F-Secure Corporation

F-Secure® Cryptographic Library™
FIPS 140-2 Validation Security Policy

Author: Alexey Kirichenko

Module version: 2.2.5, 2.2.7, 2.2.8, and 2.2.12 (Wdiows), 1.1.8,1.1.9, 1.1.10, 1.1.12,
and 1.1.15 (Solaris/Linux/AIX/HP-UX)

Document version:
F-Secure,FSCLM,FSCLM2_Security Policy level 1.rtf,0000009

Created: May 2003
Last modified: December 2006

Abstract: This document describes the F-Secure® Cryptogedphrary™ Security Policy submitted
for validation, in accordance with the FIPS pultiima 140-2, level 1.

F-Secure Cryptographic Library Security Policy

COPYRIGHT © 2003-2006, F-Secure Corporation. All Ri ghts Reserved.

"F-Secure" is a registered trademark of F-Secure Co rporation and F-Secure product
names and symbols/logos are either trademarks or re gistered trademarks of F-Secure
Corporation. All other product and company names, i f any, are trademarks or
registered trademarks of their respective owners.

This document may be copied without the author’s pe rmission provided that it is
copied in its entirety without any modification

F-Secure Cryptographic Library Security Policys

10T 18T 4o o PP UPEURRRPRRR 4
Overall Design and FUNCHONEAIILYeiiiiiiieiee ettt e e e e s bbb e e e e e e s bbbt e e e e snneee e e e annnnes 5
The Cryptographic Module and CryptographiC BOUNGALY, ceee.....coiiuuiiiiiieiiiiiiee et ee ettt e s e s sananeeee s 7
ROIES AN SEIVICES ... it e oottt bttt et ettt e e e e as e e 4o e oo e a e b ba bbb s be e ettt e e e e e e e e aeeeaaaaaanssnsbbbbesbeneeeees 9
NSV E= T gt To [T 0 =T o ST PP PP P PPPUPPPRPRRIN 11
1Y/ [oTo L] [N [g1 (=] =Tl SO UPUTTUTPRU 14
LY=L I =TS 1] o PP PRPESRRPRR 15
Mitigation of Attacks Based 0N TIMING ANAIYSIS. .. cceeririiririiiiiiiee e ce e e e e e e e e e e e e e s e s s s e s s asnerarraeraereeeaeaas 17

List of the API Functions, Operating Modes, Important Tédl ConsSiderationsS.............cccooviviiiiiiimmemmrcccieierrreeeeeeee e 18

F-Secure Cryptographic Library Security Policy

Introduction

The F-Secure® Cryptographic Library™ for Windowsisoftware module, implemented as a 32-bit
Windows™ *‘NT/2000/2003/XP/98/ME compatible DLL (FEK.DLL). The F-Secure®
Cryptographic Library™ for Solaris, Linux, HP-UXna AlX are software modules, implemented as
shared libraries (LIBFSCLM.SO). These instancethefF-Secure® Cryptographic Library™ provide
an identical set of cryptographic services to ¢legplications, and in this document we refer &nh
all as “the Module”. The services are accessihbigHe client through an Application Programming
Interface (API).

The Module was tested for FIPS 140-2 Level 1 reqnéents on Windows 2000, Windows 98,
Windows XP Professional, Windows ME, Trusted Sal&ri7/03, HP-UX B.11.11, AIX 5 and Red Hat
Enterprise Linux (RHEL) 3 operating systems. Aduhflly, the Module may also be used with Trusted
Solaris 8 4/01, Solaris 8 and 9, HP-UX 10, and RatlEnterprise Linux (RHEL) 4 running on a GPC
without affecting the FIPS 140-2 validation as BE#?S 140-2 Implementation Guidance G.5.

! The same physical binary runs on Solaris 8, Solarisutda Solaris 8 4/01 and Trusted Solaris 8 7/03 opgrayistems.
The same physical binary runs on both HP-UX 11.11 andJMR0 operating systems and on both RHEL 3 and 4
operating systems.

F-Secure Cryptographic Library Security Policys

Overall Design and Functionality

The Module is designed and implemented to meeltével 1 requirements of FIPS publication 140-2
when running on a GPC under Windows NT/2000/20088ME, Trusted Solaris 8, Solaris 8 and 9,
Linux RHEL 3 and 4, HP-UX 10 and 11, AlX 5 operatisystems.

The Module is written in the “C” programming langea with some small performance-critical
sections of the Windows and Linux versions writtethe assembly language. The assembly language
portions include code of the core transformatiancfions of certain symmetric ciphers and hash
functions and a number of big integer arithmetiatirees.

At the source code level, we use nearly an idelngetaof source files to build cryptographic libes

for a number of platforms, operating systems amkblje options. Almost all platform-dependent code
is clearly separated into a small number of platfspecific files. The F-Secure Cryptographic Lilgrar
for Windows is a dynamically linked module (DLL)rfthe user mode level of Windows 2000,
Windows 2003, Windows XP, Windows 98, and Windows bperating systems, the Solaris version
is a shared library (Shared Object) for Sun TruSeldris 8 Solaris 8 and 9 operating systems, the
Linux version is a shared library for Linux RHELa8d 4 operating system, the HP-UX version is a
shared library for HP-UX 10 and 11 operating systeamd the AIX version is a shared library for AIX
5 operating system. Other examples of our crypfgcaibrary “instances” are: kernel mode export
driver and statically linked library for Windows RZ0D00/2003/XP; kernel mode driver for Linux
RHEL 4; DLL for Pocket PC 2002 and 2003 and Winddabile 2005; DLL for Symbian OS. (Note
that only some of these instances were tested aidhted for compliance with the FIPS 140 Level 1
requirements.)

The Module supports the FIPS approved AES, Dl Triple DES (TDES), SHA-1, HMAC-SHA-1,
SHA-256, HMAC-SHA-256, DSA, and RSA digital signit@KCS#1) algorithms. It also provides
non-FIPS approved DES (CTR), Blowfish, RC2, CASB,12D5, RIPEMD-160, HMAC-MD5,
Diffie-Hellman key agreement, RSA encryption (PKQE#ANd passphrase-based key derivation
(PBKDF2 as specified in PKCS#5) algorithms. The Medmplements a high-quality
cryptographically strong Pseudorandom Number Géoe(BRNG), which is compliant with the
algorithm specified in Appendix 3.1 of tRPS PUB 186-2document.

To defeat certain types of attacks based on tirmmagysis, the F-Secure Cryptographic Library
employs blinding methods. Since the library is fiveéare module that runs on a general-purpose
computing systems, no other special effort wasrtakemitigate side-channel attacks, in particular
those based on power analysis and fault induction.

2 DES is to be used only with legacy systems. For all atpstems, F-Secure recommends using AES or Triple DES fo
encryption and decryption.

% Note that only the two RSA signing schemes defined iB®KL(RSA v.1.5 and PSS) can be used in the FIPS mode of
operation. The signing scheme specified in RFC2409 ia Rt S-approved service and cannot be used in the FIPS mode.

F-Secure Cryptographic Library Security Policys

Use of an appropriate synchronization techniqueenModule helps ensure that it functions correctly
when simultaneously accessed by multiple thréatle also want to note that performance
considerations were an important criterion forgiiechronization objects choice.

