

Sun Microsystems Sun Cryptographic Accelerator 4000 Firmware Version 1.1

FIPS 140-2 Non-Proprietary **Security Policy**

Level 3 Validation

August 6, 2004

Table of Contents

INTRODUCTION	3
Purpose	3
References	
DOCUMENT ORGANIZATION	3
SUN CRYPTOGRAPHIC ACCELERATOR 4000	4
Overview	4
Module Interfaces	4
Roles and Services	5
Crypto Officer Role	
User Role	6
Driver Role	
Admin Secure Channel	
Unauthenticated Services	
Physical Security	
CRYPTOGRAPHIC KEY MANAGEMENT	
Random Number Generator	
Key Zeroization	
EMI/EMC	
Self-Tests	
Design Assurance	
SECURE OPERATION	18
CRYPTO OFFICER GUIDANCE	18
Initialization	18
Termination	19
User Guidance	19
ACRONYMS	19

Introduction

Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Sun Cryptographic Accelerator 4000 from Sun Microsystems. This security policy describes how the Sun Cryptographic Accelerator 4000 meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 3 FIPS 140-2 validation of the module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the NIST website at http://csrc.nist.gov/cryptval/.

References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Sun Microsystems website (www.sun.com) contains information on the full line of products from Sun Microsystems.
- The NIST Validated Modules website (http://csrc.ncsl.nist.gov/cryptval/) contains contact information for answers to technical or sales-related questions for the module.

Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Sun Microsystems Vendor Evidence document
- Finite State Machine
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Sun Microsystems. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Sun Microsystems and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Sun Microsystems.

SUN CRYPTOGRAPHIC ACCELERATOR 4000

Overview

The Sun Cryptographic Accelerator 4000 (SCA 4000) is designed to provide the highest level of security to customers. The Sun Cryptographic Accelerator 4000 and secure key store is not defined to be secure as an afterthought, security has been incorporated into the Sun Cryptographic Accelerator 4000 since product inception. The SCA 4000 comes with either a copper or Fiber interface to provide networking services. The hardware version numbers of the module are 501-6040-02 and 501-6040-03 (Fiber), 501-6039-05 and 501-6039-06 (UTP/Copper)

In order to achieve such a high level of security, the Sun Cryptographic Accelerator 4000 product design, development, test and production has satisfied the requirements to ensure a secure product. Security has been the focus of the development team from the outset, and the Sun Cryptographic Accelerator 4000 product has been designed from the ground up to incorporate security in all design and development steps.

The Sun Cryptographic Accelerator 4000 integrates a 1GB Ethernet performance with hardware cryptographic functionality. The card enhances server network performance by off-loading computer intensive cryptographic calculations (asymmetric and symmetric) from the server's CPU, accelerating both IPsec and SSL/TLS processing. The SCA 4000 also provides a secure remote administration capability. It is tightly integrated with Sun's server hardware and software.

Module Interfaces

The cryptographic boundary of the Sun Cryptographic Accelerator 4000 is defined by the perimeter of the PCI card itself. The networking components and interfaces, LED indicators and jumper pins are excluded from the security requirements of FIPS 140-2. The module is accessible only through well-defined interfaces, and these interfaces include a PCI slot, LEDs, and a jumper.

All of these physical interfaces are separated into logical interfaces defined by FIPS 140-2, as described in the following table:

Module Physical Interface	FIPS 140-2 Logical Interface
PCI, UTP/fiber interface	Data Input Interface
PCI, UTP/fiber interface	Data Output Interface
PCI, Jumper	Control Input Interface
PCI, LEDs	Status Output Interface
PCI	Power Interface

Table 1 – FIPS 140-2 Logical Interfaces

Roles and Services

The module supports identity based authentication. There are three main roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto Officer role (or Security Officer role as defined in SCA 4000 documents), User role, and a Driver. There is also an additional set of unauthenticated services which are not security relevant to the Sun Cryptographic Accelerator 4000 card.

The Crypto-Officer accesses the module using a command line interface (CLI) over the PCI port using the administration tool, vcaadm, on the host machine. The Crypto Officer authenticates with a password and is able to configure the module. When vcaadm is executing in interactive mode, a sub-shell style interface is supplied that allows the Crypto Officer to interact with the interface. Commands may be entered one at a time, and the output from the commands is sent to standard output device.

