

© Copyright IBM Corp. 2004 Page 1 of 17

IBM SSLite for Java FIPS 140-2 Cryptographic Module

Security Policy

IBM SSLite for Java FIPS 140-2 Cryptographic Module February 2005

Revision: 1.9

NON CONFIDENTIAL Status: Final

Second Edition (February 2005)

This edition applies to the First Edition of the IBM BlueZ – FIPS140-2 SSLite Security Policy and to all
subsequent versions until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005.

All rights reserved. This document may be freely reproduced in its entirety and without modification.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems in the US and other countries.

© Copyright IBM Corp. 2004 Page 2 of 17

Contents
1. Introduction .. 4

1.1 Contact Information .. 4

2. Security Levels... 5

3. Cryptographic Module Specification... 6

3.1 SSLite token interfaces .. 6

3.2 Cryptographic Standards.. 6

3.2.1 Symmetric Key .. 6

3.2.2 Asymmetric Key .. 7

3.2.3 Hash Functions ... 7

3.2.4 Keyed Hash Functions .. 7

3.2.5 Random Number Generators.. 7

3.3 Module Interfaces... 8

3.4 Cryptographic Module Self Tests ... 8

3.4.1 Power-up Self-Testing... 8

3.4.2 Start-up Recovery ... 9

3.4.3 Conditional Self-Testing .. 9

3.4.4 Pair-wise Consistency Self-Testing .. 9

3.5 Operational Environment.. 9

3.6 Module Status... 9

4. Roles and Services .. 10

4.1 Roles .. 10

4.2 Services.. 10

5. Cryptographically Sensitive Material .. 12

5.1 Cryptographic Keys .. 12

5.1.1 Key Storage .. 12

5.1.2 Key establishment... 12

5.1.3 Key Protection... 12

5.1.4 Key Generation ... 12

5.1.5 Key zeroization.. 12

5.1.6 Key Import/Export ... 13

5.2 Cryptographic Tokens .. 13

5.2.1 PKCS #7.. 13

5.2.2 PKCS #11.. 13

5.2.3 PKCS #12.. 13

5.2.4 Microsoft CryptoAPI .. 13

© Copyright IBM Corp. 2004 Page 3 of 17

5.2.5 Java KeyStore... 14

6. Security Rules .. 15

6.1 Operating System... 15

6.2 Application Usage .. 15

6.3 Tokens.. 16

6.4 Single User Guidelines... 16

7. Notices ... 17

© Copyright IBM Corp. 2004 Page 4 of 17

1. Introduction
IBM SSLite for Java, or simply SSLite, is a SSL (Secure Socket Layer) v2.0, v3.0 and TLS (Transport
Layer Security) v1.0 protocol implementation including PKI (Public Key Infrastructure) functionality for
Java. For the purpose of FIPS 140-2 Level 1 validation the implementation is made available in the form
of a signed JAR archive file. The cryptographic functions used in SSLite are contained in the IBM
CryptoLite for Java module which has been separately evaluated.

SSLite supports most PKI components such as X.509 certificates, Certificate Revocation Lists (CRLs),
PKCS #7 tokens, PKCS #11 cryptographic tokens (smart cards, etc.), PKCS #12 tokens, Java KeyStore
tokens, MS-CAPI, and certificate repositories such LDAP.

The performance of SSLite is comparable to that of native implementations. It may, however, be
augmented with a native booster DLL to make it perform even better.

This document applies to IBM SSLite for Java FIPS builds 3.15 and 3.16.

1.1 Contact Information
For more information about IBM SSLite for Java, IBM CryptoLite for Java, and IBM CryptoLite for C
please contact ccc@dk.ibm.com.

© Copyright IBM Corp. 2004 Page 5 of 17

2. Security Levels
The SSLite package meets the overall requirements applicable to FIPS 140-2 Level 1 security. The
individual security requirements specified for FIPS 140-2 meets the Level specifications indicated in the
following table.

Security Requirements Section Level

Cryptographic Module 1

Ports and Interfaces 1

Roles and Services 1

Finite State Model 1

Physical Security 1

Operational Environment 1

Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Table 1: FIPS 140-2 Validation Levels

© Copyright IBM Corp. 2004 Page 6 of 17

3. Cryptographic Module Specification
SSLite is classified as a multiple-chip standalone cryptographic module for FIPS 140-2 purposes. As
such, the SSLite module must be validated upon a particular operating system and computer platform.
The SSLite module is packaged in a single Java Archive file, which contains all the classes for the
module. SSLite runs upon many other platforms including Windows 95, 98, and NT, Sun Solaris, HP-UX,
Linux, and AIX.

As outlined in 4.5 of the Implementation Guidance for FIPS 140-2, the module maintains its compliance
on other operating systems, provided:

• The operating system meets the operational environment requirements at the module’s Level of
validation.