“ By default, synchronization is disabled in the HP-UXsi@r. That is done to ensure that the same physical binargwo
function correctly under various versions of the HP-Up¢mting system. We note that absolute majority of wideédu
applications running on HP-UX do not use multiple threads

F-Secure Cryptographic Library Security Policyr

The Cryptographic Module and Cryptographic Boundary

In FIPS140-2 terms, the Module is a “multi-chiprstalone module.” The F-Secure Cryptographic
Library for Windows runs as a dynamically linkedpext library in any commercially available IBM
Compatible PC under Windows 2000/2003/XP/98/ME @peg Systems (OS). The F-Secure
Cryptographic Libraries for Solaris, Trusted Saatiinux, HP-UX, and AlX run as a shared library
(Shared Object) in any commercially available cotimgusystem under the appropriate operating
system. A “cryptographic boundary” for the Modutediefined as those applicable software and
hardware components internal to a host computisgesy that is running one of the supported
operating systems.

The Windows OS separates user processes into mespacgs called “process spaces.” When a client
process attaches the Module DLL, the DLL code ippea to the address space of the process and a
copy of the process-specific DDL data is allocatethe client process space. We informally cak thi
mapping and process-specific datanstance of the Module. Multiple instances of the Module may
reside inside a cryptographic boundary, howeveh sngstances are completely independent and each
of them belongs to a single process. Any data passeveen the Module and its client never leave the
client’s process space and, therefore, never ldeveryptographic boundary. The OS is responsible
for multitasking operations so that only one instanf the Module is active at any particular moment
in time.

Furthermore, under Windows 2000 and Windows XP &$,process space belongs to a single user
and cannot be shared with any other user. The @$hawunderlying central processing unit (CPU)
hardware control access to each process spacehrasmay that other users cannot write to or read
from the process’ memory.

In the case of the Solaris, Linux, HP-UX, and Al&rsions, POSIX.1 standard mandates that processes
must be kept separate and thus each process wdlitsaown virtual memory address space that cannot
be accessed from other processes running on the Sgtem. When a client process loads the Module
shared library, the operating system copies trevagit memory area to the client process address
space. This is enforced by the operating systeaugir the use of the hardware memory management
unit (MMU), which causes an exception if a proceEs to access memory outside of its allocated
address space.

The module provides no physical security beyontlah#he physical enclosure of a “hosting”
computer system.

The assumption, which we make about the operatimgament of the Module, is that it is installed,
initialized and used by following the rules desedtbelow in section “Roles and Services.”

The Module was internally tested by the vendor €€t8e Corporation) on the following computing
platforms:

Hardware: Dell OptiPlex GX 240 Personal Compststem
Processor: Intel P4 1.6 GHz
Operating System: Windows 2000 with service paekd RH Enterprise Linux 3

F-Secure Cryptographic Library Security Policys

Hardware: SunFire V210
Processor: Sun UltraSparc 1l
Operating System: Solaris 8

Hardware: HP Visualize B1000
Processor: HP 9000/785
Operating System: HP-UX B.11.00

Hardware: IBM pSeries C610
Processor: Power 3
Operating System: AIX 5L

Additionally, the Module was tested by a CMVP ladttory on the following computing platforms:

Hardware: Dell Optiplex GX 400 Personal Compstetem
Processor: Intel P4 1.7 GHz
Operating System: Windows 2004xh service pack 3 and Q326886 Hotfix

Hardware: HP Visualize C200
Processor: HP-PA 2.0, 200Mhz
Operating System: HP-UX B.11.11

Hardware: IBM RS/6000
Processor: PowerPC POWERS processor, 233MHz
Operating System: AIX5

Hardware: Custom PC
Processor: AMD Athlon 800 MHz
Operating System: Windows 98

Hardware: Custom PC
Processor: AMD Athlon 800 MHz
Operating System: Windows ME

Hardware: Dell Latitude C400
Processor: Intel x86 1.2 GHz
Operating System: Windows XP Professional

Hardware: Custom PC
Processor: AMD Athalon 800 MHz
Operating System: Linux RHEL 3

Hardware: Sun Blade 100
Processor: 550Mhz UltraSPARC lle CPU
Operating System: Trusted Solaris 8 7/03

F-Secure Cryptographic Library Security Policys

Roles and Services

The F-Secure Cryptographic Library implements tiiko¥ving two roles: Crypto Officer role and User
role. Since the Module is validated at securityelel; it does not provide an authentication medrani
Hence roles are assumed implicitly based on thacgerthat are performed.

The two roles are defined per the FIPS140-2 stahaafollows:

A Useris any entity that can access services implemantéte Module.

A Crypto Officer is any entity that can access services implemeantdte Module, install the Module
in a device, and configure the device to ensurpgroperating of the Module in the FIPS 140-2 mode
of operation.

There is ndMaintenancerole.

An operator performing a service within any role cead and write security-relevant data only thioug
the invocation of a service by means of the Mod\ié.

The following operational rules must be followeddry user of the Module:

1. Virtual memory of the computing system must befigured to reside on a local, not a network,
drive.

2. All public keys entered into the Module mustveeified as being legitimate and belonging to the
correct entity by the client applications.

3. On Solaris, Linux, HP-UX, and AIX a special ogmg system device providing high quality
randomness must be present on the computer. Thiel®attempts to read data from both the
blocking /dev/random device, and the non-blockitgyv/urandom device to seed its PRNG.

It is a responsibility of the Crypto-Officer to dagyure the operating system to operate securely and
whenever it is necessary, to prevent remote ldgate that the Crypto Officer must have
administrative privileges in the computer systeimg¢peonfigured.

On Windows platforms, it is also recommended that@rypto Officer sets value of
“ClearPageFileAtShutdown” to 1 under
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Conth&ession Manager\Memory
Management” key and sets “Interactive:Read” ACL for
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\@rrentVersion\Perflib” key (as
opposed to “Everyone:Read” ACL) in the Registry.

The services provided by the Module to the Usereéfextively delivered through the use of
appropriate API calls. In this respect, the sam@fkgervices is available to both the User and the
Crypto Officer.

When a client process attempts to load an instahttee Module into memory, the Module runs an
integrity test and a number of cryptographic funicslity self-tests. If all the tests pass succdigsfine
Module makes a transition to “User Service” statieere the API calls can be used by the client to
carry out desired cryptographic operations. Otheewihe Module returns to “Uninitialized” state and
the OS reports failure of the attempt to load b imemory.

F-Secure Cryptographic Library Security Policyo

The Module provides the following FIPS-approved/asss:

1. Cryptographic data hashing using FIPS PUB 18HA-1 and SHA-256.

2. Symmetric data encryption and decryption usilRSFPUB 197 AES, FIPS PUB 46-2 DES and
TDES.

3. Random number generation using a software-bagedthm as specified in FIPS 186&2igital
Sgnature Sandard (DSS), Appendix 3.1.

4. MAC computation and verification using FIPS PUS HMAC-SHA-1 and HMAC-SHA-256
algorithms (when key size is at least half of tlgpathm output size).

5. Digital signature computation and verificatiaging FIPS PUB 186-2 DSS (when key size, in bits, is
a multiple of 64 and does not exceed 1024) and RHGESA algorithms (RSA v.1.5 and PSS
schemes).

Other non-approved services provided by the Mothdride:

6. Cryptographic data hashing using MD5 and RIPEMID-algorithms.

7. MAC computation and verification using HMAC-MDR#gorithm.

8. Symmetric data encryption and decryption usitaysh, RC2, and CAST-128 block ciphers.
9. Passphrase-based key derivation (PBKDF2 asfigakiri PKCS#5) algorithm.

10. Key wrapping and unwrapping using PKCS#1 RSéxygstion and decryption (RSA v.1.5 and
OAEP schemes).

11. Diffie-Hellman key agreement.

12. Symmetric data encryption and decryption u§iag (CTR).

Non-FIPS-approved services cannot be selecteeé iMibdule is operating in accordance with FIPS
140-2, that is, in the FIPS mode of operation. &keeption to this are the Passphrase-based key
derivation service based on the FIPS-approved SHaAsh function and HMAC-SHA-1 algorithm,
key wrapping and unwrapping algorithm based on PKICBSA method, and Diffie-Hellman key
agreement method. These services provide functigriaht is not properly covered by any of the
FIPS-approved algorithms at present time.