There are 4 registers that execute the CO administration at the PCI interface level. There are 2 command buffers that perform data input from the card to the host machine and 2 command buffers that receive a response from the host machine. All administrative commands from the application level are sent encrypted with AES session keys using these 4 registers. To issue a command, the host driver uses these registers to define a command block on the host and generates an interrupt to the SCA 4000 firmware via the command bit of the SCA 4000 IRQ register. When the firmware has finished processing the command, it will notify the host via command complete bit of the Host IRQ register.

Crypto Officer Role

The Crypto Officer role has the ability perform all the management and the administration of the board. Descriptions of the services available to the Crypto Officer role are provided in the table below.

Service	Description	Input	Output
Backup	Backup master key	Command and path	Status of command over secure admin channel
Connect	Begin admin session w/ firmware	Command	Login prompt
Create	Creates users and CO accounts	Command and user name	Status of command over secure admin channel
Delete	Delete users and CO accounts	Command and user name	Status of command over secure admin channel
Diagnostics	Runs diagnostics for the card	Command	Status of command over secure admin channel
Disable	Disable a user	Command and user name	Status of command over secure admin channel
Enable	Enable a user	Command and user name	Status of command over secure admin channel
Exit	Exit vcaadm	Command	Status of command over secure admin channel

Service	Description	Input	Output
Loadfw	Load new firmware	Command and path	Status of command over
			secure admin channel
Logout	Logout current session	Command	Exit command line
Quit	Exit vcaadm	Command	Status of command over
			secure admin channel
Rekey	Generate new master key or	Command and select	Status of command over
	remote access key	option	secure admin channel
Reset	Reset the hardware	Command	Hardware is reset
Set	Change password for crypto	Command and select	Options to change
	officer, set password strength	option	password or set
			password strength
Show	Show system settings	Command and select	Status of command over
		option	secure admin channel
Zeroize	Delete all keys and reset board	Command	INIT led is off

Table 2 - Crypto Officer Services, Descriptions, Inputs and Outputs

User Role

The User role can perform cryptographic operations such as owning and accessing keying material within the key store. Users can also perform bulk encryption, asymmetric encryption, and object management services for cryptographic acceleration. Service descriptions and inputs/outputs are listed in the following tables:

Service	Description	Input	Output
3DES Encryption	Raw 3DES encryption	Plaintext data	Ciphertext data
3DES Decryption	Raw 3DES decryption	Ciphertext data	Plaintext data
HMAC-SHA1	HMAC-SHA1 processing	Ciphertext data	Hashed data
MD5 HMAC	MD5 HMAC processing	Ciphertext data	Hashed data
MD5	MD5 hashing	Plaintext/ciphertext data	Perform MD5 hashing
SHA-1	SHA-1 hashing	Plaintext/ciphertext data	Perform SHA-1 hashing
Diagnostics	Perform diagnostics on the SCA 4000 card	Command	Blinking of LED
Display	Display public key information	Command	Displaying the public key and the public key fingerprint used by the Cryptographic Accelerator 4000 board for securing administration sessions.
Status	Displays status of keystore information	Command	Output is a colon- separated list of the following pieces of information: device, internal function, keystore name, keystore serial number, and keystore reference count. You can use this command to determine the association between

Service	Description	Input	Output
			devices and keystores.
Reset	Reset the SCA 4000 card	Command	This function resets the SCA 4000 firmware and initiates all the POSTs.
Zeroize	Zeroizing all CSPs	Command	All CSPs and Keys on the card are zeroized. The Cryptographic Accelerator 4000 is returned to its factory state.

