessesessensesessensesessensesesseneas 227

C. USING PKCSHLLWITH CT-KIP oottt sttt sas st sessessesessessanens 228
B INTELLECTUAL PROPERTY CONSIDERATIONS......cccoiiiirereienenieee e 232
C REVISION HISTORY ..ottt sttt sttt ste sttt e e et saesaesestesaesesbesaesestessssesaesansessesensessanens 233

List of Tables

April 2009 Copyright © 2009 RSA Security Inc.

viii PKCS#11 MECHANISMSV2.30: CRYPTOKI

TABLE 1, MECHANISMS VS, FUNCTIONS. .. .uuuutututtrsrsrersrsssssssrsssssssssssssssssrsrsssssssrsmsss.. 19
TABLE 2, RSA PUBLIC KEY OBJECT ATTRIBUTES.....ttttiiiiiiiiiiiiiirereiee s s sssssseseessssssessssssssnes 20
TABLE 3, RSA PRIVATE KEY OBJECT ATTRIBUTES....uttiiiiiiiiiiiirirereiee e s s sssssreseeessssssssssssssnes 21
TABLE 4, PKCS#1 V1.5 RSA: KEY AND DATA LENGTH....cooicittiiieiee et vvveeens 25
TABLE 5, PKCS#1 MASK GENERATION FUNCTIONS ..eviiiiiiiiicirrrieeiee e seisreneee s sssvsneens 26
TABLE 6, PKCS#1 RSA OAEP: ENCODING PARAMETER SOURCES........ccovurimieeeeeeieensrsenens 26
TABLE 7, PKCS#1 RSA OAEP: KEY AND DATA LENGTH ..tttiiiiiee e cirreeeeee e eesveeeen, 28
TABLE 8, PKCS#1 RSA PSS: KEY AND DATA LENGTH .cooiiititieieie e cirreeeee e avvveeens 29
TABLE 9, ISO/IEC 9796 RSA: KEY AND DATA LENGTHcviiiiiiiiie et 30
TABLE 10, X.509 (RAW) RSA: KEY AND DATA LENGTH ..covuieiiiiieniieienee e 32
TABLE 11, ANSI X9.31 RSA: KEY AND DATA LENGTH.....coiicititiieiee e ceirveeeeee e vvseeens 33
TABLE 12, PKCS#1v1.5 RSA SIGNATURESWITH VARIOUS HASH FUNCTIONS: KEY AND
DATA LENGTH . uuuuuuuuuuuuuuususuussnns 34
TABLE 13, PKCS#1 RSA PSS SIGNATURES WITH VARIOUS HASH FUNCTIONS: KEY AND
DDATA LENGTH . uuuuuuuuuuuuuuususuussnes 35
TABLE 14, ANSI X9.31 RSA SIGNATURESWITH SHA-1: KEY AND DATA LENGTH........... 36
TABLE 15, TPM 1.1 PKCS#1 v1.5RSA: KEY AND DATA LENGTH....ooieectrrireeee e eeirveen, 37
TABLE 16, PKCS#1 RSA OAEP: KEY AND DATA LENGTH ..uuvvtiiiiieiiie e eevvveeen, 38
TABLE 17, DSA PUBLIC KEY OBJECT ATTRIBUTES ..ttttiiiiiiiiiiiiirreriieeesssssssseseeesssssesssssssnes 39
TABLE 18, DSA PRIVATE KEY OBJECT ATTRIBUTES .utviiiiiiiiiiiirtireiee e s ssissreseeesssssssnssssnees 40
TABLE 19, DSA DOMAIN PARAMETER OBJECT ATTRIBUTESuvttiriieeiiiiiisriereeee e e e sessssssees 41
TABLE 20, DSA: KEY AND DATA LENGTH weeiiiiiiiicittieiiee ettt siavrene e s aabrnees 43
TABLE 21, DSA WITH SHA-1: KEY AND DATA LENGTH ..ccoiiiititiiieie et 43
TABLE 22, MECHANISM INFORMATION FLAGS ...ttt 44
TABLE 23, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTES .uvvviiieeiiiiiiirrieeeee e e sesnsssseens 47
TABLE 24, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTES .eetiieiiiiieitrrieeeee e eeasvseeens 48
TABLE 25, ECDSA: KEY AND DATA LENGTH ...coicicttieiiie ettt sisrreee e e asvrnees 50
TABLE 26, ECDSA WITH SHA-1: KEY AND DATA LENGTH ...uvviiiiiieiiie it 50
TABLE 27, EC: KEY DERIVATION FUNCTIONS......ccciittitiiiic it ssissreee e e s s nsvrsees 51
TABLE 28, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES wuvvtiieiiiiiiirrrereeee e e eesnsvseeens 58
TABLE 29, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTESovvviriieeeeeienvreeee, 59
TABLE 30, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES ..eiiiiiiiiiiirrieeeee e eeivvveeen, 60
TABLE 31, X9.42 DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTESvvviireeeieiinrreeen, 61
TABLE 32, DIFFIE-HELLMAN DOMAIN PARAMETER OBJECT ATTRIBUTES....vtveeeeeiiiinrvveen, 62
TABLE 33, X9.42 DIFFIE-HELLMAN DOMAIN PARAMETERS OBJECT ATTRIBUTES............... 63
TABLE 34, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS........cccciviiiiieee e, 66
TABLE 35, GENERIC SECRET KEY OBJECT ATTRIBUTES......ciiicitttiriieeesesiissreseeee s s s sessssssees 77
TABLE 36, AES SECRET KEY OBJECT ATTRIBUTES ..vtttiiiiiiiiiiirrrereiee e s s ssissreneeesssssessssssnees 79
TABLE 37, AES-ECB: KEY AND DATA LENGTH ...uuttiiiiiiiii et seirreee e avssees 81
TABLE 38, AES-CBC: KEY AND DATA LENGTH ...euuttiiiiiiiii it sinreneee s avseees 82
TABLE 39, AES-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH ...vvvviiieeeeieicenirveeee, 83
TABLE 40, AES-OFB: KEY AND DATA LENGTH....ccottiiiiiiiiiiciiiriiee e sirrenee e savseeens 84
TABLE 41, AES-CFB: KEY AND DATA LENGTH ...cccttitiiiiiiiiesiirrire e ssissrese e e e s esssvssees 84
TABLE 42, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTH ...coccvvvieieee e, 85
TABLE 43, AES-MAC: KEY AND DATA LENGTH ..euuvtiiiiiiiii it sisrene e sssvssees 85

Copyright © 2009RSA Security Inc. April 2009

TABLE 44, AES-CTS. KEY AND DATA LENGTH ..uttiiiiiici et ssrrene e savreees 88
TABLE 45, MECHANISMS VS, FUNCTIONS. .. .uuuututtrursrersrsrssersssssrsssssssssssssrsrsrsssrss.. 92
TABLE 46, GENERAL-LENGTH AES-CMAC: KEY AND DATA LENGTH....cvvvimeeeeeiiienrreeeen, 92
TABLE 47, AES-CMAC: KEY AND DATA LENGTH .uvvtiiiiiiiiiiiiiriieeeee e seirreeeee e svseeens 93
TABLE 48, MECHANISM PARAMETERSuutttiiiiiiiiiiiirreriieeessssssssssresesssssssssssssssessssssssssssssnes 95
TABLE 49, DES2 SECRET KEY OBJECT ATTRIBUTES .1ettiiiiiiiiiitrrereies e s s ssissreseeessssssssssssnees 97
TABLE 50, DES3 SECRET KEY OBJECT ATTRIBUTES .1tviiiiiiiiiiirrrereiee e s sssssreeeeessssssssssssenes 98
TABLE 51, OFB: KEY AND DATA LENGTH ceeiiiiiiiiiiiiiieie ettt sssarenere s avvanees 100
TABLE 52, CFB: KEY AND DATA LENGTH.uiiiiiiiiiiititiiie e seirrere e s ssissbssere s s s s snsvaneees 101
TABLE 53, GENERAL-LENGTH DES3-CMAC: KEY AND DATA LENGTH....vvveeeieiiiiinrinneen, 102
TABLE 54, AES-CMAC: KEY AND DATA LENGTH .uvvieiiiiiiiiciiiieeiee e ccireeeee e vvseees 103
TABLE S5, SHA-L: DATA LENGTH ..coiiictittiieic ettt isrree s e s s s sssabasere s s s s s snabsneees 104
TABLE 56, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH...vvvevveiiiiinnirneee, 104
TABLE 57, SHA-224: DATA LENGTHuuttiiiiiiii ettt seirrrere e s sssabsssre s s s s snsvaneees 106
TABLE 58, GENERAL-LENGTH SHA-224-HMAC: KEY AND DATA LENGTH..occceeevvnrrnnen. 107
TABLE 59, SHA-256: DATA LENGTHuutiiiiiiiii ittt seisrrere e s s ssssbssere s s s s snsvsneees 108
TABLE 60, GENERAL-LENGTH SHA-256-HMAC: KEY AND DATA LENGTH..ccccocevvnrrnnen. 108
TABLE 61, SHA-384: DATA LENGTH ...cuuttiiiiiiii ettt sirrrere s s s sssbssere s s s snavaneees 110
TABLE 62, SHA-512: DATA LENGTHuuttiiiiiiii ettt sirrere e s s ssabasere s s s s s snavsneees 111
TABLE 63, PKCS#5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS............ 113
TABLE 64, PKCS#5 PBKDF2 KEY GENERATION: SALT SOURCES.......cccvvieireeeeeeesnvrvnees, 114
TABLE 65, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH.cceviiiiiiireeeeee e, 125
TABLE 66, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH ..ccoiieeivieeeeee e, 126
TABLE 67, CMS SIGNATURE MECHANISM OBJECT ATTRIBUTES .coceeiiiitttireiee e eesnvvveeens 150
TABLE 68, BLOWFISH SECRET KEY OBJIECTccuvtiiiiiiee e siirrireie s s ssssrssere e s s sssssseees 154
TABLE 69, TWOFISH SECRET KEY OBJECT ceeeiiiiiiiiitittiiiie e e e siissrareee s s s ssssbsseresssssssssssnenes 158
TABLE 70, CAMELLIA SECRET KEY OBJECT ATTRIBUTEScccuttiriieeeeesiiisrereree e s sesasssnees 160
TABLE 71, CAMELLIA-ECB: KEY AND DATA LENGTH c.ocoiiiiiitiiiiiee ettt 162
TABLE 72, CAMELLIA-CBC: KEY AND DATA LENGTH c..ccooiiittiiieiee et 163
TABLE 73, CAMELLIA-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH......cccuvvveee. 164
TABLE 74, GENERAL-LENGTH CAMELLIA-MAC: KEY AND DATA LENGTH ccceveeeiiiinninneee, 164
TABLE 75, CAMELLIA-MAC: KEY AND DATA LENGTHcoiiciitiieeiee et 165
TABLE 76, MECHANISM PARAMETERS FOR CAMELLIA-BASED KEY DERIVATION..........e.... 166
TABLE 77, ARIA SECRET KEY OBJECT ATTRIBUTES ..eeiiiiiiiiittrieeie e s ssissreeere e e s sssssnees 167
TABLE 78, ARIA-ECB: KEY AND DATA LENGTH .uvvttiiiiiiiiiiciiiireiee e ssisrerere e e s ssssssees 169
TABLE 79, ARIA-CBC: KEY AND DATA LENGTH ..vvvtiiiiiiiiiiiiiiieiiee e eeirrre e svvaeees 170
TABLE 80, ARIA-CBC wiTH PKCS PADDING: KEY AND DATA LENGTH wuvvveeeeieiieiivvveeen, 171
TABLE 81, GENERAL-LENGTH ARIA-MAC: KEY AND DATA LENGTH ..cvvviiiieeee e, 171
TABLE 82, ARIA-MAC: KEY AND DATA LENGTH wuvvtiiiiiiiiiiiiiiieiiee e seisreee e e s sssssnees 172
TABLE 83, MECHANISM PARAMETERS FOR ARIA-BASED KEY DERIVATION ..ccvvveeiiiinnvveees. 173
TABLE 84, SEED SECRET KEY OBJECT ATTRIBUTES . ..eiiiiiiiiiirtrieiiee e ssssrssere s e s e ssssssees 174
TABLE 85, MECHANISM PARAMETERS FOR SEED-BASED KEY DERIVATIONcovveuvvveeee. 176
TABLE 86: COMMON OTP KEY ATTRIBUTES.......oiicttttteiiieeieesiistrereie s s s s ssssssssesssssssssssssssees 180
TABLE 87: OTP MECHANISMSVS. APPLICABLE FUNCTIONS.....uuttiiiieeeiiiiiirreeereeesesssnsssseees 182
TABLE 88: OTP PARAMETER TYPES ... uuuuttttiiiiiiiiisiitirereiesssssssssssnssesssssssssssssssessssssssssssssees 183

April 2009 Copyright © 2009 RSA Security Inc.

X PKCS#11 MECHANISMSV2.30: CRYPTOKI

TABLE 89: OTP IMECHANISM FLAGS. ...ccceeeeeeeee et ee et teee e e e e e e e e eeaaesaeeeaeseenennnnns 184
TABLE 90: RSA SECURID SECRET KEY OBJECT ATTRIBUTES. ..cevvuuueeeeeeeeeeeeenaeeeeeeeseeeennnnns 188
TABLE 91: MECHANISMSVS. APPLICABLE FUNCTIONS ...uuiieeeeeeeeeteeeeeeeeeeeesesnassseeseseeesnnnnns 195

Copyright © 2009RSA Security Inc. April 2009

1. INTRODUCTION 11

1 I ntroduction

This document lists the PKCS#11 mechanisms in active use at the time of writing. Refer
to PKCS#11 Other Mechanisms for additional mechanisms defined for PKCS#11 but no
longer in common use.

2 Scope

A number of cryptographic mechanisms (algorithms) are supported in this version. In
addition, new mechanisms can be added later without changing the genera interface. Itis
possible that additional mechanisms will be published from time to time in separate
documents; it is also possible for token vendors to define their own mechanisms
(although, for the sake of interoperability, registration through the PKCS process is
preferable).

3 References

AESKEYWRAP AES Key Wrap Specification (Draft)
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf.

ANSI C ANSI/ISO. American National Sandard for Programming Languages
—C. 1990.

ANS| X9.31 Accredited Standards Committee X9. Digital Sgnatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). 1998.

ANS| X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. 2003.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Sgnature
Algorithm (ECDSA). 1998.

ANS| X9.63 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography. 2001.

ARIA National Security Research Institute, Korea, “Block Cipher Algorithm
ARIA”, URL: http://www.nsri.re.kr/ARIA/index-e.html.

CT-KIP RSA Laboratories. Cryptographic Token Key Initiaization Protocol.
Version 1.0, December 2005. URL:
ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.padf.

CcC/pPP W3C. Composite Capability/Preference Profiles (CC/PP): Sructure

and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.0rg/ TR/CCPP-struct-vocab/

April 2009 Copyright © 2009 RSA Security Inc.

http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
http://www.nsri.re.kr/ARIA/index-e.html
ftp://ftp.rsasecurity.com/pub/otps/ct-kip/ct-kip-v1-0.pdf
http://www.w3.org/TR/CCPP-struct-vocab/

12 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPSPUB 46-3 NIST. FIPS 46-3: Data Encryption Sandard (DES). October 25,
1999. URL: http://csrc.nist.qgov/publications/fips/index.html

FIPSPUB 74 NIST. FIPS74: Guidelines for Implementing and Using the NBS Data
Encryption Sandard. April 1, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 81 NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPSPUB 113 NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

FIPSPUB 180-2 NIST. FIPS 180-2: Secure Hash Sandard. August 1, 2002. URL.:
http://csrc.nist.gov/publications/fips/index.html

FIPSPUB 186-2 NIST. FIPS 186-2: Digital Sgnature Sandard. January 27, 2000.
URL: http://csrc.nist.qgov/publications/fips/index.html

FIPSPUB 197 NIST. FIPS 197: Advanced Encryption Sandard (AES). November
26, 2001. URL: http://csrc.nist.gov/publications/fips/index.html

GCM McGrew, D. and J. Viega, “The Gaois/Counter Mode of Operation
(GCM),” J Submission to NIST, January 2004. URL:
http://csrc.nist.gov/CryptoT ool kit/modes/proposedmodes/gcm/gem-
spec.pdf.

GOST 28147-89 *“Information Processing Systems. Cryptographic Protection.
Cryptographic Algorithm”, GOST 28147-89, Gosudarstvennyi
Standard of USSR, Government Committee of the USSR for
Standards, 1989. (In Russian).

GOST R 34.10-2001 “Information Technology. Cryptographic Data Security. Formation
and Verification Processes of [Electronic] Digital Signature”, GOST R
34.10-2001, Gosudarstvennyi Standard of the Russian Federation,
Government Committee of the Russian Federation for Standards,
2001. (In Russian).

GOST R 34.11-94 “Information Technology. Cryptographic Data Security. Hashing
function”, GOST R 34.11-94, Gosudarstvennyi Standard of the
Russian Federation, Government Committee of the Russian
Federation for Standards, 1994. (In Russian).

ISO/IEC 7816-1 1SO. Information Technology — ldentification Cards — Integrated
Circuit(s) with Contacts —Part 1: Physical Characteristics. 1998.

ISO/IEC 7816-4 1SO. Information Technology — ldentification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

Copyright © 2009RSA Security Inc. April 2009

http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf

3. REFERENCES

ISO/IEC 8824-1

ISO/IEC 8825-1

ISO/IEC 9594-1

ISO/IEC 9594-8

ISO/IEC 9796-2

JavaMIDP

NIST sp800-38a

NIST sp800-38b

NIST AESCTS

MeT-PTD

PCMCIA

PKCS#1
PKCS#3

PKCS#5

PKCS#7

PKCS#8

April 2009

13

ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO. Information Technology—ASN.1 Encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER). 2002.

ISO. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. 2001.

ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO. Information Technology — Security Techniques — Digital
Sgnature Scheme Giving Message Recovery — Part 2 Integer
factorization based mechanisms. 2002.

Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL: http://[cp.org/jsr/detail/118.[sp

National Institute for Standards and Technology, Recommendation for
Block Cipher Modes of Operation, NIST SP 800-38A. URL:
http://csrc.nist.gov/publications/ni stpubs/800-38a/sp800-38a. pdf

National Institute for Standards and Technology, Recommendation for
Block Cipher Modes of Operation: The CMAC Mode for
Authentications, Special Publication 800-38B. URL:
http://csrc.nist.gov/publications/ni stpubs/800-38B/SP_800-38B. pdf

National Institute for Standards and Technology, Proposal To Extend
CBC Mode By “ Ciphertext Stiealing” . URL:
http://csrc.nist.gov/groups/ ST/tool kit/BCM/documents/ci pher text%20st
ealing%20proposal .pdf

MeT. MeT PTD Dsefinition — Personal Trusted Device Definition,
Version 1.0, February 2003. URL: http://www.mobiletransaction.org

Personal Computer Memory Card International Association. PC Card
Standard, Release 2.1,. July 1993.

RSA Laboratories. RSA Cryptography Sandard. v2.1, June 14, 2002.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993.

RSA Laboratories. Password-Based Encryption Sandard. v2.0,
March 25, 1999.

RSA Laboratories. Cryptographic Message Syntax Sandard. V1.5,
November 1993.

RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993.

Copyright © 2009 RSA Security Inc.

http://jcp.org/jsr/detail/118.jsp
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ciphertext stealing proposal.pdf_
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ciphertext stealing proposal.pdf_
http://www.mobiletransaction.org/

14

PKCS#11-C

PKCS#11-P
PKCS#11-B

PKCS#12

RFC 1319

RFC 1321

RFC 1421

RFC 2045

RFC 2104

RFC 2246

RFC 2279

RFC 2534

RFC 2630

RFC 2743

RFC 2744

Copyright © 2009RSA Security Inc.

PKCS#11 MECHANISMSV2.30: CRYPTOKI

RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000.

RSA Laboratories. PKCS#11 Profiles for mobile devices, June 2003.
RSA Laboratories. PKCS#11 Base Functionality, April 2009.

RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999.

B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992. URL: http://ietf.org/rfc/rfc1319.txt

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992. URL: http://ietf.org/rfc/rfc1321.txt

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL.: http://ietf.org/rfc/rfc2045.txt

Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication”, February 1997.

T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL.: http://ietf.org/rfc/rfc2246.txt

F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998. URL.: http://ietf.org/rfc/rfc2279.txt

Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL.: http://ietf.org/rfc/rfc2630.txt

J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000. URL.:
http://ietf.org/rfc/rfc2743.txt

J. Wray. RFC 2744: Generic Security Services APl Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

April 2009

http://ietf.org/rfc/rfc1319.txt
http://ietf.org/rfc/rfc1321.txt
http://ietf.org/rfc/rfc1421.txt
http://ietf.org/rfc/rfc2045.txt
http://ietf.org/rfc/rfc2246.txt
http://ietf.org/rfc/rfc2279.txt
http://ietf.org/rfc/rfc2534.txt
http://ietf.org/rfc/rfc2630.txt
http://ietf.org/rfc/rfc2743.txt
http://ietf.org/rfc/rfc2744.txt

3. REFERENCES

RFC 2865

RFC 3874

RFC 3686

RFC 3717

RFC 3610

RFC 4309

RFC 3748

RFC 3394

RFC 4269

RFC 4357

RFC 4490

RFC 4491

RFC 4493

15

Rigney et a, “Remote Authentication Dial In User Service
(RADIUS)", IETF RFC2865, June 2000. URL:
http://ietf.org/rfc/rfc2865.txt.

Smit et al, “ A 224-bit One-way Hash Function: SHA-224,” IETF RFC
3874, June 2004. URL: http://ietf.org/rfc/rfc3874.txt.

Housley, “Using Advanced Encryption Standard (AES) Counter Mode
With 1Psec Encapsulating Security Payload (ESP),” IETF RFC 3686,
January 2004. URL: http://ietf.org/rfc/rfc3686.txt.

Matsui, et al, ”A Description of the Camellia Encryption Algorithm,”
IETF RFC 3717, April 2004. URL: http://ietf.org/rfc/rfc3713.txt.
Whiting, D., Housley, R., and N. Ferguson, “Counter with CBC-MAC
(CCM)", IETF RFC 3610, September 2003. URL:
http://www.ietf.org/rfc/rfc3610.txt

Housley, R., “Using Advanced Encryption Standard (AES) CCM
Mode with IPsec Encapsulating Security Payload (ESP),” IETF RFC
4309, December 2005. URL : http://ietf.org/rfc/rfc4309.txt

Aboba et al, “Extensible Authentication Protocol (EAP)”, IETF RFC
3748, June 2004. URL.: http://ietf.org/rfc/rfc3748.txt.

Advanced Encryption Standard (AES) Key Wrap Algorithm:
http://www.ietf.org/rfc/rfc3394.txt.

South Korean Information Security Agency (KISA) “The SEED
Encryption Algorithm”, December 2005. ftp:/ftp.rfc-editor.org/in-
notes/rfc4269.txt

V. Popov, I. Kurepkin, S. Leontiev “Additional Cryptographic
Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST
R 34.10-2001, and GOST R 34.11-94 Algorithms’, January 2006.

S. Leontiev, Ed. G. Chudov, Ed. “Using the GOST 28147-89, GOST
R 34.11-94,GOST R 34.10-94, and GOST R 34.10-2001 Algorithms
with Cryptographic Message Syntax (CMS)”, May 2006.

S. Leontiev, Ed., D. Shefanovski, Ed., “Using the GOST R 34.10-94,
GOST R 34.10-2001, and GOST R 34.11-94 Algorithms with the
Internet X.509 Public Key Infrastructure Certificate and CRL Profile’,
May 2006.

J. Song et a. RFC 4493: The AES.CMAC Algorithm. June 2006.
URL: http://www.ietf.org/rfc/rfc4493.txt

SEC1 Standards for Efficient Cryptography Group (SECG). Sandards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

SEC 2 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

April 2009 Copyright © 2009 RSA Security Inc.

http://ietf.org/rfc/rfc2865.txt
http://ietf.org/rfc/rfc3874.txt
http://ietf.org/rfc/rfc3686.txt
http://ietf.org/rfc/rfc3713.txt
http://www.ietf.org/rfc/rfc3610.txt
http://ietf.org/rfc/rfc4309.txt
http://ietf.org/rfc/rfc3748.txt
http://www.ietf.org/rfc/rfc3394.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt
ftp://ftp.rfc-editor.org/in-notes/rfc4269.txt
http://www.ietf.org/rfc/rfc4493.txt

16

TLS

WIM

WPKI

WTLS

X.500

X.509

X.680

X.690

4

PKCS#11 MECHANISMSV2.30: CRYPTOKI

IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL :
http://ietf.org/rfc/rfc2246.txt

WAP. Wireless Identity Module. — WAP-260-WMM-20010712-a. July
2001. URL: http://www.wapforum.org/

WAP. Wirdless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS
20010406-a. April 2001. URL: http://www.wapforum.org/.

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Overview of Concepts, Models and Services. February
2001.

Identical to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.

Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

Definitions

For the purposes of this standard, the following definitions apply. Please refer to the
PKCS#11 base document for further definitions:

AES Advanced Encryption Standard, as defined in FIPS
PUB 197.

CAMELLIA The Camellia encryption algorithm, as defined in RFC

3713.

BLOWFISH The Blowfish Encryption Algorithm of Bruce

Schneler, www.schneier.com.

CBC Cipher-Block Chaining mode, as defined in FIPS PUB
81.

Copyright © 2009RSA Security Inc. April 2009

http://www.ietf.org/
http://ietf.org/rfc/rfc2246.txt
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/
http://www.schneier.com/

4. DEFINITIONS

CDMF

CMAC

CMS
CT-KIP

DES

DSA

EC
ECB

ECDH

ECDSA
ECMQV
GOST 28147-89

GOST R 34.11-94

GOST R 34.10-2001

\
MAC
MQV

OAEP

PKCS

PRF
PTD
RSA

April 2009

17

Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

Cipher-based M essage Authenticate Code as defined in
[NIST sp800-38b] and [RFC 4493].

Cryptographic Message Syntax (see RFC 2630)

Cryptographic Token Key Initialization Protocol (as
defined in [CT-KIP])

Data Encryption Standard, as defined in FIPS PUB 46-
3.

Digital Signature Algorithm, as defined in FIPS PUB
186-2.

Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB
81.

Elliptic Curve Diffie-Hellman.
Elliptic Curve DSA, asin ANSI X9.62.
Elliptic Curve Menezes-Qu-Vanstone

The encryption algorithm, as defined in Part 2 [GOST
28147-89] and [RFC 4357] [RFC 4490], and RFC
[4491].

Hash agorithm, as defined in [GOST R 34.11-94] and
[RFC 4357], [RFC 4490], and [RFC 4491].

The digital signature agorithm, as defined in [GOST R
34.10-2001] and [RFC 4357], [RFC 4490], and [RFC
4491].

Initialization Vector.

Message Authentication Code.
Menezes-Qu-Vanstone

Optimal Asymmetric Encryption Padding for RSA.
Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

Copyright © 2009 RSA Security Inc.

18 PKCS#11 MECHANISMSV2.30: CRYPTOKI

SHA-1 The (revised) Secure Hash Algorithm with a 160-bit
message digest, as defined in FIPS PUB 180-2.

SHA-224 The Secure Hash Algorithm with a 224-bit message
digest, as defined in RFC 3874. Also defined in FIPS
PUB 180-2 with Change Notice 1.

SHA-256 The Secure Hash Algorithm with a 256-bit message
digest, as defined in FIPS PUB 180-2.

SHA-384 The Secure Hash Algorithm with a 384-bit message
digest, as defined in FIPS PUB 180-2.

SHA-512 The Secure Hash Algorithm with a 512-bit message
digest, as defined in FIPS PUB 180-2.

SSL The Secure Sockets Layer 3.0 protocol.
SO A Security Officer user.
TLS Transport Layer Security.

UTF-8 Universal Character Set (UCS) transformation format
(UTF) that represents 1SO 10646 and UNICODE
strings with a variable number of octets.

WIM Wireless Identification Module.
WTLS Wireless Transport Layer Security.

5 General overview

5.1 Introduction

Refer to PKCS#11 Base Functionality for basic pkcs#11 API functions and behaviour.

6 Mechanisms
A mechanism specifies precisely how a certain cryptographic processis to be performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular operation may
well support only a subset of the mechanisms listed. There is aso no guarantee that a
token which supports one mechanism for some operation supports any other mechanism
for any other operation (or even supports that same mechanism for any other operation).
For example, even if a token is able to create RSA digital signatures with the
CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can
also perform RSA encryption with CKM_RSA_PKCS.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 19

Each mechanism description shall be preceeded by a table, of the following format,
mapping mechanisms to API functions.

Table 1, Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair

! SR = SignRecover, VR = VerifyRecover.
2 Single-part operations only.
3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by Cryptoki
and the parameters which are supplied to them.

In genera, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeylLen
fields of the CK_MECHANISM_INFO structure, then those fields have no meaning for
that particular mechanism.

6.1 RSA

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_RSA_PKCS KEY_PAIR_GEN %
CKM_RSA_X9_31_KEY_PAIR_GEN v
CKM_RSA_PKCS v? v? v v
CKM_RSA_PKCS_OAEP v? v
CKM_RSA_PKCS PSS v?
CKM_RSA_9796 v? v
CKM_RSA_X_509 V2 V2 v v
CKM_RSA_X9 31 v?
CKM_SHA1 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384 RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA1 RSA_PKCS PSS
CKM_SHA256_RSA_PKCS PSS
CKM_SHA384 RSA_PKCS PSS
CKM_SHA512_RSA_PKCS PSS
CKM_SHA1 RSA_X9 31
CKM_RSA_PKCS_ TPM_1_ 1 v? v
CKM_RSA_OAEP_ TPM 1 1 v? v

Ro

NARRRERRRE

April 2009 Copyright © 2009 RSA Security Inc.

20 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.1.1 Definitions

This section defines the RSA key type “CKK_RSA” for type CK_KEY_TYPE asused in

the CKA_KEY _TY PE attribute of RSA key objects.

M echanisms:

CKM RSA_PKCS KEY_PAI R_GEN
CKM_RSA_PKCS

CKM_RSA 9796

CKM RSA_X_ 509
CKM_MD2_RSA PKCS
CKM_MD5_RSA_PKCS
CKM_SHAL RSA_PKCS
CKM_SHA224 RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM Rl PEMD128_RSA PKCS
CKM_RI PEMD160_RSA_PKCS
CKM RSA_PKCS OCAEP

CKM RSA X9 31_KEY_PAI R GEN
CKM RSA_X9_31
CKM_SHAL RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHAL RSA_PKCS_PSS
CKM _SHA224 RSA _PKCS PSS
CKM_SHA256_RSA_PKCS_PSS
CKM _SHA512_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM RSA PKCS TPM 1 1
CKM RSA_QAEP_TPM 1_1

6.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes defined for this object class:

Table 2, RSA Public Key Object Attributes

Attribute Datatype Meaning
CKA_MODULUS" Biginteger | Modulusn
CKA_MODULUS BITS*® CK_ULONG | Length in bits of modulus n
CKA_PUBLIC_EXPONENT?! Big integer Public exponent e

"Refer to [PKCS #11-B] table 15 for footnotes

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 21

Depending on the token, there may be limits on the length of key components. See PKCS
#1 for more information on RSA keys.

Thefollowing is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C KEY;
CK_KEY_TYPE keyType CKK_RSA;
CK_UTF8CHAR | abel [] “An RSA public key object”;
CK_BYTE nodul us[] = {...};
CK_BYTE exponent[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA WRAP, &true, sizeof(true)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

b
6.1.3 RSA privatekey objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA)
hold RSA private keys. The following table defines the RSA private key object
attributes, in addition to the common attributes defined for this object class:

Table 3, RSA Private Key Object Attributes

Attribute Datatype | Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_PUBLIC_EXPONENT*® Biginteger | Public exponent e
CKA_PRIVATE_EXPONENT**®’ | Biginteger | Private exponent d

CKA_PRIME_1*®' Biginteger | Primep

CKA_PRIME_2*®' Biginteger | Primeq
CKA_EXPONENT_1*%7 Biginteger | Private exponent d modulo p-1
CKA_EXPONENT_2*%7 Biginteger | Private exponent d modulo g-1
CKA_COEFFICIENT*®’ Biginteger | CRT coefficient g mod p

"Refer to [PKCS #11-B] table 15 for footnotes

Depending on the token, there may be limits on the length of the key components. See
PKCS #1 for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store al of
the above attributes, which can assist in performing rapid RSA computations. Other

April 2009 Copyright © 2009 RSA Security Inc.

22 PKCS#11 MECHANISMSV2.30: CRYPTOKI

tokens might store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT
values.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a
token generates an RSA private key, it stores whichever of the fields in Table 3 it keegps
track of. Later, if an application asks for the values of the key’'s various attributes,
Cryptoki supplies values only for attributes whose values it can obtain (i.e., if Cryptoki is
asked for the value of an attribute it cannot obtain, the request fails). Note that a Cryptoki
implementation may or may not be able and/or willing to supply various attributes of
RSA private keys which are not actually stored on the token. E.g., if a particular token
stores values only for the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and
CKA_PRIME_2 attributes, then Cryptoki is certainly able to report values for all the
attributes above (since they can al be computed efficiently from these three values).
However, a Cryptoki implementation may or may not actually do this extra computation.
The only attributes from Table 3 for which a Cryptoki implementation is required to be
ableto return valuesare CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 3 are
supplied to the object creation call than are supported by the token, the extra attributes are
likely to be thrown away. If an attempt is made to create an RSA private key object on a
token with insufficient attributes for that particular token, then the object creation call
failsand returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_MODULUS BITS
attribute specified. This is because RSA private keys are only generated as part of an
RSA key pair, and the CKA_MODULUS BITS attribute for the pair is specified in the
template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY,
CK_KEY_TYPE keyType CKK_RSA;

CK_UTF8CHAR | abel [] “An RSA private key object”;
CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE nodul us[] = {...};
CK_BYTE publicExponent[] = {...};
CK_BYTE privat eExponent[] = {...};
CK_BYTE prinmel[] = {...};
CK BYTE prinme2[] ={...};

CK_BYTE exponent1[] = {...};

CK_BYTE exponent2[] = {...};

CK_BYTE coefficient[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 23

{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA _SENSI Tl VE, &true, sizeof(true)},
{ CKA DECRYPT, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},
{CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, publicExponent,
si zeof (publ i cExponent) },
{ CKA_PRI VATE_EXPONENT, privat eExponent,
si zeof (pri vat eExponent) },
{CKA PRIMVE_ 1, prinel, sizeof(prinel)},
{CKA PRI MVE_2, prine2, sizeof(prine2)},
{ CKA_EXPONENT_1, exponentl, sizeof(exponentl)},
{ CKA_EXPONENT_2, exponent 2, sizeof (exponent?2)},
{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

3
6.1.4 PKCS#1RSA key pair generation

The PKCS #1 RSA Kkey par generation mechanism, denoted
CKM_RSA PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA_MODULUS BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key. The
CKA_PUBLIC_EXPONENT may be omitted in which case the mechanism shall
supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an aternative default if 0x10001
cannot be used by the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may
generate an error if this attribute is omitted from the template. Experience has shown
that many implementations of 211 and prior did alow the
CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and behaved
as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shal be returned if the implementation cannot
use the supplied exponent vaue. It contributes the CKA_CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the
following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT _1, CKA_EXPONENT_2,

April 2009 Copyright © 2009 RSA Security Inc.

24 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKA_COEFFICIENT. Other attributes supported by the RSA public and private key
types (specifically, the flags indicating which functions the keys support) may aso be
specified in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted
CKM_RSA X9 31 KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA_MODULUS BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the
CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may also
contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT _1, CKA_EXPONENT _2,
CKA_COEFFICIENT. Other attributes supported by the RSA public and private key
types (specifically, the flags indicating which functions the keys support) may aso be
specified in the templates for the keys, or else are assigned default initial values. Unlike
the CKM_RSA_PKCS KEY_PAIR_GEN mechanism, this mechanism is guaranteed to
generate p and g values, CKA_PRIME_1 and CKA_PRIME_2 respectively, that meet
the strong primes requirement of X9.31.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.6 PKCS#1v15RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA PKCS, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the block formats initialy
defined in PKCS #1 v1.5. It supports single-part encryption and decryption; single-part
signatures and verification with and without message recovery; key wrapping; and key
unwrapping. This mechanism corresponds only to the part of PKCS #1 v1.5 that involves
RSA; it does not compute a message digest or a Digestinfo encoding as specified for the

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 25

md2wi t hRSAEncr ypt i on and nd5wi t hRSAEncr ypt i on agorithms in PKCS #1
v1l5.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption, decryption, signatures and signature verification, the input and output
data may begin at the same location in memory. In the table, k is the length in bytes of
the RSA modulus.

Table4, PKCS#1v1.5RSA: Key And Data L ength

Function Key type Input Output Comments
length length

C_Encrypt RSA public key <k-11 k block type 02
C_Decrypt* RSA private key K <k-11 block type 02
C Sign’ RSA privatekey | <k-11 k block type 01
C_SignRecover RSA private key <k11 k block type 01
C Veify RSA publickey | <k-11, K N/A block type 01
C VeifyRecover | RSA public key k <k-11 block type 01
C WrapKey RSA public key <k11 k block type 02
C _UnwrapKey RSA private key k <k-11 block type 02

! Single-part operations only.
2 Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

April 2009 Copyright © 2009 RSA Security Inc.

26 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.1.7 PKCS#1 RSA OAEP mechanism parameters

¢ CK_RSA _PKCS MGF TYPE; CK_RSA_PKCS MGF TYPE_PTR

CK_RSA PKCS MGF _TYPE is used to indicate the Message Generation Function
(MGF) applied to a message block when formatting a message block for the PKCS #1
OAEP encryption scheme or the PKCS #1 PSS signature scheme. It is defined as follows:

t ypedef CK ULONG CK_RSA PKCS MGF_TYPE;

The following MGFs are defined in PKCS #1. The following table lists the defined
functions.

Table5, PKCS#1 Mask Generation Functions

Sour ce I dentifier Value

CKG_MGF1 SHA1 0x00000001
CKG_MGF1_SHA224 0x00000005
CKG_MGF1 _SHA256 0x00000002
CKG_MGF1 _SHA384 0x00000003
CKG_MGF1 SHA512 0x00000004

CK_RSA_PKCS MGF TYPE_PTR isapointer toaCK_RSA_PKCS_MGF_TYPE.