We note that the client must ensure that keys ddrwvith PBKDF2 are only used for authentication
purposes while in the FIPS mode. Such keys camnasbd for symmetric encryption/decryption when
the Module is in the FIPS mode of operation.

F-Secure Cryptographic Library Security Policy1

Key Management

The Module implements a number of functions thatether used internally or exposed in the API to
meet the FIPS140-2 Level 1 requirements for Key &gment.

Key Generation

Keys for symmetric ciphers and HMAC algorithms tengenerated by simply requesting the PRNG
implemented in the Module to produce a desired rarmobbytes. The PRNG employs a FIPS-
approved algorithm as specified in FIPS 18®@jital Sgnature Sandard (DSS), Appendix 3.1. No
other RNGs are used by the Module.

Services for generating DSA, RSA and Diffie-Hellmaay pairs are also available. The FIPS-approved
key generation method specified in FIPS 186-2 élder DSA key pairs generation.

Intermediate key generation values are never ofitpot the Module.
Key Distribution and Storage

The Module supports import and export of electrdwgs in both encrypted and plaintext forms. It
should be noted, however, that all keys are precgstored, and used in the Module only on belalf o
and for immediate use by a process, typically,@lieation program, that attaches an instanceef th
Module.

The Module can be used for electronic key distidyuin the frames of a NIST-approved key
distribution protocol and for implementing key eaadge protocols. This usually involves symmetric
ciphers, RSA encryption/decryption, Diffie-Hellmkey agreement, and digital signing algorithms, all
of which are provided by the Module. While in apged mode, RSA encryption/decryption can only
be used for key transport.

At run-time, an application that uses the Moduld &&lls to implement key distribution or key
exchange mechanisms and protocols attaches anéestathe Module. Thus, all keys generated
and/or otherwise processed by the Module residedrapplication’s “process space”. This effectively
means that the application program process hasé @fitrol over all such keys, and it is the
responsibility of the application program develaper ensure FIPS140-2 compliance of protocols and
algorithms they implement.

The Module does not provide long-term cryptograjdeg storage.
Zeroization of Keys

Keys and critical security parameters in the Modwde be divided into two groups: those used by the
Module internally and the ones that actually beltmgs clients.

The Module takes care of zeroizing all its interka&ys and critical security parameters (such as the
PRNG internal state or various pre-computed valy&é$when those are not needed any more, (2)

F-Secure Cryptographic Library Security Policy2

when the client process detaches the instanceed¥iddule, and (3) when the Module enters the error
state.

For the other group, when a client requests theléotb destroy a data object containing keys or
critical security parameters, the Module alway®zs all such data objects prior to freeing their
memory. Also, the Module performs so-called “olgediean-up at exit.” When the client process is
attempting to detach the instance of the Modulecheck if there are any objects (e.g., cipher or
HMAC contexts or private keys) allocated and neett by the client, and we zeroize and free all such
objects. This is especially important if a fataloeroccurs in the Module, or the client does nateha
chance to take proper care of cleaning up objexgsiply containing sensitive information.

Protection of Keys

Keys created within or passed into the Module fog aser are not accessible to any other user @ia th
Module. It is a responsibility of its clients togpect keys exported from the Module and validateske
passed into the Module. To export private key dafaaintext form, the client has to pass apprdpria
values to twaarguments on the private key export API functicguanent list. This serves as a double
check and means that two independent actions afligva are required to let private key data be
exported in plaintext form.

The Module takes care of never exposing its owernal keys and critical security parameters oujside
and of zeroizing those prior to exiting or freecwresponding portions of memory. In particular, we
mention the PRNG state and intermediate generatibres, whose disclosure or modification may
compromise the security of the Module.

List of Keys stored in the module
Following keys are stored in the Module:

1. Keys for symmetric encryption/decryption algonis:
a. DES key
b. Triple DES key
c. AES key
d. Blowfish key
e. CAST-128 key
f. RC2 key

2. Keys for asymmetric cryptographic algorithms:
a. RSA public and private keys
b. DSA public and private keys
c. Diffie-Hellman public and private keys

3. Keys for HMAC methods:
a. HMAC-SHA-1 key
b. HMAC-SHA-256 key
c. HMAC-MDS key

F-Secure Cryptographic Library Security Policy3

4. Key for self-integrity test:
a. HMAC-SHA-1 key

Out of the above keys, only the HMAC-SHA-1 key u$atthe self-integrity test is stored across
power cycles. The rest of the keys are ephemeyal, kehich are zeroized before the Module exits.

F-Secure Cryptographic Library Security Policy4

Module Interfaces

Being a software module, the F-Secure Cryptograbihiary defines its interfaces in terms of the API
that it provides. We define Data Input Interfaceth$hose API calls that accept, as their argusient
data to be used or processed by the Module. Thec@lRl that return, by means of return value or
arguments of appropriate types, data generatetherwise processed by the Module to the caller
constitute Data Output Interface. Control Inpuehfdce is comprised of the call used to initiat th
Module and the API calls used to control the openadf the Module. Finally, Status Output Interface
is defined as the API calls, which provide inforraatabout the status of the Module.

F-Secure Cryptographic Library Security Policys

Self-Testing

The F-Secure Cryptographic Library implements a leinof self-tests to check proper functioning of
the Module. This includes power-up self-tests (Whace also callable on-demand) and conditional
self-tests.

Power-up Self-Testing

When an instance of the Module starts loading iméanory, power-up self-testing is initiated
automatically. It is comprised of the software grity test, known answer tests of cryptographic
algorithms, and pairwise-consistency test of DSAnly of the tests fail, the Module returns to
“Uninitialized” state and the OS reports failuretioé attempt to load it into memory.

The following known answer tests are implementethéModule:

- AES KAT

- DES KAT

- TDES KAT

- Blowfish KAT

- CAST-128 KAT

- SHA-1 KAT

- SHA-256 KAT

- HMAC-SHA-1 KAT

- MD5 KAT

- RSA signing/verification tests

- PRNG KAT

- PRNG Statistical Tests

Note: No DSA KAT is implemented. Instead the pagevconsistency test is performed for every DSA
key pair generated. In particular, this test rurnth@ power-up time for a fixed DSA key.

The software integrity test computes DAC value pglging the HMAC-SHA-1 method, FIPS 198, to
data of all the relevant sections of disk imagéhefModule. The test fails if the DAC value compulte
on the disk image of the Module does not matclotiggnal value computed on the Module by a
special utility at the vendor’s site (F-Secure @ogpion) and stored in a special place inside the
Module.

On-Demand Self-Testing

The Module exports an API routine, “fsclm_Selftesthich can be called to initiate the power-up-self
tests. If any of the tests fail, the Module entbeserror state. This error state is unrecoveralgen
entering it, the Module stops providing cryptognagdervices to the client.

Conditional Self-Testing
This includes continuous PRNG testing. The vest futput block generated by the PRNG is never

used for any purpose other than initiating the iomaius PRNG test, which compares every newly
generated block with the previously generated bldtle test fails if the newly generated PRNG output

F-Secure Cryptographic Library Security Policyé

block matches the previously generated block. tihsucase, the Module enters the unrecoverable
error state.

Pairwise Consistency Self-Testing

The test is run whenever private key is generatashported by the Module. The private key structure
of the Module always contains either the data efdbrresponding public key or the information
sufficient for computing the corresponding publéykThus, generating or importing private key is
equivalent to generating or importing key pair.