Table 3a – User Services-Bulk Encryption, Descriptions, Inputs and Outputs

Service	Description	Input	Output
DSA Sign	DSA signing operation	Plaintext/ciphertext data	Digital Signature
Verify DSA key	DSA verification operation	Signed data	Verify response
Access RNG	Direct access to the RNG	Random data	Calls FIPS PRNG to
			use random data
RNG SHA-1	RNG output processed by	Random data	Calls FIPS PRNG to
	SHA-1		use random data
RSA encrypt	RSA_PKCS#1 encrypt	Plaintext data	Cyphertext data
RSA decrypt	RSA_PKCS#1 decrypt	Ciphertext data	Plaintext data
RSA Sign	RSA_PKCS#1 sign	Plaintext/ciphertext data	Digital Signature
Verify RSA key	RSA_PKCS#1 verify	Signed data	Verify response

Table 3b – User Services-Asymmetric Encryption, Descriptions, Inputs and Outputs

Service	Description	Input	Output
Login	User login	User's login information	Login successful/failed
Setpass	User change password	Command	New password
Enumerate key	Enumerate user's keys	Command	List of keys
Retrieve key	Retrieve a key	Command	Obtain user key
Delete key	Delete a key	Command	Key is deleted
Create key	Create a key	Command	New key
Change key	Change key attribute	Command	Updated key attribute
attribute			
Generate DES	Generate DES key	Command	New DES key
key			
Generate DES2	Generate DES 2-key	Command	New DES 2 key
key			
Generate DES3	Generate DES 3-key	Command	New DES 3 key
key			
Generate RSA	Generate RSA keypair	Command	New RSA keypair

Service	Description	Input	Output
keypair			
Generate DSA keypair	Generate DSA keypair	Command	New DSA keypair
Wrap Key	Wrap an asymmetric key using the given key	Command	Wrapped key
Unwrap Key	Unwrap a wrapped key using the given key	Command	Unwrapped key (encrypted with KTK in FIPS mode)
Copy Object	Copy a key object	Command	Copy of key

Table 3c – User Services-Object Management, Descriptions, Inputs and Outputs

Driver Role

The Driver role authenticates with a hardcoded login and password in the driver to authenticate its identity to the SCA 4000. The driver can perform similar services as the user role such as bulk encryption and asymmetric encryption, but cannot perform object management services.

Service	Description	Input	Output
3DES Encryption	Raw 3DES encryption	Plaintext data	Ciphertext data
3DES Decryption	Raw 3DES decryption	Ciphertext data	Plaintext data
HMAC-SHA1	HMAC-SHA1 processing	Ciphertext data	Hashed data
MD5 HMAC	MD5 HMAC processing	Input data	Signed data
MD5	MD5 hashing	Plaintext/ciphertext data	Hashed data
SHA-1	SHA-1 hashing	Plaintext/ciphertext data	Hashed data
Load KTK	Authenticate to card and Load Key Transport Key (KTK) Function	Data structure containing encrypted KTK, driver username and password	Authentication and KTK decryption result
Diagnostics	Perform diagnostics on the SCA 4000 card	Command	Blinking of LED
Display	Display public key information	Command	Displaying the public key and the public key fingerprint used by the Cryptographic Accelerator 4000 board for securing administration sessions.
Status	Displays status of keystore information	Command	Output is a colon- separated list of the following pieces of information: device, internal function, keystore name, keystore serial number, and keystore reference count. You can use this command to determine the association between devices and keystores.

Service	Description	Input	Output
Reset	Reset the SCA 4000 card	Command	This function resets the SCA 4000 firmware and initiates all the POSTs.
Zeroize	Zeroizing all CSPs	Command	All CSPs and Keys on the card are zeroized. The Cryptographic Accelerator 4000 is returned to its factory state.
IPSec DES Encryption	IPSec DES encryption	Plaintext data	Ciphertext data
IPSec DES Decryption	IPSec DES Decryption	Ciphertext data	Plaintext data
IPSec 3DES Encryption	IPSec 3DES encryption	Plaintext data	Ciphertext data
IPSec 3DES Decryption	IPSec 3DES Decryption	Ciphertext data	Plaintext data
IPSec MD5 HMAC	IPSec MD5 HMAC processing	Input data	Hashed data
IPSec SHA1 HMAC	IPSec HMAC-SHA1 processing	Ciphertext data	Hashed data
IPSec add SA	Adds an IPSec SA to the SADB	SA data	Return code to indicate success or failure
IPSec delete SA	Deletes an IPSec SA from the SADB	SA data, identifier for SA to be deleted	Return code to indicate success or failure
IPSec set SA	Updates or adds an IPSec SA to the SADB	SA data	Return code to indicate success or failure
IPSec update SA	Updates an IPSec SA in the SADB	SA data	Return code to indicate success or failure
IPSec flush SADB	Removes all IPSec SAs of the specified type from the SADB	The type of SA (AH or ESP) to be deleted	Return code to indicate success or failure
IPSec SA checkout	Checks a SA out of the SADB	Type pf SA (AH or ESP) to checkout, identifier for SA, structure to hold SA	Return code to indicate success or failure
IPSec SA checkin	Checks a SA back into the SADB	SA data	Return code to indicate success or failure