¢ CK_RSA PKCS OAEP SOURCE_TYPE;
CK_RSA_PKCS OAEP SOURCE_TYPE_PTR

CK_RSA PKCS OAEP _SOURCE _TYPE s used to indicate the source of the
encoding parameter when formatting a message block for the PKCS #1 OAEP encryption
scheme. It is defined as follows:

t ypedef CK_ULONG CK_RSA PKCS_QAEP_SOURCE_TYPE;
The following encoding parameter sources are defined in PKCS #1. The following table

lists the defined sources along with the corresponding data type for the pSourceData field
inthe CK_RSA_PKCS _OAEP_PARAMS structure defined below.

Table 6, PKCS#1 RSA OAEP: Encoding parameter sources

Sour ce | dentifier Value Data Type

CKZ_DATA_SPECIFIED | 0x00000001 | Array of CK_BY TE containing the value of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ulSourceDatal_en must be zero.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 27

CK_RSA_PKCS OAEP_SOURCE_TYPE_PTR is a poi nter to a
CK_RSA_PKCS OAEP_SOURCE_TYPE.

¢ CK_RSA_PKCS OAEP PARAMS; CK_RSA PKCS OAEP PARAMS PTR

CK_RSA_PKCS OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA PKCS OAEP mechanism. The structure is defined as follows:

typedef struct CK_RSA PKCS_ QAEP_PARAMS {
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS_MGF_TYPE nygf ;
CK_RSA PKCS QAEP_SOURCE TYPE source;
CK VA D_PTR pSour ceDat a;
CK_ULONG ul Sour cebDat aLen;

} CK_RSA PKCS OAEP_PARANS:

The fields of the structure have the following meanings:

hashAlg mechanism ID of the message digest algorithm used to
calculate the digest of the encoding parameter

mgf mask generation function to use on the encoded block
source source of the encoding parameter

pSourceData data used as the input for the encoding parameter
source

ulSourceDataLen length of the encoding parameter source input

CK_RSA_PKCS OAEP_PARAMS PTR is a poi nter to a
CK_RSA_PKCS OAEP_PARAMS.

6.1.8 PKCS#1RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS OAEP, is a multi-
purpose mechanism based on the RSA public-key cryptosystem and the OAEP block
format defined in PKCS #1. It supports single-part encryption and decryption; key

wrapping; and key unwrapping.
It has a parameter, aCK_RSA_PKCS _OAEP_PARAM S structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The

April 2009 Copyright © 2009 RSA Security Inc.

28 PKCS#11 MECHANISMSV2.30: CRYPTOKI

mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption and decryption, the input and output data may begin at the same location
in memory. In the table, k is the length in bytes of the RSA modulus, and hLen is the
output length of the message digest algorithm specified by the hashAlg field of the
CK_RSA PKCS OAEP PARAMS structure.

Table7, PKCS#1 RSA OAEP: Key And Data Length

Function Key type Input Output
length length
C_Encrypt* RSA publickey | <k-2-2hLen k
C_Decrypt’ RSA private key k < k-2-2hLen
C_WrapKey RSA publickey | <k-2-2hLen k
C_UnwrapKey RSA private key k < k-2-2hLen

! Single-part operations only.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.9 PKCS#1 RSA PSS mechanism parameters

¢ CK_RSA_PKCS PSS PARAMS; CK_RSA PKCS PSS PARAMS PTR

CK_RSA_PKCS PSS PARAMS is a dtructure that provides the parameters to the
CKM_RSA_PKCS PSS mechanism. The structure is defined as follows:

typedef struct CK _RSA PKCS PSS PARAMS ({
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS MG _TYPE ngf ;
CK_ULONG sLen;

} CK_RSA PKCS PSS PARANS;

The fields of the structure have the following meanings:

hashAlg hash algorithm used in the PSS encoding; if the
signature mechanism does not include message

hashing, then this value must be the mechanism used

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 29

by the application to generate the message hash; if the
signature mechanism includes hashing, then this value
must match the hash algorithm indicated by the
signature mechanism

mgf mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS
encoding; typical values are the length of the message
hash and zero

CK_RSA_PKCS PSS PARAMS PTR is a poi nter to a
CK_RSA_PKCS PSS PARAMS.

6.1.10 PKCS#1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA PKCS PSS, is a mechanism
based on the RSA public-key cryptosystem and the PSS block format defined in PKCS
#1. It supports single-part signature generation and verification without message
recovery. This mechanism corresponds only to the part of PKCS #1 that involves block
formatting and RSA, given a hash value; it does not compute a hash value on the message
to be signed.

It has a parameter, aCK_RSA_PKCS PSS PARAMS structure. The sLen field must be
less than or equal to k*-2-hLen and hLen is the length of the input to the C_Sign or
C_Verify function. k* is the length in bytes of the RSA modulus, except if the length in
bits of the RSA modulus is one more than a multiple of 8, in which case k* is one less
than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table.
In the table, k is the length in bytes of the RSA.

Table8, PKCS#1 RSA PSS: Key And Data L ength

Function Key type nput Output
length length

C_Sign* RSA private key hLen k

C_Verify' RSA public key hLen, k N/A

! Single-part operations only.
? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

April 2009 Copyright © 2009 RSA Security Inc.

30 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.1.11 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA 9796, is a mechanism for
single-part signatures and verification with and without message recovery based on the
RSA public-key cryptosystem and the block formats defined in ISO/IEC 9796 and its
annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit
strings. Accordingly, the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit of
the bit string (this assumes the length in bits of the datais a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on
the left with O to 7 zero bits so that the resulting length in bitsis a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bitsis the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In thetable, k isthe length in bytes of the RSA modulus.

Table9, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign* RSA privatekey | <|k/2] k

C SignRecover | RSA privatekey | <[k/2] k

C_Verify' RSA publickey | <[k/2], K N/A

C_VerifyRecover | RSA public key k <| k2]

! Single-part operations only.
? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part encryption

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 31

and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. All these operations are based on so-called
“raw” RSA, as assumed in X.500.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-
significant byte first, applying “raw” RSA exponentiation, and converting the result to a
byte string, most-significant byte first. The input string, considered as an integer, must be
less than the modulus; the output string is aso less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type, key length, or any other information about the
key; the application must convey these separately, and supply them when unwrapping the

key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For
this mechanism, padding should be performed by prepending plaintext data with 0-valued
bytes. In effect, to encrypt the sequence of plaintext bytes by b, ... b, (n < K), Cryptoki
forms P=2"h,+2"%h,+...+b,. This number must be less than the RSA modulus. The k-
byte ciphertext (k is the length in bytes of the RSA modulus) is produced by raising P to
the RSA public exponent modulo the RSA modulus. Decryption of a k-byte ciphertext C
is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is
to be used to produce an unwrapped key, then however many bytes are specified in the
template for the length of the key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very sightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numericdly a least as large as the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same
length as the RSA modulus and is numericaly at least as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In thetable, k isthe length in bytes of the RSA modulus.

April 2009 Copyright © 2009 RSA Security Inc.

32 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 10, X.509 (Raw) RSA: Key And Data L ength

Function Key type Input Output length
length

C_Encrypt* RSA public key <k k

C_Decrypt’ RSA private key k k

C_Sign* RSA privatekey | <k k

C_SignRecover RSA private key <k k

C_Verify' RSA publickey | <k, K N/A

C VerifyRecover | RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

! Single-part operations only.
? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

This mechanism is intended for compatibility with applications that do not follow the
PKCS#1 or ISO/IEC 9796 block formats.

6.1.13 ANS| X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA X9 31, is a mechanism for
single-part signatures and verification without message recovery based on the RSA
public-key cryptosystem and the block formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The
trailer field must be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings.
Accordingly, the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit of
the bit string (this assumes the length in bits of the datais a multiple of 8).

e A signature is converted from a bit string to a byte string by padding the bit string on
the left with O to 7 zero bits so that the resulting length in bits is a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bitsis the same as that of the RSA modulus.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 33

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANS|
X9.31.

Table 11, ANSI X9.31 RSA: Key And Data L ength

Function Key type Input Output
length length

C_Sign* RSA private key < k-2 k

C_Verify' RSA publickey | <k-2, K2 N/A

! Single-part operations only.
? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256, SHA-384,
SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 vl15 RSA sdgnature with MD2 mechanism, denoted
CKM_MD2 RSA PKCS, performs single- and multiple-part digital signatures and
verification operations without message recovery. The operations performed are as
described initially in PKCS #1 v1.5 with the object identifier md2WithRSAEncryption,
and as in the scheme RSASSA-PKCS1-v1 5 in the current version of PKCS #1, where
the underlying hash function is MD2.

Similarly, the PKCS #1 v1.5 RSA signature with MD5 mechanism, denoted
CKM_MD5 RSA_ PKCS, performs the same operations described in PKCS #1 with the
object identifier md5WithRSAEnNcryption. The PKCS#1 v1.5 RSA signature with SHA-
1 mechanism, denoted CKM_SHA1 RSA_PKCS, performs the same operations, except
that it uses the hash function SHA-1 with object identifier shalWithRSAEnNcryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512
mechanisms, denoted CKM_SHA256 RSA_PKCS, CKM_SHA384 RSA_PKCS, and
CKM_SHA512 RSA PKCS respectively, perform the same operations using the SHA-
256, SHA-384 and SHA-512 hash functions with the object identifiers
sha256WithRSA Encryption, sha384WithRSAEncryption and
sha384WithRSA Encryption respectively.

April 2009 Copyright © 2009 RSA Security Inc.

34 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The PKCS #1 v15 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128 RSA_PKCS and CKM_RIPEMD160 RSA_PKCS respectively,
perform the same operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, k is the length in bytes of the RSA modulus. For the
PKCS #1 v1.5 RSA signature with MD2 and PKCS #1 v1.5 RSA signature with MD5
mechanisms, k must be at least 27; for the PKCS #1 v1.5 RSA signature with SHA-1
mechanism, k must be at least 31, and so on for other underlying hash functions, where
the minimum is always 11 bytes more than the length of the hash value.

Table 12, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And
Data Length

Function Key type Input Output Comments
length length
C_Sign RSA private key any k block type
01
C_Verify RSA public key any, k° N/A block type
01

? Datalength, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.15 PKCS#1 v1.5 RSA signaturewith SHA-224

The PKCS #1 v15 RSA signature with SHA-224 mechanism, denoted
CKM_SHA?224 RSA PKCS, performs similarly as the other
CKM_SHAX RSA _ PKCS mechanisms but uses the SHA-224 hash function.

6.1.16 PKCS#1 RSA PSS signaturewith SHA-224

The PKCS #1 RSA PSS signature with SHA-224 mechanism, denoted
CKM_SHA?224 RSA PKCS PSS, performs similarly as the other
CKM_SHAX RSA PSS mechanisms but uses the SHA-224 hash function.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 35

6.1.17 PKCS#1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512

The PKCS #1 RSA PSS dgnature with SHA-1 mechanism, denoted
CKM_SHA1 RSA_PKCS PSS, performs single- and multiple-part digital signatures
and verification operations without message recovery. The operations performed are as
described in PKCS #1 with the object identifier id-RSASSA-PSS, i.e., as in the scheme
RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms,
denoted CKM_SHA256 RSA PKCS PSS, CKM_SHA384 RSA_PKCS PSS, and
CKM_SHAS12 RSA PKCS PSS respectively, perform the same operations using the
SHA-256, SHA-384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA PKCS PSS PARAMS structure. The
sLen field must be less than or equal to k*-2-hLen where hLen is the length in bytes of the
hash value. k* is the length in bytes of the RSA modulus, except if the length in bits of
the RSA modulus is one more than a multiple of 8, in which case k* is one less than the
length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table.
In the table, k is the length in bytes of the RSA modulus.

Table 13, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And
Data Length

Function Key type Input Output
length length

C_Sign RSA private key any k

C_Verify RSA public key any, k° N/A

? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.18 ANSI X9.31 RSA signaturewith SHA-1

The ANSI X931 RSA dgnature with SHA-1 mechanism, denoted
CKM_SHA1 RSA X9 31, peforms single- and multiple-part digital signatures and
verification operations without message recovery. The operations performed are as
described in ANSI X9.31.

This mechanism does not have a parameter.

April 2009 Copyright © 2009 RSA Security Inc.

36 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, k is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANS|
X9.31.

Table 14, ANSI X9.31 RSA Signatureswith SHA-1: Key And Data L ength

Function Key type I nput Output
length length

C_Sign RSA private key any k

C_Verify RSA public key any, k° N/A

? Datalength, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.19 TPM 1.1 PKCS#1 v1.5RSA

The TPM 1.1 PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA_PKCS TPM_1 1,
is a multi-use mechanism based on the RSA public-key cryptosystem and the block
formats initialy defined in PKCS #1 v1.5, with additional formatting rules defined in
TCG TPM Specification Version 1.2. It supports single-part encryption and decryption;

key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 v1.5
RSA encryption mechanism in that the plaintext is wrapped in a TPM_BOUND_DATA
structure before being submitted to the PKCS#1 v1.5 encryption process. On encryption,
the version field of the TPM_BOUND_DATA structure must contain 0x01, 0x01, 0x00,
0x00. On decryption, any structure of the form 0x01, 0x01, OxXX, OxYY may be
accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption and decryption, the input and output data may begin at the same location
in memory. Inthetable, kisthelength in bytes of the RSA modulus.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 37

Table15, TPM 1.1 PKCS#1v1.5RSA: Key And Data Length

Function Key type Input Output
length length
C_Encrypt! RSA publickey | <k-11-5 k
C_Decrypt RSA private key k <k-11-5
C_WrapKey RSA publickey | <k-11-5 k
C_UnwrapKey RSA private key k <k-11-5

! Single-part operations only.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.1.20 TPM 1.1 PKCS#1 RSA OAEP

The TPM 11 PKCS #1 RSA OAEP mechanism, denoted
CKM_RSA PKCS OAEP_TPM_1 1, is a multi-purpose mechanism based on the
RSA public-key cryptosystem and the OAEP block format defined in PKCS #1, with
additional formatting defined in TCG TPM Specification Version 1.2. It supports single-
part encryption and decryption; key wrapping; and key unwrapping.

This mechanism does not have a parameter. It differs from the standard PKCS#1 OAEP
RSA encryption mechanism in that the plaintext is wrapped in a TPM_BOUND_DATA
structure before being submitted to the encryption process and that all of the values of the
parameters that are passed to a standard CKM_RSA PKCS_OAEP operation are fixed.
On encryption, the version field of the TPM_BOUND_DATA structure must contain
0x01, 0x01, 0x00, 0x00. On decryption, any structure of the form 0x01, 0x01, OxXX,
0xY'Y may be accepted.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption and decryption, the input and output data may begin at the same location
in memory. Inthetable, kisthelength in bytes of the RSA modulus.

April 2009 Copyright © 2009 RSA Security Inc.

38

PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 16, PKCS#1 RSA OAEP: Key And Data L ength

Function Key type Input Output
length length
C_Encrypt! RSA publickey | <k-2-40-5 k
C_Decrypt RSA private key k < k-2-40-5
C_WrapKey RSA publickey | <k-2-40-5 k
C_UnwrapKey RSA private key Kk < k-2-40-5

! Single-part operations only.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

6.2 DSA
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DSA_KEY_PAIR_GEN v
CKM_DSA_PARAMETER_GEN %
CKM_DSA v?
CKM_DSA_SHA1 v

6.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY_TYPE as used in the
CKA_KEY_TY PE attribute of DSA key objects.

M echanisms:

CKM DSA_KEY_PAI R_GEN
CKM DSA

CKM DSA_SHA1

CKM DSA_PARAMETER GEN
CKM_FORTEZZA_TI MESTAMP

6.2.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold
DSA public keys. The following table defines the DSA public key object attributes, in
addition to the common attributes defined for this object class:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 39

Table 17, DSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME™® Biginteger | Prime p (512 to 1024 hits, in steps of 64 bits)
CKA_SUBPRIME™ | Biginteger | Subprime q (160 hits)

CKA_BASE™® Biginteger | Baseg

CKA_VALUE™ Biginteger | Publicvaluey

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are
collectively the “DSA domain parameters’. See FIPS PUB 186-2 for more information
on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C _KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR | abel [] = “A DSA public key object”;
CK_BYTE prime[] = {...};
CK_BYTE subprine[] ={...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

3
6.2.3 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA)
hold DSA private keys. The following table defines the DSA private key object
attributes, in addition to the common attributes defined for this object class:

April 2009 Copyright © 2009 RSA Security Inc.

40

PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 18, DSA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME**® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME**® | Biginteger | Subprime g (160 bits)

CKA_BASE™*® Biginteger | Baseg

CKA_VALUE"*®7 Biginteger | Private value x

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are
collectively the “DSA domain parameters’. See FIPS PUB 186-2 for more information

on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not
specified in the key’s template. This is because DSA private keys are only generated as
part of a DSA key pair, and the DSA domain parameters for the pair are specified in the

template for the DSA public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []
CK _BYTE subject[] =
CK_BYTE id[]

CK_BYTE subpri ne[]

CK _BYTE base[] = {..
CK_BYTE val ue[] = {.

CK_ BBOOL true =

{..
= {123};
CK_BYTE prime[] = {...

= CKO_PRI VATE_KEY;

CKK_DSA;

“A DSA private key object”;
1

3

-

};

CK_TRUE;

CK_ATTRI BUTE tenplate[] = {
CKA CLASS, &cl ass,

CKA KEY_TYPE, &keyType,
CKA TCOKEN, &true,

si zeof (cl ass) },
si zeof (keyType)},

si zeof (true)},

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA SUBJECT, subject, sizeof(subject)},
id, sizeof(id)},

CKA_SENSI Tl VE, &true,

CKA SI GN, &true,

CKA PRI MVE, prine,

CKA_SUBPRI ME,

{
{
{
{
{
{ CKA | D,
{
{
E
{ CKA BASE, base,
{

CKA VALUE, val ue,

Copyright © 2009RSA Security Inc.

si zeof (true)},

si zeof (true)},

si zeof (prine)},
subpri e,

si zeof (subprinme)},

si zeof (base) },
si zeof (val ue) }

April 2009

6. MECHANISMS 41

6.2.4 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN_PARAMETERS, key
type CKK_DSA) hold DSA domain parameters. The following table defines the DSA
domain parameter object attributes, in addition to the common attributes defined for this
object class:

Table 19, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™ Biginteger | Primep (512 to 1024 hits, in steps of 64 bits)
CKA_SUBPRIME™ | Biginteger | Subprime q (160 bits)

CKA_BASE™* Biginteger | Baseg

CKA_PRIME_BITS*® | CK_ULONG | Length of the prime value.

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are
collectively the “DSA domain parameters’. See FIPS PUB 186-2 for more information
on DSA domain parameters.

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT_CLASS cl ass = CKO_DOVAI N_PARAVMETERS;
CK_KEY_TYPE keyType CKK_DSA;
CK_UTF8CHAR | abel [] “A DSA domai n paraneter object”;
CK_BYTE prime[] = {...};
CK_BYTE subprine[] ={...};
CK_BYTE base[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA PRI VE, prinme, sizeof(primne)},
{ CKA _SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof (base)},
3

6.2.5 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, isa
key pair generation mechanism based on the Digital Signature Algorithm defined in FIPS
PUB 186-2.

This mechanism does not have a parameter.

April 2009 Copyright © 2009 RSA Security Inc.

42 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The mechanism generates DSA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE
attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
atributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the DSA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

6.2.6 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted
CKM_DSA_PARAMETER_GEN, is adomain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits,
as specified in the CKA_PRIME_BIT S attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE and CKA_PRIME_BITS attributes to the new object.
Other attributes supported by the DSA domain parameter types may aso be specified in
the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

6.2.7 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS
PUB 186-2. (This mechanism corresponds only to the part of DSA that processes the 20-
byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, aDSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table20, DSA: Key And Data Length

Function Key type nput Output
length length

C_Sign* DSA private key 20 40

C_Verify' DSA public key 20, 40° N/A

! Single-part operations only.
? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

6.2.8 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA SHAL, is a mechanism for
single- and multiple-part signatures and verification based on the Digital Signature
Algorithm defined in FIPS PUB 186-2. This mechanism computes the entire DSA
specification, including the hashing with SHA-1.

For the purposes of this mechanism, aDSA signature is a 40-byte string, corresponding to
the concatenation of the DSA valuesr and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 21, DSA with SHA-1: Key And Data L ength

Function Key type [nput Output
length length

C Sign DSA private key any 40

C Verify DSA public key any, 40° N/A

“ Datalength, signature length.

For this mechanism,

bits.

April 2009

the ulMinKeySze and

ulMaxKeySze fields of
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in

Copyright © 2009 RSA Security Inc.

44 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.3 Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document is the
one described in the ANSI X9.62 and X9.63 standards developed by the ANSI X9F1
working group.

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_EC_KEY_PAIR_GEN v
(CKM_ECDSA_KEY_PAIR_GEN)
CKM_ECDSA %
CKM_ECDSA_SHA1 v
CKM_ECDH1_DERIVE v
CKM_ECDH1_COFACTOR_DERIVE v
CKM_ECMQV_DERIVE v

Table 22, Mechanism Information Flags

CKF EC F P 0x00100000 | True if the mechanism can be used
with EC domain parameters over Fp,

CKF_EC F 2Mm 0x00200000 | Trueif the mechanism can be used
with EC domain parameters over
Fom

CKF_EC_ECPARAMETERS 0x00400000 | Trueif the mechanism can be used
with EC domain parameters of the
choice ecParameters
CKF_EC_NAMEDCURVE 0x00800000 | Trueif the mechanism can be used
with EC domain parameters of the
choice namedCurve

CKF_EC_UNCOMPRESS 0x01000000 | Trueif the mechanism can be used
with eliptic curve point
uncompressed

CKF_EC_COMPRESS 0x02000000 | Trueif the mechanism can be used

with eliptic curve point compressed

In these standards, there are two different varieties of EC defined:
1. ECusing afield with an odd prime number of elements (i.e. the finite field Fy).
2. ECusing afield of characteristic two (i.e. the finite field Fom).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It
is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 45

performing operations with the two varieties of EC, however this is not required. The
CK_MECHANISM _INFO structure CKF_EC_F_P flag identifies a Cryptoki library
supporting EC keys over F, whereas the CKF_EC_F_2M flag identifies a Cryptoki
library supporting EC keys over Fom. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

In these specifications there are also three representation methods to define the domain
parameters for an EC key. Only the ecParameters and the namedCurve choices are
supported in Cryptoki. The CK_MECHANISM_INFO structure
CKF_EC_ECPARAMETERS flag identifies a Cryptoki library supporting the
ecPar ameter s choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki
library supporting the namedCurve choice. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the
ecParameters choice is used can be represented as an octet string of the uncompressed
form or the compressed form. The CK_MECHANISM INFO structure
CKF_EC_UNCOMPRESS flag identifies a Cryptoki library supporting the
uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki
library supporting the compressed form. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

Note that an implementation of a Cryptoki library supporting EC with only one variety,
one representation of domain parameters or one form may encounter difficulties
achieving interoperability with other implementations.

If an attempt to create, generate, derive, or unwrap an EC key of an unsupported variety
(or of an unsupported size of a supported variety) is made, that attempt should fail with
the error code CKR_TEMPLATE_INCONSISTENT. If an attempt to create, generate,
derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code
CKR_DOMAIN_PARAMS INVALID. If an attempt to create, generate, derive, or
unwrap an EC key of an unsupported form is made, that attempt should fail with the error
code CKR_TEMPLATE_INCONSISTENT.

6.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even
length which is a most two times nLen octets, where nLen is the length in octets of the
base point order n. The signature octets correspond to the concatenation of the ECDSA
valuesr and s, both represented as an octet string of equal length of at most nLen with the
most significant byte first. If r and s have different octet length, the shorter of both must
be padded with leading zero octets such that both have the same octet length. Loosely
spoken, the first half of the signature is r and the second half is s. For signatures created
by a token, the resulting signature is always of length 2nLen. For signatures passed to a

April 2009 Copyright © 2009 RSA Security Inc.

46 PKCS#11 MECHANISMSV2.30: CRYPTOKI

token for verification, the signature may have a shorter length but must be composed as
specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of
the hash up to the length of nwill be used. Any truncation is done by the token.

Note: For applications, it is recommended to encode the signature as an octet string of
length two times nLen if possible. This ensures that the application works with PKCS#11
modules which have been implemented based on an older version of this document. Older
versions required al signatures to have length two times nLen. It may be impossible to
encode the signature with the maximum length of two times nLen if the application just
gets the integer values of r and s (i.e. without leading zeros), but does not know the base
point order n, because r and s can have any value between zero and the base point order n.

6.3.2 Definitions

This section defines the key type “CKK_ECDSA” and “CKK_EC” for type
CK_KEY_TYPE asused inthe CKA_KEY _TY PE attribute of key objects.

M echanisms:

Not e: CKM ECDSA KEY PAIR GEN is deprecated in v2.11
CKM_ECDSA KEY_PAI R_GEN

CKM EC KEY_PAI R_GEN

CKM_ECDSA

CKM _ECDSA SHA1

CKM_ECDH1_DERI VE

CKM _ECDH1_COFACTOR_DERI VE

CKM_ECMQV_DERI VE

CKD_NULL
CKD SHA1_KDF

6.3.3 ECDSA public key objects

EC (aso related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key
type CKK_EC or CKK_ECDSA) hold EC public keys. The following table defines the
EC public key object attributes, in addition to the common attributes defined for this
object class:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 47

Table 23, Elliptic Curve Public Key Object Attributes

Attribute Datatype | Meaning

CKA_EC PARAMS"? Bytearray | DER-encoding of an ANSI X9.62

(CKA_ECDSA_PARAMYS) Par anet er s value

CKA_EC_POINT* Bytearray | DER-encoding of ANSI X9.62
ECPoi nt vaueQ

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_EC _PARAMS or CKA_ECDSA PARAMS attribute value is known as the
“EC domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paraneters ::= CHO CE {
ecParaneters ECPar anet er s,
nanmedCur ve CURVES. & d({CurveNanes}),

inmplicitlyCA NULL
}

This allows detailed specification of al required values using choice ecParameters, the
use of anamedCurve as an object identifier substitute for a particular set of elliptic curve
domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly
defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choiceimplicitlyCA must not be used in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:

CK_OBJECT_CLASS cl ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType CKK_EC;
CK_UTF8CHAR | abel [] “An EC public key object”;
CK_BYTE ecParans[] = {...};
CK_BYTE ecPoint[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA _EC PARAMS, ecParans, sizeof(ecParans)},
{CKA EC PO NT, ecPoint, sizeof(ecPoint)}
3

6.3.4 Elliptic curveprivate key objects

EC (dso related to ECDSA) private key objects (object class CKO_PRIVATE_KEY,
key type CKK_EC or CKK_ECDSA) hold EC private keys. See Section 6.3 for more

April 2009 Copyright © 2009 RSA Security Inc.

48 PKCS#11 MECHANISMSV2.30: CRYPTOKI

information about EC. The following table defines the EC private key object attributes,
in addition to the common attributes defined for this object class:

Table 24, Elliptic Curve Private Key Object Attributes

Attribute Datatype | Meaning
CKA_EC_PARAMSM*® Bytearray | DER-encoding of an ANSI X9.62
(CKA_ECDSA_PARAMYS) Par anet er s vaue
CKA_VALUE"®/ Biginteger | ANSI X9.62 private valued

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the
“EC domain parameters’ and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paranmeters ::= CHO CE {
ecPar anet ers ECPar anet er s,
namedCur ve CURVES. & d({CurveNanes}),

inmplicitlyCA NULL
}

This allows detailed specification of al required values using choice ecParameters, the
use of anamedCurve as an object identifier substitute for a particular set of elliptic curve
domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly
defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choiceimplicitlyCA must not be used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not specified
in the key’'s template. This is because EC private keys are only generated as part of an
EC key pair, and the EC domain parameters for the pair are specified in the template for
the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE KEY;
CK_KEY_TYPE keyType = CKK_EC,
CK_UTF8CHAR | abel [] = “An EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParans[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 49

{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

{CKA_SENSI Tl VE, &true, sizeof(true)},

{CKA DERI VE, &true, sizeof(true)},

{CKA_EC _PARAMS, ecParans, sizeof(ecParans)},
{CKA VALUE, val ue, sizeof(value)}

3
6.3.5 Elliptic curvekey pair generation

The EC (aso related to ECDSA) key par generation mechanism, denoted
CKM_EC KEY_PAIR_GEN or CKM_ECDSA_KEY_PAIR_GEN, is a key pair
generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain
parameters, as specified in the CKA_EC PARAMS or CKA_ECDSA_PARAMS
attribute of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA_CLASS, CKA KEY TYPE, and
CKA_EC POINT attributes to the new public key and the CKA_CLASS,
CKA_KEY_TYPE, CKA_EC PARAMS o CKA_ECDSA PARAMS and
CKA_CKA_VALUE attributes to the new private key. Other attributes supported by the
EC public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned
default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°®° and 2°% elements,
then ulMinKeySize = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 22 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® isa301-bit number).

6.3.6 ECDSA without hashing

Refer section 6.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for
single-part signatures and verification for ECDSA. (This mechanism corresponds only to
the part of ECDSA that processes the hash value, which should not be longer than 1024
bits; it does not compute the hash value.)

April 2009 Copyright © 2009 RSA Security Inc.

50 PKCS#11 MECHANISMSV2.30: CRYPTOKI

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 25, ECDSA: Key And Data Length

Function Key type Input length Output
length

C_Sign* ECDSA private key any® 2nLen

C_Verify' ECDSA publickey | any®, <2nLen? N/A

! Single-part operations only.
2 Datalength, signature length.
3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°® and 2°® elements
(inclusive), then ulMinKeySize = 201 and ulMaxKeySze = 301 (when written in binary
notation, the number 2% consists of a 1 bit followed by 200 O bits. It is therefore a 201-
bit number. Similarly, 2°® isa301-bit number).

6.3.7 ECDSA with SHA-1

Refer section 6.3.1 for signature encoding.

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism
for single- and multiple-part signatures and verification for ECDSA. This mechanism
computes the entire ECDSA specification, including the hashing with SHA-1.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 26, ECDSA with SHA-1: Key And Data L ength

Function | Key type Input length Output
length

C Sign ECDSA private key any 2nLen

C_Verify | ECDSA publickey | any, <2nLen? N/A

“ Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 51

only ECDSA using afield of characteristic 2 which has between 22 and 2°% elements,
then ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2% consists of a 1 it followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® isa301-bit number).

6.3.8 EC mechanism parameters

¢ CK_EC_KDF TYPE,CK_EC_KDF_TYPE_PTR

CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to
derive keying data from a shared secret. The key derivation function will be used by the
EC key agreement schemes. It is defined as follows:

t ypedef CK _ULONG CK_EC KDF_TYPE;

The following table lists the defined functions.

Table 27, EC: Key Derivation Functions

Source I dentifier
CKD_NULL
CKD_SHA1 KDF
CKD_SHA224 KDF
CKD_SHA?256 KDF

CKD_SHA384_KDF

CKD_SHA512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation function
CKD_SHA1 KDF, whichis based on SHA-1, derives keying data from the shared secret
value as defined in ANSI X9.63.

CK_EC_KDF TYPE_PTR isapointer toaCK_EC_KDF_TYPE.

April 2009 Copyright © 2009 RSA Security Inc.

52 PKCS#11 MECHANISMSV2.30: CRYPTOKI

¢ CK_ECDH1 DERIVE_PARAMS, CK_ECDH1 DERIVE_PARAMS PTR

CK_ECDH1 DERIVE_PARAMS is a structure that provides the parameters for the
CKM_ECDH1 DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation
mechanisms, where each party contributes one key pair. The structure is defined as
follows:

t ypedef struct CK_ECDH1_DERI VE_PARAMS {
CK_EC KDF_TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_ECDH1_DERI VE_PARANS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulSharedDataLen thelength in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDataLen thelength in bytes of the other party’s EC public key

pPublicDatat pointer to other party’s EC public key value. A token
MUST be able to accept this value encoded as araw
octet string (as per section A.5.2 of [ANSI X9.62]). A
token MAY, in addition, support accepting this value
as a DER-encoded ECPoint (as per section E.6 of
[ANSI X9.62]) i.e. thesameasaCKA_EC POINT
encoding. The calling application is responsible for
converting the offered public key to the compressed or
uncompressed forms of these encodings if the token
does not support the offered form.

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDatalen must be zero. With the key derivation function CKD_SHA1 KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two

" The encoding in V2.20 was not specified and resulted in different implementations
choosing different encodings. Applications relying only on a V2.20 encoding (e.g. the
DER variant) other than the one specified now (raw) may not work with all V2.30
compliant tokens.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 53

parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal en must be zero.

CK_ECDH1 DERIVE_PARAMS PTR is a pointer to a
CK_ECDH1 _DERIVE_PARAMS,

¢ CK_ECMQV DERIVE_PARAMS,CK_ECMQV DERIVE_PARAMS PTR

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two
key pairs. The structure is defined as follows:

typedef struct CK _ECMQV_DERI VE PARANS ({
CK_EC_KDF_TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cbhat aLen2;
CK_BYTE_PTR pPubl i cDat a2;
CK_OBJECT_HANDLE publ i cKey;

} CK_ECMQV_DERI VE_PARAMNS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulSharedDataLen thelength in bytes of the shared info
pSharedData some data shared between the two parties

ulPublicDatalen the length in bytes of the other party’sfirst EC public
key

pPublicData pointer to other party’ sfirst EC public key value.
Encoding rules are as per pPublicData of
CK_ECDH1 DERIVE_PARAMS

ulPrivateDataLen thelength in bytes of the second EC private key
hPrivateData key handle for second EC private key value

ulPublicDataLen2 thelength in bytes of the other party’s second EC
public key

April 2009 Copyright © 2009 RSA Security Inc.

54 PKCS#11 MECHANISMSV2.30: CRYPTOKI

pPublicData2 pointer to other party’s second EC public key value.
Encoding rules are as per pPublicData of
CK_ECDH1_DERIVE_PARAMS

publickey Handleto the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDatalen must be zero. With the key derivation function CKD_SHA1 KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatal en must be zero.

CK_ECMQV_DERIVE_PARAMS PTR is a pointer to a
CK_ECMQV_DERIVE_PARAMS.

6.3.9 Elliptic curve Diffie-Hellman key derivation

The dliptic curve DiffieHellman (ECDH) key derivation mechanism, denoted
CKM_ECDH1 DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman version of the eliptic curve key agreement scheme, as defined in ANSI X9.63,
where each party contributes one key pair all using the same EC domain parameters.

It has a parameter, aCK_ECDH1 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value)) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to

CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 55

has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2°®° and 2°® elements, then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® isa301-bit number).

6.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation

The élliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism,
denoted CKM_ECDH1 COFACTOR_DERIVE, is a mechanism for key derivation
based on the cofactor Diffie-Hellman version of the éliptic curve key agreement scheme,
as defined in ANSI X9.63, where each party contributes one key pair al using the same
EC domain parameters. Cofactor multiplication is computationally efficient and helps to
prevent security problems like small group attacks.

It has a parameter, aCK_ECDH1 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value)) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to

CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key

April 2009 Copyright © 2009 RSA Security Inc.

56 PKCS#11 MECHANISMSV2.30: CRYPTOKI

has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 22 and 2°® elements, then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® isa301-bit number).

6.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation

The dliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version
of the dliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes two key pairs all using the same EC domain parameters.

It has a parameter, aCK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 57

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bitsin the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 22 and 2°® elements, then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the
number 2°® consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°® isa301-bit number).

6.4 DiffieeHdlman

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_PARAMETER_GEN v
CKM_DH_PKCS_DERIVE v
CKM_X9 42 DH_KEY_PAIR_GEN v
CKM_X9_42 DH_PKCS_PARAMETER_GEN v
CKM_X9_42 DH_DERIVE v
CKM_X9_42 DH_HYBRID_DERIVE v
CKM_X9_42 MQV_DERIVE v

6.4.1 Déefinitions

This section defines the key type “CKK_DH” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of DH key objects.

Mechanisms:

CKM DH_PKCS KEY_PAI R_GEN
CKM_DH_PKCS_DERI VE

CKM X9_42 DH KEY_PAI R_GEN
CKM _X9_42 DH_DERI VE

CKM X9_42_ DH_HYBRI D DERI VE
CKM_X9_42_MQV_DERI VE
CKM_DH_PKCS_PARAMETER GEN
CKM_X9_42 DH_PARAVETER GEN

6.4.2 DiffieeHellman public key objects

DiffieeHellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_DH) hold Diffie-Hellman public keys. The following table defines the Diffie-
Hellman public key object attributes, in addition to the common attributes defined for this
object class:

April 2009 Copyright © 2009 RSA Security Inc.

58 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 28, Diffie-Hellman Public Key Object Attributes

Attribute Datatype | Meaning
CKA_PRIME™® Biginteger | Primep
CKA_BASE™® Biginteger | Baseg
CKA_VALUE™ Biginteger | Public valuey

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters’. Depending on the token, there may be limits on the length
of the key components. See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C _KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR | abel [] = “A Diffie-Hell man public key
obj ect”;

CK_ BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{CKA PRI VE, prinme, sizeof(prine)},

{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

}
6.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hellman public keys. The following table defines
the X9.42 Diffie-Hellman public key object attributes, in addition to the common
attributes defined for this object class:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 59

Table 29, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME™® Biginteger | Primep (> 1024 hits, in steps of 256 bits)
CKA_BASE™® Biginteger | Baseg

CKA_SUBPRIME™® | Biginteger | Subprimeq (> 160 bits)
CKA_VALUE™ Biginteger | Public valuey

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute vaues are
collectively the “X9.42 Diffie-Hellman domain parameters’. See the ANSI X9.42
standard for more information on X9.42 Diffie-Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key
object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK X9 42 DH:
CK_UTF8CHAR | abel [] “A X9.42 Diffie-Hellman public key
obj ect”;
CK_ BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprine[] ={...};
CK_BYTE value[] = {...};
CK BBOOL true = CK _TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA PRI VE, prinme, sizeof(primne)},
{ CKA BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{CKA VALUE, val ue, sizeof(value)}
3

6.4.4 Diffie-Helman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-
Hellman private key object attributes, in addition to the common attributes defined for
this object class:

April 2009 Copyright © 2009 RSA Security Inc.