Depending on key type, the test generates andegdigital signatures for a fixed message under
private and public keys of the key pair being teésted/or applies encryption and decryption openatio
to the message. If the test fails for a generaggdoair, the Module enters the unrecoverable etaie.
If an imported key pair does not pass the testctineesponding function returns an appropriatererro
code but the Module does not enter the error stdis.reflects the fact that a corrupted or incstesit
importedkey pair does not mean malfunction of the Module.

F-Secure Cryptographic Library Security Policy7

Mitigation of Attacks Based on Timing Analysis

In Timing Analysis based attacks, the attackemgpts to collect and analyze information about the
time required by a cryptographic module to carryaartain mathematical operations involved into
cryptographic processing. This may help the attackeesal partial or even full information about key
and other critical security parameters. The Modmgploys so-called blinding techniques to level
timing variation of operations that may becomergdtof attacks based on Timing Analysis. In
particular, the client can choose to use blindmdecryption and signing operations with RSA prvat
keys and in shared secret computation of Diffiehideh key agreement protocol. In fact, in the RSA
case, blinding is used by default.

The essence of the employed blinding method istiwducing random, unpredictable for the attacker,
values into mathematical computations. While thékes operations marginally slower, measuring
timings becomes practically useless for the attadkie notice that pre-computation can in certain
cases significantly ease the negative performaasserjuences of the use of blinding.

F-Secure Cryptographic Library Security Policys

List of the API Functions, Operating Modes, Important Technical Considerations

In this section, we briefly describe the servidest the Module provides and related security aag@s
considerations. In order to guarantee secure angstdunctioning of the Module, it is important tha
the clients follow our recommendations as fully anelcisely as possible.

The following list presents the Module API functsosplit into a number of groups in accordance with
their functionality.

M ode of operation and | nformation functions

fsclm_GetModuleVersion
This routine provides the callers with the Moduégsion information.

fsclm_GetModuleMode

This routine returns the current mode of operatibthe Module.

The F-Secure Cryptographic Library supports two esoof operation: FIPS 140 mode and non-FIPS
mode. Only FIPS-approved algorithms are availabké¢ caller in FIPS 140 mode. Any attempt to use
non-FIPS-approved algorithms in FIPS 140 mode tesulan appropriate error code returned by the
Module. It is a responsibility of client applicatiadlevelopers to design their products in such atvaty
they function properly in the both modes of opemratiWe recommend avoiding schemes and
protocols, which are based on non-selectable nB&tapproved algorithms in any part.

fsclm_SetModuleMode

This routine sets the mode of operation of the Medthe two options are:
FSCLM_MODE_NONFIPS - all methods included in theddte are available to the caller;
FSCLM_MODE_FIPS140 - only FIPS-approved methodsaaeglable to the caller.

Use of "fsclm_SetModuleMode" makes it easy to emshat non-FIPS-approved algorithms are
unavailable, no matter what cryptographic servibesclient application requests from the Module.

fsclm_GetModuleStatus

This routine returns the current status of the Medtihere are five states defined in the Modulat&in
State Machine (FSM):

FSCLM_STATUS_UNINITIALIZED

FSCLM_STATUS SELF _TESTING

FSCLM_STATUS USER_SERVICE

FSCLM_STATUS UNLOADING

FSCLM_STATUS_ERROR

fsclm_GetErrorCode
This function returns "fatal" error code if the Mdd is in the error state, or
FSCLM_ERROR_FATAL_NONE otherwise.

F-Secure Cryptographic Library Security Policy9

Symmetric encryption functions

The Module implements a number of symmetric cipheduding FIPS-approved AES, DES, and
TDES modes. In the code, we use a layered applmsdd on the internal “cipher API”, which makes
it very easy to exclude existing or add new cipliledesired. The cipher modes of operation are
implemented as a generic layer, so each newlydieccipher can immediately be used in any of the
supported modes. (The Module supports the stariel@il CBC, CFB, and OFB modes as well as
Counter and IWEC modes.)

All the encryption and decryption functions suppartplace” operations, which means that the same
buffer may be used as both source and destinasicaneters.

fsclm_Cipherinfo
Provides information about the specified cipheiisThakes it possible to learn if the cipher is
supported by the Module, if it is FIPS-approved] amat key and block sizes are supported for it.

fscim_CipherAlloc

Allocates and initializes the cipher context objectthe specified cipher in the specified mode of
operation and with the specified key. Any allocatgzher object must eventually be freed by calling
"fscim_CipherFree". The Module takes care of nexgrosing contents of cipher objects outside and of
proper zeroizing their memory when appropriate.

fscim_CipherFree
Zeroizes and frees the memory of the specifiedesipbject. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_CipherReset
This resets the given cipher object so that it Wwdobk like a newly allocated and initialized ofiée
"reset" operation also zeroizes all remnants optieeious processing.

fsclm_CipherEncrypt
This encrypts the given input buffer and writes tbsulting ciphertext to the given output buffer.
Encryption mode and other parameters are taken thergiven cipher context object.

fsclm_CipherDecrypt
This decrypts the given input buffer and writes tbsulting plaintext to the given output buffer. déo
of operation and other parameters are taken frengitren cipher context object.

fsclm_CipherEncryptlV

This encrypts the given input buffer and writes bsulting ciphertext to the given output buffeheT
only difference between this routine and "fsclm_&rEncrypt" is that the latter takes IV/counter
information from the cipher object and updategpjrapriately, while the former uses "iv" value pas
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherDecryptlV
This decrypts the given input buffer and writes ibgulting plaintext to the given output buffer.eTh
only difference between this routine and "fsclm_&ecrypt" is that the latter takes I1V/counter

F-Secure Cryptographic Library Security Policgo

information from the cipher object and updategpjrapriately, while the former uses "iv" value pabs
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherSetlV

This sets encryption or decryption IV/counter valughe specified cipher object. This value wikth
be used for the subsequent encryption (“fscim_Cpherypt") or decryption ("fscim_CipherDecrypt")
operation respectively.

Note that the same cipher object can be used thrdytcryption and decryption operations, thus we
maintain separate encryption and decryption IV/¢eumformation in the cipher object.

fscim_CipherGetlV
This copies the current encryption or decryptiofctbdnter value in the specified cipher object ® th
caller-supplied buffer.

fscim_CipherComputelV

Certain modes of operation of block ciphers maleafsounter value. In such modes, processing of a
particular block of input depends on the initialueaof counter and index (or offset) of the bloCkwo
examples supported by the Module are Counter ari€ld\Whodes.) If you want to perform encryption
or decryption operation starting with theh block, you would need to know the correspondiagnter
value, and this is what this routine helps yougieen the initial counter value and the block ingdiéx
computes and writes to the caller-supplied bufierdounter value for the block.

Note that counter-based modes provide you witmdam read-write access to large streams of
encrypted data, the property that CBC, CFB, and @®Bes do not enjoy.

fsclm_CipherEncryptBuffer

This routine performs one-pass encryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API twaflave the application developer effort. This wall
equivalent to the following sequence:

fsclm_CipherAlloc

fsclm_CipherEncryptlV

fsclm_CipherFree

fsclm_CipherDecryptBuffer

This routine performs one-pass decryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API twaflave the application developer effort. This wall
equivalent to the following sequence:

fsclm_CipherAlloc

fsclm_CipherDecryptlV

fsclm_CipherFree

F-Secure Cryptographic Library Security Policg1

Hash functions

The Module currently implements three hash funsti¢giPS-approved SHA-1 and SHA-256, and non-
FIPS-approved MD5. In the code, we use a layerpdoagh based on the internal “hash API”, which
makes it very easy to exclude existing or add nashHunctions if desired.

fsclm_Hashinfo

Provides information about the specified hash fienctThis makes it possible to learn if the hash
function is supported by the Module, if it is FIRBproved, and what its output (digest) and blozkssi
are.

fsclm_HashAlloc

Allocates and initializes the hash context objecttfie specified hash function. Any allocated hash
object must eventually be freed by calling "fsclnasHFree".