Table 4a - Driver Services-Bulk Encryption, Descriptions, Inputs and Outputs

Service	Description	Input	Output
DSA Sign	DSA signing operation	Plaintext/ciphertext data	Digital Signature
Verify DSA key	DSA verification operation	Signed data	Verify response
Access RNG	Direct access to the RNG	Random data	Calls FIPS PRNG to
			use random data
RNG SHA-1	RNG output processed by	Random data	Calls FIPS PRNG to
	SHA-1		use random data
RSA encrypt	RSA_PKCS#1 encrypt	Plaintext data	CipherText data
RSA decrypt	RSA_PKCS#1 decrypt	Ciphertext data	Plaintext data
RSA Sign	RSA_PKCS#1 sign	Plaintext/ciphertext data	Digital Signature
Verify RSA key	RSA_PKCS#1 verify	Signed data	Verify response

Table 4b – Driver Services-Asymmetric Encryption, Descriptions, Inputs and Outputs

Admin Secure Channel

The Crypto Officer authentication takes place within a secure admin channel using a TLS-like negotiation using RSA for key establishment. The algorithm used is always AES-128 bit session keys and the MAC algorithm is always HMAC-SHA1. The public key exchange protocol begins with the Sun Cryptographic Accelerator 4000 providing a public RSA key to the host machine (where the admin application is running from) along with the hardware Ethernet address. A pre master secret is generated by the host machine, encrypted using the SCA 4000 public RSA key, and than sent to the firmware. At this point, both the host machine and the SCA 4000 derive the master secret, and the 2 AES keys, 2 Message Authentication Code (MAC) keys, and 2 Initialization Vectors (IVs). The MAC keys are 20-byte keys that will be used with HMAC-SHA-1. The SCA 4000 will verify the value using TLS. The host machine will compute its own verify on the messages and compare them to the SCA 4000 before this exchange is completed.

The module uses passwords to authenticate an operator in the Crypto Officer, User and Driver role. The following table shows the strength of authentication used by the module:

Authentication Type	Strength
Password	The SCA 4000 accepts 93 different characters for a
	password and the probability that a random access will
	succeed with a 6 digit password is 1 in
	646,990,183,449 with repetition of characters.

Table 5 – Estimated Strength of Authentication Mechanisms

Unauthenticated Services

The module has unauthenticated services that provide no security relevant functionality, and these services are available to all roles. The LEDs on the rear of the module provide status information.

Service	Description	Input	Output
Diagnostics	Perform diagnostics on the SCA 4000 card	Command	Blinking of LED
Display	Display public key information	Command	Displaying the public key and the public key fingerprint used by the Cryptographic Accelerator 4000 board for securing administration sessions.

Service	Description	Input	Output
Status	Displays status of keystore information	Command	Output is a colon-separated list of the following pieces of information: device, internal function, keystore name, keystore serial number, and keystore reference count. You can use this command to determine the association between devices and keystores.
Reset	Reset the SCA 4000 card	Command	This function resets the SCA 4000 firmware and initiates all the POSTs.
Zeroize	Zeroizing all CSPs	Command	All CSPs and Keys on the card are zeroized. The Cryptographic Accelerator 4000 is returned to its factory state.
Debug Services	s		
debugInfo	Displays the registered debug routines callable from vcadebug ¹	None	List of debug routines callable from the host.
vexInfo	Display all exception headers currently on the card	None	Exception headers stored in FLASH
vexShow	Displays segments (data blocks) associated with an exception	Exception number and segment number	Information relating to a specific exception and segment
vexProcInfo	Lists additional processes added to the exception dump	None	List of processes in the process list
vexSegInfo	Displays individual segment data for a given exception	Exception number	List of segments in the segment list
vce_mii_dump	Displays all the Cassini MII registers	None	Contents of all Cassini MII registers
vce_mii_reg_d ump	Displays a specified Cassini MII register	Register value	Contents of specified register
vce_dump_rin gs	Dumps the network descriptor rings for debug	None	Contents of the network descriptor rings
vcfCfg	Displays the core firmware configuration register	None	Contents of the card configuration registers
vcfCsrs	Displays the core firmware control/status registers	None	Contents of the card control/status registers
cfgDump	Displays the firmware configuration data	None	Firmware configuration data
ksDump	Displays high level information about the module keystore	None	Information about on-card keystore
partDisplayAll	Displays memory partition data (if debug messages enabled)	None	Memory partition data
vSadbDump	Displays high level information about the card SADB	None	High level information about the card SADB