60

PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 30, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME**® Biginteger | Primep

CKA_BASE™*® Biginteger | Baseg

CKA_VALUE"*®/ Biginteger | Private valuex

CKA_VALUE _BITS*® | CK_ULONG | Length in bits of private value x

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters’. Depending on the token, there may be limits on the length
of the key components. See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters
are not specified in the key's template. This is because Diffie-Hellman private keys are
only generated as part of a DiffieeHellman key pair, and the Diffie-Hellman parameters
for the pair are specified in the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT _CLASS cl ass =
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel [] =

CKO_PRI VATE_KEY;
CKK_DH;
“ADffie-Hellman private key

obj ect”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_ BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

CKA CLASS, &cl ass, sizeof(class)},

CKA KEY_TYPE, &keyType, sizeof (keyType)},
CKA TOKEN, &true, sizeof(true)},

CKA LABEL, | abel, sizeof (Il abel)-1},

CKA SUBJECT, subject, sizeof(subject)},
CKA ID, id, sizeof(id)},

{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},

{CKA PRI VE, prinme, sizeof(prine)},

{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

b
6.4.5 X9.42 DiffieeHellman private key objects

e lam e e e T

X9.42 Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hellman private keys. The following table defines

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 61

the X9.42 Diffie-Hellman private key object attributes, in addition to the common
attributes defined for this object class:

Table 31, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning
CKA_PRIME**® Biginteger | Primep (> 1024 bits, in steps of 256 hits)
CKA_BASE™*® Biginteger | Baseg

CKA_SUBPRIME"*® | Biginteger | Subprimeq (> 160 hits)
CKA_VALUE"*®7 Biginteger | Private valuex
"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute vaues are
collectively the “X9.42 Diffie-Hellman domain parameters’. Depending on the token,
there may be limits on the length of the key components. See the ANSI X9.42 standard
for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-Hellman
domain parameters are not specified in the key’s template. Thisis because X9.42 Diffie-
Hellman private keys are only generated as part of a X9.42 Diffie-Hellman key pair, and
the X9.42 Diffie-Hellman domain parameters for the pair are specified in the template for
the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key
object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK X9 42 DH:
CK_UTF8CHAR | abel [] = “A X9.42 Diffie-Hellmn private key
obj ect”;

CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_ BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprine[] = {..
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_SUBJECT, subject, sizeof(subject)},

{

{

{

{

3

CKA ID, id, sizeof(id)},

CKA SENSI Tl VE, &true, sizeof(true)},
CKA DERIVE, &true, sizeof(true)},
CKA PRI VE, prine, sizeof(prine)},

April 2009 Copyright © 2009 RSA Security Inc.

62 PKCS#11 MECHANISMSV2.30: CRYPTOKI

{ CKA BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{CKA VALUE, val ue, sizeof(value)}

1

6.4.6 DiffieeHellman domain parameter objects

Diffie-Hellman domain parameter objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_DH) hold Diffie-Hellman domain
parameters. The following table defines the Diffie-Hellman domain parameter object
attributes, in addition to the common attributes defined for this object class:

Table 32, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME™ Biginteger | Primep

CKA_BASE™* Biginteger | Baseg
CKA_PRIME_BITS*® | CK_ULONG | Length of the prime value.

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters’. Depending on the token, there may be limits on the length
of the key components. See PKCS #3 for more information on Diffie-Hellman domain
parameters.

The following is a sample template for creating a DiffieeHellman domain parameter
object:

CK_OBJECT_CLASS cl ass

CK_KEY_TYPE keyType

CK_UTF8CHAR | abel []
obj ect”;

CK_ BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK BBOOL true = CK _TRUE

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

= CKO _DOVAI N_PARAMETERS;
CKK_DH;
“ADf

i e-Hel | man domai n paraneters

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA PRI VE, prine, sizeof(prine)},
CKA BASE, base, sizeof (base)},

b

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 63

6.4.7 X9.42 DiffieeHellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_X9 42 DH) hold X9.42 Diffie-
Hellman domain parameters. The following table defines the X9.42 Diffie-Hellman
domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 33, X9.42 DiffieeHellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA_PRIME™ Biginteger | Primep (> 1024 bits, in steps of 256 hits)
CKA_BASE™* Biginteger | Baseg

CKA_SUBPRIME™ Biginteger | Subprimeq (= 160 bits)
CKA_PRIME_BITS™ CK_ULONG | Length of the prime value.
CKA_SUBPRIME_BITS™*® | CK_ULONG | Length of the subprime value,

"Refer to [PKCS #11-B] table 15 for footnotes

The CKA_PRIME, CKA_BASE and CKA_SUBPRIME attribute vaues are
collectively the “X9.42 Diffie-Hellman domain parameters’. Depending on the token,
there may be limits on the length of the domain parameters components. See the ANSI
X9.42 standard for more information on X9.42 Diffie-Hellman domain parameters.

The following is a sample template for creating a X9.42 DiffieeHellman domain
parameters object:

CK_OBJECT_CLASS cl ass = CKO _DOVAI N_PARANMETERS;
CK_KEY_TYPE keyType = CKK X9 42 DH
CK_UTF8CHAR | abel [] = “A X9.42 Diffie-Hellnman domain
paraneters object”;
CK_ BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprine[] ={...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof(base)},
{ CKA _SUBPRI MVE, subprine, sizeof (subprine)},

April 2009 Copyright © 2009 RSA Security Inc.

64 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.4.8 PKCS#3Diffie-Hellman key pair generation

The PKCS #3 DiffieHdlman key pair generation mechanism, denoted
CKM_DH_PKCS KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls
“phasel”.

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime
and base, as specified in the CKA_PRIME and CKA_BASE attributes of the template
for the public key. If the CKA_VALUE_BITS attribute of the private key is specified,
the mechanism limits the length in bits of the private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
atributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA _BASE, and CKA_VALUE (and the CKA_VALUE_BITS
attribute, if it is not already provided in the template) attributes to the new private key;
other attributes required by the Diffie-Hellman public and private key types must be
specified in the templates.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

6.4.9 PKCS#3DiffieeHellman domain parameter generation

The PKCS #3 DiffieeHellman domain parameter generation mechanism, denoted
CKM_DH_PKCS PARAMETER_GEN, is adomain parameter generation mechanism
based on Diffie-Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_BASE, and CKA_PRIME_BITS attributes to the new object. Other attributes
supported by the Diffie-Hellman domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 65

6.4.10 PKCS#3 Diffie-Hellman key derivation

The PKCS #3 DiffieHdlman key derivation mechanism, denoted
CKM _DH_PKCS DERIVE, is a mechanism for key derivation based on Diffie-
Hellman key agreement, as defined in PKCS #3. Thisiswhat PKCS#3 calls “phase 11”.

It has a parameter, which is the public value of the other party in the key agreement
protocol, represented as a Cryptoki “Big integer” (i.e, a sequence of bytes, most-
significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public
value of the other party. It computes a Diffie-Hellman secret value from the public value
and private key according to PKCS #3, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from
the leading end of the secret value) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability™:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

* Note that the rules regarding the CKA SENSITIVE, CKA_EXTRACTABLE,
CKA_ALWAYS SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in
version 211 to match the policy used by other key derivation mechanisms such as
CKM_SSL3 MASTER_KEY_DERIVE.

April 2009 Copyright © 2009 RSA Security Inc.

66 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.4.11 X9.42 DiffieeHellman mechanism parameters
¢ CK_X9 42 DH_KDF _TYPE, CK_X9 42 DH_KDF_TYPE_PTR

CK_X9 42 DH_KDF _TYPE is used to indicate the Key Derivation Function (KDF)
applied to derive keying data from a shared secret. The key derivation function will be
used by the X9.42 Diffie-Hellman key agreement schemes. It is defined as follows:

typedef CK_ULONG CK_X9 42 DH KDF_TYPE;

The following table lists the defined functions.

Table 34, X9.42 Diffie-Hellman Key Derivation Functions

Source I dentifier

CKD_NULL

CKD _SHA1 KDF ASN1

CKD_SHA1 KDF _CONCATENATE

The key derivation function CKD_NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation functions
CKD_SHA1 KDF_ASN1 and CKD_SHA1 KDF_CONCATENATE, which are both
based on SHA-1, derive keying data from the shared secret value as defined in the ANS
X9.42 standard.

CK_X9 42 DH_KDF_TYPE_PTR isapointer toaCK_X9 42 DH_KDF_TYPE.

¢ CK_X9 42 DH1 DERIVE_PARAMS,
CK_X9 42 DH1 DERIVE_PARAMS PTR

CK_X9 42 DH1 DERIVE_PARAMS s astructure that provides the parameters to the
CKM_X9 42 DH_DERIVE key derivation mechanism, where each party contributes
one key pair. The structure is defined as follows:

typedef struct CK X9 42 DHl_DERI VE_PARAMS {
CK_X9 42 DH KDF _TYPE kdf;
CK_ULONG ul & her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
} CK_X9_ 42 DH1_DERI VE_PARAMNS;

The fields of the structure have the following meanings:

kdf key derivation function used on the shared secret value

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 67

ulOtherinfoLen thelength in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDataLen thelength in bytes of the other party’s X9.42 Diffie-
Hellman public key

pPublicData pointer to other party’s X9.42 Diffie-Hellman public
key value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and
ulOtherinfoLen must be zero. With the key derivation function
CKD_SHA1 KDF_ASN1, pOtherinfo must be supplied, which contains an octet string,
gpecified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1 KDF_CONCATENATE, an optiona pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.

CK_X9 42 DH1 DERIVE_PARAMS PTR is a pointer to a
CK_X9 42 DH1 DERIVE_PARAMS.

¢ CK_X9 42 DH2 DERIVE_PARAMS,
CK_X9 42 DH2 DERIVE_PARAMS PTR

CK_X9 42 DH2 DERIVE_PARAMS s astructure that provides the parameters to the
CKM_X9 42 DH_HYBRID DERIVE and CKM_X9 42 MQV_DERIVE key
derivation mechanisms, where each party contributes two key pairs. The structure is
defined as follows:

typedef struct CK X9 42 DH2 DERI VE_PARAMS {
CK_X9 42 DH KDF _TYPE kdf;
CK_ULONG ul & her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;

} CK_X9_ 42 DH2_DERI VE_PARAMNS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value

ulOtherinfoLen thelength in bytes of the other info

April 2009 Copyright © 2009 RSA Security Inc.

68 PKCS#11 MECHANISMSV2.30: CRYPTOKI

pOtherinfo some data shared between the two parties

ulPublicDataLen thelength in bytes of the other party’sfirst X9.42
Diffie-Hellman public key

pPublicData pointer to other party’ sfirst X9.42 Diffie-Hellman
public key value

ulPrivateDataLen thelength in bytes of the second X9.42 Diffie-Hellman
private key

hPrivateData key handle for second X9.42 Diffie-Hellman private
key value

ulPublicDataLen2 thelength in bytes of the other party’s second X9.42
Diffie-Hellman public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman
public key value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and
ulOtherinfoLen must be zero. With the key derivation function
CKD_SHA1 KDF_ASN1, pOtherinfo must be supplied, which contains an octet string,
gpecified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1 KDF_CONCATENATE, an optiona pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ul OtherInfoLen must be zero.

CK_X9 42 DH2 DERIVE_PARAMS PTR is a pointer to a
CK_X9 42 DH2 DERIVE_PARAMS.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 69

¢ CK_X9 42 MQV_DERIVE_PARAMS,
CK_X9 42 MQV_DERIVE_PARAMS PTR

CK_X9 42 MQV_DERIVE_PARAMS is a structure that provides the parameters to
the CKM_X9 42 MQV_DERIVE key derivation mechanism, where each party
contributes two key pairs. The structure is defined as follows:

typedef struct CK X9 42 M) _DERI VE_PARAMS {
CK X9 42 DH KDF_TYPE kdf;
CK_ULONG ul & her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;
CK_OBJECT_HANDLE publ i cKey;

} CK X9 42 MQV_DERI VE_PARANS;

The fields of the structure have the following meanings:
kdf key derivation function used on the shared secret value
ulOtherinfoLen thelength in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDataLen thelength in bytes of the other party’sfirst X9.42
Diffie-Hellman public key

pPublicData pointer to other party’ s first X9.42 Diffie-Hellman
public key value

ulPrivateDataLen thelength in bytes of the second X9.42 Diffie-Hellman
private key

hPrivateData key handle for second X9.42 Diffie-Hellman private
key value

ulPublicDataLen2 thelength in bytes of the other party’ s second X9.42
Diffie-Hellman public key

pPublicData2 pointer to other party’s second X9.42 Diffie-Hellman
public key value

publicKkey Handleto the first party’s ephemeral public key

April 2009 Copyright © 2009 RSA Security Inc.

70 PKCS#11 MECHANISMSV2.30: CRYPTOKI

With the key derivation function CKD_NULL, pOtherinfo must be NULL and
ulOtherinfoLen must be zero. With the key derivation function
CKD_SHA1 KDF_ASN1, pOtherinfo must be supplied, which contains an octet string,
gpecified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1 KDF_CONCATENATE, an optiona pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ul OtherInfoLen must be zero.

CK_X9 42 MQV_DERIVE_PARAMS PTR is a pointer to a
CK_X9 42 MQV_DERIVE_PARAMS.

6.4.12 X9.42 DiffieeHellman key pair generation

The X942 DiffieHellman key par generation mechanism, denoted
CKM_X9 42 DH_KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a particular
prime, base and subprime, as specified in the CKA_PRIME, CKA_BASE and
CKA_SUBPRIME attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
atributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and CKA_VALUE attributes to the
new private key; other attributes required by the X9.42 Diffie-Hellman public and private
key types must be specified in the templ ates.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.13 X9.42 DiffieeHellman domain parameter generation

The X9.42 DiffieeHdlman domain parameter generation mechanism, denoted
CKM_X9 42 DH PARAMETER_GEN, is a doman parameters generation
mechanism based on X9.42 Diffie-Hellman key agreement, as defined in the ANS| X9.42
standard.

It does not have a parameter.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 71

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular
prime and subprime length in bits, as specified in the CKA_PRIME_BITS and
CKA_SUBPRIME_BITS attributes of the template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_BASE, CKA_SUBPRIME, CKA_PRIME_BITSand CKA_SUBPRIME_BITS
attributes to the new object. Other attributes supported by the X9.42 Diffie-Hellman
domain parameter types may aso be specified in the template for the domain parameters,
or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits.

6.4.14 X9.42 DiffieeHellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted
CKM_X9 42 DH_DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman key agreement scheme, as defined in the ANSI X9.42 standard, where each party
contributes one key pair, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, aCK_X9 42 DH1 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value)) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its

April 2009 Copyright © 2009 RSA Security Inc.

72 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.15 X9.42 DiffieeHellman hybrid key derivation

The X9.42 DiffieHellman hybrid key derivation mechanism, denoted
CKM_X9 42 DH_HYBRID_DERIVE, is amechanism for key derivation based on the
Diffie-Hellman hybrid key agreement scheme, as defined in the ANSI X9.42 standard,
where each party contributes two key pair, al using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, aCK_X9 42 DH2 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value)) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 73

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

6.4.16 X9.42 DiffieeHellman Menezes-Qu-Vanstone key derivation

The X9.42 DiffieeHellman Menezes-Qu-Vanstone (MQV) key derivation mechanism,
denoted CKM_X9 42 MQV_DERIVE, is a mechanism for key derivation based the
MQV scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pairs, al using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, aCK_X9 42 MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS _SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

April 2009 Copyright © 2009 RSA Security Inc.

74 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.5 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping
RSA private keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC
(also related to ECDSA) private keys and DSA private keys. For wrapping, a private key
is BER-encoded according to PKCS #8's PrivateKeylnfo ASN.1 type. PKCS #8 requires
an algorithm identifier for the type of the private key. The object identifiers for the
required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgr eenment OBJECT IDENTIFIER ::= { pkcs-3 1 }
dhpubl i cnunber OBJECT IDENTIFIER ::= { iso(1l) menber-
body(2) us(840) ansi-x942(10046) nunber-type(2) 1 }
i d- ecPublicKey OBJECT IDENTIFIER ::= { iso(1l) nenber-
body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1}
i d-dsa OBJECT IDENTIFIER ::= {
i so(1l) nenber-body(2) us(840) x9-57(10040) x9cm(4) 1 }
where
pkcs-1 OBJECT I DENTIFIER :: = {
i so(1l) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 1
}
pkcs-3 OBJECT I DENTIFIER :: = {

i so(l) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 3
}

These parameters for the algorithm identifiers have the following types, respectively:

NULL
DHPar anmet er :: = SEQUENCE {
prime | NTECER, -- p
base | NTEGER, -- ¢
privateVal ueLength | NTEGER OPTI ONAL
}
Donmai nPar aneters ::= SEQUENCE ({
prime | NTECER, -- p
base | NTEGER, -- ¢
subpri nme | NTEGER, -- (q
cof act or | NTEGER OPTI ONAL, -- |
val i dat i onPar ns Val i dati onParms OPTI ONAL
}

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 75

Val i dati onParns ::= SEQUENCE {
Seed BIT STRING -- seed
PGenCount er | NTEGER -- paranmeter verification
}
Paranmeters ::= CHO CE {
ecPar aneters ECPar anet er s,
namedCur ve CURVES. & d({CurveNanes}),
inmplicitlyCA NULL
}
Dss-Parnms ::= SEQUENCE ({
p | NTECER,
g | NTEGER,
g | NTEGER
}

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms
optional fields should not be used when wrapping or unwrapping X9.42 Diffie-Hellman
private keys since their values are not stored within the token.

For the EC domain parameters, the use of namedCur ve is recommended over the choice
ecParameters. The choiceimplicitlyCA must not be used in Cryptoki.

Within the PrivateK eylnfo type:

e RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1
type. This type requires values to be present for all the attributes specific to
Cryptoki’s RSA private key objects. In other words, if a Cryptoki library does not
have values for an RSA private key's CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT _1, CKA_EXPONENT?2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of
the key, and so it cannot prepare it for wrapping.

o Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

o X942 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type
INTEGER.

e EC (aso related with ECDSA) private keys are BER-encoded according to SECG
SEC 1 ECPrivateKey ASN.1 type:

ECPri vat eKey ::= SEQUENCE {
Ver si on | NTEGER { ecPrivkeyVer1(1l) }
(ecPrivkeyVer1l),
pri vat eKey OCTET STRI NG

April 2009 Copyright © 2009 RSA Security Inc.

76 PKCS#11 MECHANISMSV2.30: CRYPTOKI

paraneters [0] Parameters OPTI ONAL,
publ i cKey [1] BI'T STRI NG OPTI ONAL
}

Since the EC domain parameters are placed in the PKCS #8's privateKeyAlgorithm
field, the optional parameters field in an ECPrivateKey must be omitted. A
Cryptoki application must be able to unwrap an ECPrivateKey that contains the
optional publicK ey field; however, what is done with this publicK ey field is outside
the scope of Cryptoki.

o DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string
of bytes is encrypted with the secret key. This encryption must be done in CBC mode
with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The datathereby obtained are
parsed as a PrivateKeyInfo type, and the wrapped key is produced. An error will result if
the original wrapped key does not decrypt properly, or if the decrypted unpadded data
does not parse properly, or its type does not match the key type specified in the template
for the new key. The unwrapping mechanism contributes only those attributes specified
in the PrivateKeylnfo type to the newly-unwrapped key; other attributes must be specified
in the template, or will take their default values.

Earlier drafts of PKCS#11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm12 }
al gorithm OBJECT I DENTIFIER ::= {
iso(l) identifier-organization(3) oiw14) secsig(3)
al gorithm2) }

with associated parameters

DSAPar anet ers :: = SEQUENCE {
prinmel | NTEGER, -- nodulus p
prinme2 | NTEGER, -- nodulus g
base I NTEGER -- base ¢

}

for wrapping DSA private keys. Note that athough the two structures for holding DSA
domain parameters appear identical when instances of them are encoded, the two
corresponding object identifiers are different.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 77

6.6 Generic secret key

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_GENERIC_SECRET_KEY_GEN v

6.6.1 Definitions

This section defines the key type “CKK_GENERIC_SECRET” for type CK_KEY_TYPE
asused inthe CKA_KEY_TY PE attribute of key objects.

M echanisms:
CKM _GENERI C_SECRET_KEY_GEN
6.6.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption or decryption; however, other keys can be derived from them and they can be
used in HMAC operations. The following table defines the generic secret key object
attributes, in addition to the common attributes defined for this object class:

These key types are used in severa of the mechanisms described in this section.

Table 35, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"®/ Byte array Key value (arbitrary
length)

CKA_VALUE_LEN%® | CK_ULONG | Length in bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CGENERI C_SECRET;
CK _UTF8CHAR | abel [] = “A generic secret key object”;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

April 2009 Copyright © 2009 RSA Security Inc.

78 PKCS#11 MECHANISMSV2.30: CRYPTOKI

{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA DERI VE, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

}

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the SHA-1 hash of the generic secret key object’s
CKA_VALUE éattribute.

6.6.3 Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the
C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the
key to be generated.

It does not have a parameter.

The template supplied must specify avalue for the CKA_VALUE_LEN attribute. If the
template specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS=CKO_SECRET_KEY;

CK_KEY_TYPE = CKK_GENERIC_SECRET;
For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bits.
6.7 HM AC mechanisms

Refer RFC2104 and FIPS 198 for HMAC algorithm description.. The HMAC secret key
shall correspond to the PKCS11 generic secret key type or the mechanism specific key
types (see mechanism definition). Such keys, for use with HMAC operations can be
created using C_CreateObject or C_GenerateKey.

The RFC aso specifies test vectors for the various hash function based HMAC
mechanisms described in the respective hash mechanism descriptions. The RFC should
be consulted to obtain these test vectors.

6.8 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS

79

Mechanism

Functions

Encrypt
&
Decrypt

Gen.
Key/
Key
Pair

Sign
Digest
Verify

Wrap
&
Unwrap

Derive

CKM_AES KEY_GEN

CKM_AES_ECB

CKM_AES _CBC

CKM_AES_CBC_PAD

CKM_AES_MAC_GENERAL

CKM_AES_MAC

CKM_AES _OFB

CKM_AES_CFB64

CKM_AES _CFBS8

ANERNERN RN

SRRR

CKM_AES_CFB128

6.8.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM AES KEY_ GEN

CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC

CKM_AES_MAC_GENERAL

CKM_AES_CBC_PAD

CKM_AES_OFB
CKM_AES_CFB64
CKM_AES_CFBS
CKM_AES_CFB128

6.8.2 AESsecret key objects

AES secret key objects (object class CKO_SECRET_KEY, key type CKK_AES) hold
AES keys. The following table defines the AES secret key object attributes, in addition
to the common attributes defined for this object class:

Table 36, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"®/ Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN“*° | CK_ULONG | Lengthin bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes

April 2009

Copyright © 2009 RSA Security Inc.

80 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The following is a sample template for creating an AES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_UTF8CHAR | abel [] = “An AES secret key object”;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

CKA_CHECK_VALUE: The vaue of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

6.8.3 AESKkey generation

The AES key generation mechanism, denoted CKM_AES KEY_GEN, is a key
generation mechanism for NIST’ s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the AES key type (specifically,
the flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the supported range of AES key sizes, in
bytes.

6.84 AESECB

AES-ECB, denoted CKM_AES ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST Advanced
Encryption Standard and el ectronic codebook mode.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 81

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table37, AES-ECB: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C UnwrapKey | AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the supported range of AES key sizes, in
bytes.

6.85 AES-CBC

AES-CBC, denoted CKM_AES CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST's
Advanced Encryption Standard and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

April 2009 Copyright © 2009 RSA Security Inc.

82 PKCS#11 MECHANISMSV2.30: CRYPTOKI

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table38, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C UnwrapKey | AES multiple of determined by type of key
block size being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the supported range of AES key sizes, in
bytes.

6.8.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on NIST’s Advanced Encryption Standard; cipher-block chaining mode; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 83

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section 6.5 for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 39, AES-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size
block size bytes shorter than input
length
C WrapKey AES any input length rounded up to
multiple of the block size
C UnwrapKey | AES multiple of between 1 and block length
block size bytes shorter than input
length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

6.8.7 AES-OFB

AES-OFB, denoted CKM_AES OFB. It is a mechanism for single and multiple-part
encryption and decryption with AES. AES-OFB mode is described in [NIST sp800-38a).

It has a parameter, an initialization vector for this mode. The initialization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

April 2009 Copyright © 2009 RSA Security Inc.

84 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table40, AES-OFB: Key And Data L ength

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this mechanism the CK_MECHANISM_INFO structureis as specified for CBC
mode.
6.8.8 AES-CFB

Cipher AES has a cipher feedback mode, AES-CFB, denoted CKM_AES CFBS,
CKM_AES CFB64, and CKM_AES CFB128. It is amechanism for single and multiple-
part encryption and decryption with AES. AES-OFB mode is described [NIST sp800-
384].

It has a parameter, an initialization vector for this mode. Theinitialization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table41, AES-CFB: Key And Data L ength

Function Key Input length Output length Comments
type

C_Encrypt AES any same as input length no final part

C_Decrypt AES any same as input length no final part

For this nechanism the CK MECHANI SM I NFO structure is as specified for
CBC node.

6.8.9 General-length AESSMAC

General-length AES-MAC, denoted CKM_AES MAC_GENERAL, isamechanism for
single- and multiple-part signatures and verification, based on NIST Advanced
Encryption Standard as defined in FIPS PUB 197 and data authentication as defined in
FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher
block produced in the MACing process.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS

85

Constraints on key types and the length of data are summarized in the following table:

Table42, General-length AESSMAC: Key And Data L ength

Function Key type | Datalength Signature length
C Sign AES any O-block size, as specified in parameters
C Verify AES any O-block size, as specified in parameters

For this mechanism,

the ulMinKeySze and

ulMaxKeySze fields of the

CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in

bytes.

6.8.10 AESMAC

AES-MAC, denoted by CKM_AES MAUC, is a specia case of the general-length AES-
MAC mechanism. AES-MAC always produces and verifies MACs that are half the block

sizein length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table43, AESSMAC: Key And Data Length

Function Key type | Datalength Signature length
C Sign AES any %2 block size (8 bytes)
C Veify AES any %2 block size (8 bytes)

For this mechanism,

the ulMinKeySze and

ulMaxKeySze fields of the

CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in

bytes.

6.9 AESwith Counter

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_AES CTR % v
April 2009 Copyright © 2009 RSA Security Inc.

86 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.9.1 Definitions

M echanisms:

CKM AES_CTR

6.9.2 AESwith Counter mechanism parameters

¢ CK_AES CTR_PARAMS; CK_AES CTR_PARAMS PTR

CK_AES CTR_PARAMS is a structure that provides the parameters to the
CKM_AES CTR mechanism. It isdefined asfollows:

t ypedef struct CK_AES CTR_PARAMS {
CK_ULONG ul CounterBits;
CK_BYTE cb[16];

} CK_AES_CTR_PARANS;

ulCounterBits specifies the number of bits in the counter block (cb) that shall be
incremented. This number shall be such that O < ulCounterBits <= 128. For any values
outside this range the mechanism shall return
CKR_MECHANISM_PARAM INVALID.

It's up to the caller to initialize al of the bits in the counter block including the counter
bits. The counter bits are the least significant bits of the counter block (cb). They are a
big-endian value usually starting with 1. The rest of ‘cb’ is for the nonce, and maybe an
optional 1V.

E.g. asdefined in [RFC 3686]:

0 1 2 3

01234567890123456789012345678901
s i S T i i T Tl sk s S S S S S S S
| Nonce |
s i S i il i I R S S S S S SR S S il s 2 S S S
| Initialization Vector (IV) |

s i S i i i I R S S S S S SR S S il s 2 SR S S
| Bl ock Counter |
s i S i i i I R S S S S S S S S il s 2 SR S S Y

This construction permits each packet to consist of up to 2°%-1 blocks = 4,294,967,295
blocks = 68,719,476,720 octets.

CK_AES CTR _PARAMS PTR isapointer toaCK_AES CTR PARAMS.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 87

6.9.3 AESwith Counter Encryption / Decryption

Generic AES counter mode is described in NIST Special Publication 800-38A and in
RFC 3686. These describe encryption using a counter block which may include a nonce
to guarantee uniqueness of the counter block. Since the nonce is not incremented, the
mechanism parameter must specify the number of counter bits in the counter block.

The block counter isincremented by 1 after each block of plaintext is processed. Thereis
no support for any other increment functions in this mechanism.

If an attempt to encrypt/decrypt is made which will cause an overflow of the counter
block’s counter bits, then the mechanism shall return CKR_DATA_LEN_RANGE.
Note that the mechanism should allow the final post increment of the counter to overflow
(if it implements it this way) but not allow any further processing after this point. E.g. if
ulCounterBits = 2 and the counter bits start as 1 then only 3 blocks of data can be
processed.

6.10 AESCBC with Cipher Text StealingCTS

Ref [NI ST AESCTS]

Thi s node al | ows unpadded data that has length that is not a nultiple of
the block size to be encrypted to the sane | ength of cipher text.

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_AES _CTS v v

6.10.1 Definitions

M echanisms:

CKM_AES _CTS
6.10.2 AES CTS mechanism parameters

It has a parameter, a 16-byte initialization vector.

April 2009 Copyright © 2009 RSA Security Inc.

88 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table44, AES-CTS: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES Any, > block same as input length no final part
size (16 bytes)
C_Decrypt AES any, > block same as input length no final part
size (16 bytes)

6.11 Additional AES Mechanisms

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_AES_GCM v
CKM_AES_CCM v

6.11.1 Definitions

M echanisms:

CKM AES_GCM
CKM_AES_CCM

6.11.2 AES GCM and CCM Mechanism parameters

¢ CK_GCM PARAMS; CK_GCM PARAMS PTR

CK_GCM_PARAMS is a dtructure that provides the parameters to the
CKM_AES GCM mechanism. It isdefined asfollows:

t ypedef struct CK GCM PARAMS {
CK_BYTE_PTR plv;
CK_ULONG ul I vLen;
CK_BYTE_PTR pAAD;
CK_ULONG ul AADLen;
CK_ULONG ul TagBi ts;

} CK_GCM _PARANS;

The fields of the structure have the following meanings:
plv pointer to initialization vector

ullvLen length of initialization vector in bytes. The length of
the initialization vector can be any number between 1
and 2°°. 96-hit (12 byte) IV values can be processed

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 89
more efficiently, so that length is recommended for
situations in which efficiency is critical.

pAAD pointer to additional authentication data. Thisdatais
authenticated but not encrypted.

ulAADLen length of pAAD in bytes.

ulTagBits length of authentication tag (output following cipher
text) in bits. Can be any value between 0 and 128.

CK_GCM_PARAMS PTRisapointer toaCK_GCM_PARAMS.

¢ CK_CCM PARAMS; CK_CCM PARAMS PTR

CK_CCM_PARAMS is a dtructure that provides the parameters to the
CKM_AES _CCM mechanism. It isdefined asfollows:
t ypedef struct CK CCM PARAMS {
CK_ULONG ul Dat aLen; /*plaintext or ciphertext*/
CK_BYTE_PTR pNonce;
CK_ULONG ul Noncelen;
CK_BYTE_PTR pAAD;
CK_ULONG ul AADLen;
CK_ULONG ul MACLen;
} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the
datalength’slength (2 <L < 8):

ulDataLen length of the datawhere 0 <= ulDataLen < 2%
pNonce thenonce.
ulNonceLen length of pNonce (<= 15-L) in bytes.

pAAD Additional authentication data. Thisdatais
authenticated but not encrypted.

ulAADLen length of pAuthData in bytes.

ulMACLen length of the MAC (output following cipher text) in
bytes. Valid valuesare 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS PTRisapointertoaCK_CCM_PARAMS.

April 2009 Copyright © 2009 RSA Security Inc.

90 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.11.3 AES-GCM authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following
process, where K (key) and AAD (additional authenticated data) are as described in
[GCM].

Encrypt:

e SetthelV length ullvLen in the parameter block.
e SetthelV dataplv in the parameter block. plV may be NULL if ullvLen isO.

e Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be
NULL if uAADLenisO.

e Set thetag length ulTagBitsin the parameter block.

e Cal C_Encryptlnit() for CKM_AES GCM mechanism with parameters and key
K.

e Cal C_Encrypt(), or C_EncryptUpdate()*® C_EncryptFinal(), for the plaintext
obtaining ciphertext and authentication tag output.
Decrypt:

e . SetthelV length ullvLen in the parameter block.
e SetthelV dataplv in the parameter block. plV may be NULL if ullvLenisO.

e Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be
NULL if uAADLenisO.

e Set thetag length ulTagBitsin the parameter block.

e Call C Decryptinit() for CKM_AES GCM mechanism with parameters and key
K.

e Call C_Decrypt(), or C_DecryptUpdate()** C_DecryptFinal(), for the ciphertext,
including the appended tag, obtaining plaintext output.
In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen isthe
length of theinitialization vector in bytes.

The tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ul TagBits bits.

The key type for K must be compatible with CKM_AES ECB and the
C_Encryptinit/C_Decryptinit calls shall behave, with respect to K, as if they were called
directly with CKM_AES ECB, K and NULL parameters.

8 «x" indicates 0 or more calls may be made as required

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 91

6.11.4 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is
described in [RFC 3610].

To set up for AES-CCM use the following process, where K (key), nonce and additional
authenticated data are as described in [RFC 3610].

Encrypt:

e Set the message/data length ulDatalen in the parameter block.

e Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter
block. pNonce may be NULL if ulNonceLen isO.

e Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be
NULL if uAADLenisO.

e Set the MAC length uIMACLen in the parameter block.

e Cal C _Encryptlnit() for CKM_AES CCM mechanism with parameters and key
K.

e Call C_Encrypt(), or C_DecryptUpdate()*® C_EncryptFinal(), for the plaintext
obtaining ciphertext output obtaining the fina ciphertext output and the MAC.
The total length of data processed must be ulDatalLen. The output length will be
ulDataLen + ulMACLen.
Decrypt:

e Set the message/data length ulDatalen in the parameter block. This length should
not include the length of the MAC that is appended to the cipher text.

e Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter
block. pNonce may be NULL if ulNonceLen isO.

e Setthe AAD data pAAD and size ulAADLen in the parameter block. pAAD may be
NULL if ulAADLenisO.

e Set the MAC length uIMACLen in the parameter block.

e Call C Decryptinit() for CKM_AES CCM mechanism with parameters and key
K.

e Call C_Decrypt(), or C_DecryptUpdate()*® C_DecryptFinal(), for the ciphertext,
including the appended MAC, obtaining plaintext output. The total length of data
processed must be ulDataLen + ulMACLen.

The key type for K must be compatible with CKM_AES ECB and the
C_Encryptinit/C_Decryptlnit calls shall behave, with respect to K, as if they were called
directly with CKM_AES ECB, K and NULL parameters.

April 2009 Copyright © 2009 RSA Security Inc.

92 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.12 AESCMAC

Table 45, Mechanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_AES_CMAC_GENERAL v
CKM_AES_CMAC v

! SR = SignRecover, VR = VerifyRecover.
6.12.1 Definitions

Mechanisms:

CKM AES CMAC_GENERAL
CKM_AES_CMAC

6.12.2 Mechanism parameters

CKM_AES CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS
structure. CKM_AES _CMAC does not use a mechanism parameter.

6.12.3 General-length AES-CMAC

General-length AES-CMAC, denoted CKM_AES CMAC_GENERAL, isamechanism
for single- and multiple-part signatures and verification, based on [NIST sp800-38b] and
[RFC 4493]..

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the fina AES cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 46, General-length AES-CMAC: Key And Data L ength

Function | Key type Data length Signature length
C_Sign CKK_AES any O-block size, as specified in parameters
C Veify | CKK_AES any O-block size, as specified in parameters

References [NIST sp800-38b] and [RFC 4493] recommend that the output MAC is not
truncated to less than 64 bits. The MAC length must be specified before the

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 93

communication starts, and must not be changed during the lifetime of the key. It is the
caller’ sresponsibility to follow these rules.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

6.12.4 AESCMAC
AES-CMAC, denoted CKM_AES CMAC, isaspecia case of the general-length AES-
CMAC mechanism. AES-MAC aways produces and verifies MACs that are afull block

sizein length, the default output length specified by [RFC 4493].
Constraints on key types and the length of data are summarized in the following table:

Table47, AES CMAC: Key And Data Length

Function | Key type Data length Signature length
C Sign CKK_AES any Block size (16 bytes)
C Veify | CKK_AES any Block size (16 bytes)

References [NIST sp800-38b] and [RFC 4493] recommend that the output MAC is not
truncated to less than 64 bits. The MAC length must be specified before the
communication starts, and must not be changed during the lifetime of the key. It is the
caller’ sresponsibility to follow these rules.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

6.13 AESKey Wrap

Functions

Encrypt Sign SR Gen. Wrap
M echanism & & & Digest Key/ & Derive
Decrypt | Verify | VR Key Unwrap
Pair
CKM_AES_KEY_V\RAP v
CKM_AES_KEY_V\RAP_PAD v
TSR = SignRecover, VR = VerifyRecover

April 2009 Copyright © 2009 RSA Security Inc.

94 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.13.1 Definitions

M echanisms:

CKM AES_KEY WRAP
CKM_AES_KEY_ WRAP_PAD

6.13.2 AESKey Wrap Mechanism parameters

The mechanisms will accept an optional mechanism parameter as the Initialization vector
which, if present, must be afixed size array of 8 bytes, and, if NULL, will use the default
initial value defined in Section 2.2.3.1 of [AES KEYWRAP].

The type of this parameter is CK_BYTE_PTR and the pointer points to the array of 8
bytes to be used astheinitial value. The length shall be either 0 and the pointer NULL, or
8, and the pointer non-NULL.

6.13.3 AESKey Wrap

The mechanisms support only single-part operations, single part wrapping and
unwrapping, and single-part encryption and decryption.

The CKM_AES KEY_WRAP mechanism can wrap a key of any length. A key whose
length is not amultiple of the AES Key Wrap block size (8 bytes) will be zero padded to
fit. The CKM_AES KEY_WRAP mechanism can only encrypt ablock of data whose
sizeis an exact multiple of the AES Key Wrap agorithm block size.

The CKM_AES KEY_WRAP_PAD mechanism can wrap a key or block of data of any
length. It does the usual padding of inputs (keys or data blocks) that are not multiples of
the AES Key Wrap agorithm block size, always producing wrapped output that is larger
than the input key/data to be wrapped. This padding is done by the token before being
passed to the AES key wrap agorithm, which adds an 8 byte AES Key Wrap algorithm
block of data.