Hash objects may contain confidential informati®he Module takes care of never exposing contents
of hash objects outside and of proper zeroizing themory when appropriate.

fsclm_HashFree
Zeroizes and frees the memory of the specified bagdct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HashReset

This resets the given hash context object so theduld look like a newly allocated and initialized
one. It is useful when you want to use the samb haxtion for computing hash values (also called
digests) of multiple data blocks.

The "reset" operation also zeroizes all remnante@previous processing.

fsclm_HashUpdate

This updates the given hash context with the gimpnt.

When you need to compute digest of a data streaichvdlomes in a number of portions (or when you
want to split a very long stream in a number otps), you can simply feed such portions to
"fscim_HashUpdate" one by one. The resulting digakie will be identical to what you would get if
passing the entire stream as a single buffer.

Note that in order to obtain digest value of yoatag any sequence of calls to "fscim_HashUpdate"
must eventually be followed by a call to "fsclm_HBEmal".

fsclm_HashFinal

This function completes computation of hash valua data stream, which has been processed by calls
to "fsclm_HashUpdate" function. The resulting digeswritten to a caller-supplied buffer.

Note that after "fsclm_HashFinal" has been caledafhash object, the object should not be used for
any further operations until you call "fscim_HasBB® for it. After resetting, you may start

computation of hash value for a new data stream.

fsclm_HashOfBuffer

This routine computes digest of a given buffer,chihtan be a useful shortcut in certain cases. It
encapsulates a number of other API calls to savapiplication developer effort. This call is
equivalent to the following sequence:

F-Secure Cryptographic Library Security Policg2

fsclm_HashAlloc
fsclm_HashUpdate
fsclm_HashFinal
fsclm_HashFree

F-Secure Cryptographic Library Security Policyg3

HMAC functions

The Module clients can use HMAC methods based grhash function that is implemented in the
Module. By specifying the ID of a hash functionyaiur choice, you fully specify the HMAC
algorithm that you want to use. To obtain inforraatabout parameters of a particular HMAC
algorithm, simply call "fsclm_HashlInfo" for the ¢esponding hash function.

fscim_HMACAIlloc

Allocates and initializes the context object foe tHMAC algorithm based on the specified hash
function, and with the specified key. Any allocatéflAC object must eventually be freed by calling
"fscim_HMACFree".

The Module takes care of never exposing contenitiMAC objects outside and of proper zeroizing
their memory when appropriate.

fscim_HMACFree
Zeroizes and frees the memory of the specified HM&ct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HMACReset

This resets the given HMAC context object so thatduld look like a newly allocated and initialized
one. It is useful when you want to use the same I@Ménction, possibly with a different key, for
computing message authentication code (MAC) vatdiesultiple data blocks.

The "reset" operation also zeroizes all remnante®previous processing.

fscilm_HMACUpdate

This updates the given HMAC context with the giveput.

When you need to compute MAC of a data stream wtaches in a number of portions (or when you
want to split a very long stream in a number otps), you can simply feed such portions to
"fscim_HMACUpdate" one by one. The resulting MAGQuawill be identical to what you would get
if passing the entire stream as a single buffer.

Note that in order to obtain MAC value of your datay sequence of calls to "fsclm_HMACUpdate"
must eventually be followed by a call to "fsclm_HIgRinal".

fsclm_HMACFinal

This function completes computation of MAC valueaadata stream, which has been processed by
calls to "fscim_HMACUpdate" function. The resultiMAC is written to a caller-supplied buffer.
Note that after "fsclm_HMACFinal" has been called &an HMAC object, the object should not be
used for any further operations until you call IilscHMACReset" for it. After resetting, you may dtar
computation of MAC value for a new data stream ¢fag using a different key).

fsclm_HMACOfBuffer

This routine computes MAC value of a given buffehich can be a useful shortcut in certain cases. It
encapsulates a number of other API calls to sav@piplication developer effort. This call is
equivalent to the following sequence:

fsclm_HMACAIlloc

fscilm_HMACUpdate

fsclm_HMACFinal

F-Secure Cryptographic Library Security Policy4

fscilm_HMACFree

F-Secure Cryptographic Library Security Policygs

PRNG functions

The PRNG implemented in the Module is based onithydchitecture. It uses a one-way output
function on top of the well-known “entropy pool”’reme. The design is FIPS-compliant as the output
algorithm is the one specified in Section 3.1, Apfir 3 of FIPS PUB 186-2document, with the
function G constructed from the SHA-1 as specifie8ection 3.3, Appendix 3 of the same document.

The PRNG is initialized when the Module gets loagted memory. During the initialization phase,
various system and hardware parameters and stat@s® collected and mixed in the PRNG pool with
the SHA-1 transform function to achieve a goodudifbn of “entropy” bits. Seeding/reseeding code for
each supported platform resides in the respectatéopm-specific source file.

fscim_PrngDeepPoll

Invokes platform-specific “deep” polling for entpfi.e., hard-to-predict bits) to achieve good-dyal
seeding of the PRNG. This deep polling gets cal#matically occasionally during the entire
lifetime of the Module. Also, the function is callat the PRNG initialization time.

The main purpose of this function is to help mamthe PRNG pool in a state, which is infeasible to
guess for the adversary.

fsclm_PrngAddNoise

This exclusive-ORs bytes from the given buffer vitie PRNG pool content and serves the purpose of
adding unpredictability to the PRNG state. (We &#@wp to the client whether to use this funcion

not as the automatic PRNG seeding in the Modulelghme good enough to prevent the adversary
from guessing the PRNG state or any of the outplutes.)

The exclusive-OR operation cannot force the PRN& weaker state because it obviously cannot
reduce the pool data entropy.

fsclm_PrngMixPool

Mixes (i.e., cryptographically processes) the PRMGI. The mixing operation is based on the SHA-1
transform function. It provides good “entropy” diffion and is irreversible.

This function gets called automatically at theiatization time and then regularly during the emtir
lifetime of the Module.

fsclm_PrngGetBytes

This routine writes to the caller-supplied buffiee requested number of PRNG-produced bytes.
Although what the generated bytes will be usedd@ntirely up to the caller, we recommend calling
this function if you need to generate:

- any keying material (in both symmetric and asynnoesettings)

- IV or initial counter values used in many poputagthods (e.g., modes of operation of block ciphers
- padding bytes for various cryptographic schemes

- random nonces and challenges required in mamtagyaphic protocols (e.g., authentication
protocols)

- salts to be combined with passphrases in passpitu@sed key derivation algorithms

- random values for probabilistic cryptographicaxlthms (e.g., signing with DSA)

We stress that it is a responsibility of the clienprotect bytes provided by the Module PRNG (in
particular, from being exposed to the adversary).

F-Secure Cryptographic Library Security Policyge

fsclm_PrngGetParameters
Fills in the fields of a caller-supplied structwveh the current values of the PRNG object paransete

fsclm_PrngSetParameters

This function lets the caller change the PRNG patans used in the algorithms for generating output
and updating the PRNG pool.