¹ Vcadebug is a host application provided by Sun to invoke the firmware debug interface commands © Copyright 2004 SUN MICROSYSTEMS Page 11 of 20
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table 6 – Unauthenticated Services

Physical Security

The SCA 4000 card is a multi-chip embedded cryptographic module. The SCA 4000 card is completely enclosed in a hard epoxy coating with only specific interfaces providing access to the module.

Cryptographic Key Management

The implementations of the FIPS-approved algorithms have following FIPS algorithm certifications:

- SHA-1 (firmware certificate #171) as per NIST's FIPS PUB 180-1
- SHA-1 (hardware certificate #172) as per NIST's FIPS PUB 180-1
- DES CBC (certificate #225) as per NIST's FIPS PUB 46-3
- 3DES CBC (certificate #190) as per NIST's FIPS PUB 46-3
- AES (certificate #79) as per NIST's FIPS PUB 197
- DSA (certificate #92) as per NIST's FIPS PUB 186-2
- RSA (PKCS #1, vendor affirmed)
- HMAC with SHA-1 (vendor affirmed) as per NIST's FIPS PUB 198

3DES and AES are the recommended algorithms to be used for encryption and decryption. DES is only to be used in legacy systems.

The Sun Cryptographic Accelerator 4000 also performs RSA encrypt/decrypt functions for the User Role. RSA encryption/decryption must be used only for performing key transport such as in SSL/TLS protocols in a FIPS mode of operation. The module also performs RSA digital signature generation/verification

The follow algorithms are not supported when the SCA 4000 card is operating in FIPS mode:

- MD5
- HMAC-MD5
- RC2 (ECB, CBC modes)

The module supports the following critical security parameters listed below:

Key	Key type	Generation	Storage	Use
Factory Remote Access Key	RSA 1024-bit Public/Private Keys	FIPS approved PRNG	Plaintext read-only Flash memory	Initiate the secure tunnel for the first connection to the SCA 4000 card
Remote Access Key (RAK)	RSA 1024-bit Public/Private Keys	FIPS approved PRNG	Plaintext in flash memory	Authenticate the administration application with the SCA 4000, Allows driver to send the KTK to the device encrypted
Key Transport Key (KTK)	AES Key 128-bit	Generated outside the crypto boundary	Plaintext in flash memory Runs for a given boot cycle	Wraps CSPs crossing the FIPS boundary b/w the SCA 4000 firmware and the Solaris host
Master Keys	AES Key 128-bit	FIPS approved PRNG	Plaintext in flash memory	Encrypt keystore data
User Keys	RSA Public/Private Keypairs, DSA Public/Private Keypairs, DES/3DES Keys	FIPS approved PRNG	Plaintext in SDRAM	Performing Crypto functions
Session Keys (Crypto Officer)	AES Keys 128-bit	FIPS approved PRNG	Plaintext in SDRAM	Encrypts/decrypts admin commands and responses
Session keys (User)	DES/3DES Keys	FIPS approved PRNG	Plaintext in SDRAM	They are symmetric keys (DES/TDES) used for symmetric key operations. They may be used in SSL/TLS/IPSec by the application that generates

				them.
Driver Password	Password	Generated outside the crypto boundary	Plaintext in flash memory	Authenticate driver to module
User Password	Password	User entered	Plaintext in SDRAM	Authenticate user to the module
Crypto Officer Password	Password	Crypto Officer entered	Plaintext in SDRAM	Authenticate Crypto Officer to the module
IPSec session keys	DES/3DES keys and/or HMAC- SHA1 key	Generated outside the crypto boundary	Plaintext in SDRAM	Used during IPSec negotiations to encrypt/decrypt and authenticate data packets

Table 7 – Description of the Keys used on the SCA 4000

A default Remote Access Key (RAK) is shipped with the SCA 4000 card from the factory. This Factory Remote Access Key is an RSA public/private keypair that is used to establish secure administration channels when the device is not initialized. The Factory Remote Access Public Key is used to encrypt the Key Transport Key and host machine driver login/password information, and sent down to the module. Once the driver is authenticated, the driver can send encrypted commands with the KTK securely to the module.