6.14 Key derivation by data encryption —DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DES ECB_ENCRYPT_DATA v
CKM_DES_CBC_ENCRYPT_DATA v
CKM_DES3_ECB_ENCRYPT_DATA v

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 95

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DES3_CBC_ENCRYPT_DATA v
CKM_AES_ECB_ENCRYPT_DATA v
CKM_AES_CBC_ENCRYPT_DATA v

6.14.1 Definitions

M echanisms:

CKM DES_ECB_ENCRYPT_DATA
CKM DES_CBC_ENCRYPT_DATA
CKM DES3_ECB_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT DATA
CKM_AES_CBC_ENCRYPT_DATA

t ypedef struct CK DES CBC _ENCRYPT_DATA PARAMNS {

CK_BYTE iv[8];
CK_BYTE_PTR pDat a;
CK_ULONG | engt h;

} CK_DES_CBC ENCRYPT DATA PARAVS;
t ypedef CK_DES_CBC ENCRYPT DATA PARAMS CK_PTR
CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

t ypedef struct CK_AES CBC ENCRYPT_DATA PARAMNS {

CK_BYTE iv[16];
CK_BYTE_PTR pDat a;
CK_ULONG | engt h;

} CK_AES CBC _ENCRYPT_DATA PARAMS;
t ypedef CK_AES CBC _ENCRYPT_DATA PARAMS CK_PTR
CK_AES CBC _ENCRYPT_DATA PARAMS PTR;

6.14.2 Mechanism Parameters

Uses CK_KEY_DERIVATION_STRING_DATA as defined in section 6.27.2

Table 48, M echanism Parameters

CKM_DES ECB_ENCRYPT _DATA | Uses

CKM_DES3 ECB_ENCRYPT_DATA | CK_KEY_DERIVATION_STRING DATA
structure. Parameter is the data to be encrypted
and must be amultiple of 8 bytes long.

CKM_AES ECB_ENCRYPT_DATA | Uses
CK_KEY_DERIVATION_STRING_DATA
structure. Parameter is the data to be encrypted

April 2009 Copyright © 2009 RSA Security Inc.

96

PKCS#11 MECHANISMSV2.30: CRYPTOKI

and must be amultiple of 16 long.

CKM_DES CBC_ENCRYPT DATA
CKM_DES3 CBC_ENCRYPT DATA

Uses

CK_DES CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 8 byte IV value followed by the
data. The data value part must be amultiple of 8
bytes long.

CKM_AES CBC_ENCRYPT_DATA

Uses

CK_AES CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by
the data. The data value part

must be a multiple of 16 byteslong.

6.14.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using
the base key. The resulting cipher text shall be used to create the key value of the
resulting key. If not all the cipher text is used then the part discarded will be from the
trailing end (least significant bytes) of the cipher text data. The derived key shall be
defined by the attribute template supplied but constrained by the length of cipher text
available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as
per the SHA-1 Key Derivation mechanism in section 6.17.5.

If the data is too short to make the requested key then the mechanism returns

CKR_DATA_LENGTH_INVALID.

6.15 Doubleand Triple-length DES

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_CBC_PAD

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

6.15.1 Definitions

This section defines the key type “CKK_DES2” and “CKK_DES3" for type
CK_KEY_TYPE asused inthe CKA_KEY _TY PE attribute of key objects.

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 97

M echanisms:

CKM DES2_KEY GEN

CKM DES3_KEY_GEN
CKM_DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC

CKM DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

6.15.2 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2)
hold double-length DES keys. The following table defines the DES2 secret key object
attributes, in addition to the common attributes defined for this object class:

Table 49, DES2 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 16 bytes
long)

"Refer to [PKCS #11-B] table 15 for footnotes

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-3
(i.e., each of the DES keys comprising a DES2 key must have its parity bits properly set).
Attempting to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:
CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK _DESZ;
CK_UTF8CHAR | abel [] = “A DES2 secret key object”;
CK_BYTE val ue[16] = {...};

CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b

CKA_CHECK_VALUE: The vaue of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

April 2009 Copyright © 2009 RSA Security Inc.

98 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.15.3 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3)
hold triple-length DES keys. The following table defines the DES3 secret key object
attributes, in addition to the common attributes defined for this object class:

Table50, DES3 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearray | Key value (always 24 bytes
long)

"Refer to [PKCS #11-B] table 15 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3
(i.e., each of the DES keys comprising a DES3 key must have its parity bits properly set).
Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating atriple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_DES3;

CK_UTF8CHAR | abel [] “A DES3 secret key object”;
CK_BYTE val ue[24] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}

CKA_CHECK_VALUE: The vaue of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

6.15.4 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2 KEY_GEN,
is a key generation mechanism for double-length DES keys. The DES keys making up a
double-length DES key both have their parity bits set properly, as specified in FIPS PUB
46-3.

It does not have a parameter.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 99

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(specifically, the flags indicating which functions the key supports) may be specified in
the template for the key, or else are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3 ECB, CKM_DES3 CBC, CKM_DES3 CBC_PAD,
CKM_DES3 MAC_GENERAL, and CKM_DES3 MAC. Triple-DES encryption
with a double-length DES key is equivalent to encryption with a triple-length DES key
with K1=K3 as specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keysto be “weak” or “semi-weak” keys.
6.15.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt,
decrypt, encrypt. Decryptions are carried out with the opposite three steps. decrypt,
encrypt, decrypt. The mathematical representations of the encrypt and decrypt operations
areasfollows:

DES3-E({K1,K2,K3}, P) =E(K3,D(K2,E(K1,P)))

DES3-D({K1,K2,K3},C)=D(K1, E(K2,D(K3,P)))

6.15.6 Triple-length DESin CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are
performed using outer CBC as defined in X9.52. X9.52 describes this mode as TCBC.
The mathematical representations of the CBC encrypt and decrypt operations are as
follows:

DES3-CBC-E({K1,K2,K3}, P) = E(K3, D(K2, E(K1,P+1)))
DES3-CBC-D({K1,K2,K3}, C)=D(K1, E(K2, D(K3,P))) +1

The value | is either an 8-byte initialization vector or the previous block of cipher text
that is added to the current input block. The addition operation is used is addition
modulo-2 (XOR).

April 2009 Copyright © 2009 RSA Security Inc.

100 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.15.7 DESand Triplelength DESin OFB Mode

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_DES _OFB64 v
CKM_DES_OFB8 v
CKM_DES_CFB64 v
CKM_DES_CFB8 v

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES OFB8 and
CKM_DES OFB64. It is a mechanism for single and multiple-part encryption and
decryption with DES.

It has a parameter, an initialization vector for this mode. The initiaization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table51, OFB: Key And Data L ength

Function Key type [nput Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final
CKK_DES2, part
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final
CKK_DES2, part
CKK_DES3

For this mechanism the CK_MECHANISM _INFO structure is as specified for CBC
mode.
6.15.8 DESand Triplelength DESin CFB Mode

Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES CFB8 and
CKM_DES CFB64. It is a mechanism for single and multiple-part encryption and
decryption with DES.

It has a parameter, an initialization vector for this mode. The initiaization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 101

Table52, CFB: Key And Data L ength

Function Key type I nput Output length Comments
length

C_Encrypt CKK_DES, any same as input length no final
CKK_DES?, part
CKK_DES3

C_Decrypt CKK_DES, any same as input length no final
CKK_DES?, part
CKK_DES3

For this mechanism the CK_MECHANISM _INFO structure is as specified for CBC
mode.

6.16 Doubleand Triple-length DESCMAC

M echanisms vs. Functions

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_DES3_CMAC_GENERAL v
CKM_DES3_CMAC v

! SR = SignRecover, VR = VerifyRecover.
The following additional DES3 mechanisms have been added.

6.16.1 Definitions

Mechanisms:

CKM DES3_CMAC_GENERAL
CKM_DES3_CMAC

6.16.2 Mechanism parameters

CKM_DES3 CMAC_GENERAL uses the existing CK_MAC_GENERAL_PARAMS
structure. CKM_DES3 CMAC does not use a mechanism parameter.

April 2009 Copyright © 2009 RSA Security Inc.

102 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.16.3 General-length DES3-MAC

General-length DES3-CMAC, denoted CKM_DES3 CMAC_GENERAL, is a
mechanism for single- and multiple-part signatures and verification with DES3 or DES2
keys, based on [NIST sp800-38b].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final DES3 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 53, General-length DES3-CMAC: Key And Data L ength

Function | Key type Data length Signature length

C Sign CKK_DES3 any O-block size, as specified in parameters
CKK_DES2

C Veify | CKK_DES3 any O-block size, as specified in parameters
CKK_DES2

Reference [NIST sp800-38b] recommends that the output MAC is not truncated to less
than 64 bits (which means using the entire block for DES). The MAC length must be
specified before the communication starts, and must not be changed during the lifetime of
the key. It isthe caller’ s responsibility to follow these rules.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure.are not used

6.16.4 DES3-CMAC

DES3-CMAC, denoted CKM_DES3 CMAC, isaspecia case of the general-length
DES3-CMAC mechanism. DES3-MAC aways produces and verifies MACs that area
full block sizein length, since the DES3 block lenth is the minimum output length
recommended by [NIST sp800-38b].

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 103

Table54, DES3-CMAC: Key And Data L ength

Function | Key type Data length Signature length

C Sign CKK_DES3 any Block size (8 bytes)
CKK_DES2

C Veify | CKK_DES3 any Block size (8 bytes)
CKK_DES2

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure are not used.

6.17 SHA-1
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SHA_1 v
CKM_SHA_1 HMAC_GENERAL v
CKM_SHA_1_HMAC v
CKM_SHA1_KEY_DERIVATION v

6.17.1 Definitions
CKM SHA 1
CKM SHA 1 HVAC
CKM SHA 1 HMAC GENERAL
CKM SHA1 KEY_DERI VATI ON

CKK_SHA 1 HVAC

6.17.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting,
following the Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB
180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

April 2009 Copyright © 2009 RSA Security Inc.

104 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 55, SHA-1: Data Length

Function I nput Digest length
length
C Digest any 20

6.17.3 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted
CKM_SHA 1 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the SHA-1 hash function. The keys it uses are
generic secret keysand CKK_SHA_1 HMAC.

It has a parameter, aCK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of SHA-1
is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 20-byte HMAC output.

Table 56, General-length SHA-1-HMAC: Key And Data L ength

Function Key type Data Signature length
length

C Sign generic secret any 0-20, depending on parameters

C Veify generic secret any 0-20, depending on parameters

6.17.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAC, isaspecia case of the
genera-length SHA-1-HMAC mechanism in Section 6.17.3.

It has no parameter, and always produces an output of length 20.

6.17.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

e If no length or key type is provided in the template, then the key produced by this

mechanism will be a generic secret key. Itslength will be 20 bytes (the output size of
SHA-1).

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 105

e If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

¢ If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e |If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

6.18 SHA-224
Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_SHA224 v
CKM_SHA224 HMAC v
CKM_SHA224 HMAC_GENERAL v
CKM_SHA224_RSA_PKCS v
CKM_SHA224 RSA_PKCS_PSS v

April 2009 Copyright © 2009 RSA Security Inc.

106 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_SHA224 KEY_DERIVATION v

6.18.1 Definitions
CKM _SHA224
CKM SHA224 HWVAC

CKM_SHA224_ HVAC_GENERAL
CKM_SHA224_KEY_DERI VATI ON

CKK_SHA224 HVAC

6.18.2 SHA-224 digest

The SHA-224 mechanism, denoted CKM_SHA224, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 224-bit message digest defined in
0.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table57, SHA-224: Data L ength

Function I nput Digest length
length
C Digest any 28

6.18.3 General-length SHA-224-HMAC

The general-length SHA-224-HMAC mechanism, denoted
CKM_SHA?224 HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism except that it uses the HMAC construction based on the SHA-224 hash
function and length of the output should be in the range 0-28. The keys it uses are generic
secret keys and CKK_SHA224 HMAC. FIPS-198 compliant tokens may require the key
length to be at least 14 bytes; that is, half the size of the SHA-224 hash outpui.

It has a parameter, aCK_MAC_GENERAL _PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-28 (the output size of SHA-224
is 28 bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 107

14 (haf the maximum length). Signatures (MACs) produced by this mechanism will be
taken from the start of the full 28-byte HMAC outpuit.

Table 58, General-length SHA-224-HMAC: Key And Data L ength

Function Key type Data Signature length
length

C Sign generic secret Any 0-28, depending on parameters

C Veify generic secret Any 0-28, depending on parameters

6.18.4 SHA-224-HMAC

The SHA-224-HMAC mechanism, denoted CKM_SHA224 HMAC, is a special case of
the general-length SHA-224-HM A C mechanism.

It has no parameter, and always produces an output of length 28.

6.18.5 SHA-224 key derivation

SHA-224 key derivation, denoted CKM_SHA224 KEY_DERIVATION, isthe same as
the SHA-1 key derivation mechanism in Section 12.21.5 except that it uses the SHA-224
hash function and the relevant length is 28 bytes.

6.19 SHA-256
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SHA256 v
CKM_SHA256_HMAC_GENERAL v
CKM_SHA256_HMAC v
CKM_SHA256_KEY_DERIVATION v

6.19.1 Definitions
CKM _SHA256
CKM_SHA256 HVAC

CKM_SHA256_HVAC_GENERAL
CKM_SHA256_KEY_DERI VATI ON

CKK_SHA256_HWVAC

April 2009 Copyright © 2009 RSA Security Inc.

108 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.19.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 256-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table59, SHA-256: Data L ength

Function I nput Digest length
length
C Digest any 32

6.19.3 General-length SHA-256-HMAC

The general-length SHA-256-HMAC mechanism, denoted
CKM_SHA256 HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism in Section 6.17.3, except that it uses the HMAC construction based on the
SHA-256 hash function and length of the output should be in the range 0-32. The keys it
uses are generic secret keys and CKK_SHA256 HMAC. FIPS-198 compliant tokens may
require the key length to be at least 16 bytes; that is, half the size of the SHA-256 hash
output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-32 (the output size of SHA-256 is 32
bytes). FIPS-198 compliant tokens may constrain the output length to be at least 4 or 16
(half the maximum length). Signatures (MACs) produced by this mechanism will be
taken from the start of the full 32-byte HMAC output.

Table 60, General-length SHA-256-HMAC: Key And Data L ength

Function Key type Data Signaturelength
length

C_Sign generic secret Any 0-32, depending on parameters

C Verify generic secret Any 0-32, depending on parameters

6.19.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256 HMAC, is a specia case of
the general-length SHA-256-HM A C mechanism in Section 6.19.3.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 109

It has no parameter, and always produces an output of length 32.

6.19.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256 KEY_DERIVATION, isthe same as
the SHA-1 key derivation mechanism in Section 6.17.5, except that it uses the SHA-256
hash function and the relevant length is 32 bytes.

6.20 SHA-384
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SHA384 v
CKM_SHA384_HMAC_GENERAL v
CKM_SHA384_HMAC v
CKM_SHA384_KEY_DERIVATION v

6.20.1 Definitions
CKM SHA384
CKM _SHA384 HVAC

CKM_SHA384_HVAC GENERAL
CKM_SHA384_KEY_DERI VATI ON

CKK_SHA384 HVAC
6.20.2 SHA-384 digest

The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 384-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

April 2009 Copyright © 2009 RSA Security Inc.

110 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 61, SHA-384: Data L ength

Function I nput Digest length
length
C Digest any 438

6.20.3 General-length SHA-384-HMAC

The general-length SHA-384-HMAC mechanism, denoted
CKM_SHA384 HMAC_GENERAL, is the same as the genera-length SHA-1-HMAC
mechanism in Section 6.17.3, except that it uses the HMAC construction based on the
SHA-384 hash function and length of the output should be in the range 0-48.

6.20.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384 HMAC, is a specia case of
the general-length SHA-384-HM A C mechanism.

It has no parameter, and always produces an output of length 48.

6.20.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384 KEY_DERIVATION, isthe same as
the SHA-1 key derivation mechanism in Section 6.17.5, except that it uses the SHA-384
hash function and the relevant length is 48 bytes.

6.21 SHA-512
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SHA512 v
CKM_SHA512_ HMAC_GENERAL v
CKM_SHA512_HMAC v
CKM_SHA512_KEY_DERIVATION v

6.21.1 Definitions
CKM SHA512
CKM_SHA512 HVAC
CKM SHA512 HVAC GENERAL
CKM SHA512 KEY_DERI VATI ON

CKK_SHA512_ HVAC

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 111

6.21.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHAS512, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 512-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 62, SHA-512: Data L ength

Function I nput Digest length
length
C Digest any 64

6.21.3 General-length SHA-512-HMAC

The general-length SHA-512-HMAC mechanism, denoted
CKM_SHA512 HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism in Section 6.17.3, except that it uses the HMAC construction based on the
SHA-512 hash function and length of the output should be in the range 0-64.

6.21.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHA512 HMAC, is a special case of
the general-length SHA-512-HM A C mechanism.

It has no parameter, and always produces an output of length 64.

6.21.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHA512 KEY_DERIVATION, isthe same as
the SHA-1 key derivation mechanism in Section 6.17.5, except that it uses the SHA-512
hash function and the relevant length is 64 bytes.

6.22 PKCS#5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and IVs for performing password-
based encryption. The method used to generate keys and IVsis specified in PKCS #5.

April 2009 Copyright © 2009 RSA Security Inc.

112 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_PBE_SHA1_DES3 EDE_CBC v
CKM_PBE_SHA1_DES2_EDE_CBC v
CKM_PBA_SHA1_WITH_SHA1 HMAC v
CKM_PKCS5_PBKD2 v

6.22.1 Definitions

Mechanisms:

CKM PBE_SHA1 DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PKCS5_PBKD2

CKM_PBA SHA1 W TH_SHA1 HVAC

6.22.2 Password-based encryption/authentication mechanism parameters

¢ CK_PBE_PARAMS; CK_PBE_PARAMS PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on
the PBE generation mechanisms) and the CKM_PBA_ SHA1 WITH_SHA1 HMAC
mechanism. It is defined as follows:

t ypedef struct CK PBE_PARAMS {
CK_BYTE_PTR pl ni t Vect or;
CK_UTF8CHAR_PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pSal t;

CK_ULONG ul Sal tLen;
CK _ULONG ul I'teration;
} CK_PBE_PARANS;

The fields of the structure have the following meanings:

plnitVector pointer to the location that receives the 8-byte
initialization vector (1V), if an 1V isrequired,

pPassword points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;

pSalt points to the salt to be used in the PBE key generation,

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 113

ulSaltLen length in bytes of the salt information;
ullteration number of iterations required for the generation.

CK_PBE_PARAMS PTR isapointer toaCK_PBE_PARAMS,

6.22.3 PKCS#5 PBKDF2 key generation mechanism parameters

¢ CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCS5 PBKD2 PSEUDO _RANDOM_FUNCTION_TYPE is used to indicate
the Pseudo-Random Function (PRF) used to generate key bits using PKCS #5 PBKDF2.
It is defined as follows:

t ypedef CK_ULONG
CK_PKCS5_PBKD2_PSEUDO RANDOM FUNCTI ON_TYPE;

The following PRFs are defined in PKCS #5 v2.0. The following table lists the defined
functions.

Table 63, PKCS#5 PBKDF2 Key Generation: Pseudo-random functions

PRF | dentifier Value Parameter Type

CKP_PKCS5_PBKDZ2 HMAC_SHA1 0x00000001 | No Parameter. pPrfData must
be NULL and ulPrfDatalen
must be zero.

CKP_PKCS5_PBKD2 HMAC _GOSTR3411 | Ox00000002 | This PRF uses GOST R34.11-94
hash to produce secret key value.
pPrfData should point to DER-
encoded OID, indicating
GOSTR34.11-94 parameters.
ulPrfDataLen holds encoded OID
length in bytes. If pPrfData is set
to NULL_PTR, then id-
GostR3411-94-
CryptoProParamSet parameters
will be used (RFC 4357, 11.2),

and ulPrfDataLen must be 0.

CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to
aCK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE.

April 2009 Copyright © 2009 RSA Security Inc.

114 PKCS#11 MECHANISMSV2.30: CRYPTOKI
¢ CK PKCS5 PBKDF2 SALT_SOURCE_TYPE;
CK_PKCS5 PBKDF2 SALT_SOURCE_TYPE_PTR

CK_PKCS5 PBKDF2 SALT_SOURCE_TYPE is used to indicate the source of the
salt value when deriving akey using PKCS #5 PBKDF2. It is defined as follows:

t ypedef CK_ULONG CK_PKCS5_PBKDF2_SALT_ SOURCE TYPE;
The following salt value sources are defined in PKCS #5 v2.0. The following table lists

the defined sources along with the corresponding data type for the pSaltSourceData field
inthe CK_PKCS5 PBKD2 PARAM structure defined below.

Table 64, PKCS#5 PBKDF2 Key Generation: Salt sources

Sour ce | dentifier Value Data Type
CKZ_SALT_SPECIFIED | 0x00000001 | Array of CK_BY TE containing the value of
the salt value.

CK_PKCS5 PBKDF2 SALT_SOURCE_TYPE_PTR is a pointer to a
CK_PKCS5 PBKDF2 SALT_SOURCE_TYPE.

¢ CK_PKCS5 PBKD2 PARAMS; CK_PKCS5 PBKD2 PARAMS PTR

CK_PKCS5 PBKD2 PARAMS is a structure that provides the parameters to the
CKM_PKCS5 PBKD2 mechanism. The structure is defined as follows:

t ypedef struct CK_PKCS5_PBKD2_ PARAMS {
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE sal t Sour ce;
CK VO D _PTR pSal t Sour ceDat a;
CK_ULONG ul Sal t Sour ceDat aLen;
CK_ ULONG i terations;
CK_PKCS5_PBKD2_PSEUDO RANDOM FUNCTI ON_TYPE prf;
CK_ VO D_PTR pPr f Dat a;
CK_ULONG ul PrfDataLen; CK UTF8CHAR PTR pPasswor d;
CK_ULONG_PTR ul Passwor dLen;

} CK _PKCS5_PBKD2_PARANS;

The fields of the structure have the following meanings:
saltSource source of the salt value
pSaltSourceData data used as the input for the salt source
ulSaltSourceDatalLen length of the salt source input
iterations number of iterations to perform when generating each

block of random data

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 115

prf pseudo-random function to used to generate the key

pPrfData dataused asthe input for PRF in addition to the salt
value

ulPrfDatalLen length of the input data for the PRF

pPassword points to the password to be used in the PBE key
generation

ulPasswordLen length in bytes of the password information

CK_PKCS5 PBKD2 PARAMS PTR IS a pointer to a
CK_PKCS5 PBKD2 PARAMS.

6.22.4 PKCS#5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCS5 PBKD2, is a mechanism
used for generating a secret key from a password and a salt value. This functionality is
defined in PK CS#5 as PBKDF2.

It has a parameter, aCK_PKCS5 _PBKD2 PARAM S structure. The parameter specifies
the salt value source, pseudo-random function, and iteration count used to generate the
new key.

Since this mechanism can be used to generate any type of secret key, new key templates
must contain the CKA_KEY_TYPE and CKA_VALUE_LEN attributes. If the key type
has afixed length the CKA_VALUE_LEN attribute may be omitted.

6.23 PKCS#12 password-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and IVs for performing password-
based encryption or authentication. The method used to generate keys and 1Vs is based
on amethod that was specified in PKCS #12.

We specify here a genera method for producing various types of pseudo-random bits
from a password, p; a string of salt bits, s; and an iteration count, c. The “type’ of
pseudo-random bits to be produced isidentified by an identification byte, 1D, the meaning
of which will be discussed later.

Let H be a hash function built around a compression function f: Z," x Z,Y — Z," (that is,
H has a chaining variable and output of length u bits, and the message input to the
compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1,
u=160 and v=512.

April 2009 Copyright © 2009 RSA Security Inc.

116 PKCS#11 MECHANISMSV2.30: CRYPTOKI

We assume here that u and v are both multiples of 8, as are the lengths in bits of the
password and salt strings and the number n of pseudo-random bits required. In addition,
u and v are of course nonzero.

1. Construct astring, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v{ s/v] bits (the
final copy of the salt may be truncated to create S). Note that if the salt is the empty
string, thenso is S

3. Concatenate copies of the password together to create a string P of length v p/v] bits
(the final copy of the password may be truncated to create P). Note that if the
password is the empty string, then sois P.

4. Set I=9|P to be the concatenation of Sand P.
5. Setj=lniul.

6. Fori=1,2,...,], dothefollowing:

a) Set A=H(DJ|l), the ¢ hash of D||I. That is, compute the hash of D||I; compute
the hash of that hash; etc.; continue in this fashion until atotal of ¢ hashes have
been computed, each on the result of the previous hash.

b) Concatenate copies of A to create a string B of length v bits (the final copy of A
may be truncated to create B).

¢) Treating | as aconcatenation I, Iy, ..., li1 Of v-bit blocks, where k=] /v [+ p/v],
modify | by setting l;=(1;+B+1) mod 2’ for each j. To perform this addition, treat
each v-bit block as a binary number represented most-significant bit first.

7. Concatenate Aq, Ay, ..., Aj together to form a pseudo-random bit string, A.

8. Usethefirst n bits of A asthe output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate akey and IV (if needed) from a password, salt, and an iteration count, the above
algorithm is used. To generate a key, the identifier byte ID is set to the value 1; to
generate an |V, the identifier byte ID is set to the value 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, salt, and an iteration count, the above algorithm is used.
Theidentifier byte ID is set to the value 3.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 117

6.23.1 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES3 EDE_CBC, is a mechanism used for generating a 3-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is
described above. Each byte of the key produced will have its low-order bit adjusted, if
necessary, so that avalid 3-key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typicaly be used for performing
password-based encryption.

6.23.2 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES2 EDE_CBC, is a mechanism used for generating a 2-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is
described above. Each byte of the key produced will have its low-order bit adjusted, if
necessary, so that avalid 2-key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typicaly be used for performing
password-based encryption.

6.23.3 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC,
is a mechanism used for generating a 160-bit generic secret key from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an 1V; for this mechanism,
the contents of this field are ignored, since authentication with SHA-1-HMAC does not
requirean V.

April 2009 Copyright © 2009 RSA Security Inc.

118 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The key generated by this mechanism will typically be used for computing a SHA-1
HMAC to perform password-based authentication (not password-based encryption). At
the time of thiswriting, thisis primarily done to ensure the integrity of a PKCS #12 PDU.

6.24 SSL
Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SSL3 PRE_MASTER_KEY_GEN v
CKM_SSL3 MASTER_KEY_DERIVE v
CKM_SSL3 MASTER_KEY_DERIVE_DH v
CKM_SSL3 KEY_AND_MAC_DERIVE v
CKM_SSL3 MD5_MAC v
CKM_SSL3_SHA1 MAC v

6.24.1 Definitions

Mechanisms:

CKM SSL3_PRE_MASTER KEY GEN
CKM_SSL3_MASTER KEY DERI VE
CKM_SSL3_KEY_AND MAC DERI VE
CKM_SSL3_MASTER KEY DERI VE_DH
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL MAC

6.24.2 SSL mechanism parameters

¢ CK_SSL3 RANDOM DATA

CK_SSL3 RANDOM _DATA is a structure which provides information about the
random data of aclient and a server in an SSL context. This structure is used by both the
CKM_SSL3 MASTER_KEY_DERIVE and the
CKM _SSL3 KEY_AND _MAC _ DERIVE mechanisms. It isdefined asfollows:

t ypedef struct CK _SSL3 RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;

} CK_SSL3_RANDOM DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client’s random data

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 119

ulClientRandomLen length in bytes of the client’s random data
pServerRandom pointer to the server’s random data

ulServerRandomLen length in bytes of the server’s random data

¢ CK_SSL3 MASTER KEY_DERIVE_PARAMS;
CK_SSL3 MASTER_KEY_DERIVE_PARAMS PTR

CK_SSL3 MASTER_KEY_DERIVE_PARAMS is a structure that provides the
parametersto the CKM_SSL3 MASTER_KEY_DERIVE mechanism. It is defined as
follows:

typedef struct CK _SSL3_MASTER KEY_ DERI VE_PARAMS {
CK_SSL3_RANDOM DATA Random nf o;
CK_VERSI ON_PTR pVer si on;

} CK_SSL3_MASTER KEY_DERI VE_PARAMS;

The fields of the structure have the following meanings:
Randominfo client’s and server’ s random data information.

pVersion pointer to aCK_VERSION structure which receives
the SSL protocol version information

CK_SSL3 MASTER KEY_DERIVE_PARAMS PTR is a pointer to a
CK_SSL3 MASTER KEY_DERIVE_PARAMS.

¢ CK_SSL3 KEY MAT OUT; CK_SSL3 KEY_MAT OUT_PTR

CK_SSL3 KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C DeriveKey function with the
CKM_SSL3 KEY_AND MAC DERIVE mechanism. Itisdefined asfollows:

typedef struct CK SSL3 KEY_ MAT_OUT {
CK_OBJECT_HANDLE hd i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl Vd i ent;
CK_BYTE_PTR pl VSer ver ;

} CK_SSL3_KEY_MAT_QUT;

The fields of the structure have the following meanings:

hClientMacSecret key handle for the resulting Client MAC Secret key

April 2009 Copyright © 2009 RSA Security Inc.

120 PKCS#11 MECHANISMSV2.30: CRYPTOKI

hServerMacSecr et key handle for the resulting Server MAC Secret key
hClientkey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to alocation which receives the initialization
vector (IV) created for the client (if any)

plVServer pointer to alocation which receives the initialization
vector (IV) created for the server (if any)

CK_SSL3 KEY_MAT_OUT_PTRisapointer toaCK_SSL3 KEY_MAT_OUT.

¢ CK_SSL3 KEY_MAT_PARAMS; CK_SSL3 KEY_MAT_PARAMS PTR

CK_SSL3 KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It isdefined as follows:

typedef struct CK _SSL3_KEY_MAT_PARAMS ({
CK_ULONG ul MacSi zel nBi ts;
CK_ULONG ul KeySi zel nBi t s;
CK_ULONG ul I VSi zel nBi t s;
CK_BBOCL bl sExport;
CK_SSL3_RANDOM DATA Random nf o;
CK_SSL3_KEY_NMAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_NMAT_PARANS;

The fields of the structure have the following meanings:

ulMacSzelnBits thelength (in bits) of the MACing keys agreed upon
during the protocol handshake phase

ulKeySzelnBits thelength (in bits) of the secret keys agreed upon
during the protocol handshake phase

ullVSzelnBits thelength (in bits) of the IV agreed upon during the
protocol handshake phase. If no 1V isrequired, the
length should be set to 0

blsExport aBoolean value which indicates whether the keys have
to be derived for an export version of the protocol

Randominfo client’s and server’ s random data information.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 121

pReturnedKeyMaterial pointstoaCK_SSL3 KEY_MAT_OUT structures
which receives the handles for the keys generated and
thelVs

CK_SSL3 KEY_MAT_PARAMS PTR is a pointer to a
CK_SSL3 KEY_MAT_PARAMS,

6.24.3 Pre_master key generation

Pre_master key generation in SSL 3.0, denoted
CKM_SSL3 PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It isused to produce the "pre_master” key used in SSL version 3.0 for
RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client's SSL
version number.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_GenerateK ey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA VALUE LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

6.24.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL.3 MASTER_KEY_DERIVE, is
a mechanism used to derive one 48-byte generic secret key from another 48-byte generic
secret key. It is used to produce the "master_secret” key used in the SSL protocol from
the "pre_master” key. This mechanism returns the value of the client version, which is
built into the "pre_master" key as well as ahandle to the derived "master_secret” key.

It has a parameter, aCK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol
version number which is part of the pre-master key. This structure is defined in Section
6.24.

April 2009 Copyright © 2009 RSA Security Inc.

122 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template; otherwise
they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure's pVersion field will be
modified by the C_DeriveKey cal. In particular, when the call returns, this structure will
hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master”
secret with an embedded version number. This includes the RSA cipher suites, but
excludes the Diffie-Hellman cipher suites.

6.24.5 Master key derivation for Diffie-Hellman

Master key derivation for DiffieHellman in SSL 3.0, denoted
CKM_SSL3 MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 123

byte generic secret key from another arbitrary length generic secret key. It is used to
produce the "master_secret" key used in the SSL protocol from the "pre_master" key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token. This structure is defined in Section
6.24. The pVersion field of the structure must be set to NULL_PTR since the version
number is not embedded in the "pre_master” key asit isfor RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length

48-byte “pre_master” secret with an embedded version number. This includes the Diffie-
Hellman cipher suites, but excludes the RSA cipher suites.

April 2009 Copyright © 2009 RSA Security Inc.

124 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.24.6 Key and MAC derivation

Key, MAC and A% derivation in SSL 3.0, denoted
CKM_SSL3 KEY_AND_MAC _DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the
keys generated in the process, as well asthe Vs created.

It has a parameter, a CK_SSL.3 KEY_MAT_PARAMS structure, which allows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and 1Vs which
were generated. This structure is defined in Section 6.24.

This mechanism contributes to the creation of four distinct keys on the token and returns
two 1Vs (if 1Vs are requested by the caller) back to the caller. The keys are al given an
object classof CKO_SECRET_KEY.

The two MACing keys ("client_write MAC_secret” and "server_write MAC_secret")
are aways given a type of CKK_GENERIC _SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client_write key" and "server_write key") are typed according to
information found in the template sent along with this mechanism during aC_DeriveK ey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

IVs will be generated and returned if the ullVSzelnBits field of the
CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the ull VS zelnBits field.

All four keys inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

Note that the CK_SSL3 KEY_MAT_OUT dtructure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure's pReturnedKeyMaterial field will be
modified by the C _DeriveKey call. In particular, the four key handle fields in the
CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by the CK_SSL3 KEY_MAT_OUT
structure’s plVClient and plVServer fields will have Vs returned in them (if 1Vs are
requested by the caler). Therefore, these two fields must point to buffers with sufficient
space to hold any Vs that will be returned.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 125

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism returns al of its key handles in
the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acal to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.
6.24.7 MD5MACingin SSL 3.0

MD5 MACing in SSL3.0, denoted CKM_SSLL3 MD5 MAC, isamechanism for single-
and multiple-part signatures (data authentication) and verification using MD5, based on
the SSL 3.0 protocol. Thistechniqueisvery similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table65, MD5MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signature length
length
C Sign generic secret any 4-8, depending on
parameters
C Veify generic secret any 4-8, depending on
parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

6.24.8 SHA-1 MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL. 3 SHA1 MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using SHA-1,
based on the SSL 3.0 protocol. Thistechniqueis very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

April 2009 Copyright © 2009 RSA Security Inc.

126 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Constraints on key types and the length of input and output data are summarized in the
following table:

Table66, SHA-1 MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signature length
length

C Sign generic secret any 4-8, depending on parameters

C Veify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

6.25 TLS

Details can befound in [TLS].

Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_TLS PRE_MASTER_KEY_GEN v

CKM_TLS_MASTER_KEY_DERIVE
CKM_TLS_MASTER_KEY_DERIVE_DH
CKM_TLS_KEY_AND_MAC _DERIVE
CKM_TLS_PRF

NRRR

6.25.1 Definitions
Mechanisms:

CKM TLS_PRE_MASTER KEY_ GEN
CKM_TLS_MASTER KEY DERI VE
CKM_TLS_KEY_AND MAC DERI VE
CKM_TLS_MASTER KEY DERI VE DH
CKM TLS_PRF

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 127

6.25.2 TL S mechanism parameters

¢ CK_TLS PRF _PARAMS; CK_TLS PRF_PARAMS PTR

CK_TLS PRF_PARAMSisastructure, which provides the parameters to the
CKM_TLS PRF mechanism. It is defined as follows:

typedef struct CK TLS PRF_PARAMS {
CK_BYTE_PTR pSeed;

CK_ULONG ul SeedLen;
CK_BYTE_PTR plLabel;
CK_ULONG ul Label Len;

CK_BYTE_PTR pQut put;
CK_ULONG_PTR pul Qut put Len;
} CK_TLS_PRF_PARANS;

The fields of the structure have the foll owing meanings:
pSeed pointer to the input seed

ulSeedLen |ength in bytes of the input seed
pLabel pointer to the identifying label
ulLabelLen length in bytes of the identifying label
pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, hasto hold the desired length
asinput and will receive the calculated length as
output

CK_TLS PRF_PARAMS PTRisapointertoaCK_TLS PRF_PARAMS,

6.25.3 TL S PRF (pseudorandom function)

PRF (pseudo random function) in TLS, denoted CKM_TL S PRF, is amechanism used
to produce a securely generated pseudo-random output of arbitrary length. The keys it
uses are generic secret keys.

It has aparameter, aCK_TLS PRF_PARAM S structure, which allows for the passing
of the input seed and its length, the passing of an identifying label and its length and the
passing of the length of the output to the token and for receiving the outpui.

This mechanism produces securely generated pseudo-random output of the length
specified in the parameter.

This mechanism departs from the other key derivation mechanismsin Cryptoki in not
using the template sent along with this mechanism during aC_DeriveK ey function call,
which means the template shall beaNULL_PTR. For most key-derivation mechanisms,

April 2009 Copyright © 2009 RSA Security Inc.

128 PKCS#11 MECHANISMSV2.30: CRYPTOKI

C_DeriveK ey returns asingle key handle as aresult of a successful completion.
However, sincethe CKM_TLS_PRF mechanism returns the requested number of output
bytesinthe CK_TLS PRF_PARAM S structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveK ey is unnecessary, and should be a
NULL_PTR.

If acall to C_DeriveKey with this mechanism fails, then no output will be generated.

6.25.4 Pre_master key generation

Pre_master key generation in TLS 1.0, denoted
CKM_TLS PRE_MASTER_KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It isused to produce the "pre_master" key used in TLS version 1.0 for
RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client’s TLS version
number. The CK_VERSION structure should have the version value {3, 1} for TLS
version 1.0.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_GenerateK ey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA VALUE LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

6.25.5 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS MASTER_KEY_DERIVE, isa
mechanism used to derive one 48-byte generic secret key from another 48-byte generic
secret key. It is used to produce the "master_secret”" key used in the TLS protocol from
the "pre_master” key. This mechanism returns the value of the client version, which is
built into the "pre_master" key as well as ahandle to the derived "master_secret" key.