F-Secure Cryptographic Library Security Policy7

Mathematical functions

Mathematical functions are extensively used inaynmmetric key cryptographic methods
implemented in the Module. In many cases, howedheruser may want to have direct access to the
mathematical functionality. The mathematical AP$ctéed below covers a number of basic
operations with large integers as well as certanenadvanced methods and format conversion
routines. In the Windows and Linux versions, thiose-level operations, which are the most important
performance-wise, are written in the assembly lagguand tightly optimized.

fsclm_BigIntAllocate
This allocates a new “Big Integer” object and retuits handle to the caller. Note that the valua of
freshly allocated object is not defined.

fsclm_BigIntFree
This function zeroizes and frees memory of the &g Integer” object. The object handle becomes
invalid after this operation.

fsclm_BigIntReset
This is used to reset the given object to makppear a newly allocated one. Memory that the object
value was stored in will be zeroized and freed.

fsclm_BigIntAssign
This function assigns value of one given “Big Irdégobject to the other one.

fsclm_BigIntSetint
This assigns value of the given argument of “igiid (in the C language terms) to the given “Big
Integer” object.

fscim_BigIntSetUInt
This assigns value of the given argument of “unsigimt” type (in the C language terms) to the given
“Big Integer” object.

fscim_BigIntPowerOfTwo
This function sets value of the given “Big Integebject to the specified power of 2.

fsclm_BigIntHighestBitindex
This function retrieves position of the highest Hit in the binary representation of the given “Big
Integer” object.

fsclm_BigIntSetBit
This sets bit of the given "Big Integer” in the sified position to the given value.

fscim_BigIntGetBit
This function retrieves value of the bit in the gfied position of the binary representation of gieen
"Big Integer" object.

fsclm_BigIntFirstSetBitindex

F-Secure Cryptographic Library Security Policys

This function retrieves position of the lowest ‘it in the binary representation of the given “Big
Integer” object.

fsclm_BigIntCmp
This is used to compare values of the two givemgylil' objects.

fscim_BigIntCmplint
This is used to compare values of the given "Blgbiject and (C language) integer.

fsclm_BigIintCmpUint
This is used to compare values of the given "Blgdtiject and (C language) unsigned integer.

fscim_BigIntCmpAbs
This is used to compare absolute values of thegiwen "Bigint" objects.

fsclm_BigIntNeg
This function changes sign of the given "Bigint'|eti.

fsclm_BigIntAbs
This function replaces value of the given "Biglatiject with its absolute value.

fsclm_BigIntGetUInt

This function “extracts” value of the least sigo#nt “word” (which is of the unsigned integer tyipe
the C language terms) of the given "Bigint" objddte operation is defined only for non-negative
numbers.

fsclm_BigIntAdd

This routine computes sum of values of the two igikRigInt” objects. We support in-place operations,
that is, the “destination” object (the one thategts the sum value) can coincide with any of the
summands.

fsclm_BigIntAddint

This routine computes sum of values of the givelglti8" object and (C language) integer. We support
in-place operations, that is, the “destination”eibj(the one that accepts the sum value) can clanci
with the “BigInt” summand.

fscim_BigIntAddUInt

This routine computes sum of values of the giveigli8" object and (C language) unsigned integer.
We support in-place operations, that is, the “d@sion” object (the one that accepts the sum value)
can coincide with the “Bigint” summand.

fsclm_BigIntSub

This routine computes difference of values of the given "Bigint" objects. We support in-place
operations, that is, the “destination” object (time that accepts the resulting value) can coinwitte
any of the operands.

fscim_BigIntSubint

F-Secure Cryptographic Library Security Policy9

This routine computes difference of values of tiveig "Bigint” object and (C language) integer. We
support in-place operations, that is, the “desitimétobject (the one that accepts the resultingi@jal
can coincide with the “BigInt” operand.

fscim_BigIntSubUInt

This routine computes difference of values of tiveig "Bigint" object and (C language) unsigned
integer. We support in-place operations, thatis,“testination” object (the one that accepts the
resulting value) can coincide with the “Bigint” aped.

fscim_BigIintMod

Given a pair of "BigInt" objects, this routine coatps modular residue of the first one modulo the
second one. It supports in-place operations, thahe “destination” object (the one that acceps t
resulting value) can coincide with any of the opeisa

fscim_BigIntModUInt
Given a "BigInt" object, this computes its modulesidue modulo the given (C language) unsigned
integer.

fscim_BigIntModPowerOfTwo

This routine computes modular residue of the gli\&igInt" object modulo the specified power of 2.
This is equivalent to extracting the specified nemtif the least significant bits in the binary
representation of the "BigInt” value. The functsupports in-place operations.

fscim_BigIntMul

This routine computes product of values of the giwen "Bigint" objects. We support in-place
operations, that is, the “destination” object (time that accepts the resulting value) can coinwitte
any of the operands.

fscim_BigIntMulint
This computes product of values of the given "Bigbbject and (C language) integer. It supports in-
place operations.

fscim_BigIntMulUInt
This computes product of values of the given "Bigbbject and (C language) unsigned integer. It
supports in-place operations.

fsclm_BigIntSquare
This function computes square of value of the gREigint" object. It supports in-place operations.

fsclm_BigIintModMul

This is a odular multiplication function. It compstproduct of values of the two given "Bigint" atige
modulo another given "Bigint" object. We supporpiace operations, that is, the “destination” objec
(the one that accepts the resulting value) carcatenwith any of the operands.

fsclm_BigIntDiv
This function implements "division with remaindeferation. It supports in-place operations.

F-Secure Cryptographic Library Security Policgo

fscim_BigIntDivint
This function implements "division with remaind@feration in the case when the divisor is a (C
language) integer. It supports in-place operations.

fscim_BigIntDivUInt
This function implements "division with remaind@eration in the case when the divisor is a (C
language) unsigned integer. It supports in-placFatppns.

fscim_BigIntSHL

This routine implements "shift to the left" by thpecified number of bits operation for value of the
given "BigInt" object. This is equivalent to muliying the given “Bigint” by an appropriate power of
2. We support in-place operations.

fsclm_BigIntSHR

This routine implements "shift to the right" by thgecified number of bits operation for value @& th
given "BigInt" object. This is equivalent to dividj the given “BigInt” by an appropriate power of 2.
We support in-place operations.

fsclm_BigIntinvMod

Given a pair of "BigInt" objects, this function cpotes multiplicative inverse of the first one maalul
the second one. If the inverse doesn't exist, lsec@&®CD of the operands is not 1, the GCD value will
be returned to the caller. The function supporglate operations, that is, the “destination” objéwe
one that accepts the resulting value) can coinsitteany of the operands.

fscim_BigIntGCD
Given a pair of "BigInt" objects, this function cpotes Greatest Common Divisor (GCD) of their
values. It supports in-place operations.

fscim_BigIntGCDEXxt

Given a pair of "BigInt" objects, this function cpotes Greatest Common Divisor (GCD) of their
values and its representation as a linear combimati the given values. It supports in-place
operations.

fsclm_BigIintModExp

Given "base", "exponent" and "modulus” "BigInt" ebjs, this function performs modular
exponentiation operation. It supports in-place apens, that is, the “destination” object (the omat
accepts the resulting value) can coincide with @ryre operands.

fscim_BigIintModExpUInt

Given (C language) unsigned integer "base", andde&nt” and "modulus” "BigInt" objects, this
function performs modular exponentiation operatibsupports in-place operations, that is, the
“destination” object (the one that accepts thelteguvalue) can coincide with any of the operands.

fsclm_BigIntisPrime
This routine implements a primality test, thattigan be used for determining whether a given rermb
is (probably) prime or composite. Word "probablppaars in the previous sentence because the final

F-Secure Cryptographic Library Security Policg1

part of the implemented primality testing is proitiatic. The routine can also test if the given roen
is a safe prime. (Number P is called a safe printes prime and (P - 1)/2 is also prime).

fsclm_BigIntGetRandom _

This function generates a random non-negative @mtegthe interval [0, 2™5"- 1]. The module
PRNG is used in the generation, so produced nunsibherdd be unpredictable and suitable for use in
any cryptographic setting.