• The module does not require modification to run in the new environment.

Since the SSLite module is a pure Java implementation it should be able to run unmodified on any
system which supports a Java Runtime of at least Version 1.3. The above requirements have been
demonstrated by testing and validating the IBM CryptoLite for Java package on the platforms shown in
Table 2.

Hardware Operating System Java VM Version

IBM PC Compatible Windows 2000, SP3 1.3.1_03

IBM PC Compatible Red Hat Linux 8.0 1.3.1_07

Table 2: Platforms on which IBM CryptoLite for Java has been tested

3.1 SSLite token interfaces
The SSLite module provides cryptography services through the embedded IBM CryptoLite for Java, or
simply CryptoLite, module. CryptoLite contains a proprietary interface for interfacing to an external
cryptographic acceleration module. This module, also provided by IBM and FIPS 140-2 Level 1 validated,
uses optimized native code to provide high performance speedup for CryptoLite functionality in a totally
transparent manner. The module simply has to be present in the same directory as the CryptoLite module
at module start-up time. The validity and integrity of the booster module is checked using an approved
HMAC method.

The SSLite module also contains industry standard PKCS #11 and MS-CAPI token interfaces.

3.2 Cryptographic Standards
The SSLite module supports the following approved and non-approved FIPS algorithms through the IBM
CryptoLite for Java module. Only algorithms listed in FIPS PUB 140-2 Annex A: Approved Security
Functions have been marked as being FIPS approved. Algorithms marked as non-compliant are FIPS
approved but the implementation has not yet been validated.

3.2.1 Symmetric Key
Algorithm Specification FIPS Approved

AES (ECB, CBC) FIPS 197 YES

DES, Triple-DES (ECB, CBC) FIPS 46-3 YES

© Copyright IBM Corp. 2004 Page 7 of 17

RC2 RFC 2268 NO

RC4 N/A NO

Blowfish http://www.schneier.com/blowfish.html NO

3.2.2 Asymmetric Key
Algorithm Specification FIPS Approved

RSA Sign/Verify PKCS #1 v2.1 YES

RSA Encrypt/Decrypt PKCS #1 v2.1 NO

DSA Sign/Verify FIPS 186-2 YES

Diffie-Hellman N/A NO

3.2.3 Hash Functions
Algorithm Specification FIPS Approved

MD2 RFC 1319 NO

MD5 RFC 1321 NO

SHA-1 FIPS 180-2 YES

SHA-256, SHA-384, SHA-512 FIPS 180-2 Non-compliant

MDC-1, MDC-2, MDC-4 Bruno O. Brachtl, Don
Coppersmith, Myrna M. Hyden,
Stephen M. Matyas Jr., Carl H.
W. Meyer, Jonathan Oseas,
Shaiy Pilpel, and Michael
Shilling, "Data authentication
using modification detection
codes based on a public one
way encryption function"

NO

3.2.4 Keyed Hash Functions
Algorithm Specification FIPS Approved

HMAC FIPS 198 YES*

* When used with SHA-1.

3.2.5 Random Number Generators
Algorithm Specification FIPS Approved

Pseudo Random Number
Generator

FIPS 186-2

ANSI X9.31-1998

YES

Random Number Generator* Patented by IBM Corp., EC Pat.
No. EP1081591A2. Used for

NO

© Copyright IBM Corp. 2004 Page 8 of 17

seeding the approved PRNG.

* Also known as the “Universal Software Based True Random Number Generator”.

3.3 Module Interfaces
As a multiple-chip standalone cryptographic module the SSLite module’s physical interfaces consist of the
keyboard, mouse, monitor, serial ports, network adapters, etc. However, the underlying logical interface
to the SSLite package is a Java language API documented in the SSLite User Guide. The exported public
methods comprise the modules control input interface. Data input and output are provided in the variables
passed with method calls, and status output is provided in the return and error codes that are
documented for each call. The SSLite module is accessed from Java language programs via the inclusion
of the package export files and the package class file packaged in JAR format.

3.4 Cryptographic Module Self Tests

The SSLite module relies exclusively on the embedded CryptoLite module for a number of self-tests to
check the proper functioning of the module. This includes power-up self-tests and conditional self-tests.
Conditional tests are performed when symmetric or asymmetric keys are generated. This also includes a
continuous random number generator test and a pair-wise consistency tests of the generated RSA and
DSA keys.

3.4.1 Power-up Self-Testing
Power-up self-testing is initiated automatically when the SSLite module starts loading (see the SSLite
Finite State Machine for more details). These tests are comprised of the software integrity test and the
known answer tests (KATs) of cryptographic algorithms. Should any of these tests fail the SSLite module
will terminate the loading process and generate an exception. The module cannot be used in this state.
The integrity of the module is verified by checking an HMAC on the all of the JAR files classes. The
initialization will only succeed if this HMAC is valid.