It has a parameter, aCK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol
version number which is part of the pre-master key. This structure is defined in Section
6.24.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 129

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure's pVersion field will be
modified by the C_DeriveKey cal. In particular, when the call returns, this structure will
hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master”
secret with an embedded version number. This includes the RSA cipher suites, but
excludes the Diffie-Hellman cipher suites.

6.25.6 Master key derivation for Diffie-Hellman

Master key derivation for DiffieHellman in TLS 1.0, denoted
CKM_TLS MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-

April 2009 Copyright © 2009 RSA Security Inc.

130 PKCS#11 MECHANISMSV2.30: CRYPTOKI

byte generic secret key from another arbitrary length generic secret key. It is used to
produce the "master_secret" key used in the TLS protocol from the "pre_master” key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
alows for the passing of random data to the token. This structure is defined in Section
6.24. The pVersion field of the structure must be set to NULL_PTR since the version
number is not embedded in the "pre_master” key asit isfor RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET _KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are al implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

e The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e |If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as wadll. If the base key has its
CKA_ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length

48-byte “pre_master” secret with an embedded version number. This includes the Diffie-
Hellman cipher suites, but excludes the RSA cipher suites.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 131

6.25.7 Key and MAC derivation

Key, MAC and v derivation in TLS 1.0, denoted
CKM_TLS KEY_AND_MAC _DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the
keys generated in the process, as well asthe Vs created.

It has a parameter, a CK_SSL.3 KEY_MAT_PARAMS structure, which allows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and 1Vs which
were generated. This structure is defined in Section 6.24.

This mechanism contributes to the creation of four distinct keys on the token and returns
two 1Vs (if 1Vs are requested by the caller) back to the caller. The keys are al given an
object classof CKO_SECRET_KEY.

The two MACing keys ("client_write MAC_secret” and "server_write MAC_secret")
are aways given a type of CKK_GENERIC _SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client_write key" and "server_write key") are typed according to
information found in the template sent along with this mechanism during aC_DeriveK ey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

IVs will be generated and returned if the ullVSzelnBits field of the
CK_SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the ull VS zelnBits field.

All four keys inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

Note that the CK_SSL3 KEY_MAT_OUT dtructure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure's pReturnedKeyMaterial field will be
modified by the C _DeriveKey call. In particular, the four key handle fields in the
CK_SSL3 KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by the CK_SSL3 KEY_MAT_OUT
structure’s plVClient and plVServer fields will have Vs returned in them (if 1Vs are
requested by the caler). Therefore, these two fields must point to buffers with sufficient
space to hold any Vs that will be returned.

April 2009 Copyright © 2009 RSA Security Inc.

132 PKCS#11 MECHANISMSV2.30: CRYPTOKI

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism returns al of its key handles in
the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK_SSL3 KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey is unnecessary, and should beaNULL_PTR.

If acal to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.

6.26 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS
one could argue that there would be no need to have distinct handling of the client and
server side of the handshake. However, since in WTLS the server and client use different
sequence numbers, there could be instances (e.g. when WTLS is used to protect
asynchronous protocols) where sequence numbers on the client and server side differ, and
hence this motivates the introduced split.

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_WTLS_PRE_MASTER_KEY_GEN v

CKM_WTLS MASTER KEY_ DERIVE
CKM_WTLS MASTER KEY_DERIVE DH_ECC
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE
CKM_WTLS CLIENT_KEY_AND_MAC _DERIVE

CKM_WTLS _PRF

NSEYERSRYR

6.26.1 Definitions

Mechanisms:

CKM WILS_PRE_MASTER KEY GEN
CKM WILS_MASTER KEY DERI VE

CKM WILS_MASTER KEY DERI VE_DH ECC
CKM WILS_PRF

CKM WILS_SERVER KEY AND MAC DERI VE
CKM_WILS_CLI ENT_KEY_AND_MAC_DERI VE

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 133

6.26.2 WTL S mechanism parameters

¢ CK_WTLS RANDOM _DATA; CK_WTLS RANDOM_DATA_PTR

CK_WTLS RANDOM _DATA isastructure, which provides information about the
random data of a client and aserver in aWTLS context. This structure is used by the
CKM_WTLS MASTER_KEY_DERIVE mechanism. It is defined as follows:

t ypedef struct CK WLS RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Ser ver Randonien;

} CK_WILS RANDOM DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the client's random data

ulClientRandomLen length in bytes of the client's random
data

pServerRandom pointer to the server's random data

ulServerRandomLen length in bytes of the server's random
data

CK_WTLS RANDOM_DATA_PTR isapointer to a
CK_WTLS RANDOM_DATA.

¢ CK_WTLS MASTER_KEY DERIVE_PARAMS,
CK_WTLS MASTER_KEY DERIVE_PARAMS PTR

CK_WTLS MASTER_KEY_DERIVE_PARAMSisastructure, which provides the
parameterstothe CKM_WTLS MASTER_KEY_DERIVE mechanism. It is defined as
follows:

typedef struct CK WILS_MASTER KEY_DERI VE_PARAMS {
CK_MECHANI SM TYPE Di gest Mechani sm
CK_WILS_RANDOM DATA Random nf o;
CK_BYTE_PTR pVer si on;

} CK_WILS_MASTER KEY_DERI VE_PARANS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest
mechanism to be used (possible types
can befound in [WTLS])

Randominfo - cjjent's and server's random data

April 2009 Copyright © 2009 RSA Security Inc.

134 PKCS#11 MECHANISMSV2.30: CRYPTOKI

information

pVersion pointer toaCK_BYTE which
receives the WTLS protocol version
information

CK_WTLS MASTER_KEY_DERIVE_PARAMS PTR isapointer toa
CK_WTLS MASTER_KEY_DERIVE_PARAMS,

¢ CK_WTLS PRF_PARAMS; CK_WTLS PRF_PARAMS PTR

CK_WTLS PRF_PARAM Sisastructure, which provides the parameters to the
CKM_WTLS PRF mechanism. It isdefined as follows:

typedef struct CK WILS PRF_PARAMS ({
CK_MECHANI SM TYPE Di gest Mechani sm

CK_BYTE_PTR pSeed;
CK_ULONG ul SeedLen;
CK_BYTE_PTR pLabel ;
CK_ULONG ul Label Len;
CK_BYTE_PTR pQut put ;
CK_ULONG_PTR pul Qut put Len;

} CK_WILS_PRF_PARAMNS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest
mechanism to be used (possible types
can befound in [WTLS])

pSeed pointer to theinput seed
ulSeedLen |ength in bytes of the input seed
pLabel pointer to the identifying label
ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the
operation

pulOutputLen pointer to the length in bytes that the
output to be created shall have, has to
hold the desired length as input and
will receive the calculated length as
output

CK_WTLS PRF_PARAMS PTRisapointer toaCK_WTLS PRF_PARAMS.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 135

¢ CK_WTLS KEY_MAT_OUT; CK_WTLS KEY_MAT_OUT_PTR

CK_WTLS KEY_MAT_OUT isastructure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_WTLS SEVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as
follows:
typedef struct CK WILS KEY_MAT_OUT {
CK_OBJECT_HANDLE hMacSecret;
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR plV,
} CK_WILS_KEY_MAT_QUT;

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC
secret key

hKey Key handle for the resulting secret key

Pointer to alocation which receives
plV theinitialization vector (1V) created (if

any)
CK_WTLS KEY_MAT_OUT PTRisapointertoaCK_WTLS KEY_MAT_OUT.

¢ CK_WTLS KEY_MAT_PARAMS; CK_WTLS KEY_MAT_PARAMS PTR

CK_WTLS KEY_MAT_PARAMS isastructure that provides the parametersto the
CKM_WTLS SEVER_KEY_AND_MAC_DERIVE and the

CKM_WTLS CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as
follows:

typedef struct CK WILS KEY_MAT_PARAMS ({

CK_MECHANI SM TYPE Di gest Mechani sm
CK_ULONG ul MacSi zel nBi t s;
CK_ULONG ul KeySi zel nBi t s;
CK_ULONG ul 1'VSi zel nBi t s;
CK_ULONG ul SequenceNunber ;
CK_BBOCL bl sExport;
CK_WLS_RANDOM DATA Random nf o;

CK_WILS _KEY_MAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_WILS KEY_MNAT_PARANE;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest
mechanism to be used (possible types
can befound in [WTLY])

April 2009 Copyright © 2009 RSA Security Inc.

136 PKCS#11 MECHANISMSV2.30: CRYPTOKI

ulMacSzelnBits thelength (in bits) of the MACing key
agreed upon during the protocol
handshake phase

ulKeySzelnBits thelength (in bits) of the secret key
agreed upon during the handshake
phase

ullVSzelnBits thelength (in bits) of the IV agreed
upon during the handshake phase. If no
IV isrequired, the length should be set
to 0.

ulSequenceNumber The current sequence number used for
records sent by the client and server
respectively

blsExport aboolean value which indicates
whether the keys have to be derived for
an export version of the protocol. If this
valueistrue (i.e. the keys are
exportable) then ulKeySzelnBitsisthe
length of the key in bits before
expansion. The length of the key after
expansion is determined by the
information found in the template sent
along with this mechanism during a
C_DeriveKey function call (either the
CKA_KEY_TYPE or the
CKA_VALUE_LEN attribute).

Randominfo client’s and server’ s random data
information

pReturnedKeyMaterial pointsto a
CK_WTLS KEY_MAT_OUT
structure which receives the handles for
the keys generated and the IV

CK_WTLS KEY_MAT_PARAMS PTR isapointer to a
CK_WTLS KEY_MAT_PARAMS.

6.26.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suitein WTLS denoted
CKM_WTLS PRE_MASTER_KEY_GEN, isamechanism, which generates a
variable length secret key. It is used to produce the pre master secret key for RSA key

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 137

exchange suite used in WTLS. This mechanism returns a handle to the pre master secret
key.
It has one parameter, aCK_BY TE, which provides the client sWTLS version.

The mechanism contributesthe CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new key (aswell asthe CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_GenerateK ey call may indicate
that the object classisCKO_SECRET_KEY, the key typeis
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute indicates the length
of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_ MECHANISM _INFO structure
shall indicate 20 bytes.

6.26.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS MASTER_KEY_DERIVE,
is amechanism used to derive a 20 byte generic secret key from variable length secret
key. It is used to produce the master secret key used in WTLS from the pre master secret
key. This mechanism returns the value of the client version, which is built into the pre
master secret key as well as a handle to the derived master secret key.

It has aparameter,aCK_WTLS MASTER_KEY_DERIVE_PARAMS structure,
which allows for passing the mechanism type of the digest mechanism to be used as well
as the passing of random data to the token as well as the returning of the protocol version
number which is part of the pre master secret key.

The mechanism contributesthe CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (aswell asthe CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_DeriveK ey call may indicate
that the object classis CKO_SECRET_KEY, the key typeis
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributesin the template for the
new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these
attributes each take on some default value.

If the base key hasits CKA_ALWAYS _SENSITIVE attribute set to CK_FALSE, then
the derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE

April 2009 Copyright © 2009 RSA Security Inc.

138 PKCS#11 MECHANISMSV2.30: CRYPTOKI

attribute set to CK_TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSI TIVE attribute.

Similarly, if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key hasits
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has
itsCKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that the CK_BY TE pointed to by the

CK_WTLS MASTER_KEY_DERIVE_PARAM S structure' s pVersion field will be
modified by the C_DeriveK ey cal. In particular, when the cal returns, this byte will hold
the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre
master secret key with an embedded version number. Thisincludes the RSA key
exchange suites, but excludes the Diffie-Hellman and Elliptic Curve Cryptography key
exchange suites.

6.26.5 Master secret key derivation for DiffieHellman and Elliptic Curve
Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS,
denoted CKM_WTLS MASTER_KEY_DERIVE_DH_ECC, isamechanism used to
derive a 20 byte generic secret key from variable length secret key. It is used to produce
the master secret key used in WTLS from the pre master secret key. This mechanism
returns a handle to the derived master secret key.

It has aparameter,aCK_WTLS MASTER_KEY_DERIVE_PARAMS structure,
which allows for the passing of the mechanism type of the digest mechanism to be used
aswell as random data to the token. The pVersion field of the structure must be set to
NULL_PTR since the version number is not embedded in the pre master secret key asitis
for RSA-like key exchange suites.

The mechanism contributesthe CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (aswell asthe CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during aC_DeriveK ey call may indicate
that the object classis CKO_SECRET_KEY, the key typeis
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 139

The CKA_SENSITIVE and CKA_EXTRACTABLE attributesin the template for the
new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these
attributes each take on some default value.

If the base key hasits CKA_ALWAYS _SENSITIVE attribute set to CK_FALSE, then
the derived key will aswell. If the base key hasits CKA_ALWAYS SENSITIVE
attribute set to CK_TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE
attribute set to the same value asits CKA_SENSI TIVE attribute.

Similarly, if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key hasits
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has
itsCKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use afixed
length 20-byte pre master secret key with an embedded version number. This includes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the
RSA key exchange suites.

6.26.6 WTL S PRF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, isamechanism
used to produce a securely generated pseudo-random output of arbitrary length. The keys
it uses are generic secret keys.

It has a parameter, aCK_WTLS PRF_PARAM S structure, which allows for passing
the mechanism type of the digest mechanism to be used, the passing of the input seed and
its length, the passing of an identifying label and its length and the passing of the length
of the output to the token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length
specified in the parameter.

This mechanism departs from the other key derivation mechanismsin Cryptoki in not
using the template sent aong with this mechanism during aC_DeriveK ey function call,
which means the template shall be aNULL_PTR. For most key-derivation mechanisms,
C_DeriveK ey returns asingle key handle as aresult of a successful completion.
However, sincethe CKM_WTLS PRF mechanism returns the requested number of
output bytesinthe CK_WTLS PRF_PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveK ey is unnecessary, and should be a
NULL_PTR.

If acall to C_DeriveKey with this mechanism fails, then no output will be generated.

April 2009 Copyright © 2009 RSA Security Inc.

140 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.26.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted

CKM_WTLS SERVER_KEY_AND_MAC_DERIVE, isamechanism used to derive
the appropriate cryptographic keying material used by a cipher suite from the master
secret key and random data. This mechanism returns the key handles for the keys
generated in the process, aswell asthe IV created.

It has aparameter,aCK_WTLS KEY_MAT_PARAM S structure, which alows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a
structure which receives the handles and IV which were generated.

This mechanism contributes to the creation of two distinct keys and returnsone IV (if an
IV isrequested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The MACing key (server write MAC secret) is aways given atype of
CKK_GENERIC_SECRET. Itisflagged as valid for signing, verification and
derivation operations.

The other key (server write key) is typed according to information found in the template
sent along with this mechanism during a C_DeriveK ey function call. By default, it is
flagged as valid for encryption, decryption, and derivation operations.

An 1V (server write IV) will be generated and returned if the ullVSzelnBitsfield of the
CK_WTLS KEY_MAT_PARAMSfield has anonzero value. If it is generated, its
length in bits will agree with the value in the ull VS zelnBits field

Both keysinherit the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the
base key. The template provided to C_DeriveK ey may not specify values for any of these
attributes that differ from those held by the base key.

Notethat the CK_WTLS KEY_MAT_OUT structure pointed to by the

CK_WTLS KEY_MAT_PARAMS structure’ s pReturnedKeyMaterial field will be
modified by the C_DeriveKey cal. In particular, the two key handle fieldsin the
CK_WTLS KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS KEY_MAT_OUT
structure' s plV field will have the IV returned in them (if an IV isrequested by the caller).
Therefore, this field must point to a buffer with sufficient space to hold any 1V that will
be returned.

This mechanism departs from the other key derivation mechanismsin Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveK ey returns a
single key handle as aresult of a successful completion. However, since the

CKM_WTLS SERVER_KEY_AND_MAC_DERIVE mechanism returns all of its key
handlesinthe CK_WTLS KEY_MAT_OUT structure pointed to by the

CK_WTLS KEY_MAT_PARAMS structure specified as the mechanism parameter,

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 141

the parameter phKey passed to C_DeriveK ey is unnecessary, and should be a
NULL_PTR.

If acall to C_DeriveKey with this mechanism fails, then none of the two keys will be
created.

6.26.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted

CKM_WTLS CLIENT_KEY_AND_MAC_DERIVE, is amechanism used to derive
the appropriate cryptographic keying material used by a cipher suite from the master
secret key and random data. This mechanism returns the key handles for the keys
generated in the process, aswell asthe IV created.

It has aparameter,aCK_WTLS KEY_MAT_PARAM S structure, which alows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a
structure which receives the handles and IV which were generated.

This mechanism contributes to the creation of two distinct keys and returnsone IV (if an
IV isrequested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given atype of
CKK_GENERIC_SECRET. Itisflagged as valid for signing, verification and
derivation operations.

The other key (client write key) is typed according to information found in the template
sent along with this mechanism during a C_DeriveK ey function call. By default, it is
flagged as valid for encryption, decryption, and derivation operations.

An 1V (client write IV) will be generated and returned if the ull VS zelnBits field of the
CK_WTLS KEY_MAT_PARAMSfield has anonzero value. If it is generated, its
length in bits will agree with the value in the ull VS zelnBits field

Both keysinherit the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the
base key. The template provided to C_DeriveK ey may not specify values for any of these
attributes that differ from those held by the base key.

Notethat the CK_WTLS KEY_MAT_OUT structure pointed to by the

CK_WTLS KEY_MAT_PARAMS structure’ s pReturnedKeyMaterial field will be
modified by the C_DeriveKey cal. In particular, the two key handle fieldsin the
CK_WTLS KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_WTLS KEY_MAT_OUT
structure' s plV field will have the IV returned in them (if an IV isrequested by the caller).
Therefore, this field must point to a buffer with sufficient space to hold any 1V that will
be returned.

April 2009 Copyright © 2009 RSA Security Inc.

142 PKCS#11 MECHANISMSV2.30: CRYPTOKI

This mechanism departs from the other key derivation mechanismsin Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveK ey returns a
single key handle as aresult of a successful completion. However, since the

CKM_WTLS CLIENT_KEY_AND_MAC_DERIVE mechanism returns al of its key
handlesinthe CK_WTLS KEY_MAT_OUT structure pointed to by the

CK_WTLS KEY_MAT_PARAMS structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveK ey is unnecessary, and should be a
NULL_PTR.

If acall to C_DeriveKey with this mechanism fails, then none of the two keys will be
created.

6.27 Miscellaneous simple key derivation mechanisms

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY

NERRER

6.27.1 Definitions
Mechanisms:

CKM_CONCATENATE_BASE_AND DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR BASE_AND DATA
CKM_EXTRACT_KEY_FROM KEY
CKM_CONCATENATE_BASE_AND KEY

6.27.2 Parametersfor miscellaneous simple key derivation mechanisms
¢ CK_KEY_DERIVATION_STRING_DATA;
CK_KEY_DERIVATION_STRING_DATA_PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA,
CKM_CONCATENATE_DATA_AND_BASE, and
CKM_XOR_BASE_AND DATA mechanisms. It isdefined asfollows:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 143

t ypedef struct CK KEY_ DERI VATI ON_STRI NG DATA {
CK_BYTE_PTR pDat a;
CK_ULONG ul Len;

} CK _KEY_DERI VATI ON_STRI NG_DATA,;

The fields of the structure have the following meanings:
pData pointer to the byte string
ulLen length of the byte string

CK_KEY_DERIVATION_STRING DATA PTR is a pointer to a
CK_KEY_DERIVATION_STRING DATA.

¢ CK_EXTRACT_PARAMS;, CK_EXTRACT_PARAMS PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base
key should be used as thefirst bit of the derived key. It isdefined asfollows:

t ypedef CK_ULONG CK_EXTRACT PARANS;

CK_EXTRACT_PARAMS PTR isapointer toaCK_EXTRACT_PARAMS.

6.27.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE _BASE _AND KEY, derives a
secret key from the concatenation of two existing secret keys. The two keys are specified
by handles; the values of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces
the key value information which is appended to the end of the base key's value
information (the base key is the key whose handle is supplied as an argument to
C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other
key is OXx89ABCDEF, then the value of the derived key will be taken from a buffer
containing the string 0x0123456789ABCDEF.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the values of the two original keys.

e If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

April 2009 Copyright © 2009 RSA Security Inc.

144 PKCS#11 MECHANISMSV2.30: CRYPTOKI

e If nolengthis provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’'t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
two origina keys values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

o If ether of the two original keys has its CKA_SENSITIVE attribute set to
CK_TRUE, so does the derived key. If not, then the derived key's
CKA_SENSITIVE attribute is set either from the supplied template or from a default
value.

e Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute
set to CK_FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key's CKA_ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if both of the original keys have their CKA_ALWAYS SENSITIVE
attributes set to CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to
CK_TRUE if and only if both of the origina keys have ther
CKA_NEVER_EXTRACTABLE attributes set to CK_TRUE.

6.27.4 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND DATA, derives a
secret key by concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be appended to the
base key to derive another key.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x0123456789 ABCDEF.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 145

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the value of the original key and the data.

If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’'t, an error will be returned.

If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
origina key’svalue and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’'s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK_FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

The derived key's CKA_ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS SENSITIVE attribute set to
CK_TRUE.

Similarly, the derived key's CKA_NEVER_EXTRACTABLE attribute is set to
CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE
attribute set to CK_TRUE.

6.27.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND _ BASE, derives a
secret key by prepending data to the start of a specified secret key.

April 2009 Copyright © 2009 RSA Security Inc.

146 PKCS#11 MECHANISMSV2.30: CRYPTOKI

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be prepended to the
base key to derive another key.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string Ox89ABCDEF01234567.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the data and the value of the original key.

e If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

e If nolengthis provided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’'t, an error will be returned.

e |If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
data and the original key’svalue, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e |If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK_FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key's CKA_ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS SENSITIVE attribute set to
CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to
CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE
attribute set to CK_TRUE.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 147

6.27.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism
which provides the capability of deriving a secret key by performing a bit XORing of a
key pointed to by a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING _DATA
structure, which specifies the data with which to XOR the original key’s vaue.

For example, if the value of the base key is0x01234567, and the value of the datais
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x88888888.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of
the lengths of the data and the value of the original key.

e If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

e If nolengthisprovided in the template, but akey typeis, then that key type must have
awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’'t, an error will be returned.

e |If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of
the data and the original key’svalue, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e |If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK_FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

April 2009 Copyright © 2009 RSA Security Inc.

148 PKCS#11 MECHANISMSV2.30: CRYPTOKI

e The derived key's CKA_ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS SENSITIVE attribute set to
CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to
CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE
attribute set to CK_TRUE.

6.27.7 Extraction of one key from another key

Extraction of one key from another key, denoted
CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability
of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which
bit of the original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key
with the 4-byte value Ox329F84A9. We will derive a 2-byte secret key from this key,
starting at bit position 21 (i.e, the vaue of the paraneter to the
CKM_EXTRACT_KEY_FROM_KEY mechanismis21).

1. Wewrite the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labeled as b0, bl, ..., b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at
bit b21. We obtain the binary string 1001 0101 0010 0110.

3. Thevalue of the new key is thus 0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around
the end of the binary string representing the original key’svalue.

If the original key used in this process is sensitive, then the derived key must also be
sensitive for the derivation to succeed.

e If nolength or key typeis provided in the template, then an error will be returned.

e If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

e If nolengthis provided in the template, but akey typeis, then that key type must have

awell-defined length. If it does, then the key produced by this mechanism will be of
the type specified in the template. If it doesn’'t, an error will be returned.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 149

e |If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than the original key has, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

e |If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’'s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

e Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK_FALSE, so does the derived key. If not, then the derived key's
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key's CKA_ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS SENSITIVE attribute set to
CK_TRUE.

e Similarly, the derived key’'s CKA_NEVER_EXTRACTABLE attribute is set to
CK_TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE
attribute set to CK_TRUE.

6.28 CMS
Functions
Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key | Unwrap
Pair
CKM_CMS SIG v v

6.28.1 Definitions
Mechanisms:

CKM CMV5_SI G

April 2009 Copyright © 2009 RSA Security Inc.

150 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.28.2 CM S Signature Mechanism Objects

These objects provide information relating to the CKM_CMS SIG mechanism.
CKM_CMS SIG mechanism object attributes represent information about supported
CMS signature attributes in the token. They are only present on tokens supporting the
CKM_CMS _SIG mechanism, but must be present on those tokens.

Table67, CM S Signature M echanism Object Attributes

Attribute Datatype | Meaning

CKA_REQUIRED_CMS ATTRIBUTES | Bytearray | Attributesthe token aways will
include in the set of CM S signed
attributes

CKA_DEFAULT_CMS ATTRIBUTES | Bytearray | Attributesthe token will includein
the set of CM S signed attributes in
the absence of any attributes
specified by the application
CKA_SUPPORTED_CMS ATTRIBUTE | Bytearray | Attributesthe token may includein
S the set of CM'S signed attributes
upon request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with
optional accompanying values. Any attributes in the list shall be identified with its object
identifier, and any values shall be DER-encoded. The list of attributes is defined in
ASN.1as:

Attributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER OPTIONAL

}
The client may not set any of the attributes.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 151

6.28.3 CM S mechanism parameters

e CK_CMS SIG_PARAMS, CK_CMS SIG_PARAMS PTR

CK_CMS SIG PARAMS is a dructure that provides the parameters to the
CKM_CMS SIG mechanism. It is defined as follows:

t ypedef struct CK CMS_SI G PARAMS {

CK_OBJECT_HANDLE certificateHandl e;
CK_MECHANI SM_PTR pSi gni ngMechani sm
CK_MECHANI SM PTR pDi gest Mechani sm
CK_UTF8CHAR PTR pCont ent Type;

CK_BYTE_PTR pRequest edAttri but es;
CK_ULONG ul Request edAttri but esLen;
CK_BYTE_PTR pRequi redAttri but es;
CK_ULONG ul Requi redAttri but esLen;

} CK_CMS_SI G_PARANE;

The fields of the structure have the following meanings:

certificateHandle Object handle for a certificate associated with the
signing key. The token may use information from this
certificate to identify the signer in the signerinfo result
value. CertificateHandle may be NULL_PTR if the
certificate is not available as aPKCS #11 object or if
the calling application leaves the choice of certificate
completely to the token.

pSgningMechanism M echanism to use when signing a constructed CM S
SignedAttributes value. E.g.
CKM_SHA1 RSA_PKCS.

pDigestMechanism Mechanism to use when digesting the data. Value
shall be NULL_PTR when the digest mechanism to
use follows from the pS gningMechanism parameter.

pContentType NULL-terminated string indicating complete MIME
Content-type of message to be signed; or the value
NULL_PTR if the message is a MIME object (which
the token can parse to determine its MIME Content-
type if required). Use the value
“appl i cation/ oct et -streant if the MIME type for
the message is unknown or undefined. Note that the
pContentType string shall conform to the syntax
specified in RFC 2045, i.e. any parameters needed for
correct presentation of the content by the token (such
as, for example, a non-default “charset”) must be

April 2009 Copyright © 2009 RSA Security Inc.

152 PKCS#11 MECHANISMSV2.30: CRYPTOKI

present. The token must follow rules and procedures
defined in RFC 2045 when presenting the content.

pRequestedAttributes Pointer to DER-encoded list of CMS Attributes the
caller requests to be included in the signed attributes.
Token may freely ignore this list or modify any
supplied values.

ul RequestedAttributesLen Length in bytes of the value pointed to by
pRequestedAttributes

pRequiredAttributes Pointer to DER-encoded list of CMS Attributes (with
accompanying values) required to be included in the
resulting signed attributes. Token must not modify
any supplied values. If the token does not support one
or more of the attributes, or does not accept provided
values, the signature operation will fail. The token
will use its own default attributes when signing if both
the pRequestedAttributes and pRequiredAttributes
field are set to NULL_PTR.

ulRequiredAttributesLen Length in bytes, of the value pointed to by
pRequiredAttributes.

6.28.4 CMSsignatures

The CMS mechanism, denoted CKM_CMS SIG, is a multi-purpose mechanism based
on the structures defined in PKCS #7 and RFC 2630. It supports single- or multiple-part
signatures with and without message recovery. The mechanism is intended for use with,
e.g., PTDs (see MeT-PTD) or other capable tokens. The token will construct a CMS
SignedAttributes value and compute a signature on this value. The content of the
SignedAttributes value is decided by the token, however the caller can suggest some
atributes in the parameter pRequestedAttributes. The caller can aso require some
attributes to be present through the parameters pRequiredAttributes. The signature is
computed in accordance with the parameter pS gningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the
pSgnature return value will point to a DER-encoded value of type Signerinfo. Signerinfo IS
defined in ASN.1 as follows (for a complete definition of all fields and types, see RFC
2630):

Signerinfo ::= SEQUENCE {
version CMSVersion,
sid Signerldentifier,
digestAlgorithm DigestAlgorithmldentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmldentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 153

The certificateHandle parameter, when set, helps the token populate the sid field of the
signerinfo value. If certificateHandle is NULL_PTR the choice of a suitable certificate
reference in the signerinfo result value is left to the token (the token could, e.g., interact
with the user).

This mechanism shall not be used in cals to C_Verify or C_VerifyFinal (use the
pS gningMechanism mechanism instead).

In order for an application to find out what attributes are supported by a token, what
attributes that will be added by default, and what attributes that always will be added, it
shall analyze the contents of the CKH_CMS ATTRIBUTES hardware feature object.

For the pRequiredAttributes field, the token may have to interact with the user to find out
whether to accept a proposed value or not. The token should never accept any proposed
attribute values without some kind of confirmation from its owner (but this could be
through, e.g., configuration or policy settings and not direct interaction). If a user rejects
proposed values, or the sSignature request as such, the value
CKR_FUNCTION_REJECTED shall be returned.

When possible, applications should use the CKM_CMS SIG mechanism when
generating CMS-compatible signatures rather than lower-level mechanisms such as
CKM_SHA1 RSA_PKCS. Thisis especialy true when the signatures are to be made on
content that the token is able to present to a user. Exceptions may include those cases
where the token does not support a particular signing attribute. Note however that the
token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application
may avoid sending the whole message to the token by electing to use a suitable signature
mechanism (eg. CKM_RSA PKCS) as the pSgningMechanism vaue in the
CKM_CMS SIG_PARAMS structure, and digesting the message itself before passing it
to the token.

PKCS #11-aware applications making use of tokens with presentation capabilities, should
attempt to provide messages to be signed by the token in a format possible for the token
to present to the user. Tokens that receive multipart MIME-messages for which only
certain parts are possible to present may fail the signature operation with areturn value of
CKR_DATA_INVALID, but may also choose to add a signing attribute indicating
which parts of the message that were possible to present.

6.29 Blowfish
Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption

function 16 times. The block size is 64 bits, and the key can be any length up to 448 bits.
Although there is a complex initialization phase required before any encryption can take

April 2009 Copyright © 2009 RSA Security Inc.

154 PKCS#11 MECHANISMSV2.30: CRYPTOKI

place, the actual encryption of data is very efficient on large microprocessors. Ref.
http://www.counterpane.com/bfsverlag.html

Functions
Encrypt Sign SR Gen. Wrap
M echanism & & & Digest Key/ & Derive
Decrypt | Verify | VR Key Unwrap
Pair
CKM_BLOWFISH_CBC v v
CKM_BLOWFISH_CBC_PAD v v

6.29.1 Definitions

This section defines the key type “CKK_BLOWFISH” for type CK_KEY_TYPE as used
inthe CKA_KEY _TY PE attribute of key objects.

M echanisms:

CKM BLOWFI SH_KEY_GEN
CKM_BLOWFI SH_CBC
CKM_BLOWFI SH_CBC_PAD

6.29.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO_SECRET_KEY, key type
CKK_BLOWFISH) hold Blowfish keys. The following table defines the Blowfish
secret key object attributes, in addition to the common attributes defined for this object
class:

Table 68, BLOWFISH Secret Key Object

Attribute Data type M eaning
CKA_VALUE"®/ Byte array Key value the key can
be any length up to 448
bits. Bit length restricted
to an byte array.
CKA_VALUE_LEN%® | CK_ULONG | Length in bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK _BLOWFI SH;

CK_UTF8CHAR | abel [] = “A blowfish secret key object”;
CK_BYTE val ue[16] = {...};

CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 155

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

3
6.29.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_GEN, isa
key generation mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the key type (specificaly, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizesin bytes.

6.29.4 Blowfish -CBC

Blowfish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a 8-byte initialization vector.

This mechanism can wrap and unwrap any secret key. For wrapping, the mechanism
encrypts the value of the CKA_VAL UE attribute of the key that is wrapped, padded on
the trailing end with up to block size minus one null bytes so that the resulting length isa
multiple of the block size. The output data is the same length as the padded input data. It
does not wrap the key type, key length, or any other information about the key; the
application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY _TYPE attribute of the template and, if it has one, and the
key type supportsit, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result asthe CKA_VAL UE attribute of the new key; other attributes
required by the key type must be specified in the template.

April 2009 Copyright © 2009 RSA Security Inc.

156 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Constraints on key types and the length of data are summarized in the following table:

Table2, BLOWFISH-CBC: Key And Data L ength

Function Key type Input lenght Output lenght
C_Encrypt BLOWFISH multiple of block size same as input length
C_Decrypt BLOWFISH multiple of block size same as input length
C_WrapKey BLOWFISH any input length rounded up to

multiple of the block size

C_UnwrapKey |BLOWFISH multiple of block size | determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of BLOWFISH key
Sizes, in bytes.

6.29.5 Blowfish -CBC with PKCS padding

Blowfish-CBC-PAD, denoted CKM_BLOWFISH_CBC_PAD, isamechanism for
single- and multiple-part encryption and decryption, key wrapping and key unwrapping,
cipher-block chaining mode and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 8-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

The entriesin the table below for datalength constraints when wrapping and unwrapping
keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 3, BLOWFISH-CBC with PKCS Padding: Key And Data L ength

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 157

Function Key type I nput lenght Output lenght

C_Encrypt BLOWFISH any input length rounded up to
multiple of the block size

C_Decrypt BLOWFISH multiple of block size between 1 and block
length block size bytes
shorter than input length

C_WrapKey BLOWFISH any input length rounded up to
multiple of the block size

C UnwrapKey |BLOWFISH multiple of block size between 1 and block
length block size bytes
shorter than input length

6.30 Twofish

Ref. http://www.counterpane.com/twofish-brief.html

6.30.1 Definitions

This section defines the key type “CKK_TWOFISH” for type CK_KEY_TYPE asused in
the CKA_KEY _TY PE attribute of key objects.

M echanisms:

CKM TWOFI SH_KEY_GEN
CKM_TWOFI SH_CBC
CKM_TWOFI SH_CBC_PAD

April 2009 Copyright © 2009 RSA Security Inc.

158 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.30.2 Twofish secret key objects

Twofish secret key objects (object class CKO_SECRET_KEY, key type
CKK_TWOFISH) hold Twofish keys. The following table defines the Twofish secret
key object attributes, in addition to the common attributes defined for this object class:

Table 69, Twofish Secret Key Object

Attribute Data type Meaning

CKA_VALUE"*®7 Byte array Key value 128-, 192-, or
256-bit key

CKA_VALUE_LEN*® | CK_ULONG | Lengthin bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes

The following is a sample template for creating an TWOFISH secret key object:
CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_TWOFI SH;
CK_UTF8CHAR | abel [] = “A twofish secret key object”;
CK_BYTE val ue[16] = {...};

CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}
6.30.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a
key generation mechanism Twofish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specificaly, the
flags indicating which functions the key supports) may be specified in the template for the
key, or else are assigned default initial values.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 159

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bytes.
6.30.4 Twofish -CBC

Twofish-CBC, denoted CKM_TWOFISH _CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

6.30.5 Towfish -CBC with PKCS padding

Towfish-CBC-PAD, denoted CKM_TOWFISH_CBC_PAD, isamechanism for single-
and multiple-part encryption and decryption, key wrapping and key unwrapping, cipher-
block chaining mode and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

6.31 CAMELLIA

Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys,
similar to AES. Camelliaisdescribed e.g. in IETF RFC 3713.

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_CAMELLIA_KEY_GEN v
CKM_CAMELLIA_ECB v v
CKM_CAMELLIA_CBC v v
CKM_CAMELLIA_CBC_PAD v v
CKM_CAMELLIA_MAC_GENERAL v
CKM_CAMELLIA_MAC v
CKM_CAMELLIA_ECB_ENCRYPT_DATA v
CKM_CAMELLIA_CBC_ENCRYPT_DATA v

6.31.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TY PE as used
inthe CKA_KEY _TY PE attribute of key objects.

April 2009 Copyright © 2009 RSA Security Inc.

160 PKCS#11 MECHANISMSV2.30: CRYPTOKI

M echanisms:

CKM CAMELLI A_KEY_GEN
CKM_CAMELLI A_ECB
CKM_CAMELLI A_CBC
CKM_CAMELLI A_MAC
CKM_CAMELLI A_MAC GENERAL
CKM_CAMELLI A_CBC_PAD

6.31.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type
CKK_CAMELLIA) hold Camellia keys. The following table defines the Camellia
secret key object attributes, in addition to the common attributes defined for this object
class:

Table 70, Camellia Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®7 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes.

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAMELLI A;
CK_UTF8CHAR | abel [] “A Canellia secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

}
6.31.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a
key generation mechanism for Camellia.

It does not have a parameter.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 161

The mechanism generates Camellia keys with a particular length in bytes, as specified in
the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the Camellia key type
(specifically, the flags indicating which functions the key supports) may be specified in
the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

6.31.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
Camellia and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

April 2009 Copyright © 2009 RSA Security Inc.

162 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table71, Camellia-ECB: Key And Data L ength

Function Key type I nput Output length Comments
length
C_Encrypt CKK_CAMELLIA | multiple | sameasinput length no final
of block part
size
C_Decrypt CKK_CAMELLIA | multiple | sameasinput length no final
of block part
size
C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of block
size
C UnwrapKey | CKK_CAMELLIA | multiple | determined by type of
of block | key being unwrapped
size or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

6.31.5 Camellia-CBC

CamelliaaCBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
Camellia and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supportsit, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 163

Table72, Camellia-CBC: Key And Data L ength

Function Key type I nput Output length Comments
length
C_Encrypt CKK_CAMELLIA | multipleof | same asinput length no final
block size part
C_Decrypt CKK_CAMELLIA | multipleof | same asinput length no final
block size part
C_WrapKey CKK_CAMELLIA any input length rounded
up to multiple of the
block size
C UnwrapKey | CKK_CAMELLIA | multipleof | determined by type
block size of key being
unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

6.31.6 Camellia-CBC with PKCS padding

CamedlliaaCBC with PKCS padding, denoted CKM_CAMELLIA_CBC _PAD, is a
mechanism for single- and multiple-part encryption and decryption; key wrapping; and
key unwrapping, based on Camellia; cipher-block chaining mode; and the block cipher
padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section TBA for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

April 2009 Copyright © 2009 RSA Security Inc.