fscim_BigIntGetRandomPrime ,

This function generates a random (probable) primsate prime in the interval [0M"®"- 1]. The
module PRNG is used in the generation, so prodooetbers should be unpredictable and suitable for
use in any cryptographic setting.

fscim_BigIntGetBufferSize

This routine returns size of the buffer (in bytés caller has to allocate to export the given neimb
with the specified options. It can be used priocating "fsclm_BigintToBuffer" or
"fsclm_BigIntExport" to determine the required terfkize.

fsclm_BigIntFromBuffer

This function imports “BigInt” in raw binary. It aames the given buffer contains absolute valubef t
number, and the sign information is supplied aspasate argument. A number of formatting options
are supported.

fsclm_BigIntToBuffer

This function exports “BigInt” in raw binary. Theutine writes absolute value of the number to the
given buffer, and the sign information is saved iseparate argument. A number of formatting options
are supported.

fsclm_BigIintimport

This function imports “BigInt” in raw binary. It isimilar with "fsclm_BigIntFromBuffer" but assumes
that the highest bit of the number being importethe sign bit, that is, value of 1 indicates that
number is negative. A number of formatting optians supported.

fsclm_BigIntExport

This function exports “BigInt” in raw binary. It smilar with "fsclm_BigIntToBuffer" but saves the
sign information in the highest bit of the numbepnesentation in the buffer, that is, value of 1
indicates that the number is negative. A numbdohatting options are supported.

fsclm_BigIntStringln
This routine accepts a character array and coniiertentent into a "Bigint" object. Only four optis
are supported for "representation base": 2 (bin&ydctal), 10 (decimal), 16 (hexadecimal).

fsclm_BigIntStringOut
This routine converts value of the given "Bigintject into a character string in the specified base
above, only four options are supported: 2 (bina8yjpctal), 10 (decimal), 16 (hexadecimal).

F-Secure Cryptographic Library Security Policg2

Asymmetric Key functions

Routines that belong to this group provide digsighing, asymmetric encryption, and key exchange
functionality that is extensively used in many plapweryptographic protocols. In particular, the
Module supports DSA, the RSA-based schemes defiméiet PKCS#1 document, and Diffie-Hellman
key exchange methods. Also, the Module implemanistfonality for importing and exporting public
and private key data in a number of popular forgatparticular, X.509 for public and PKCS#8 for
private keys.

fsclm_PKTypelnfo

This routine provides information about the specifasymmetric key type. This makes it possible to
learn if the key type is supported by the modulleictv encryption and signature schemes are supported
for keys of this type (by default), and the keyeygpecific size restrictions in FIPS and non-FIPS
modes.

fsclm_PrivateKeyGenerate

This function allocates and initializes the "prizéey" object of the specified type. If the caller
provides no data to be used in the key generatiocegs, the module generates a fresh key. Otherwise
if the caller-supplied data are found consistewlt suntable, only missing key values are generdtesl.
possible to fully specify all the required key infaation.

Any allocated private key object must eventuallyfieed by calling "fsclm_PrivateKeyFree".

Private keys typically contain confidential infortiwen. The Module takes care of never exposing
contents of private key objects outside and of er@eroizing their memory when appropriate.

fsclm_PrivateKeyFree
This function zeroizes and frees the memory ofstiecified private key object. It is always avai&bl
to the caller, even if the Module is in the errats.

fsclm_PrivateKeyGetData
This lets the caller retrieve various informatidrlee specified private key object.

fsclm_PrivateKeySign
This routine digitally signs the specified messafé the given private key.

fsclm_PrivateKeyDerivePublic
This function allocates and initializes a “publieyk object which is a counterpart of the given atéev
key.

fsclm_PrivateKeySetSchemes
This lets the caller control which signature andrgption schemes are supported for the specified
private key object.

fsclm_PublicKeyDefine

This function allocates and initializes a "publ&yK object of the specified type. The caller must
provide data sufficient to fully define the new palkey object. Any public key object must eventyal
be freed by calling "fscim_PublicKeyFree".

F-Secure Cryptographic Library Security Policg3

fsclm_PublicKeyFree
This function zeroizes and frees the memory ofsghecified public key object. It is always availatie
the caller, even if the Module is in the error stat

fscim_PublicKkeyGetData
This lets the caller retrieve various informatidrle specified public key object.

fsclm_PublicKeyVerifySignature

This verifies validity of the given digital signa&ufor the given message with the given public Keéye
signature scheme and scheme-specific parametenscaeo those used when generating the signature
should be passed to this routine.

fscim_PublicKkeyClone
This function allocates and initializes a "publ&yK object which is a copy of the given public key.

fsclm_PublicKeySetSchemes
This lets the caller control which signature andrgption schemes are supported for the specified
public key object.

fscim_PKVerifyKeyPair
This function tests if the given private and pulbley objects are parts of the same key pair.

fsclm_PKProtectioninfoFree

This zeroizes and frees the memory of the spedtftetection info structure allocated by the Module
(“fsclm_PrivateKeylmport”). This routine is alwagsailable to the caller, even if the module isha t
error state.

fsclm_PublicKeyExport
This exports data of the given public key in theafed format to the given byte array.

fsclm_PublicKeylmport
This function imports public key data provided e tgiven buffer. If successful, it creates a newipu
key object and returns the format information te taller.

fsclm_PrivateKeyExport
This exports data of the given private key in thec#fied format to the given byte array. To protibet
exported data, a properly initialized protectiofoiatructure must be supplied.

fsclm_PrivateKeylmport
This function imports private key data providedhe given buffer. If successful, it creates a new
private key object and returns the format and taie information to the caller.

fsclm_PrivateKeyChangePassphrase
Given a buffer with exported private key data, fiisction changes the passphrase used to protect th
data (keeping intact the data and preserving tperéxormat).

fscim_PKEncryptMaxInputSize

F-Secure Cryptographic Library Security Policg4

This informs the caller of the maximum possibleesit input to encryption operation for the given
public key and encryption scheme. It should besdafirior to calling "fscim_PublicKeyEncrypt" to
determine the upper bound on acceptable input size.

fsclm_PublicKeyEncrypt
This encrypts the given message with the givenipely.

fsclm_PrivateKeyDecrypt

This decrypts the given encrypted message witlyitren private key. The encryption scheme and
scheme-specific parameters identical to those wéeth encrypting the message should be passed to
this routine.

fscim_DHGroupGenerate

This function allocates and initializes a "DH Grbwject. If the caller provides no data to be uised
the generation process, the module generatestagreap. Otherwise, if the caller-supplied data are
found consistent and suitable, only missing vahresgenerated. It is possible to fully specifytiad
required group information.

Any "DH Group" object must eventually be freeddafling "fsclm_DHGroupFree".

fsclm_DHGroupFree

This zeroizes and frees the memory of the specididdsroup object. The caller should keep in mind
that if there exist any DH Pair objects associatéld the given group, no action will be taken ahis t
call will return an appropriate error code.

fsclm_DHGroupGetData
This lets the caller retrieve various informatidrle specified DH Group object.

fsclm_DHGroupPrecomputePairs

This function can be used to precompute a numbBtbpairs (private/public values) for the given
DH Group object. Note that this does not resuéing new DH Pair object$lowever, availability of
precomputed DH pairs makes any subsequent cadtisdion DHPairGenerate" run very fast, which
could be quite useful in many applications. A tgbigse case would be running this precomputation
routine in a background (as a separate thread).

fsclm_DHPairGenerate
This function allocates and initializes a "DH Paibject associated with the specified DH Group
object. Any "DH Pair" object must eventually beefdeby calling "fsclm_DHPairFree".

fsclm_DHPairFree
This zeroizes and frees the memory of the spediilddPair object. This routine is always availalde t
the caller, even if the module is in the errorestat

fsclm_DHPairGetPublicValue
This lets the caller retrieve public value of tipeafied DH Pair object. It is primarily intendeak fuse
in the "static" case, when the same DH pair is usedultiple key exchange operations.

fsclm_DHPairComputeSharedValue

F-Secure Cryptographic Library Security Policgs

Given a DH Pair object and a public DH value (e tther party), this function computes the resgltin
shared value. The caller can also request to rlidityacheck of the given public value. This makbe
operation slower but may be important to deteattamtial attempt of the other party to recover the
caller's DH pair private value (mainly a concernhia "static" case).