Once the card has been initialized, the module generates a new Remote Access Keypair. The RAK is used to negotiate two AES session keys for a single secure tunnel encryption session that are used for Security Officer and card communication. These AES session keys will be negotiated at the time a Security Officer selects a keystore, and will terminate when the Security Officer terminates the session with the module. Each subsequent session will renegotiate new AES session keys, using the Remote Access Key. These SO session keys are generated by a key agreement using TLS master secret derivation TLS session. 32 bytes of a pre-master secret enter the module encrypted by the public Remote Access Key. There are two different SO session keys generated to create sessions; one session key to receive data and one session key to send out data. These keys are used to encrypt/decrypt admin commands and encrypt/decrypt responses from the administration application tool. The Remote Access Key also allows the host machine driver to send the Key Transport Key to the device encrypted with an RSA public key. RAKs are generated using a FIPS approved PRNG and the RSA private keys are never output from the module except for backup purposes.

When the SCA 4000 card is operating in FIPS mode, the Key Transport Key is used when transporting passwords or session keys crossing the FIPS boundary between the SCA 4000 firmware and the Solaris host. This transport key is created when the module is powered up after the host machine authenticates to the SCA 4000 card. The KTK is generated outside the FIPS boundary and are input into the card at startup using the public Remote Access Key; the KTK is never output from the module.

Master Keys on the module are used to wrap all User and Crypto Officer account information and keying material associated with the SCA 4000 device. When the system and the card powers-up, the Solaris host reads the Master Key wrapped data from an encrypted file on the host file system. This data is sent down to the SCA 4000 card in the wrapped form. When the module receives this encrypted data, the card unwraps the data using the Master Key. The unwrapped data is then used to populate the user account information, and user owned data stores holding User Keys. Master Keys are generated using a FIPS approved PRNG and are only output when they are backed up as part of the device backup command. The Crypto Officer session key encrypts the Master Key to be stored on the host machine's filesystem.

User Keys are used to perform cryptographic operations and are created on demand by the User. However, prior storage of a user application keying material within the SCA 4000 keystore, a number of steps must have already taken place:

- SCA 4000 device must be initialized
- A keystore must be created
- A user account must be created within the keystore

The creation of a SCA 4000 keystore establishes a name space for the creation of users within the keystore. The creation of a user account establishes data for enforcing ownership and access rights to the keying material based on password based authentication. The User Keys are generated using a FIPS approved RNG and are stored outside of the module encrypted with the Master Key.

Random Number Generator

The SCA 4000 card uses the FIPS-approved RNG specified in FIPS 186-2 DSA-RNG using SHA-1 for generation of cryptographic keys.

Key Zeroization

There are three ways to zeroize all the keying material on the SCA 4000 card:

- 1) A jumper located on the board will zeroize all keying material, and all updated firmware, taking the device back to factory state, when it is next powered up. The jumper must be subsequently removed to use the device again.
- 2) An operator with access to the root login on the host machine can present the correct commands to initiate a zeroization of all the keys on the SCA 4000 card taking the device back to the initial Factory Remote Access Key. This application can be performed when an operator is unauthenticated to the module.
- 3) The Crypto Officer can zeroize all the keys and updated Remote Access Key via a remote channel (protected under a session key generated using the Remote Access Key) after the operator has properly authenticated.

EMI/EMC

The module conforms to FCC Part 15 Class B requirements for home use.

Self-Tests

The SCA 4000 card performs self-tests to monitor the proper functioning of the module. These self-tests are divided into two categories, those run during power-up and those run upon certain conditions.