164 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 73, Camellia-CBC with PKCS Padding: Key And Data L ength

Function Key type I nput Output length
length
C_Encrypt CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_CAMELLIA | multiple of between 1 and block size
block size bytes shorter than input
length
C_WrapKey CKK_CAMELLIA any input length rounded up to
multiple of the block size
C_UnwrapKey | CKK_CAMELLIA | multipleof | between 1 and block length
block size bytes shorter than input
length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

6.31.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC _GENERAL, is a
mechanism for single- and multiple-part signatures and verification, based on Camellia
and data authentication as defined in.JCAMELLIA]

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the fina Camellia
cipher block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 74, General-length Camellia-MAC: Key And Data L ength

Function | Key type Data Signature length
length

C Sign CKK_CAMELLIA any | O-block size, as specified in parameters
C Veify | CKK_CAMELLIA any | O-block size, as specified in parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 165

6.31.8 Camellia-MAC

CamelliaaMAC, denoted by CKM_CAMELLIA_MAC, is a specia case of the general-
length CamelliaaMAC mechanism. CamelliaaMAC always produces and verifies MACs
that are half the block sizein length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 75, Camellia-MAC: Key And Data L ength

Function | Key type Data Signature length
length

C_Sign CKK_CAMELLIA any Y block size (8 bytes)

C Veify | CKK_CAMELLIA any Y block size (8 bytes)

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Camellia key sizes,
in bytes.

6.32 Key derivation by data encryption - Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

6.32.1 Definitions

M echanisms:

CKM CAMELLI A_ECB_ENCRYPT DATA
CKM_CAMELLI A_CBC_ENCRYPT _DATA

typedef struct CK CAVELLI A CBC ENCRYPT DATA PARAMS {

CK_BYTE iv[16];
CK_BYTE_PTR pDat a;
CK_ULONG | engt h;

} CK_CAMELLI A CBC_ENCRYPT_DATA PARANS;
t ypedef CK_CAMELLI A CBC ENCRYPT DATA PARAMS CK PTR
CK_CAMELLI A CBC ENCRYPT DATA PARAMS PTR;

6.32.2 Mechanism Parameters

Uses CK_CAMELLIA_CBC_ENCRYPT _DATA_PARAMS, and
CK_KEY_DERIVATION_STRING DATA.

April 2009 Copyright © 2009 RSA Security Inc.

166

PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 76, M echanism Parametersfor Camellia-based key derivation

CKM_CAMELLIA_ECB_ENCRYPT DATA | UsesCK_KEY_DERIVATION_STRING_DATA

structure. Parameter is the data to be encrypted and must
be amultiple of 16 long.

CKM_CAMELLIA_CBC_ENCRYPT DATA | Uses

CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the data.
The data value part

must be a multiple of 16 byteslong.

6.33 ARIA

ARIA is ablock cipher with 128-bit block size and 128-, 192-, and 256-bit keys, similar
to AES. ARIA isdescribed in NSRI “ Specification of ARIA”.

Mechanism

Functions

Encrypt
&
Decrypt

Sign SR Gen. Wrap
& & Digest Key/ & Derive
Verify | VR? Key | Unwrap

Pair

CKM_ARIA_KEY_GEN

CKM_ARIA_ECB

CKM_ARIA_CBC

CKM_ARIA_CBC_PAD

CKM_ARIA_MAC_GENERAL

CKM_ARIA_MAC

CKM_ARIA_ECB_ENCRYPT_DATA

CKM_ARIA_CBC_ENCRYPT_DATA

6.33.1 Definitions

This section defines the key type “CKK_ARIA” for type CK_KEY_TYPE as used in the
CKA_KEY_TY PE attribute of key objects.

M echanisms:

CKM ARl A KEY_GEN
CKM ARl A_ECB

CKM_ARI A_CBC

CKM ARl A_MAC

CKM_ARI A_MAC_GENERAL
CKM_ARI A_CBC_PAD

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 167

6.33.2 Ariasecret key objects

ARIA secret key objects (object class CKO_SECRET_KEY, key type CKK_ARIA)
hold ARIA keys. The following table defines the ARIA secret key object attributes, in
addition to the common attributes defined for this object class:

Table77, ARIA Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"*®7 Byte array Key value (16, 24, or 32
bytes)

CKA_VALUE_LEN®*® | CK_ULONG | Length in bytes of key
value

"Refer to [PKCS #11-B] table 15 for footnotes.

The following is a sample template for creating a ARIA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_ARI A;

CK_UTF8CHAR | abel [] “An ARI A secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
6.33.3 ARIA key generation

The ARIA key generation mechanism, denoted CKM_ARIA KEY_ GEN, is a key
generation mechanism for Aria.

It does not have a parameter.

The mechanism generates ARIA keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the ARIA key type (specifically,
the flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

April 2009 Copyright © 2009 RSA Security Inc.

168 PKCS#11 MECHANISMSV2.30: CRYPTOKI

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of ARIA key sizes, in
bytes.

6.33.4 ARIA-ECB

ARIA-ECB, denoted CKM_ARIA_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on Aria and
electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 169

Table78, ARIA-ECB: Key And Data Length

Function Key type I nput Output length Comments
length
C_Encrypt CKK_ARIA multiple | sameasinput length no final
of block part
size
C_Decrypt CKK_ARIA multiple | sameasinput length no final
of block part
size
C_WrapKey CKK_ARIA any input length rounded
up to multiple of block
size
C _UnwrapKey | CKK_ARIA multiple | determined by type of
of block | key being unwrapped
size or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of ARIA key sizes, in
bytes.

6.33.5 ARIA-CBC

ARIA-CBC, denoted CKM_ARIA_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on ARIA and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supportsit, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

April 2009 Copyright © 2009 RSA Security Inc.

170 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table79, ARIA-CBC: Key And Data L ength

Function Key type I nput Output length Comments
length
C_Encrypt CKK_ARIA multiple of | same asinput length no final
block size part
C_Decrypt CKK_ARIA multiple of | same asinput length no final
block size part
C_WrapKey CKK_ARIA any input length rounded
up to multiple of the
block size
C _UnwrapKey | CKK_ARIA multipleof | determined by type
block size of key being
unwrapped or
CKA_VALUE_LEN

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of Aria key sizes, in
bytes.

6.33.6 ARIA-CBC with PKCS padding

ARIA-CBC with PKCS padding, denoted CKM_ARIA_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on ARIA; cipher-block chaining mode; and the block cipher padding method
detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism alows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section TBA for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 171

Table 80, ARIA-CBC with PKCS Padding: Key And Data L ength

Function Key type I nput Output length
length
C_Encrypt CKK_ARIA any input length rounded up to
multiple of the block size
C_Decrypt CKK_ARIA multiple of between 1 and block size
block size bytes shorter than input
length
C_WrapKey CKK_ARIA any input length rounded up to
multiple of the block size
C UnwrapKey | CKK_ARIA multiple of | between 1 and block length
block size bytes shorter than input
length

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of ARIA key sizes, in
bytes.

6.33.7 General-length ARIA-MAC

General-length ARIA -MAC, denoted CKM_ARIA_MAC_GENERAL, isamechanism
for single- and multiple-part signatures and verification, based on ARIA and data
authentication as defined in [FIPS 113].

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the fina ARIA cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 81, General-length ARIA-MAC: Key And Data L ength

Function | Key type Data Signature length

length
C Sign CKK_ARIA any | O-block size, as specified in parameters
C Veify | CKK_ARIA any | O-block size, as specified in parameters

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of ARIA key sizes, in
bytes.

April 2009 Copyright © 2009 RSA Security Inc.

172 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.33.8 ARIA-MAC

ARIA-MAC, denoted by CKM_ARIA_MAC, is a specia case of the general-length
ARIA-MAC mechanism. ARIA-MAC always produces and verifies MACs that are half
the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table82, ARIA-MAC: Key And Data L ength

Function | Key type Data Signature length
length

C_Sign CKK_ARIA any Y block size (8 bytes)

C Veify | CKK_ARIA any %2 block size (8 bytes)

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of ARIA key sizes, in
bytes.

6.34 Key derivation by data encryption - ARIA

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

6.34.1 Definitions

M echanisms:

CKM ARl A_ECB_ENCRYPT_DATA
CKM_ARI A_CBC_ENCRYPT_DATA

typedef struct CK ARl A CBC ENCRYPT DATA PARAMS {

CK_BYTE iv[16];
CK_BYTE_PTR pDat a;
CK_ULONG | engt h;

} CK_ARI A CBC ENCRYPT DATA PARAVS;
t ypedef CK_ARI A CBC ENCRYPT DATA PARAMS CK_PTR
CK_ARI A CBC ENCRYPT DATA PARAMS PTR;

6.34.2 Mechanism Parameters

Uses CK_ARIA_CBC_ENCRYPT _DATA_PARAMS, and
CK_KEY_DERIVATION_STRING DATA.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 173

Table 83, Mechanism Parametersfor Aria-based key derivation

CKM_ARIA_ECB _ENCRYPT _DATA | Uses
CK_KEY_DERIVATION_STRING DATA
structure. Parameter is the datato be
encrypted and must be a multiple of 16 long.

CKM_ARIA_CBC_ENCRYPT_DATA | Uses
CK_ARIA_CBC_ENCRYPT_DATA_PARA
MS. Parameter isan 16 byte IV value
followed by the data. The data value part
must be a multiple of 16 byteslong.

6.35 SEED

SEED is a symmetric block cipher developed by the South Korean Information Security
Agency (KISA). It hasa128-bit key size and a 128-bit block size.

Its specification has been published as Internet [RFC 4269].

RFCs have been published defining the use of SEED in

TLS ftp://ftp.rfc-editor.org/in-notes/rfc4l62.txt

| Psec ftp://ftp.rfc-editor.org/in-notes/rfc4l96.txt

CvB ftp://ftp.rfc-editor.org/in-notes/rfc4010.txt

TLS ci pher suites that use SEED i ncl ude:
Ci pherSuite TLS RSA W TH_SEED CBC_SHA = { 0x00, O0x96};
Ci pherSuite TLS DH DSS W TH SEED CBC SHA = { 0x00, 0x97};
Ci pherSuite TLS DH RSA WTH SEED CBC SHA = { 0x00, 0x98};
Ci pherSuite TLS DHE DSS W TH _SEED CBC SHA = { 0x00, 0x99};
Ci pherSuite TLS DHE RSA W TH SEED CBC SHA = { 0x00, Ox9A};
Ci pherSuite TLS DH anon W TH SEED CBC SHA = { 0x00, O0x9B};

As with any block cipher, it can be used in the ECB, CBC, OFB and CFB modes of
operation, aswell asin aMAC algorithm such as HMAC.

OIDs have been published for al these uses. A list may be seen a
http://www.alvestrand.no/objectid/1.2.410.200004.1.html

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SEED_KEY_GEN v
CKM_SEED_ECB v
CKM_SEED_CBC v
CKM_SEED_CBC_PAD v v

April 2009 Copyright © 2009 RSA Security Inc.

174 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SEED_MAC_GENERAL v
CKM_SEED_MAC v
CKM_SEED_ECB_ENCRYPT_DATA v
CKM_SEED_CBC_ENCRYPT_DATA v

6.35.1 Definitions

This section defines the key type “CKK_SEED” for type CK_KEY _TYPE as used in the
CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM SEED KEY GEN
CKM_SEED_ECB
CKM_SEED _CBC
CKM_SEED_MAC
CKM_SEED MAC GENERAL
CKM_SEED_CBC_PAD

For al of these mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM_INFO are dways 16.
6.35.2 SEED secret key objects

SEED secret key objects (object class CKO_SECRET_KEY, key type CKK_SEED)
hold SEED keys. The following table defines the secret key object attributes, in addition
to the common attributes defined for this object class:

Table 84, SEED Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE"®/ Byte array Key value (adways 16
bytes long)

"Refer to [PKCS #11-B] table 15 for footnotes.

The following is a sample template for creating a SEED secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SEED,

CK_UTF8CHAR | abel [] = “A SEED secret key object”;
CK_BYTE value[] = {...};

CK_ BBOOL true = CK_TRUE;

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 175

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

}
6.35.3 SEED key generation

The SEED key generation mechanism, denoted CKM_SEED KEY_GEN, is a key
generation mechanism for SEED.

It does not have a parameter.
The mechanism generates SEED keys.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the SEED key type (specifically,
the flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

6.35.4 SEED-ECB

SEED-ECB, denoted CKM_SEED_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on SEED and
electronic codebook mode.

It does not have a parameter.

6.35.5 SEED-CBC

SEED-CBC, denoted CKM_SEED_CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on SEED and
cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

6.35.6 SEED-CBC with PKCS padding

SEED-CBC with PKCS padding, denoted CKM_SEED CBC_PAD, is amechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on SEED; cipher-block chaining mode; and the block cipher padding method
detailed in PKCS#7.

April 2009 Copyright © 2009 RSA Security Inc.

176 PKCS#11 MECHANISMSV2.30: CRYPTOKI

It has a parameter, a 16-byte initialization vector.

6.35.7 General-length SEED-MAC

General-length SEED-MAC, denoted CKM_SEED MAC_GENERAL, is a mechanism
for single- and multiple-part signatures and verification, based on SEED and data
authentication as defined in O.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final cipher block
produced in the MACing process.
6.35.8 SEED-MAC

SEED-MAC, denoted by CKM_SEED_MAC, is a special case of the general-length
SEED-MAC mechanism. SEED-MAC aways produces and verifies MACs that are half
the block size in length.

It does not have a parameter.

6.36 Key derivation by data encryption - SEED

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

6.36.1 Definitions

M echanisms:

CKM _SEED _ECB_ENCRYPT_DATA
CKM_SEED _CBC_ENCRYPT_DATA

typedef struct CK_SEED CBC ENCRYPT DATA PARAVS
CK_CBC_ENCRYPT_DATA_PARANE;

t ypedef CK_CBC _ENCRYPT DATA PARAMS CK_PTR

CK_CBC_ENCRYPT_DATA PARAMS PTR

6.36.2 Mechanism Parameters

Table 85, M echanism Parametersfor SEED-based key derivation

CKM_SEED ECB_ENCRYPT DATA | UsesCK_KEY_DERIVATION_STRING DATA

structure. Parameter is the data to be encrypted

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 177

and must be amultiple of 16 long.

CKM_SEED CBC_ENCRYPT_DATA | UsesCK_CBC_ENCRYPT_DATA_PARAMS.
Parameter is an 16 byte IV value followed by the
data. The data value part must be a multiple of 16
bytes long.

6.37 OTP

6.37.1 Usage overview

OTP tokens represented as PKCS #11 mechanisms may be used in avariety of ways. The
usage cases can be categorized according to the type of sought functionality.

6.37.2 Case 1: Generation of OTP values

)<

User
Client Application
*’l: C_Sign()
FRCS #11 Library
Client API Connected Token API
v
Authentication Zonnected
Server Token

Figure 1: Retrieving OTP valuesthrough C_Sign

Figure 1 shows an integration of PKCS #11 into an application that needs to authenticate
users holding OTP tokens. In this particular example, a connected hardware token is used,
but a software token is equally possible. The application invokes C_Sign to retrieve the
OTP vaue from the token. In the example, the application then passes the retrieved OTP

April 2009 Copyright © 2009 RSA Security Inc.

178 PKCS#11 MECHANISMSV2.30: CRYPTOKI

value to a client API that sends it via the network to an authentication server. The client
API may implement a standard authentication protocol such as RADIUS [RFC 2865] or
EAP [RFC 3748], or a proprietary protocol such as that used by RSA Security's
ACE/Agent® software.

6.37.3 Case2: Verification of provided OTP values

Server Application

1 C_Verify()

PKCS #11 Library

i

Internal Token API

i

Token (or query to
authentication
server)

Figure 2: Server-side verification of OTP values

Figure 2 illustrates the server-side equivaent of the scenario depicted in Figure 1. In this
case, a server application invokes C_Verify with the received OTP value as the signature
value to be verified.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 179

6.37.4 Case 3. Generation of OTP keys

Client Application

1 C_GenerateKey()

PKCS #11 Library

i

Internal Token API

i

Token (or software
version thereof)

Figure 3: Generation of an OTP key

Figure 3 shows an integration of PKCS #11 into an application that generates OTP keys.
The application invokes C_GenerateK ey to generate an OTP key of a particular type on
the token. The key may subsequently be used as a basis to generate OTP values.

6.37.5 OTP objects

6.37.5.1 Key objects

OTP key objects (object class CKO_OTP_KEY) hold secret keys used by OTP tokens.
The following table defines the attributes common to all OTP keys, in addition to the
attributes defined for secret keys, al of which are inherited by this class:

April 2009 Copyright © 2009 RSA Security Inc.

180

PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table86: Common OTP key attributes

Attribute

Data type

Meaning

CKA_OTP_FORMAT

CK_ULONG

Format of OTP values produced with
this key:

CK_OTP_FORMAT_DECIMAL =
Decimal (default) (UTF8-encoded)
CK_OTP_FORMAT_HEXADECIMAL =
Hexadecimal (UTF8-encoded)
CK_OTP_FORMAT_ALPHANUMERIC =
Alphanumeric (UTF8-encoded)
CK_OTP_FORMAT_BINARY = Only
binary values.

CKA_OTP_LENGTH?®

CK_ULONG

Default length of OTP values (in the
CKA_OTP_FORMAT) produced with
this key.

CKA_OTP_USER_FRIENDLY_MODE®

CK_BBOOL

Set to CK_TRUE when the token is
capable of returning OTPs suitable for
human consumption. See the
description of
CKF_USER_FRIENDLY_OTP below.

CKA_OTP
_CHALLENGE_REQUIREMENT?®

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A challenge must be supplied.
CK_OTP_PARAM_OPTIONAL = A
challenge may be supplied but need not
be.

CK_OTP_PARAM_IGNORED = A
challenge, if supplied, will be ignored.

CKA_OTP_TIME_REQUIREMENT®

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A time value must be supplied.
CK_OTP_PARAM_OPTIONAL =A
time value may be supplied but need
not be.
CK_OTP_PARAM_IGNORED = A
time value, if supplied, will be ignored.

CKA_OTP_COUNTER_REQUIREMENT?®

CK_ULONG

Parameter requirements when
generating or verifying OTP values
with this key:
CK_OTP_PARAM_MANDATORY =
A counter value must be supplied.
CK_OTP_PARAM_OPTIONAL =A
counter value may be supplied but need
not be.

CK_OTP_PARAM_IGNORED = A
counter value, if supplied, will be

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 181

Attribute Datatype | Meaning
ignored.
CKA_OTP_PIN_REQUIREMENT® CK_ULONG Parameter requirements when
generating or verifying OTP values
with this key:

CK_OTP_PARAM_MANDATORY =
A PIN value must be supplied.
CK_OTP_PARAM_OPTIONAL = A
PIN value may be supplied but need not
be (if not supplied, then library will be
responsible for collecting it)
CK_OTP_PARAM_IGNORED = A
PIN value, if supplied, will be ignored.

CKA_OTP_COUNTER Byte array Value of the associated internal
counter. Default value is empty (i.e.
ulValueLen = 0).
CKA_OTP_TIME RFC 2279 Value of the associated internal UTC
string timein the form

YYYYMMDDhhmmss. Default value
isempty (i.e. ulValueLen= 0).
CKA_OTP_USER IDENTIFIER RFC 2279 Text string that identifies a user

string associated with the OTP key (may be

used to enhance the user experience).
Default value is empty (i.e. ulValuelLen

=0).
CKA_OTP_SERVICE_IDENTIFIER RFC 2279 Text string that identifies a service that
string may validate OTPs generated by this
key. Default value is empty (i.e.
ulValueLen = 0).
CKA_OTP_SERVICE_LOGO Byte array Logotype image that identifies a service

that may validate OTPs generated by
this key. Default valueis empty (i.e.

ulValueLen = 0).
CKA_OTP_SERVICE_LOGO_TYPE RFC 2279 MIME type of the
string CKA_OTP_SERVICE_LOGO attribute
value. Default value is empty (i.e.
ulValueLen = 0).
CKA_VALUE"*%7 Byte array Value of the key.
CKA_VALUE_LEN*?3 CK_ULONG | Lengthin bytes of key value.

Refer to [PKCS#11-B] Table 15 for table footnotes.

Note: A Cryptoki library may support PIN-code caching in order to reduce user
interactions. An OTP-PKCS #11 application should therefore always consult the state of
the CKA_OTP_PIN_REQUIREMENT attribute before each call to C_Signlinit, as the
value of this attribute may change dynamically.

For OTP tokens with multiple keys, the keys may be enumerated using C_FindObjects.
The CKA_OTP_SERVICE_IDENTIFIER and/or the CKA_OTP_SERVICE_LOGO
attribute may be used to distinguish between keys. The actua choice of key for a

April 2009 Copyright © 2009 RSA Security Inc.

182 PKCS#11 MECHANISMSV2.30: CRYPTOKI

particular operation is however application-specific and beyond the scope of this
document.

For all OTP keys, the CKA_ALLOWED_MECHANISMS attribute should be set as
required.

6.37.6 OTP-related notifications
This document extends the set of defined notifications as follows:

CKN_OTP_CHANGED Cryptoki is informing the application that the OTP for
a key on a connected token just changed. This
notification is particularly useful when applications
wish to display the current OTP value for time-based
mechanisms.

6.37.7 OTP mechanisms

The following table shows, for the OTP mechanisms defined in this document, their
support by different cryptographic operations. For any particular token, of course, a
particular operation may well support only a subset of the mechanisms listed. There is
also no guarantee that a token that supports one mechanism for some operation supports
any other mechanism for any other operation (or even supports that same mechanism for
any other operation).

Table87: OTP mechanismsvs. applicable functions

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_SECURID_KEY_GEN v
CKM_SECURID v
CKM_HOTP_KEY_GEN v
CKM_HOTP v
CKM_ACTI_KEY_GEN v
CKM_ACTI v

The remainder of this section will present in detail the OTP mechanisms and the
parameters that are supplied to them.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 183

6.37.7.1 OTP mechanism parameters

¢ CK_PARAM TYPE
CK_PARAM _TYPE is avaue that identifies an OTP parameter type. It is defined as
follows:

t ypedef CK_ULONG CK_PARAM TYPE;
Thefollowing CK_PARAM _TY PE types are defined:

Table88: OTP parameter types

Parameter Data type Meaning

CK_OTP_PIN RFC 2279 string | A UTF8 string containing a PIN for use when
computing or verifying PIN-based OTP values.

CK_OTP_CHALLENGE Byte array Challenge to use when computing or verifying
challenge-based OTP values.

CK_OTP _TIME RFC 2279 string | UTC time value in the form

YYYYMMDDhhmmss to use when computing
or verifying time-based OTP values.

CK_OTP_COUNTER Byte array Counter value to use when computing or
verifying counter-based OTP values.

CK_OTP_FLAGS CK_FLAGS Bit flags indicating the characteristics of the
sought OTP as defined below.

CK_OTP_OUTPUT_LENGTH | CK_ULONG Desired output length (overrides any default

value). A Cryptoki library will return
CKR_MECHANISM_PARAM_INVALID if a
provided length value is not supported.

CK_OTP_FORMAT CK_ULONG Returned OTP format (allowed values are the
same asfor CKA_OTP_FORMAT). This
parameter is only intended for C_Sign output,
see below. When not present, the returned OTP
format will be the same as the value of the
CKA_OTP_FORMAT attribute for the key in
question.

CK_OTP_VALUE Byte array An actual OTP value. This parameter typeis
intended for C_Sign output, see below.

April 2009 Copyright © 2009 RSA Security Inc.

184

PKCS#11 MECHANISMSV2.30: CRYPTOKI

The following table defines the possible values for the CK_OTP_FLAGS type:

Table 89: OTP Mechanism Flags

Bit flag Mask

Meaning

CKF_NEXT_OTP 0x00000001

True (i.e. set) if the OTP computation shall be for
the next OTP, rather than the current one (current
being interpreted in the context of the algorithm,
e.g. for the current counter value or current time
window). A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if the
CKF_NEXT_OTPflagis set and the OTP
mechanism in question does not support the
concept of “next” OTP or thelibrary is not
capable of generating the next OTP .

CKF_EXCLUDE_TIME 0x00000002

True (i.e. set) if the OTP computation must not
include atime value. Will have an effect only on
mechanisms that do include atime valuein the
OTP computation and then only if the mechanism
(and token) allows exclusion of thisvalue. A
Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_COUNTER 0x00000004

True (i.e. set) if the OTP computation must not
include a counter value. Will have an effect only
on mechanisms that do include a counter valuein
the OTP computation and then only if the
mechanism (and token) allows exclusion of this
value. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_EXCLUDE_CHALLENGE | 0x00000008

True (i.e. set) if the OTP computation must not
include a challenge. Will have an effect only on
mechanisms that do include a challenge in the
OTP computation and then only if the mechanism
(and token) allows exclusion of thisvalue. A
Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

™ Applications that may need to retrieve the next OTP should be prepared to handle this situation. For
example, an application could store the OTP value returned by C_Sign so that, if anext OTP isrequired, it
can compare it to the OTP value returned by subsequent calls to C_Sign should it turn out that the library

does not support the CKF_NEXT_OTP flag.

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 185

Bit flag Mask Meaning

CKF_EXCLUDE _PIN 0x00000010 True (i.e. set) if the OTP computation must not
include a PIN value. Will have an effect only on
mechanisms that do include aPIN in the OTP
computation and then only if the mechanism (and
token) allows exclusion of thisvalue. A Cryptoki
library shall return
CKR_MECHANISM_PARAM_INVALID if
exclusion of the value is not allowed.

CKF_USER FRIENDLY_OTP 0x00000020 True (i.e. set) if the OTP returned shall bein a
form suitable for human consumption. If thisflag
is set, and the call is successful, then the returned
CK_OTP_VALUE shall be aUTF8-encoded
printable string. A Cryptoki library shall return
CKR_MECHANISM_PARAM_INVALID if this
flag is set when
CKA_OTP_USER_FRIENDLY_MODE for the
key in question is CK_FALSE.

Note: Even if CKA_OTP_FORMAT is not set to CK_OTP_FORMAT_BINARY, then
there may still be vaue in setting the CKF_USER FRIENDLY flag (assuming
CKA_USER FRIENDLY_MODE is CK_TRUE, of course) if the intent is for a human
to read the generated OTP value, since it may become shorter or otherwise better suited
for a user. Applications that do not intend to provide a returned OTP value to a user
should not set the CKF_USER_FRIENDLY _OTP flag.

¢ CK_OTP_PARAM; CK_OTP_PARAM_PTR
CK_OTP_PARAM is a structure that includes the type, value, and length of an OTP
parameter. It is defined as follows:

t ypedef struct CK _OTP_PARAM {
CK_PARAM TYPE type;
CK_VA D _PTR pVal ue;
CK_ULONG ul Val uelLen;
} CK_OTP_PARAM
The fields of the structure have the following meanings:

type the parameter type
pValue pointer to the value of the parameter
ulValueLen length in bytes of the value

If a parameter has no value, then ulVValueLen = 0, and the value of pValue is irrelevant.
Note that pValueis a“void” pointer, facilitating the passing of arbitrary values. Both the
application and the Cryptoki library must ensure that the pointer can be safely cast to the
expected type (i.e., without word-alignment errors).

CK_OTP_PARAM_PTRisapointer toaCK_OTP_PARAM.

April 2009 Copyright © 2009 RSA Security Inc.

186 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CK_OTP_PARAMS; CK_OTP_PARAMS PTR
CK_OTP_PARAMS is a structure that is used to provide parameters for OTP
mechanisms in ageneric fashion. It is defined as follows:

t ypedef struct CK_OTP_PARAMS {
CK_OTP_PARAM PTR pPar ans;
CK_ULONG ul Count ;

} CK_OTP_PARAMS;

The fields of the structure have the following meanings:

pParams pointer to an array of OTP parameters
ulCount the number of parametersin the array
CK_OTP_PARAMS PTRisapointer toaCK_OTP_PARAMS.

When caling C_Signlnit or C_Verifylnit with a mechanism that takes a
CK_OTP_PARAMS structure as a parameter, the CK_OTP_PARAMS structure shall
be populated in accordance with the CKA_OTP_X_REQUIREMENT key attributes for
the identified key, where X isPIN, CHALLENGE, TIME, or COUNTER.

For example, if CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_MANDATORY, then the CK_OTP_TIME parameter shall be
present. If CKA_OTP_TIME_REQUIREMENT = CK_OTP_PARAM_OPTIONAL,
then a CK_OTP_TIME parameter may be present. If it is not present, then the library
may collect it (during the C_Sign cdl). If CKA_OTP_TIME_REQUIREMENT =
CK_OTP_PARAM_IGNORED, then a provided CK_OTP_TIME parameter will
always be ignored. Additionally, a provided CK_OTP_TIME parameter will always be
ignored if CKF_EXCLUDE_TIME issetinaCK_OTP_FLAGS parameter. Similarly, if
thisflag is set, alibrary will not attempt to collect the value itself, and it will aso instruct
the token not to make use of any internal value, subject to token policies. It is an error
(CKR_MECHANISM_PARAM _INVALID) to set the CKF_EXCLUDE _TIME flag
when the CKA_TIME_REQUIREMENT attribute IS
CK_OTP_PARAM_MANDATORY.

The above discussion holds for all CKA_OTP_X_REQUIREMENT attributes (i.e.,
CKA_OTP_PIN_REQUIREMENT, CKA_OTP_CHALLENGE_REQURIEMENT,
CKA_OTP_COUNTER_REQUIREMENT, CKA_OTP_TIME_REQUIREMENT).
A libracy may set a paticular CKA_OTP_X REQUIREMENT attribute to
CK_OTP_PARAM_OPTIONAL even if it is required by the mechanism as long as the
token (or the library itself) has the capability of providing the value to the computation.
One example of thisis atoken with an on-board clock.

In addition, applications may use the CK_OTP_FLAGS, the
CK_OTP_OUTPUT_FORMAT and the CK_OUTPUT_LENGTH parameters to set
additional parameters.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 187

CK_OTP_SIGNATURE_INFO, CK_OTP_SIGNATURE_INFO_PTR
CK_OTP_SIGNATURE_INFO isastructure that is returned by all OTP mechanismsin
successful calls to C_Sign (C_SignFinal). The structure informs applications of actual
parameter values used in particular OTP computations in addition to the OTP value itself.
It is used by all mechanisms for which the key belongs to the class CKO_OTP_KEY and
is defined as follows:

t ypedef struct CK_OTP_SI GNATURE | NFO {
CK_OTP_PARAM PTR pPar ans;
CK_ULONG ul Count ;
} CK_OTP_SI GNATURE_| NFG,
The fields of the structure have the following meanings:

pParams pointer to an array of OTP parameter values
ulCount the number of parametersin the array

After successful calls to C_Sign or C_SignFinal with an OTP mechanism, the
pSgnature parameter will be set to point to aCK_OTP_SIGNATURE_INFO structure.
One of the parameters in this structure will be the OTP vaue itsdlf, identified with the
CK_OTP_VALUE tag. Other parameters may be present for informational purposes, e.g.
the actual time used in the OTP calculation. In order to simplify OTP validations,
authentication protocols may permit authenticating parties to send some or al of these
parameters in addition to OTP values themselves. Applications should therefore check for
their presence in returned CK_OTP_SIGNATURE_INFO vaues whenever such
circumstances apply.

Since C_Sign and C_SignFinal follows the convention described in Section 11.2 on
producing output, acal to C_Sign (or C_SignFinal) with pSgnature set to NULL_PTR
will return (in the pulSgnatureLen parameter) the required number of bytes to hold the
CK_OTP_SIGNATURE_INFO dtructure as well as all the data in all its
CK_OTP_PARAM components. If an application allocates a memory block based on this
information, it shall therefore not subsequently de-allocate components of such areceived
value but rather de-allocate the complete CK_OTP_PARAMS structure itself. A
Cryptoki library that is called with a non-NULL pSgnature pointer will assume that it
points to a contiguous memory block of the size indicated by the pulSgnatureLen
parameter.

When verifying an OTP value using an OTP mechanism, pSgnature shall be set to the
OTP vaue itsdf, eqg. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure returned by a call to C_Sign. The CK_OTP_PARAMS
value supplied in the C_Verifylnit call setsthe valuesto usein the verification operation.

CK_OTP_SIGNATURE_INFO_PTR pointstoaCK_OTP_SIGNATURE_INFO.

April 2009 Copyright © 2009 RSA Security Inc.

188

6.37.8 RSA SecurlD

PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.37.8.1 RSA Secur|D secret key objects

RSA SecurlD secret key objects (object class CKO _OTP_KEY, key

type

CKK_SECURID) hold RSA SecurlD secret keys. The following table defines the RSA
SecurlD secret key object attributes, in addition to the common attributes defined for this

object class:

Table90: RSA Secur|D secret key object attributes

Attribute

Datatype | Meaning

CKA_OTP_TIME_INTERVAL”

CK_ULONG Interval between OTP values produced with

this key, in seconds. Default is 60.

Refer to [PKCS #11-B] Table 15 for table footnotes.

The following is a sample template for creating an RSA SecurlD secret key object:

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType =

CK_DATE endDate = {...

CK_UTF8CHAR | abel [] =
CK_BYTE keyld[]= {..
CK_ULONG out put For mat
CK_ULONG out put Lengt h

)

= CKO _OTP_KEY;

CKK_SECURI D

1

“RSA Securl D secret key object”;

CK_OTP_FORVAT_DEC!I MAL;
6;

CK_ULONG needPI N = CK_OTP_PARAM MANDATCRY;

CK_ULONG ti el nt erval
CK_BYTE val ue[] = {.
CK BBOOL true =

= 60;
-}

CK_TRUE:

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass,
{ CKA_KEY_TYPE, &keyType,
{ CKA_END _DATE, &endDat e,

{ CKA_TOKEN, é&true,

{ CKA_SENSI TI VE, &true,

{ CKA_LABEL, | abel,
{CKA SIGN, &true,

{CKA I D, keyld,

si zeof (cl ass) },

si zeof (keyType) },
si zeof (endDat e) },
si zeof (true)},

si zeof (true)},

si zeof (| abel) -1},

si zeof (true)},
{ CKA_VERI FY, &true,
si zeof (keyl d)},
{ CKA _OTP_FORVAT, &out put For mat

si zeof (true)},

si zeof (out put For mat) },
si zeof (out put Lengt h) },

{CKA OTP_LENGTH, &out putLengt h,

{CKA _OTP_PI N_REQUI REMENT, &needPI N, sizeof (needPIN)},

{CKA OTP_TI ME_I NTERVAL, &tinelnterval,
sizeof (timelnterval)},
{CKA VALUE, val ue, sizeof(value)}

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 189

6.37.9 RSA SecurID key generation

The RSA SecurlD key generation mechanism, denoted CKM_SECURID_KEY_GEN,
is a key generation mechanism for the RSA SecurID algorithm.

It does not have a parameter.

The mechanism generates RSA SecurlD keys with a particular set of attributes as
specified in the template for the key.

The mechanism contributes a least the CKA_CLASS, CKA_KEY_TYPE,
CKA_VALUE_LEN, and CKA_VALUE attributes to the new key. Other attributes
supported by the RSA SecurlD key type may be specified in the template for the key, or
else are assigned default initial values

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of SecurlD key sizes,
in bytes.

6.37.10RSA Secur|ID OTP generation and validation

CKM _SECURID is the mechanism for the retrieval and verification of RSA SecurlD
OTP values.

The mechanism takes apointer to aCK_OTP_PARAMS structure as a parameter.

When signing or verifying using the CKM_SECURID mechanism, pData shall be set to
NULL_PTR and ulDataLen shall be set to 0.

6.37.11Return values

Support for the CKM_SECURID mechanism extends the set of return values for
C_Verify with the following values:

e CKR_NEW_PIN_MODE: The supplied OTP was not accepted and the library
requests a new OTP computed using a new PIN. The new PIN is set through means
out of scope for this document.

e CKR_NEXT_OTP: The supplied OTP was correct but indicated a larger than normal
drift in the token's internal state (e.g. clock, counter). To ensure this was not due to a
temporary problem, the application should provide the next one-time password to the
library for verification.

April 2009 Copyright © 2009 RSA Security Inc.

190 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.37.120ATH HOTP

6.37.12.1 OATH HOTP secret key objects
HOTP secret key objects (object class CKO_OTP_KEY, key type CKK_HOTP) hold
generic secret keys and associated counter values.

The CKA_OTP_COUNTER vaue may be set at key generation; however, some tokens
may set it to a fixed initial value. Depending on the token’'s security policy, this value
may not be modified and/or may not be revealed if the object hasits CKA_SENSITIVE
attribute set to CK_TRUE or its CKA_EXTRACTABLE attribute set to CK_FALSE.

For HOTP keys, the CKA_OTP_COUNTER vaue shall be an 8 bytes unsigned integer
in big endian (i.e. network byte order) form. The same holds true for a
CK_OTP_COUNTER vaueinaCK_OTP_PARAM structure.

The following is a sample template for creating a HOTP secret key object:

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel [] “HOTP secret key object”;
CK_BYTE keyld[]= {...};
CK_ULONG out put For mat
CK_ULONG out put Lengt h
CK_DATE endDat e {...
CK_BYTE count er Val ue[8]
CK_BYTE val ue[] {...};
CK BBOOL true CK_TRUE;
CK_ATTRI BUTE tenpl ate[]

= CKO OTP_KEY;
CKK_HOTP;

CK_OTP_FORMAT _DEC! MAL;
6;

= {0};

—

= {

{ CKA_CLASS, &cl ass,

{ CKA_KEY_TYPE, &keyType,
{ CKA_END DATE, &endDat e,

{CKA TOKEN, &true,
{CKA_SENSI TI VE, &tr
{ CKA_LABEL, | abel,
{CKA _SIGN, &true,
{ CKA_VERI FY, &true,
{CKA I D, keyld,

{ CKA VALUE, val ue,

Copyright © 2009RSA Security Inc.

si zeof (cl ass) },

si zeof (keyType) },
si zeof (endDat e) },
si zeof (true)},

ue, sizeof(true)},

si zeof (| abel) -1},

si zeof (true)},

si zeof (true)},

si zeof (keyl d)},
{ CKA OTP_FORVAT, &out put For mat
{CKA OTP_LENGTH, &out putLengt h,
{ CKA OTP_COUNTER, counter Val ue,

si zeof (out put Format) },
si zeof (out put Lengt h) },
si zeof (count er Val ue) },
si zeof (val ue) }

April 2009

6. MECHANISMS 191

3
6.37.12.2 HOTP key generation

The HOTP key generation mechanism, denoted CKM_HOTP_KEY_GEN, is a key
generation mechanism for the HOTP agorithm.