If requested, the Module will use blinding in tleigeration.

fsclm_DLParamsinit

This function initializes public "FSCLM_DLParamesgstructure (allocated by the caller). It must be
called for any "FSCLM_DLParameters" structure ptmpassing it to FSCLM API functions.

Any initialized "FSCLM_DLParameters" structure masentually be zeroized by calling
"fsclm_DLParamsZeroize".

fsclm_DLParamsZeroize
This zeroizes and frees fields of the given "FSCIDMParameters" structure.

fsclm_DLParamsGenerate

This function generates parameters that are usBdarete Log based methods, in particular, DSA and
Diffie-Hellman. If the caller provides no data te bsed in the generation process, the module
generates a fresh parameter set. Otherwise, dather supplied data are found consistent andIdeita
only missing values are generated. It is possibfelty specify all the required values.

fsclm_DLParamsVerify

This function verifies the given Discrete Log paeders set for consistency and correctness. What
exactly is checked depends on the values passtgtimaller. If the FIPS 186 parameters generation
method or its generalization specified in RFC 26@% used for the given parameters set, and the
caller supplies appropriate intermediate generat&ues, this function also verifies the generation
method compliance.

fsclm_DSSKeyStructlnit

This function initializes the specified "FSCLM_DS8RteKey" or "FSCLM_DSSPublicKey"
structure (allocated by the caller). It must béechfor any "DSS key" structure prior to passintpit
FSCLM API functions. Any initialized "DSS key" striure must eventually be zeroized by calling
"fscim_DSSKeyStructZeroize".

fsclm_DSSKeyStructZeroize
This zeroizes and frees fields of the given "FSCIDMSPublicKey" or "FSCLM_DSSPrivateKey"
structure.

fsclm_DSSPrecomputeSignValues

This function can be used to precompute a numbsigoing values for the given DSS private key.
Availability of precomputed signing values noticBainproves signing operation performance and
could be quite useful in certain applications. pityal use case would be running this precomputation
routine in a background (as a separate thread).

fsclm_RSAKeyStructinit
This function initializes the specified "FSCLM_RSwRiteKey" or "FSCLM_RSAPublicKey"
structure (allocated by the caller). It must béechfor any "RSA key" structure prior to passingpit

F-Secure Cryptographic Library Security Policge

FSCLM API functions. Any initialized "RSA key" sttture must eventually be zeroized by calling
"fscim_RSAKeyStructZeroize".

fsclm_RSAKeyStructZeroize
This zeroizes and frees fields of the given "FSCR3APublicKey" or "FSCLM_RSAPrivateKey"
structure.

fsclm_SetRSABIindingFlags

The Module is capable of employing blinding teclu@gn operations with RSA private keys
(decryption, signing) to prevent certain side-charattacks, esp. timing and power analysis ones. By
default, we apply blinding for all operations wah RSA private keys. However, this hurts
performance, and if the caller is confident thdesthannel attacks is not a concern in a givenexont
and improving performance is important, blinding ¢ee turned off by passing an appropriate
argument to this routine.

fsclm_GetRSABIindingFlags
This function retrieves the current blinding segirfior RSA decryption and signing.

fscim_RSAPrecomputeBlindingValues

This function can be used to precompute a numbblirding values for the given RSA private key.
Avalilability of precomputed blinding values impr@vsigning and decryption operation performance
(if blinding is enabled) and could be quite uséfutertain applications. A typical use case woudd b
running this precomputation routine in a backgro(asla separate thread).

F-Secure Cryptographic Library Security Policg7

Other functions

fsclm_Selftest

Calling this routine makes the Module run a nundfeself-tests. This on-demand self-testing includes
self-integrity test, Known Answer Tests of cryptaghic algorithms, and, optionally, the set of PRNG
statistical tests (as specified in the FIPS 14@@udhent). If any of the tests fail, the Module estihe
error state, which means that its cryptographicises become unavailable to the clients. To use the
services again, the user will usually need to retha client application or reload the Module amse
other way.

fsclm_DeriveSymmetricKey

This routine implements the passphrase-based k@yatlen function specified in PKCS#5 (PBKDF2).
The implementation uses HMAC-SHA1 as a PRF.

The two main goals of this key derivation algoritane:

- preventing the adversary from compiling a unigédictionary of passphrases and precomputing the
corresponding keys (achieved by using so-calletf”;s@hose presence in the algorithm results in a
very large number of keys that correspond to easisjghrase)

- making exhaustive search attacks much more catipnally expensive, which is especially
important in the case of “weak” passphrases (aekidy iterating the key derivation function many
times and recursively)

We stress that it is a responsibility of the clisnprotect keys derived by this routine (in parke,

from being exposed to the adversary). This is aAyproved service.

fsclm_OverwriteMemory

This function can be used for overwriting a givéock of memory with a bit stream that enjoys good
statistical properties (i.e., appears as a BingmirSetric Source output).

We use it internally to overwrite portions of memdinat may contain confidential data.

Also, this function can (and should !) be useddadtof the PRNG to produce random-looking bits
when we do not care about “cryptographic qualiy'typical example is generating “witnesses” for
probabilistic primality testing.

fscim_GetBase64Length

Clients should call this routine prior to callinfp€¢lm_EncodeBase64” to determine size of the buffer
that Base64 encoded data will be written to. Vahfate encoding option arguments passed to
“fscim_GetBase64Length” must be identical to theaubsequently passed to
“fscim_EncodeBase64”.

fsclm_EncodeBase64
Given an input buffer, this routine encodes thadatBase64 format. The client can specify desired
line length and ending for the encoded byte stream.

fsclm_DecodeBase64

This routine transforms a given Base64 encodeddiyam to the original (raw) form.

Detailed description of the Module API can be foumthe Module public header files (FSCLM.H,
FSCLM_MP.H, FSCLM_PK.H).

F-Secure Cryptographic Library Security Policgs

We conclude this section by listing a number obramendations aimed at helping the Module clients
avoid security-related and technical problems wihgsiementing data security products.

Prior to freeing any memory blocks that may contaitical security parameters or other
confidential data, take care of zeroizing them prop When you free an object allocated by the
Module (for example, symmetric cipher context, @HfHellman pair, or private key) by calling an
appropriate FSCLM API function, the Module zeroites object memory. The client applications
are responsible for zeroizing any other memoryHkdpm particular, those intermediate variables
containing keying or otherwise confidential data.

It is a responsibility of the clients to ensureyteork with cryptographic objects allocated by the
Module in a multi-threading safe way. Please keemind that the Module provides no
synchronisation for accessing such objects conetlyrby multiple threads of the client
applications.

While the Module is designed to prevent the useoni-FIPS-approved methods in the FIPS mode
of operation, there are three exceptions to tHat &pecifically, the client can use longer than
1024-bit keys with DSA, can apply RSA encryptioratbitrary data blocks (not only those
containing keying information), and can sign wit8/Rusing non-FIPS-approved “RSA Plain”
signing scheme (specified in RFC2409 - IKE) evahé Module is in the FIPS mode of operation.
To maintain full FIPS 140-2 compliance, the cliapplications have to ensure that their use of
DSA and RSA methods meets the appropriate NISTiragents.