The module consists of the following Power-up Tests:

- DES CBC Known Answer Test
- 3DES CBC Known Answer Test
- AES CBC Known Answer Test
- DSA Known Answer Test
- PRNG Known Answer Test
- HMAC with SHA-1 KAT
- RSA Sign/Verify Known Answer Test
- CRC-32 Firmware Integrity Check

The module consists of the following Conditional Tests:

- Continuous Random Number Test
- RSA Pair-wise Consistency Check
- Firmware Load Test
- DSA Pairwise Consistency Test

Design Assurance

Hardware builds are controlled by a build release process. Each hardware build is named, e.g. P0, P0.1, P1.0, P1.1, P2.0, etc. The hardware version is contained in a PROM part on the device which is accessible by software.

User documentation is versioned like source. Each release of the documentation is stored in a separate repository named by release number. Manual pages, and other miscellaneous documentation delivered with the software packages are stored and controlled in the software gates. The source code and firmware version control is done using Source Code Control System

SECURE OPERATION

The Sun Microsystems SCA 4000 meets Level 3 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-approved mode of operation.

Crypto Officer Guidance

The Crypto-Officer is responsible for initialization of the module, configuration and management of the module, and termination of the module. Detailed information for the Crypto-Officer can be found in the Sun Microsystems SCA 4000 Installation and User Guide. The module should be checked regularly for signs of tamper-evidence (scratches, holes in the epoxy, etc.).

Initialization

The Crypto-Officer receives the module from Sun Microsystems via a secure delivery mechanism. The Crypto-Officer can either pick the module up directly from a Sun Microsystems facility, or the module can be shipped to the Crypto-Officer.

Before the initial configuration of the module, there is no access control provided by the module. The Crypto-Officer must maintain control of the module and restrict any access to the module.

The Crypto-Officer must follow the Sun Microsystems instructions for setting up the module. The Crypto Officer first installs the card, installs the host software packages and uses the administration interface from the host machine to configure the card. The Factory Remote Access Key is used to authenticate to the card and initiate a secure login. Once the card has been initialized with a keystore, the "INIT" led is lit. Additional steps include setting the access control password for users and configuring the module's network settings. The Crypto Officer must also select FIPS mode during the SCA 4000 card configuration. The FIPS led indicator will be lit when the module is operating in a FIPS mode of operation.

After this process is complete, the Crypto-Officer is able to begin managing the module through the host machine's vcaadm application and can generate new Users.

Additionally, while in a FIPS mode, the module only supports FIPS-approved algorithms (DSA, RSA Signature Generation/Verification, SHA-1, HMAC-SHA-1, DES Triple-DES and AES) and algorithms permitted for use in a FIPS mode of operation (RSA encryption/decryption for key transport).

When a module's usage has been completed, the module should be zeroized by the Crypto-Officer in order to wipe all sensitive data. The module should than be stored in a secure location.

User Guidance

The User is able to use the module as defined above in the description of the User role. The User must be careful not to provide session keys and secret keys to other parties. The User must also not provide the User password to anyone.

ACRONYMS

Term	Definition
AES	Advanced Encryption Standard
ANSI	American National Standards Institute
CBC	Cipher Block Chaining
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
CO	Crypto Officer
CRC	Cyclic Redundancy Checksum
CSE	Communications Security Establishment
CSP	Critical Security Parameter
DES	Data Encryption Standard
DSA	Digital Signature Algorithm
EDC	Error Detection Code
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FCC	Federal Communication Commission
FIPS	Federal Information Processing Standard
HMAC	Hashing for Message Authentication Code
IPSec	Internet Protocol Security
IRQ	Interrupt Request Line
KAT	Known Answer Test
KTK	Key Transport Key
LAN	Local Area Network
LED	Light Emitting Diode
MAC	Message Authentication Code
NIC	Network Interface Card
NIST	National Institute of Standards and Technology
PCI	Peripheral Component Interconnect
PKCS	Public Key Cryptographic Standard
POST	Power On Self Test
PROM	Programmable Read Only Memory

RAK	Remote Access Key
RAM	Random Access Memory
RNG	Random Number Generator
ROM	Read Only Memory
RSA	Rivest Shamir and Adleman
SA	Security Association
SADB	Security Association Database
SHA	Secure Hash Algorithm
SSL	Secure Socket Layer
TLS	Transport Layer Security

Table 8 – Terms and Definitions