It does not have a parameter.

The mechanism generates HOTP keys with a particular set of attributes as specified in the
template for the key.

The mechanism contributes a least the CKA _CLASS, CKA KEY_TYPE,
CKA_OTP_COUNTER, CKA_VALUE and CKA_VALUE_LEN attributes to the
new key. Other attributes supported by the HOTP key type may be specified in the
template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM _INFO structure specify the supported range of HOTP key sizes, in
bytes.

6.37.12.3 HOTP OTP generation and validation

CKM_HOTP is the mechanism for the retrieval and verification of HOTP OTP values
based on the current internal counter, or a provided counter.

The mechanism takes a pointer to aCK_OTP_PARAM S structure as a parameter.

As for the CKM_SECURID mechanism, when signing or verifying using the
CKM_HOTP mechanism, pData shall be set to NULL_PTR and ulDatalLen shall be set
to 0.

For verify operations, the counter value CK_OTP_COUNTER must be provided as a
CK_OTP_PARAM parameter to C_Verifylnit. When verifying an OTP value using the
CKM_HOTP mechanism, pSgnature shall be set to the OTP vaue itself, e.g. the value
of the CK_OTP_VALUE component of a CK_OTP_PARAMS structure in the case of
an earlier cal to C_Sign.

6.37.13Activldentity ACTI

6.37.13.1 ACTI secret key objects

ACTI secret key objects (object class CKO_OTP_KEY, key type CKK_ACTI) hold
Actividentity ACTI secret keys.

April 2009 Copyright © 2009 RSA Security Inc.

192 PKCS#11 MECHANISMSV2.30: CRYPTOKI

For ACTI keys, the CKA_OTP_COUNTER value shall be an 8 bytes unsigned
integer in big endian (i.e. network byte order) form. The same holds true for the
CK_OTP_COUNTER value in the CK_OTP_PARAM structure.

The CKA_OTP_COUNTER value may be set at key generation; however, some
tokens may set it to a fixed initial value. Depending on the token’s security policy,
this value may not be modified and/or may not be revealed if the object has its
CKA_SENSITIVE attribute set to CK_TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE.

The CKA_OTP_TIME value may be set at key generation; however, some
tokens may set it to a fixed initial value. Depending on the token’s security policy,
this value may not be modified and/or may not be revealed if the object has its
CKA_SENSITIVE attribute set to CK TRUE or its CKA_EXTRACTABLE
attribute set to CK_FALSE.

The following is a sample template for creating an ACTI secret key object:

CK_OBJECT_CLASS cl ass = CKO _OTIP_KEY;
CK_KEY_TYPE keyType CKK_ACTI ;
CK_UTF8CHAR | abel [] “ACTl secret key object”;
CK_BYTE keyld[]= {.. .}
CK_ULONG out put Format = CK OTP_FORNVAT _DECI MAL;
CK_ULONG out put Lengt h
CK_DATE endDate = {...
CK_BYTE count er Val ue[8] = {0};
CK_BYTE value[] = {..
CK BBOOL true = CK_TRUE;
CK_ATTRI BUTE terrpl ate[] ={
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA _END DATE, &endDate, sizeof (endDate)},
{CKA TOKEN, &true, sizeof(true)},
{CKA _SENSI Tl VE, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA SIGN, &t rue, sizeof(true)},
{CKA VERI FY, &t rue, sizeof(true)},
{CKA I D, keyld, sizeof(keyld)},
{ CKA OTP_FORVAT, &out put For mat
si zeof (out put Fornat) },
{ CKA OTP_LENGTH, &out put Lengt h,
si zeof (out put Lengt h) },
{CKA OTP_COUNTER, count er Val ue,
si zeof (count er Val ue)},
{CKA VALUE, val ue, sizeof(value)}

—

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 193

6.37.13.2 ACTI key generation

The ACTI key generation mechanism, denoted CKM_ACTI_KEY_GEN, is a key
generation mechanism for the ACTI agorithm.

It does not have a parameter.

The mechanism generates ACTI keys with a particular set of attributes as
specified in the template for the key.

The mechanism contributes at least the CKA CLASS, CKA_KEY_TYPE,
CKA_VALUE and CKA_VALUE_LEN attributes to the new key. Other attributes
supported by the ACTI key type may be specified in the template for the key, or
else are assigned default initial values.

For this mechanism, the ulMinKeySze and ulMaxKeySze fields of the
CK_MECHANISM INFO structure specify the supported range of ACTI key
sizes, in bytes.

6.37.14ACTI OTP generation and validation
CKM_ACTI is the mechanism for the retrieval and verification of ACTI OTP
values.

The mechanism takes a pointer to a CK_OTP_PARAMS structure as a
parameter.

When signing or verifying using the CKM_ACTI mechanism, pData shall be set
to NULL_PTR and ulDataLen shall be set to 0.

When verifying an OTP vaue using the CKM_ACTI| mechanism, pSignature shall be set
to the OTP value itsef, eg. the value of the CK_OTP_VALUE component of a
CK_OTP_PARAMS structure in the case of an earlier call to C_Sign.

6.38 CT-KIP

April 2009 Copyright © 2009 RSA Security Inc.

194 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.38.1 Principlesof Operation

A

Server Application |g

A 4

Client Application

C_DeriveKey,
C_WrapKey,
C_Verify

\ 4

PKCS #11 Library

A

A 4

Internal Token API

A

A 4

Token (or software
version thereof)

Figure4: PKCS#11 and CT-KIP integration

Figure 3 shows an integration of PKCS #11 into an application that generates
cryptographic keys through the use of CT-KIP. The application invokes C_DeriveKey to
derive a key of a particular type on the token. The key may subsequently be used as a
basis to e.g., generate one-time password values. The application communicates with a
CT-KIP server that participates in the key derivation and stores a copy of the key in its
database. The key is transferred to the server in wrapped form, after a call to
C WrapKey. The server authenticates itself to the client and the client verifies the
authentication by callsto C_Verify.

6.38.2 Mechanisms

The following table shows, for the mechanisms defined in this document, their support by
different cryptographic operations. For any particular token, of course, a particular
operation may well support only a subset of the mechanisms listed. There is also no
guarantee that a token that supports one mechanism for some operation supports any
other mechanism for any other operation (or even supports that same mechanism for any
other operation).

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 195

Table 91: Mechanismsvs. applicable functions

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive

Decrypt | Verify | VR! Key | Unwrap

Pair

CKM_KIP_DERIVE v
CKM_KIP_WRAP v
CKM_KIP_MAC v

The remainder of this section will present in detail the mechanisms and the parameters
that are supplied to them.

6.38.3 Definitions
Mechanisms:

CKM KI P_DERI VE
CKM _KI P_WRAP
CKM KI P_MAC

6.38.4 CT-KIP Mechanism parameters

¢ CK_KIP_PARAMS; CK_KIP_PARAMS PTR

CK_KIP_PARAMS s a structure that provides the parameters to al the CT-KIP related
mechanisms. The CKM_KIP_DERIVE key deivation mechanism, the
CKM_KIP_WRAP key wrap and key unwrap mechanism, and the CKM_KIP_MAC
signature mechanism. The structure is defined as follows:

t ypedef struct CK _KI P_PARAMS {
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR pSeed;
CK_ULONG ul SeedLen;

} CK_KI P_PARANS;

The fields of the structure have the following meanings:

pMechanism pointer to the underlying cryptographic mechanism
(e.g. AES, SHA-256), see further 0, Appendix D

hKey handleto akey that will contribute to the entropy of
the derived key (CKM_KIP_DERIVE) or will be used
in the MAC operation (CKM_KIP_MAC)

pSeed pointer to an input seed
ulSeedLen length in bytes of the input seed

April 2009 Copyright © 2009 RSA Security Inc.

196 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CK_KIP_PARAMS PTRisapointer toaCK_KIP_PARAMS structure.

6.38.5 CT-KIP key derivation

The CT-KIP key derivation mechanism, denoted CKM_KIP _DERIVE, is a key
derivation mechanism that is capable of generating secret keys of potentially any type,
subject to token limitations.

It takes a parameter of type CK_KIP_PARAMS which allows for the passing of the
desired underlying cryptographic mechanism as well as some other data. In particular,
when the hKey parameter is a handle to an existing key, that key will be used in the key
derivation in addition to the hBaseKey of C_DeriveKey. The pSeed parameter may be
used to seed the key derivation operation.

The mechanism derives a secret key with a particular set of attributes as specified in the
attributes of the template for the key.

The mechanism contributes the CKA_CLASS and CKA_VALUE attributes to the new
key. Other attributes supported by the key type may be specified in the template for the
key, or else will be assigned default initial values. Since the mechanism is generic, the
CKA_KEY_TYPE attribute should be set in the template, if the key is to be used with a
particular mechanism.

6.38.6 CT-KIP key wrap and key unwrap
The CT-KIP key wrap and unwrap mechanism, denoted CKM_KIP_WRAP, is a key
wrap mechanism that is capable of wrapping and unwrapping generic secret keys.

It takes a parameter of type CK_KIP_PARAMS, which alows for the passing of the
desired underlying cryptographic mechanism as well as some other data. It does not make
use of the hKey parameter of CK_KIP_PARAMS.

6.38.7 CT-KIP signature generation

The CT-KIP signature (MAC) mechanism, denoted CKM_KIP_MAC, isamechanism
used to produce a message authentication code of arbitrary length. The keysit uses are
secret keys.

It takes a parameter of type CK_KIP_PARAMS, which alows for the passing of the
desired underlying cryptographic mechanism as well as some other data. The mechanism
does not make use of the pSeed and the ul SeedLen parameters of CT_KIP_PARAMS.

This mechanism produces a MAC of the length specified by pul Sgnaturelen parameter
incalsto C_Sign.

If acall to C_Sign with this mechanism fails, then no output will be generated.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS

6.39 GOST

Table 1, Mechanisms vs. Functions

197

The remainder of this section will present in detail the mechanisms and the parameters

which are supplied to them.

Functions

e kRS Cai | G
Decrypt | Verify Digest | Key Derive
Pair

CKM_GOST28147_KEY_GEN J
CKM_ GOST28147_ECB S N
CKM_GOST28147 S N
CKM_ GOST28147_MAC y
CKM_ GOST28147_KEY_WRAP y
CKM_GOSTR3411 N
CKM_GOSTR3411_HMAC y
CKM_GOSTR3410_KEY_PAIR_GEN J
CKM_GOSTR3410 V1
CKM_GOSTR3410_WITH_ GOST3411 y
CKM_GOSTR3410_KEY_WRAP y
CKM_GOSTR3410_DERIVE J

! Single-part operations only

6.40 GOST 28147-89

GOST 28147-89 isablock cipher with 64-bit block size and 256-bit keys.

6.40.1 Definitions

This section defines the key type “ CKK_GOST28147” for type CK_KEY _TY PE as used
inthe CKA_KEY _TY PE attribute of key objects and domain parameter objects.

Mechanisms:

April 2009

Copyright © 2009 RSA Security Inc.

198 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKM GOST28147_KEY_GEN
CKM GOST28147_ECB
CKM_GOST28147
CKM_GOST28147_MAC
CKM_GOST28147_KEY_WRAP

6.40.2 GOST 28147-89 secret key objects

GOST 28147-89 secret key objects (object classCKO_SECRET_KEY, key type
CKK_GOST 28147) hold GOST 28147-89 keys. The following table defines the
GOST 28147-89 secret key object attributes, in addition to the common attributes defined

for this object class:

Table2, GOST 28147-89 Secret Key Object Attributes

Attribute Data type Meaning

CKA_VALUE"®7 Byte array 32 bytesin little endian order

CKA_GOST28147 PARAMS"™ | Bytearray DER-encoding of the object
° identifier indicating the data object
type of GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GOST28147 must be
specified with the same attribute
CKA_OBJECT _ID

Refer to [PKCS#11-B] Table 15 for footnotes

The following is a sample template for creating a GOST 28147-89 secret key object:

CK_OBJECT CLASS cl ass = CKO SECRET KEY:

CK_KEY_TYPE keyType = CKK _GOST28147;

CK_UTF8CHAR | abel [] = “A GOST 28147-89 secret key

obj ect”;
CK_BYTE val ue[32] = {

CK_BYTE params_oi d[] = {0x06, 0x07, Ox2a, Ox85, O0x03,

0x02, 0x02, Ox1f, 0x00};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA _G0ST28147_PARAMS, parans_oi d,

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 199

si zeof (parans_oi d) },
{CKA VALUE, val ue, sizeof(value)}

b

6.40.3 GOST 28147-89 domain parameter objects

GOST 28147-89 domain parameter objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_GOST 28147) hold GOST 28147-89
domain parameters.

The following table defines the GOST 28147-89 domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table 3, GOST 28147-89 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE" Byte array DER-encoding of the domain parameters as
it was introduced in [4] section 8.1 (type
Gost28147-89-ParamSetPar ameter s)

CKA_OBJECT ID! Byte array DER-encoding of the object identifier
indicating the domain parameters

Refer to [PKCS #11-B] Table 15 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters
loading up and/or fetching out. Furthermore, applications, that make direct use of domain
parameters objects, should take in account that CKA_VAL UE attribute may be
inaccessible.

The following is a sample template for creating a GOST 28147-89 domain parameter
object:

CK_OBJECT_CLASS cl ass = CKO DOVAI N_PARAMETERS

CK_KEY_TYPE keyType = CKK_GOST28147;

CK_UTF8CHAR | abel [] = “A GOST 28147-89 cryptographic
par aneters object”;

CK BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02,
0x02, Ox1f, 0x00};

CK_BYTE val ue[] = {

0x30, 0x62,

0x04, 0x40,

Ox4c, Oxde, 0x38, 0x9c, 0x29, 0x89, Oxef , 0xb6, Oxf f, Oxeb, 0x56, Oxc5, 0x5e, Oxc2, 0x9b, 0x02
0x98, 0x75, 0x61, 0x3b, 0x11, 0x3f, 0x89, 0x60, 0x03, 0x97, 0x0c, 0x79, Ox8a, Oxal, 0xd5, Ox5d,
Oxe2, 0x10, Oxad, 0x43, 0x37, 0x5d, Oxb3, 0x8e, 0xb4, 0x2c, 0x77, Oxe7, Oxcd, 0x46, Oxca, Oxf a
0xd6, 0x6a, 0x20, Ox1f, 0x70, Oxf 4, Ox1le, Oxa4, Oxab, 0x03, Oxf 2, 0x21, 0x65, 0xbh8, 0x44, 0xd8
0x02, 0x01, 0x00,

0x02, 0x01, 0x40,

0x30, 0x0b, 0x06, 0x07, Ox2a, 0x85, 0x03, 0x02, 0x02, 0x0e, 0x00, 0x05, 0x00

1
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE templ ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY _TYPE, &keyType, sizeof (keyType)},

April 2009 Copyright © 2009 RSA Security Inc.

200 PKCS#11 MECHANISMSV2.30: CRYPTOKI

{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA OBJECT_ID, oid, sizeof(oid)},
{CKA VALUE, val ue, sizeof(value)}

3

6.40.4 GOST 28147-89 key generation
The GOST 28147-89 key generation mechanism, denoted
CKM_GOST 28147 KEY_GEN, isakey generation mechanism for GOST 28147-89.

It does not have a parameter.

The mechanism contributesthe CKA_CLASS, CKA_KEY _TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the GOST 28147-89 key type may
be specified for objects of object classCKO_SECRET_KEY.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM_INFO are not used.

6.40.5 GOST 28147-89-ECB

GOST 28147-89-ECB, denoted CKM _GOST 28147 _ECB, isamechanism for single
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based
on GOST 28147-89 and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE
attribute of the key that is wrapped, padded on the trailing end with up to block size so
that the resulting length is a multiple of the block size.

For unwrapping (C_UnwrapK ey), the mechanism decrypts the wrapped key, and
truncates the result according to the CKA_KEY _TY PE attribute of the template and, if it
has one, and the key type supportsit, the CKA_VALUE_LEN attribute of the template.
The mechanism contributes the result as the CKA_VAL UE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:

Table 4, GOST 28147-89-ECB: Key And Data L ength

Function Key type I nput Output length
length
C_Encrypt CKK_GOST28147 Multiple of Same as input length

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 201

block size

C_Decrypt CKK_GOST28147 | Multipleof | Same asinput length
block size

C_WrapKey CKK_GOST28147 Any Input length rounded up to

multiple of block size

C UnwrapKey | CKK_GOST28147 | Multipleof | Determined by type of key
block size | being unwrapped

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.40.6 GOST 28147-89 encryption mode except ECB

GOST 28147-89 encryption mode except ECB, denoted CKM_GOST 28147, isa
mechanism for single and multiple-part encryption and decryption; key wrapping; and key
unwrapping, based on [GOST 28147-89] and CFB, counter mode, and additional CBC
mode defined in [RFC 4357] section 2. Encryption’s parameters are specified in object
identifier of attribute CKA_GOST 28147 PARAMS.

It has a parameter, a 8-byte initialization vector. This parameter may be omitted then a
zero initialization vector is used.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports.

For wrapping (C_WrapKey), the mechanism encrypts the value of the CKA_VALUE
attribute of the key that is wrapped.

For unwrapping (C_UnwrapK ey), the mechanism decrypts the wrapped key, and
contributes the result asthe CKA_VAL UE attribute of the new key.

Constraints on key types and the length of data are summarized in the following table:

Table5, GOST 28147-89 encryption modes except ECB: Key And Data L ength

. I nput
Function Key type length Output length
C_Encrypt CKK_GOST28147 Any For counter mode and CFB is
the same as input length. For
C_Decrypt CKK_GOST28147 Any CBC is the same as input

April 2009 Copyright © 2009 RSA Security Inc.

202 PKCS#11 MECHANISMSV2.30: CRYPTOKI

C_WrapKey CKK_GOST28147 Any length padded on the trailing
end with up to block size so
that the resulting length is a
multiple of the block size

C_UnwrapKey | CKK_GOST28147 Any

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.40.7 GOST 28147-89-MAC

GOST 28147-89-MAC, denoted CKM_GOST 28147 _MAC, isamechanism for data
integrity and authentication based on GOST 28147-89 and key meshing agorithms [RFC
4357] section 2.3.

MACing parameters are specified in object identifier of attribute
CKA_GOST28147 PARAMS.

The output bytes from this mechanism are taken from the start of the final
GOST 28147-89 cipher block produced in the MACing process.

It has a parameter, a 8-byte MAC initiaization vector. This parameter may be omitted
then a zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:

Table6, GOST28147-89-MAC: Key And Data L ength

Function Key type Datalength | Signaturelength
C_Sign CKK_GOST28147 Any 4 bytes
C Veify CKK_GOST28147 Any 4 bytes

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

GOST 28147-89 keys wrapping/unwrapping with GOST 28147-89

GOST 28147-89 keysasaKEK (key encryption keys) for encryption GOST 28147-89
keys, denoted by CKM_GOST 28147 KEY_WRAP, isamechanism for key wrapping;
and key unwrapping, based on GOST 28147-89. Its purpose is to encrypt and decrypt
keys have been generated by key generation mechanism for GOST 28147-89.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 203

For wrapping (C_WrapKey), the mechanism first computes MAC from the value of the
CKA_VALUE attribute of the key that is wrapped and then encryptsin ECB mode the
value of the CKA_VALUE attribute of the key that is wrapped. The result is 32 bytes of
the key that is wrapped and 4 bytes of MAC.

For unwrapping (C_UnwrapKey), the mechanism first decrypts in ECB mode the 32
bytes of the key that was wrapped and then computes MAC from the unwrapped key.
Then compared together 4 bytes MAC has computed and 4 bytes MAC of the input. If
these two MACs do not match the wrapped key is disallowed. The mechanism
contributes the result asthe CKA_VAL UE attribute of the unwrapped key.

It has a parameter, a 8-byte MAC initiaization vector. This parameter may be omitted
then a zero initialization vector is used.

Constraints on key types and the length of data are summarized in the following table:

Table7, GOST 28147-89 keysas KEK: Key And Data L ength

Function Key type Input length | Output length
C_WrapKey CKK_GOsST28147 32 bytes 36 bytes
C_UnwrapKey | CKK_GOST28147 32 bytes 36 bytes

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

GOST R 34.11-94
GOST R 34.11-94 is a mechanism for message digesting, following the hash algorithm
with 256-bit message digest defined in [GOST R 34.11-94].

6.40.8 Definitions
This section defines the key type “ CKK_GOSTR3411” for type CK_KEY_TYPE as used
inthe CKA_KEY _TY PE attribute of domain parameter objects.

Mechanisms:

April 2009 Copyright © 2009 RSA Security Inc.

204 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKM GOSTR3411
CKM GOSTR3411_HVAC

6.40.9 GOST R 34.11-94 domain parameter objects

GOST R 34.11-94 domain parameter objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_GOSTR3411) hold GOST R 34.11-
94 domain parameters.

The following table defines the GOST R 34.11-94 domain parameter object attributes, in
addition to the common attributes defined for this object class:

Table8, GOST R 34.11-94 Domain Parameter Object Attributes

Attribute Data Type Meaning

CKA_VALUE" Byte array DER-encoding of the domain parameters as
it was introduced in [4] section 8.2 (type
GostR3411-94-ParamSetParameter s)

CKA_OBJECT_ID" Byte array DER-encoding of the object identifier
indicating the domain parameters

Refer to [PKCS#11-B] Table 15 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters
loading up and/or fetching out. Furthermore, applications, that make direct use of domain
parameters objects, should take in account that CKA_VAL UE attribute may be
inaccessible.

The following is a sample template for creating a GOST R 34.11-94 domain parameter
object:

CK_OBJECT_CLASS cl ass = CKO_DOVAI N_PARAMETERS;

CK_KEY_TYPE keyType = CKK_GOSTR3411;

CK_UTF8CHAR | abel [] = “A GOST R34.11-94 cryptographic
paraneters object”;

CK_BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02,
0x02, Oxle, 0x00};

CK_BYTE val ue[] = {

0x30, 0x64,
0x04, 0x40,
Ox4e, 0x57, 0x64, Oxd1, Oxab, 0x8d, Oxch, Oxbf, 0x94, Ox1a, 0x7a, 0x4d, Ox2c, Oxd1l, 0x10, 0x10,
0xd6, 0xa0, 0x57, 0x35, 0x8d, 0x38, Oxf 2, Oxf 7, Ox0Of , 0x49, 0xd1, 0x5a, Oxea, Ox2f , 0x8d, 0x94,
0x62, Oxee, 0x43, 0x09, 0xb3, 0xf 4, Oxa6, Oxa2, 0x18, 0xc6, 0x98, Oxe3, Oxcl, O0x7c, Oxe5, Ox7e,
0x70, 0x6b, 0x09, 0x66, Oxf 7, 0x02, Ox3c, 0x8b, 0x55, 0x95, Oxbf, 0x28, 0x39, 0xb3, 0x2e, Oxcc,
0x04, 0x20,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

1

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 205

{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA OBJECT_ID, oid, sizeof(oid)},
{CKA VALUE, val ue, sizeof(value)}

1

6.40.10GOST R 34.11-94 digest
GOST R 34.11-94 digest, denoted CKM_GOSTR3411, is a mechanism for message
digesting based on GOST R 34.11-94 hash algorithm [GOST R 34.11-94].

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A
mechanism parameter may be missed then parameters of the object identifier id-
GostR3411-94-CryptoProParamSet [RFC 4357] (section 11.2) must be used.

Constraints on the length of input and output data are summarized in the following table.

For single-part digesting, the data and the digest may begin at the same location in
memory.

Table9, GOST R 34.11-94: Data Length

Function I nput Digest length
length
C Digest Any 32 bytes

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.40.11GOST R 34.11-94 HMAC

GOST R 34.11-94 HMAC mechanism, denoted CKM_GOSTR3411 HMAC, isa
mechanism for signatures and verification. It usesthe HMAC construction, based on the
GOST R 34.11-94 hash function [GOST R 34.11-94] and core HMAC algorithm [RFC
2104]. The keysit uses are of generic key type CKK_GENERIC_SECRET or
CKK_GOST 28147.

To be conformed to GOST R 34.11-94 hash agorithm [GOST R 34.11-94] the block
length of core HMAC algorithm is 32 bytes long (see [RFC 2104] section 2, and [RFC
4357] section 3).

As a parameter this mechanism utilizes a DER-encoding of the object identifier. A
mechanism parameter may be missed then parameters of the object identifier id-
GostR3411-94-CryptoProParamSet [RFC 4357] (section 11.2) must be used.

Signatures (MACs) produced by this mechanism are of 32 bytes long.

Constraints on the length of input and output data are summarized in the following table:

April 2009 Copyright © 2009 RSA Security Inc.

206 PKCS#11 MECHANISMSV2.30: CRYPTOKI

Table 10, GOST R 34.11-94 HMAC: Key And Data L ength

Function | Key type Datalength | Signaturelength
C_Sign CKK_GENERIC_SECRET Any 32 byte

or CKK_GOST28147
C Verify | CKK_GENERIC_SECRET Any 32 bytes

or CKK_GOST28147

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.41 GOST R 34.10-2001
GOST R 34.10-2001 is a mechanism for single- and multiple-part signatures and
verification, following the digital signature algorithm defined in [GOST R 34.10-2001].

6.41.1 Definitions
This section defines the key type “CKK_GOSTR3410" for type CK_KEY_TYPE as used
inthe CKA_KEY_TYPE attribute of key objects and domain parameter objects.

M echanisms:

CKM GOSTR3410_KEY_PAI R_GEN
CKM_GOSTR3410
CKM_GOSTR3410 W TH_GOSTR3411
CKM_GOSTR3410
CKM_GOSTR3410_KEY_ WRAP
CKM_GOSTR3410_DERI VE

6.41.2 GOST R 34.10-2001 public key objects
GOST R 34.10-2001 public key objects (object class CKO_PUBLIC_KEY, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 public keys.

The following table defines the GOST R 34.10-2001 public key object attributes, in
addition to the common attributes defined for this object class:

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 207

Table 11, GOST R 34.10-2001 Public Key Object Attributes

Attribute Data Meaning
Type
CKA_VALUE™ Bytearray | 64 bytes for public key; 32 bytes for

each coordinates X and Y of dliptic
curve point P(X, Y) in little endian
order

CKA_GOSTR3410PARAMS™ | Bytearray | DER-encoding of the object identifier

indicating the data object type of
GOST R 34.10-2001.

When key is used the domain
parameter object of key type
CKK_GOSTR3410 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411PARAMS™ | Bytearray | DER-encoding of the object identifier
8 indicating the data object type of
GOST R 34.11-94.

When key is used the domain
parameter object of key type
CKK_GOSTR3411 must be specified
with the same attribute
CKA_OBJECT_ID

CKA_GOST28147 PARAMS® | Bytearray | DER-encoding of the object identifier
indicating the data object type of
GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GOST28147 must be specified
with the same attribute
CKA_OBJECT _ID. The attribute
value may be omitted

Refer to [PKCS#11-B] Table 15 for footnotes

The following is a sample template for creating an GOST R 34.10-2001 public key
object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C _KEY;
CK_KEY_TYPE keyType CKK_GOSTR3410;
CK_UTF8CHAR | abel [] “A GOST R34.10-2001 public key
obj ect”;
CK_BYTE gost R3410parans_oid[] = {0x06, 0x07, Ox2a, 0x85,

April 2009 Copyright © 2009 RSA Security Inc.

208 PKCS#11 MECHANISMSV2.30: CRYPTOKI

0x03, 0x02, 0x02, 0x23, 0x00};
CK_BYTE gost R3411parans_oid[] = {0x06, 0x07, Ox2a, 0x85,
0x03, 0x02, 0x02, Oxle, 0x00};
CK_BYTE gost 28147parans_oid[] = {0x06, 0x07, Ox2a, 0x85,
0x03, 0x02, 0x02, Ox1f, 0xO00};
CK_BYTE val ue[64] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA GOSTR3410PARANMS, gost R3410parans_oi d,
si zeof (gost R3410par ans_oi d) },
{ CKA GOSTR3411PARANMS, gost R3411parans_oi d,
si zeof (gost R3411parans_oi d) },
{ CKA_G0ST28147_PARAMS, gost 28147par ans_oi d,
si zeof (gost 28147par ans_oi d) },
{CKA VALUE, val ue, sizeof(value)}

¥

6.41.3 GOST R 34.10-2001 private key objects
GOST R 34.10-2001 private key objects (object classCKO_PRIVATE_KEY, key type
CKK_GOSTR3410) hold GOST R 34.10-2001 private keys.

The following table defines the GOST R 34.10-2001 private key object attributes, in
addition to the common attributes defined for this object class:

Table 12, GOST R 34.10-2001 Private Key Object Attributes

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 209

Attribute Data Meaning
Type
CKA_VALUE"*®7 Bytearray | 32 bytes for private key in little
endian order

CKA_GOSTR3410PARAMS® | Bytearray | DER-encoding of the object
identifier indicating the data object
type of GOST R 34.10-2001.

When key is used the domain
parameter object of key type
CKK_GOSTR3410 must be
specified with the same attribute
CKA_OBJECT_ID

CKA_GOSTR3411PARAMS*®® | Bytearray | DER-encoding of the object
identifier indicating the data object
type of GOST R 34.11-94.

When key is used the domain
parameter object of key type
CKK_GOSTR3411 must be
specified with the same attribute
CKA_OBJECT_ID

CKA_GOST28147 PARAMSA*® | Bytearray | DER-encoding of the object
8 identifier indicating the data object
type of GOST 28147-89.

When key is used the domain
parameter object of key type
CKK_GOST28147 must be
specified with the same attribute
CKA_OBJECT_ID. The attribute
value may be omitted

Refer to [PKCS #11-B] Table 15 for footnotes

Note that when generating an GOST R 34.10-2001 private key, the GOST R 34.10-2001
domain parameters are not specified in the key’ stemplate. Thisis because

GOST R 34.10-2001 private keys are only generated as part of an GOST R 34.10-2001
key pair, and the GOST R 34.10-2001 domain parameters for the pair are specified in the
template for the GOST R 34.10-2001 public key.

The following is a sample template for creating an GOST R 34.10-2001 private key
object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY,

April 2009 Copyright © 2009 RSA Security Inc.

210

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKK_GOSTR3410;
“A GOST R34.10-2001 private key

obj ect”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE gost R3410parans_oid[] = {0x06, 0x07, Ox2a, 0x85,
0x03, 0x02, 0x02, 0x23, 0x00};

CK_BYTE gost R3411parans_oid[] = {0x06, 0x07, Ox2a, 0x85,
0x03, 0x02, 0x02, Oxle, 0x00};

CK_BYTE gost 28147parans_oid[] = {0x06, 0x07, Ox2a, 0x85,
0x03, 0x02, 0x02, Ox1f, 0xO00};

CK_BYTE val ue[32] = {...};

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

{CKA_SENSI Tl VE, &true, sizeof(true)},

{CKA SIGN, &true, sizeof(true)},

{ CKA GOSTR3410PARANMS, gost R3410parans_oi d,
si zeof (gost R3410par ans_oi d) },

{ CKA GOSTR3411PARANMS, gost R3411parans_oi d,
si zeof (gost R3411parans_oi d) },

{ CKA_G0ST28147_PARAMS, gost 28147par ans_oi d,
si zeof (gost 28147par ans_oi d) },

{CKA VALUE, val ue, sizeof(value)}

6.41.4 GOST R 34.10-2001 domain parameter objects

GOST R 34.10-2001 domain parameter objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK_GOSTR3410) hold
GOST R 34.10-2001 domain parameters.

The following table defines the GOST R 34.10-2001 domain parameter object attributes,

in addition to the common attributes defined for this object class:

Copyright © 2009RSA Security Inc.

April 2009

6. MECHANISMS 211

Table 13, GOST R 34.10-2001 Domain Parameter Object Attributes
Attribute Data Type Meaning
CKA_VALUE" Byte array DER-encoding of the domain parameters as

it was introduced in [4] section 8.4 (type
GostR3410-2001-ParamSetParameters)

CKA_OBJECT_ID" Byte array DER-encoding of the object identifier

indicating the domain parameters

Refer to [PKCS#11-B] Table 15 for footnotes

For any particular token, there is no guarantee that a token supports domain parameters
loading up and/or fetching out. Furthermore, applications, that make direct use of domain
parameters objects, should take in account that CKA_VAL UE attribute may be
inaccessible.

The following is a sample template for creating a GOST R 34.10-2001 domain parameter

object:

CK_OBJECT_CLASS cl ass = CKO _DOVAI N_PARANMETERS;
CK_KEY_TYPE keyType = CKK_GOSTR3410;
CK_UTF8CHAR | abel [] = “A GOST R34.10-2001 cryptographic

paraneters object”;

CK_BYTE oid[] = {0x06, 0x07, Ox2a, 0x85, 0x03, 0x02,

0x02, 0x23, 0x00};

CK_BYTE val ue[] = {

0x30, 0x81,
0x02, 0x01,

0x90,
0x07,

0x02, 0x20,

0x5f, Oxbf ,
0x56, 0x3f,
0x02, 0x21,
0x80, 0x00,
0x00, 0x00,
0x02, 0x21,
0x80, 0x00,
0x50, 0xf e,
0x02, 0x01,

0xf 4, 0x98, Oxaa, 0x93, 0x8c, Oxe7, 0x39, 0xb8, 0xe0, 0x22, Oxf b, Oxaf , Oxef , 0x40
Ox6e, Ox6a, 0x34, 0x72, Oxf c, 0x2a, 0x51, Ox4c, 0xOc, Oxe9, Oxda, Oxe2, 0x3b, Ox7e
0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0Ox00, 0x04, 0x31
0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, Ox01
0x8a, 0x18, 0x92, 0x97, 0x61, 0x54, 0xc5, 0x9c, 0xf c, 0x19, Ox3a, Oxcc, Oxf 5, Oxb3
0x02,

0x02, 0x20,

0x08, Oxe2,
0x85, 0xc9,

¥

Oxa8, 0xa0, 0xe6, 0x51, 0x47, 0xd4, Oxbd, 0x63, 0x16, 0x03, Ox0e, 0x16, Oxd1l, 0x9c
0x7f, 0x0a, 0x9c, Oxa2, 0x67, 0x12, Ox2b, 0x96, Oxab, Oxbc, Oxea, Ox7e, 0x8f , Oxc8

CK_BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenplate[] = {

April 2009

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{CKA OBJECT_ID, oid, sizeof(oid)},

{CKA VALUE, val ue, sizeof(value)}

Copyright © 2009 RSA Security Inc.

212

PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.41.5 GOST R 34.10-2001 mechanism parameters
¢ CK_GOSTR3410 KEY_WRAP_PARAMS

CK_GOSTR3410 KEY_WRAP_PARAMS is a structure that provides the parameters
tothe CKM_GOSTR3410 KEY_WRAP mechanism. It isdefined as follows:

typedef struct CK GOSTR3410 KEY WRAP_PARAMS {

CK_BYTE_PTR

CK_ULONG

CK_BYTE_PTR

CK_ULONG

pW apQ Db

ul Wapd DLen;
pUKM

ul UKM_en,;

CK_OBJECT HANDLE hKey:;
} CK_GOSTR3410 KEY VRAP PARAMNE;

The fields of the structure have the following meanings:

pWrapOID

ulWrapOIDLen

PUKM

ulUKMLen

hKey

Copyright © 2009RSA Security Inc.

pointer to a data with DER-encoding of the object
identifier indicating the data object type of

GOST 28147-89. If pointer takesNULL_PTR vaue
in C_WrapKey operation then parameters are
specified in object identifier of attribute
CKA_GOSTR3411PARAMS must be used. For
C_UnwrapK ey operation the pointer is not used and
must take NULL_PTR value anytime

length of data with DER-encoding of the object
identifier indicating the data object type of
GOST 28147-89

pointer to a data with UKM. If pointer takes
NULL_PTR vaue in C_WrapKey operation then
random value of UKM will be used. If pointer takes
non-NULL_PTR value in C_UnwrapKey operation
then the pointer value will be compared with UKM
value of wrapped key. If these two values do not
match the wrapped key will be rejected

length of UKM data. If pUKM-pointer is different
from NULL_PTR then equal to 8

key handle. Key handle of a sender for C_WrapKey
operation. Key handle of a receiver for
C_UnwrapKey operation. When key handle takes
CK_INVALID_HANDLE value then an ephemeral
(onetime) key pair of a sender will be used

April 2009

6. MECHANISMS 213

* CK_GOSTR3410_DERIVE_PARAMS

CK_GOSTR3410 DERIVE_PARAMS is a structure that provides the parameters to
the CKM_GOSTR3410 DERIVE mechanism. It is defined as follows:

typedef struct CK GOSTR3410_DERI VE_PARAMS {
CK_EC _KDF_TYPE kdf;
CK_BYTE_PTR pPubl i cDat a;

CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pUKM
CK_ULONG ul UKML_en;

} CK_GOSTR3410_DERI VE_PARANG;

The fields of the structure have the following meanings:

kdf additional key diversification algorithm identifier.
Possible values are CKD_NULL and
CKD_CPDIVERSIFY_KDF. In case of
CKD_NULL, result of the key derivation function
described in [RFC 4357], section 5.2 is used
directly; In case of CKD_CPDIVERSIFY _KDF, the
resulting key value is additionaly processed with
algorithm from [RFC 4357], section 6.5.

pPublicData’ pointer to datawith public key of areceiver

ulPublicDatalen length of data with public key of areceiver (must be
64)

pUKM pointer to aUKM data

ulUKMLen length of UKM datain bytes (must be 8)

L Public key of areceiver isan octet string of 64 bytes long. The public key octets
correspond to the concatenation of X and Y coordinates of apoint. Any one of them is 32
bytes long and represented in little endian order.

6.41.6 GOST R 34.10-2001 key pair generation

The GOST R 34.10-2001 key pair generation mechanism, denoted
CKM_GOSTR3410 KEY_PAIR_GEN, isakey pair generation mechanism for
GOST R 34.10-2001.

This mechanism does not have a parameter.

April 2009 Copyright © 2009 RSA Security Inc.

214 PKCS#11 MECHANISMSV2.30: CRYPTOKI

The mechanism generates GOST R 34.10-2001 public/private key pairs with particular
GOST R 34.10-2001 domain parameters, as specified in the
CKA_GOSTR3410PARAMS, CKA_GOSTR3411PARAMS, and

CKA_GOST 28147 _PARAMS attributes of the template for the public key. Note that
CKA_GOST28147_PARAM S attribute may not be present in the templ ate.

The mechanism contributesthe CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_VALUE, and CKA_GOSTR3410PARAMS, CKA_GOSTR3411PARAMS,
CKA_GOST 28147 _PARAMS attributes to the new private key.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.41.7 GOST R 34.10-2001 without hashing

The GOST R 34.10-2001 without hashing mechanism, denoted CKM_GOSTR3410, isa
mechanism for single-part signatures and verification for GOST R 34.10-2001. (This
mechanism corresponds only to the part of GOST R 34.10-2001 that processes the 32-
bytes hash value; it does not compute the hash value.)

This mechanism does not have a parameter.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string
of 64 bytes long. The signature octets correspond to the concatenation of the

GOST R 34.10-2001 values sand r’, both represented as a 32 bytes octet string in big
endian order with the most significant byte first [RFC 4490] section 3.2, and [RFC 4491]
section 2.2.2.

The input for the mechanism is an octet string of 32 bytes long with digest has computed
by means of GOST R 34.11-94 hash agorithm in the context of signed or should be

signed message.

Table 14, GOST R 34.10-2001 without hashing: Key And Data L ength

Function Key type Input length | Output length
C_Sign CKK_GOSTR3410 32 bytes 64 bytes
C_Verify' CKK_GOSTR3410 32 bytes 64 bytes

! Single-part operations only.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

Copyright © 2009RSA Security Inc. April 2009

6. MECHANISMS 215

6.41.8 GOST R 34.10-2001 with GOST R 34.11-94

The GOST R 34.10-2001 with GOST R 34.11-94, denoted

CKM_GOSTR3410 WITH_GOSTR3411, is amechanism for signatures and
verification for GOST R 34.10-2001. This mechanism computes the entire

GOST R 34.10-2001 specification, including the hashing with GOST R 34.11-94 hash
algorithm.

As a parameter this mechanism utilizes a DER-encoding of the object identifier indicating
GOST R 34.11-94 data object type. A mechanism parameter may be missed then
parameters are specified in object identifier of attribute CKA_GOSTR3411PARAMS
must be used.

For the purposes of these mechanisms, a GOST R 34.10-2001 signature is an octet string
of 64 bytes long. The signature octets correspond to the concatenation of the

GOST R 34.10-2001 values sand r’, both represented as a 32 bytes octet string in big
endian order with the most significant byte first [RFC 4490] section 3.2, and [RFC 4491]
section 2.2.2.

The input for the mechanism is signed or should be signed message of any length. Single-
and multiple-part signature operations are available.

Table 15, GOST R 34.10-2001 with GOST R 34.11-94: Key And Data L ength

Function Key type Input length | Output length
C_Sign CKK_GOSTR3410 Any 64 bytes
C Veify CKK_GOSTR3410 Any 64 bytes

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

6.41.9 GOST 28147-89 keys wrapping/unwrapping with GOST R 34.10-2001

GOST R 34.10-2001 keys asaKEK (key encryption keys) for encryption GOST 28147
keys, denoted by CKM_GOSTR3410 KEY_WRAP, isamechanism for key wrapping;
and key unwrapping, based on GOST R 34.10-2001. Its purposeis to encrypt and decrypt
keys have been generated by key generation mechanism for GOST 28147-89. An
encryption algorithm from [RFC 4490] (section 5.2) must be used. Encrypted key isa
DER-encoded structure of ASN.1 GostR3410-KeyTransport type [RFC 4490] section 4.2.

It has a parameter, aCK_GOSTR3410 KEY_WRAP_PARAMS structure defined in
section 6.41.5.

For unwrapping (C_UnwrapK ey), the mechanism decrypts the wrapped key, and
contributes the result asthe CKA_VAL UE attribute of the new key.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

April 2009 Copyright © 2009 RSA Security Inc.

216 PKCS#11 MECHANISMSV2.30: CRYPTOKI

6.41.9.1 Common key derivation with assistance of GOST R 34.10-2001 keys

Common key derivation, denoted CKM_GOSTR3410 DERIVE, isamechanism for
key derivation with assistance of GOST R 34.10-2001 private and public keys. The key of
the mechanism must be of object class CKO_DOMAIN_PARAMETERS and key type
CKK_GOSTR3410. An agorithm for key derivation from [RFC 4357] (section 5.2)
must be used.

The mechanism contributes the result as the CKA_VALUE attribute of the new private
key. All other attributes must be specified in atemplate for creating private key object.

For this mechanism, the ulMinKeyS ze and ulMaxKeyS ze fields of the
CK_MECHANISM _INFO structure are not used.

Copyright © 2009RSA Security Inc. April 2009

A.MANIFEST CONSTANTS

A M anifest constants

217

The following definitions can be found in the appropriate header file.

Al so,

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

April 2009

refer [PKCS #11-B] for additional

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne

definitions.

CKK_RSA 0x00000000
CKK_DSA 0x00000001
CKK_DH 0x00000002
CKK_ECDSA 0x00000003
CKK_EC 0x00000003
CKK_X9_42_DH 0x00000004
CKK_GENERI C_SECRET 0x00000010
CKK_RC2 0x00000011
CKK_RCA 0x00000012
CKK_DES 0x00000013
CKK_DES2 0x00000014
CKK_DES3 0x00000015
CKK_CDVF 0x0000001E
CKK_AES 0x0000001F
CKK_BLOWFI SH 0x00000020
CKK_TWOFI SH 0x00000021
CKK_ARI A 0x00000024
CKK_CAMELLI A 0x00000025
CKK_SEED 0x00000026
CKK_MD5_HVAC 0x00000027
CKK_SHA_1_HMVAC 0x00000028
CKK_RI PEMD128_HVAC 0x00000029
CKK_RI PEMD160_HVAC 0x0000002A
CKK_SHA256_HMAC 0x0000002B
CKK_SHA384_HVAC 0x0000002C
CKK_SHA512_HVAC 0x0000002D
CKK_SHA224_HVAC 0x0000002E
CKK_GOSTR3410 0x00000030
CKK_GOSTR3411 0x00000031
CKK_GOST28147 0x00000032
CKK_VENDOR _DEFI NED 0x80000000
CKC_X_509 0x00000000
CKC_X_509_ATTR_CERT 0x00000001
CKC_WILS 0x00000002
CKC_VENDOR _DEFI NED 0x80000000
CKD_NULL

CKD_SHA1_KDF

CKD_SHA1_KDF_ASNL
CKD_SHA1_KDF_CONCATENATE
CKD_SHA224_KDF
CKD_SHA256_KDF
CKD_SHA384_KDF
CKD_SHAS512_KDF

CKD_CPDI VERSI FY_KDF

CKM _RSA_PKCS_KEY_PAI R_GEN
CKM_RSA_PKCS
CKM_RSA_9796

0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

0x00000000
0x00000001
0x00000002

Copyright © 2009 RSA Security Inc.

218

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM RSA X_509
CKM_SHAL_RSA_PKCS
CKM_RSA_PKCS_OAEP

CKM RSA X9 31_KEY_PAI R GEN
CKM RSA X9 31~

CKM SHAL_RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHAL_RSA_PKCS_PSS
CKM DSA KEY_PAI R_GEN
CKM_DSA

CKM DSA_SHA1

CKM DH_PKCS_KEY_PAI R_GEN
CKM_DH_PKCS_DERI VE
CKM_X9_42_DH_KEY_PAI R_GEN
CKM_X9_42_DH_DERI VE
CKM_X9_42_DH_HYBRI D_DERI VE
CKM_X9_42_MV_DER! VE
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_RC2_KEY_GEN

CKM DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_DES3_ECB

CKM DES3_CBC
CKM_DES3_MAC

CKM _DES3_MAC_GENERAL
CKM_DES3_CBC_PAD
CKM_DES3_CMAC_GENERAL
CKM_DES3_CMVAC
CKM_CDVF_KEY_GEN
CKM_CDVF_ECB
CKM_CDMF_CBC
CKM_CDVF_MAC
CKM_CDMVF_MAC_GENERAL
CKM_CDMF_CBC_PAD

CKM _DES_OFB64
CKM_DES_OFB8
CKM_DES_CFB64

CKM _DES_CFB8

CKM_SHA 1

CKM SHA_1_HMVAC
CKM_SHA_1_HMAC_GENERAL
CKM_SHA256
CKM_SHA256_HVAC
CKM_SHA256_HMAC_GENERAL
CKM_SHA384
CKM_SHA384_HVAC
CKM_SHA384_HVAC_GENERAL
CKM_SHA512"
CKM_SHA512_HVAC
CKM_SHA512_HVAC_GENERAL
CKM_GENERI C_SECRET_KEY_GEN

CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM KEY

Copyright © 2009RSA Security Inc.

0x00000003
0x00000006
0x00000009
0x0000000A
0x0000000B
0x0000000C
0x0000000D
0x0000000E
0x00000010
0x00000011
0x00000012
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000033
0x00000040
0x00000041
0x00000042
0x00000043
0x00000044
0x00000045
0x00000100
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000135
0x00000136
0x00000137
0x00000138
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000150
0x00000151
0x00000152
0x00000153
0x00000220
0x00000221
0x00000222
0x00000250
0x00000251
0x00000252
0x00000260
0x00000261
0x00000262
0x00000270
0x00000271
0x00000272
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365

PKCS#11 MECHANISMSV2.30: CRYPTOKI

April 2009

A.MANIFEST CONSTANTS

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

April 2009

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM SSL3_PRE_MASTER KEY_GEN
CKM_SSL3_MASTER _KEY_DERI VE
CKM_SSL3_KEY_AND_MAC _DERI VE
CKM_SSL3_MASTER KEY_DERI VE_DH
CKM TLS_PRE_MASTER KEY_GEN_
CKM_TLS_MASTER_KEY_DERI VE
CKM_TLS_KEY_AND_MAC_DERI VE
CKM_TLS_MASTER _KEY_DERI VE_DH
CKM TLS_PRF
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL_MAC
CKM_MD5_KEY_DERI VATI ON
CKM_MD2_KEY_DERI VATI ON
CKM_SHAL_KEY_DERI VATI ON
CKM_SHA256_KEY_DERI VATI ON
CKM_SHA384_KEY_DERI VATI ON
CKM_SHA512_KEY_DERI VATI ON
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PKCS5_PBKD2
CKM_PBA_SHA1 W TH_SHA1_HMVAC
CKM WILS_PRE_MASTER KEY_GEN
CKM WILS_MASTER _KEY_DERI VE

CKM WILS_MASTER_KEY_DERVI E_DH_ECC

CKM WILS_PRF

CKM WILS_SERVER KEY_AND MAC DERI VE
CKM WILS_CLI ENT_KEY_AND_MAC DERI VE

CKM_KEY_VIRAP_LYNKS
CKM_KEY_\W\RAP_SET_OAEP
CKM_CVB_SI G
CKM_ECDSA_KEY_PAI R_GEN
CKM EC_KEY_PAI R_GEN
CKM_ECDSA

CKM_ECDSA_SHA1
CKM_ECDH1_DERI VE
CKM_ECDH1_COFACTOR_DERI VE
CKM_ECMQV_DERI VE
CKM_AES_KEY_GEN
CKM_AES_ECB

CKM_AES_CBC

CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD
CKM_AES_CMAC_GENERAL
CKM_AES_CMAC

CKM_BLOWFI SH_KEY_GEN
CKM_BLOWFI SH_CBC
CKM_TWOFI SH_KEY_GEN
CKM_TWOFI SH_CBC
CKM_DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT_DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA
CKM_DSA_PARAMETER_GEN
CKM_DH_PKCS_PARAMETER GEN
CKM_X9_42_DH_PARAVETER GEN

0x00000370
0x00000371
0x00000372
0x00000373
0x00000374
0x00000375
0x00000376
0x00000377
0x00000378
0x00000380
0x00000381
0x00000390
0x00000391
0x00000392
0x00000393
0x00000394
0x00000395
0x000003A8
0x000003A9
0x000003AA
0x000003AB
0x000003B0
0x000003C0
0x000003D0
0x000003D1
0x000003D2
0x000003D3
0x000003D4
0x000003D5
0x00000400
0x00000401
0x00000500
0x00001040
0x00001040
0x00001041
0x00001042
0x00001050
0x00001051
0x00001052
0x00001080
0x00001081
0x00001082
0x00001083
0x00001084
0x00001085
0x00001089
0x0000108A
0x00001090
0x00001091
0x00001092
0x00001093
0x00001100
0x00001101
0x00001102
0x00001103
0x00001104
0x00001105
0x00002000
0x00002001
0x00002002

219

Copyright © 2009 RSA Security Inc.

220

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

ne
ne

ne
ne
ne
ne
ne
ne
ne
ne

PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKM_SHA224
CKM_SHA224_HVAC
CKM_SHA224_ HVAC_GENERAL
CKM_SHA224_RSA_PKCS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA224_KEY_DER! VATI ON
CKG_MGF1_SHA224
CKM_AES_CTR
CKM_AES_CTS

CKM_KI P_DERI VE

CKM_KI P_\\RAP

CKM_KI P_MAC

CKM CAMELLI A_KEY_GEN

CKM _CAVELLI A_ECB

CKM_CAMELLI A_CBC

CKM_CAMVELLI A_MAC

CKM_CAVELLI A_MAC_GENERAL
CKM_CAMELLI A_CBC_PAD
CKM_CAVELLI A_ECB_ENCRYPT_DATA
CKM_CAVELLI A_CBC_ENCRYPT_DATA
CKM ARl A_KEY_GEN_

CKM ARl A_ECB

CKM_ARI A_CBC

CKM_ARI A_MAC

CKM_ARI A_VAC_GENERAL

CKM_ARI A_CBC_PAD

CKM_ARI A_ECB_ENCRYPT_DATA
CKM_ARI A_CBC_ENCRYPT_DATA

CKM SEED_KEY_GEN
CKM_SEED_ECB

CKM_SEED_CBC
CKM_SEED_MAC
CKM_SEED_MAC_GENERAL
CKM_SEED_CBC_PAD
CKM_SEED_ECB_ENCRYPT_DATA
CKM_SEED_CBC_ENCRYPT_DATA
CKM_AES_GCM

CKM_AES_CCM

CKM_AES_OFB

CKM_AES_CFB64
CKM_AES_CFB8
CKM_AES_CFB128

CKM_BLOWFI SH_CBC_PAD
CKM_TWOFI SH_CBC_PAD

CKM_AES_KEY_WRAP
CKM_AES_KEY_WRAP_PAD

CKM_RSA_PKCS TPM 1_1
CKM_RSA_PKCS_QAEP_TPM 1_1

CKM GOSTR3410_KEY_PAI R_GEN
CKM_GOSTR3410
CKM_GOSTR3410_W TH_GOSTR3411
CKM_GOSTR3410_KEY_VRAP
CKM_GOSTR3410_DERI VE
CKM_GOSTR3411
CKM_GOSTR3411_HVAC
CKM_GOST28147_KEY_GEN

Copyright © 2009RSA Security Inc.

0x00000255
0x00000256
0x00000257
0x00000046
0x00000047
0x00000396
0x00000005
0x00001086
0x00001089
0x00000510
0x00000511
0x00000512

0x00000550
0x00000551
0x00000552
0x00000553
0x00000554
0x00000555
0x00000556
0x00000557
0x00000560
0x00000561
0x00000562
0x00000563
0x00000564
0x00000565
0x00000566
0x00000567

0x00000650
0x00000651
0x00000652
0x00000653
0x00000654
0x00000655
0x00000656
0x00000657
0x00001087
0x00001088
0x00002104
0x00002105
0x00002106
0x00002107
0x00001094
0x00001095

0x00001090
0x00001091

0x00004001
0x00004002

0x00001200
0x00001201
0x00001202
0x00001203
0x00001204
0x00001210
0x00001211
0x00001220

April 2009

A.MANIFEST CONSTANTS

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne

CKM_GOST28147_ECB

CKM_GOST28147

CKM_GOST28147_MAC

CKM_GOST28147

KEY_V\RAP

CKA_GOSTR3410_PARAMS
CKA_GCOSTR3411_PARAMS

CKA_GOST28147

PARANS

CKM_VENDOR _DEFI NED

A.1 OTP Definitions
Note: A C or C++ source file in a Cryptoki application or library can define all the types,
mechanisms, and other constants described here by including the header file otp-
pkcsll.h. When including the otp-pkcsll.h header file, it should be preceded by an
inclusion of the top-level Cryptoki header file pkcsll.h, and the source file must also
specify the preprocessor directives indicated in Section 8 of [PKCS #11-B].

A.2 Object classes

221

0x00001221
0x00001222
0x00001223
0x00001224
0x00000250
0x00000251
0x00000252

0x80000000

#defi ne CKO _OTP_KEY 0x00000008
A.3 Keytypes
#def i ne CKK_SECURI D 0x00000022
#defi ne CKK_HOTP 0x00000023
#def i ne CKK_ACTI 0x00000024
A.4 Mechanisms
#defi ne CKM_SECURI D_KEY_GEN 0x00000280
#def i ne CKM_SECURI D 0x00000282
#defi ne CKM _HOTP_KEY_GEN 0x00000290
#def i ne CKM_HOTP 0x00000291
#defi ne CKM_ACTI _KEY_GEN 0x000002A0
#def i ne CKM_ACTI 0x000002A1
A5 Attributes
#defi ne CKA_OTP_FORNAT 0x00000220
#def i ne CKA_OTP_LENGTH 0x00000221
#defi ne CKA_OTP_TI ME_| NTERVAL 0x00000222
#def i ne CKA_OTP_USER _FRI ENDLY_MODE 0x00000223
#defi ne CKA_OTP_CHALLENGE REQUI REMENT 0x00000224
#def i ne CKA_OTP_TI ME_REQUI REMENT 0x00000225
#defi ne CKA _OTP_COUNTER _REQUI REMENT 0x00000226
#def i ne CKA_OTP_PI N_REQUI REMENT 0x00000227
#defi ne CKA _OTP_USER | DENTI FI ER 0x0000022A

April 2009

Copyright © 2009 RSA Security Inc.

222

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

PKCS#11 MECHANISMSV2.30: CRYPTOKI

CKA OTP_SERVI CE_| DENTI FI ER

CKA_OTP_SERVI CE_LOGO

CKA_OTP_SERVI CE_LOGO TYPE

CKA_OTP_COUNTER
CKA_OTP_TI ME

A.6 Attribute constants

#def i ne
#def i ne
#def i ne
#def i ne

#defi ne
#defi ne
#defi ne

CK_OTP_FORVAT DECI MAL

CK_OTP_FORMAT_HEXADECI MAL
CK_OTP_FORMAT_ALPHANUMERI C

CK_OTP_FORMAT_BI NARY

CK_OTP_PARAM | GNORED
CK_OTP_PARAM OPTI ONAL
CK_OTP_PARAM MANDATORY

A.7 Other constants

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

CK_OTP_VALUE
CK_OTP_PI N
CK_OTP_CHALLENGE
CK_OTP_TI ME
CK_OTP_COUNTER
CK_OTP_FLAGS
CK_OTP_OUTPUT_LENGTH
CK_OTP_FORMAT

CKF_NEXT_OTP
CKF_EXCLUDE_TI ME
CKF_EXCLUDE_COUNTER
CKF_EXCLUDE_CHALLENGE
CKF_EXCLUDE_PI N
CKF_USER _FRI ENDLY_OTP

A.8 Notifications

#defi ne

CKN_OTP_CHANGED

A.9 Return values

#defi ne
#def i ne

CKR_NEW PI N_MODE
CKR_NEXT_OTP

Copyright © 2009RSA Security Inc.

0x0000022B
0x0000022C
0x0000022D
0x0000022E
0x0000022F

0x000001BO
0x000001B1

NFO WNELO

~No oA~ WNE,O

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020

April 2009

A.MANIFEST CONSTANTS 223

B. OTP Example code

B.1 Disclaimer concerning sample code
For the sake of brevity, sample code presented herein is somewhat incomplete. In
particular, initial steps needed to create a session with a cryptographic token are not
shown, and the error handling is simplified.

B.2 OTPretrieval

The following sample code snippet illustrates the retrieval of an OTP value from an OTP
token using the C_Sign function. The sample demonstrates the generality of the approach
described herein and does not include any OTP mechanism-specific knowledge.

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_RV rv;
CK SLOT ID slotld,;
CK_OBJECT_CLASS cl ass = CKO _OTIP_KEY;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)} };
CK_UTF8CHAR tine[] = {...};
[* UTC tinme value for OTP, or NULL */
CK_UTF8CHAR pin[] = {...};
/* User PIN, or NULL *
CK_BYTE counter[] = {...};
/* Counter value, or NULL */
CK_BYTE chal l enge[] = {...};
/* Chal |l enge, or NULL */
CK_MECHANI SM TYPE_PTR al | onedMechani sns = NULL_PTR,
CK_MECHANI SM | NFO nechani sm nf o;
CK_MECHANI SM nechani sm
CK_ULONG i, ul OTPLen, ul KeyCount, ul Chal Req, ul Pl NReq,
ul Ti mreReq, ul Count er Req;
CK_ATTRI BUTE nmechani sms[] = { { CKA_ALLOWNED MECHANI SVS,
NULL_PTR, 0} };
CK_ ATTRIBUTE attributes[] = {
{ CKA_OTP_CHALLENGE_REQUI REMENT, &ul Chal Req,
si zeof (ul Chal Req) },
{ CKA_OTP_PI N_REQUI REMENT, &ul Pl NReq,
si zeof (ul PI NReq) },
{ CKA_OTP_COUNTER_REQUI REMENT, &ul Count er Req,
si zeof (ul Count er Req) },
{ CKA_OTP_TI ME_REQUI REMENT, &ul Ti meReq,
si zeof (ul TireReq) } };

CK_OTP_PARAM par anf 4] ;

CK_OTP_PARAMS par ans;
CK BYTE *pOIP; /* Storage for OTP result */

April 2009 Copyright © 2009 RSA Security Inc.

224 PKCS#11 MECHANISMSV2.30: CRYPTOKI

do {

/* NB.: Mnimal error and nenory handling in this
sanpl e code. */

[* Find first OTP key on the token. */
if ((rv = C FindObjectslnit(hSession, tenplate, 1))
= CKR_OK) {
br eak;

1
if ((rv = C_FindObjects(hSession, &hKey, 1,
&ul KeyCount)) !'= CKR OK) {

br eak;
1
if (ul KeyCount == 0) {
/* No OIP key found */
br eak;

}
rv = C_Fi ndQbj ect sFi nal (hSessi on) ;

/* Find a suitable OIP nechanism */
if ((rv = C_CetAttributeVal ue(hSessi on, hKey,
mechani sms, 1)) !'= CKR_K) {

br eak;
1
if ((allowedMechani sns = (CK_MECHANI SM TYPE_PTR)
mal | oc(mechani sns[0] . ul Val ueLen)) == 0) {

br eak;

b

mechani sns[0] . pVal ue = al | owedMechani sns;
if ((rv = C GetAttributeVal ue(hSessi on, hKey,
mechani sms, 1)) !'= CKR_OK) {
br eak;

b

for (i = 0; i < mechanisns[O0].ul Val ueLen/
si zeof (CK_MECHANI SM TYPE) ; ++i) {
if ((rv = C_Get Mechani sm nfo(slotld,
al | onedMechani sns[i], &nmechani sm nfo)) == CKR_CK)

{
if (mechanism nfo.flags & CKF_SIGN) {
br eak;

}
}
}

if (i == mechani sns[0].ul Val ueLen) {

Copyright © 2009RSA Security Inc. April 2009

A.MANIFEST CONSTANTS 225

April 2009

br eak;

}

mechani sm mechani sm = al | onedMechani sns[i];
free(al |l ownedMechani sns) ;

/* Set required nmechani sm paraneters based on
the key attributes. */
if ((rv = C_CetAttributeVal ue(hSessi on, hKey,
attributes, sizeof(attributes) /
sizeof (attributes[0]))) !'= CKR. XK) {
br eak;

}

i = 0;
if (ul PINReq == CK_OTP_PARAM MANDATORY) ({
/* PI'N val ue needed. */
paranfi].type = CK OTP_PI N,
paranii].pVval ue = pin;
paranii ++].ul Val ueLen = si zeof (pin) - 1;

}
i f (ul Chal Req == CK_OTP_PARAM MANDATORY) {
/* Chal | enge neded. */
paranfi].type = CK _OTP_CHALLENGE;
paranii].pVval ue = chall enge;
paranii ++] . ul Val ueLen = si zeof (chal | enge);
}
if (ul Ti mreReq == CK_OTP_PARAM MANDATORY) {
/[* Time needed (would not normally be
the case if token has its own clock). */
paranfi].type = CK OTP_TI ME;
paranii].pValue = tineg;
paranii ++].ul Val ueLen = sizeof (tinme) -1,
}
i f (ul CounterReq == CK _OTP_PARAM MANDATORY) {
/* Counter value needed (would not normally
be the case if token has its own counter.*/
paranfi].type = CK _OTP_COUNTER,
paranii].pVval ue = counter;
paranii ++] . ul Val ueLen = si zeof (counter);

}

par ans. pPar ams

par am
par ans. ul Count i;

mechani sm pPar anmet er = &par ans;
mechani sm ul Par anet erLen = si zeof (parans);

/[* Sign to get the OTP val ue. */
if ((rv = C_Signlnit(hSession, &rechanism hKey))

Copyright © 2009 RSA Security Inc.

226 PKCS#11 MECHANISMSV2.30: CRYPTOKI

= CKR_OK) {
br eak;

}

/* Get the buffer |ength needed for the OTP Val ue
and any associ ated data. */

if ((rv = C_Sign(hSession, NULL_PTR, 0, NULL_PTR
&ul OTPLen)) != CKR_CK) {

br eak;

}

if ((pOTP = mall oc(ul OTPLen)) == NULL_PTR) {
br eak;

¥

/* Get the actual OTP val ue and any
associ ated data. */
if ((rv = C_Sign(hSession, NULL_PTR, 0, pOIP,
&ul OTPLen)) !'= CKR K) {
br eak;

}

[* Traverse the returned pOIP here. The actual
OTP value is in CK_OTP_VALUE in pOTP. */

} while (0);

B.3 User-friendly mode OTP token
This sample demonstrates an application retrieving a user-friendly OTP vaue. The code
isthe same asin B.1 except for the following:

/* Add these vari abl e decl arati ons */

CK_FLAGS flags = CKF_USER FRI ENDLY_OTP;
CK _BBOOL bUser Fri endl yMode;
CK_ULONG ul For mat ;

/* Replace the declaration of the "attributes"” and the
"parant variables with: */

CK_ATTRI BUTE attributes[] = {
{ CKA_OTP_CHALLENGE REQUI REMENT, &ul Chal Req,
si zeof (ul Chal Req) },
{ CKA_OTP_PI N REQUI REVENT, &ul Pl NReq,
si zeof (ul PI NReq) },
{ CKA_OTP_COUNTER _REQUI REMENT, &ul Count er Req,
si zeof (ul Count er Req) },
{ CKA_OTP_TI ME_REQUI REMENT, &ul Ti meReq,
si zeof (ul Ti neReq) },

Copyright © 2009RSA Security Inc. April 2009

A. MANIFEST CONSTANTS 227

{ CKA_OTP_USER FRI ENDLY_MODE, &bUser Fri endl yMbde,
si zeof (bUser Fri endl yMode) },

{CKA OTP_FORVAT, &ul For mat,

si zeof (ul Format) }

} 7
CK_OTP_PARAM par anf 5] ;

/* Replace the assignment of the "pParani conponent
of the "parans” variable with: */

if (bUserFriendl yMode == CK TRUE) {
/* Token supports user-friendly OTPs */
paranfi].type = CK OTP_FLAGS;
paranii].pVval ue = &fl ags;
paranii ++] . ul Val ueLen = si zeof (CK_FLAGS) ;
} else if (ul Format == CK_OTP_FORMAT Bl NARY) {
/* Some kind of error since a user-friendly
OTP cannot be returned to an application
that needs it. */
br eak;

}i
par ans. pPar ans = par am

/* Further processing is as in B.1. */

B.4 OTP verification

The following sample code snippet illustrates the verification of an OTP value from an
RSA SecurlD token, using the C_Verify function. The desired UTC time, if atimeis
specified, issupplied inthe CK_OTP_PARAMS structure, asisthe user's PIN.

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_UTF8CHAR tine[] = {...};
[* UTC time value for OIP, or NULL */
CK_UTF8CHAR pin[] = {...};
/* User PIN or NULL (if collected by library) */
CK_OTP_PARAM parani] = {
{CK_OTP_TI ME, time, sizeof(tine)-1},
{CK_OTP_PIN, pin, sizeof(pin)-1}

CK_OTP_PARAMS parans = {param 2};
CK_MECHANI SM nechani sm = {CKM SECURI D, &par ans,
si zeof (par ans) };
CK_ULONG ul KeyCount ;
CK RV rv;
CK_BYTE OTP[] = {...}; [* Supplied OTP val ue. */

April 2009 Copyright © 2009 RSA Security Inc.

228 PKCS#11 MECHANISMSV2.30: CRYPTOKI

CK_ULONG ul OTPLen = strlen((CK _CHAR PTR) OTP);
CK_OBJECT_CLASS cl ass = CKO _OTP_KEY;
CK_KEY_TYPE keyType = CKK_SECURI D

CK_ATTRI BUTE templ ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY _TYPE, &keyType, sizeof (keyType)},
3

/* Find the RSA Securl D key on the token. */

rv = C_FindOojectslnit(hSession, tenplate, 2);

if (rv == CKR_OK)
rv C _Fi ndhj ect s(hSessi on, &hKey, 1, &ul KeyCount);
rv C_Fi ndQbj ect sFi nal (hSessi on);

if ((rv !'= CKR.OK) || (ul KeyCount == 0))
printf(" \nError: unable to find RSA SecurlD key on
t oken.\n");
return(rv);

rv = C Verifylnit(hSession, &mechani sm hKey);
if (rv == CKR_X) {
ul OTPLen = si zeof (OTP);
rv = C Verify(hSession, NULL PTR 0, OTP, ul OTPLen);

}

switch(rv) {
case CKR X
printf("\nSupplied OTP value verified.\n");
br eak;

case CKR_SI GNATURE_I NVALI Dt
printf("\nSupplied OTP value not verified.\n");
br eak;

def aul t:

printf("\nError:Unable to verify OIP value.\n");
br eak;

}

return(rv);

C. Using PKCS#11 with CT-KIP
A suggested procedure to perform CT-KIP with a cryptographic token through the PKCS
#11 interface using the mechanisms defined herein is as follows:

a Ontheclient side,

Copyright © 2009RSA Security Inc. April 2009

A.MANIFEST CONSTANTS 229

. The client selects a suitable slot and token (e.g. through use of the <TokenID>

or the <pPlatforminfo> element of the CT-KIP trigger message).

. Optionadly, a nonce R is generated, e.g. by caling C_SeedRandom and

C_GenerateRandom.

The client sends its first message to the server, potentially including the
nonce R.

b. Ontheserver side,

A nonce Rs is generated, eg. by cdling C_SeedRandom and
C_GenerateRandom.

. If the server needs to authenticate its first CT-KIP message, and use of

CKM_KIP_MAC has been negotiated, it cals C_Signlnit with
CKM_KIP_MAC as the mechanism followed by a call to C_Sign. In the
call to C_Signinit, Kautn (see 0) shall be the signature key, the hKey
parameter in the CK_KIP_PARAMS structure shall be set to NULL_PTR,
the pSeed parameter of the CT_KIP_PARAMS structure shall also be set to
NULL_PTR and the ulSeedLen parameter shall be set to zero. In the call to
C_Sign, the pData parameter shall be set to point to (the concatenation of
the nonce R, if recelved, and) the nonce Rs (see O for a definition of the
variables), and the ulDataLen parameter shall hold the length of the
(concatenated) string. The desired length of the MAC shall be specified
through the pul Sgnaturelen parameter as usual.

The server sends its first message to the client, including Rs, the server's
public key K (or an identifier for a shared secret key K), and optionally the
MAC.

c. Ontheclient side,

April 2009

If a MAC was received, it is verified. If the MAC does not verify, or was
required but not received, the protocol session ends with afailure.

If the MAC verified, or was not required and not present, a generic secret
key, Rc, is generated by cdling C _GenerateKey with the
CKM_GENERIC_SECRET_KEY_GEN mechanism. The pTemplate
attribute shall have CKA_EXTRACTABLE and CKA_SENSITIVE set to
CK_TRUE, and should have CKA_ALLOWED_MECHANISMS set to
CKM_KIP_DERIVE only.

The generic secret key Rc iswrapped by calling C_WrapKey. If the server’s
public key is used to wrap Rc, and that key is temporary only, then the
CKA_EXTRACTABLE attribute of Rc shall be set to CK_FALSE once R:
has been wrapped and the server’s public key is to be destroyed. If a shared
secret key is used to wrap Rc, and use of the CT-KIP key wrapping
algorithm was negotiated, then the CKM_KIP_WRAP mechanism shall be
used. The hKey handle in the CK_KIP_PARAMS structure shall be set to
NULL_PTR. The pSeed parameter in the CK_KIP_PARAMS structure

Copyright © 2009 RSA Security Inc.

230

V.

PKCS#11 MECHANISMSV2.30: CRYPTOKI

shall point to the nonce Rs provided by the CT-KIP server, and the
ulSeedLen parameter shall indicate the length of Rs. The hWrappingKey
parameter in the call to C_WrapKey shall be set to refer to the wrapping
key.

The client sends its second message to the server, including the wrapped
generic secret key Rc.

d. Onthe server side,

Once the wrapped generic secret key Rc has been received, the server calls
C_UnwrapKey. If use of the CT-KIP key wrapping agorithm was
negotiated, then CKM_KIP_WRAP shal be used to unwrap Rc. When
caling C_UnwrapKey, the CK_KIP_PARAMS structure shall be set as
described in c.lll above. The hUnwrappingKey function parameter shal
refer to the shared secret key and the pTemplate function parameter shall
have CKA_SENSITIVE set to CK_TRUE, CKA_KEY_TYPE set to
CKK_GENERIC_SECRET and should have
CKA_ALLOWED MECHANISMS set to CKM_KIP_DERIVE only.
Thiswill return a handle to the generic secret key Rc.

. A token key, Kroken, is derived from Rc by calling C_DeriveKey with the

CKM_KIP_DERIVE mechanism, using Rc as hBaseKey. The hKey handle
in the CK_KIP_PARAMS structure shall refer either to the public key
supplied by the CT-KIP server, or aternatively, the shared secret key
indicated by the server. The pSeed parameter shall point to the nonce Rs
provided by the CT-KIP server, and the ulSeedLen parameter shall indicate
the length of Rs. The pTemplate attribute shall be set in accordance with
local policy and as negotiated in the protocol. Thiswill return a handle to the
token key, KToKEN:

For the server's last CT-KIP message to the client, if use of the CT-KIP
MAC agorithm has been negotiated, then the MAC is calculated by calling
C_Signinit with the CKM_KIP_MAC mechanism followed by a cal to
C_Sign. Inthe call to C_Signlinit, Kauty (see 0) shall be the signature key,
the hKey parameter in the CK_KIP_PARAM S structure shall be a handle to
the generic secret key Rc, the pSeed parameter of the CT_KIP_PARAMS
structure shall be set to NULL_PTR, and the ulSeedLen parameter shall be
set to zero. In the cal to C_Sign, the pData parameter shall be set to
NULL_PTR and the ulDataLen parameter shall be set to 0. The desired
length of the MAC shall be specified through the pul S gnaturelen parameter
asusual.

V. The server sends its second message to the client, including the MAC.

e. Ontheclient side,

The MAC is verified in a reciproca fashion as it was generated by the
server. If use of the CKM_KIP_MAC mechanism was negotiated, then in
the call to C_Verifylnit, the hKey parameter in the CK_KIP_PARAMS

Copyright © 2009RSA Security Inc. April 2009

A.MANIFEST CONSTANTS 231

structure shall refer to R, the pSeed parameter shall be set to NULL_PTR,
and ulSeedLen shall be set to 0. The hKey parameter of C_Verifylnit shall
refer to Kaytu. In the call to C_Verify, pData shall be set to NULL_PTR,
ulDatalLen to O, pSignature to the MAC value received from the server, and
ulSgnatureLen to the length of the MAC. If the MAC does not verify the
protocol session ends with afailure.

. A token key, Kroken, is derived from Rc by calling C_DeriveKey with the

CKM_KIP_DERIVE mechanism, using Rc as hBaseKey. The hKey handle
in the CK_KIP_PARAMS structure shall be set to NULL_PTR as token
policy must dictate use of the same key as was used to wrap Rc. The pSeed
parameter shall point to the nonce Rs provided by the CT-KIP server, and
the ulSeedLen parameter shall indicate the length of Rs. The pTemplate
attribute shall be set in accordance with local policy and as negotiated and
expressed in the protocol. In particular, the value of the <keyiD> element in
the server's response message may be used as CKA_ID. The cal to
C_DeriveK ey will, if successful, return ahandle to Kroken.

"™ When Kaumy is the newly generated Kroken, the client will need to call C_DeriveKey before calling
C_Verifylnit and C_Verify (since the hKey parameter of C_Verifylnit shall refer to Kroken)- In this case,
the token should not allow Kroken to be used for any other operation than the verification of the MAC value
until the MAC has successfully been verified.

April 2009

Copyright © 2009 RSA Security Inc.

232 PKCS#11 MECHANISMSV2.30: CRYPTOKI

B Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RC5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent clams on the constructions
described in this document, although specific underlying techniques may be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is aregistered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in al materia mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

Copyright © 2009RSA Security Inc. April 2009

C. ReVISION HISTORY 233

C Revision History

Thisistheinitial version of PKCS #11 Mechanisms v2.30.

April 2009 Copyright © 2009 RSA Security Inc.