The SSLite module executes the following cryptographic algorithms tests during power-up:

• DES KAT

• Triple-DES KAT

• AES KAT

• SHA-1 KAT

• SHA-256 KAT

• SHA-384 KAT

• SHA-512 KAT

• RSA sign/verify

• RSA encrypt/decrypt

• DSA parameter generation

• DSA sign/verify

• Diffie-Hellman exponentiation

• RNG KAT

© Copyright IBM Corp. 2004 Page 9 of 17

3.4.2 Start-up Recovery
Should the start-up self-tests fail during module initialization the crypto officer should re-initialize the
application.

3.4.3 Conditional Self-Testing
This includes continuous PRNG testing. The very first output block generated by the PRNG is never used
for any purpose other than initiating the continuous PRNG test which compares every newly generated
block with the previously generated block. The test fails if newly generated PRNG output block matches
the previously generated block. In such a case, the module generates an exception to the calling
application. It is the responsibility of the calling application to handle the exception in a FIPS 140-2
appropriate manner, for example by retrying the PRNG service.

3.4.4 Pair-wise Consistency Self-Testing
The test is run whenever private key is generated by the SSLite module. The private key structure of the
module always contains either the data of the corresponding public key or information sufficient for
computing the corresponding public key. If the test fails the module generates an exception to the calling
application. It is the responsibility of the calling application to handle the exception in a FIPS 140-2
appropriate manner, for example by retrying the key generation service.

3.5 Operational Environment
The SSLite module is written entirely in the Java programming language that allows for extensive review
to confirm security. Applications using SSLite functionality are secure from each other due to the fact that
each runs in a “Java sandbox” where the firewall protects applet objects from illegal access by other
applications. SSLite is developed and maintained according to IBM’s internal development standards and
tools including CVS (cvs-1.11.2-25) are used for configuration management. The CryptoLite module
implements both approved and non-approved services. The calling application controls the cryptographic
material as well as the services that use them. It is the applications responsibility to ensure that when
used in a FIPS 140-2 compliant mode, only those FIPS 140-2 approved algorithms are used.

3.6 Module Status
The module communicates any error status asynchronously through the use of exceptions. It is the
responsibility of the calling application to handle these exceptions.

© Copyright IBM Corp. 2004 Page 10 of 17

4. Roles and Services

4.1 Roles
The SSLite module supports two roles:

• ROLE_CO: The Crypto Officer Role is purely an administrative role and does not involve the use
of any of the modules cryptographic services. The role is not explicitly authenticated but assumed
implicitly on implementation of the modules installation and usage sections defined in the security
rules section.

• ROLE_USER: The User Role has access to all of the modules services. The role is not explicitly
authenticated but assumed implicitly on access of any of the modules services.

Role Type of Authentication Authentication Data

Cryptographic Officer Role None None

User Role None None

Table 3: Roles and Required Identification and Authentication

Authentication Mechanism Strength of Mechanism

There are no role or user authentication mechanisms N/A

Table 4: Strengths of Authentication Mechanisms

4.2 Services
The modules services are accessed through API interfaces from the calling application.

Service User Role

ASN.1 handling services (com.ibm.sslite140.ASN1) YES

Certificate authority services (com.ibm.sslite140.CA) YES

Certificate entry services (com.ibm.sslite140.CE) YES

CryptoLite for Java (com.ibm.sslite140.CL3) YES

Certificate request entry services (com.ibm.sslite140.CRE) YES

Directory services (com.ibm.sslite140.Directory) YES

Certificate extension services (com.ibm.sslite140.Extension) YES

LDAP services (com.ibm.sslite140.LDAP) YES

PKI services (com.ibm.sslite140.PKI) YES

Certificate revocation entry services (com.ibm.sslite140.RE) YES

JAR file signature verification services (com.ibm.sslite140.SignedJarInputStream) YES

JAR file signature generation services (com.ibm.sslite140.SignedJarOutputStream) YES

S/MIME services (com.ibm.sslite140.SMIME) YES

© Copyright IBM Corp. 2004 Page 11 of 17

Certificate services (com.ibm.sslite140.SSLCert) YES

SSL context services (com.ibm.sslite140.SSLContext) YES

Certificate revocation list services (com.ibm.sslite140.SSLCRL) YES

GSKit certificate services (com.ibm.sslite140.SSLKDBToken) YES

Java KeyStore certificate services (com.ibm.sslite140.SSLKSCert) YES

Java KeyStore services (com.ibm.sslite140.SSLKSToken) YES

MS-CAPI token services (com.ibm.sslite140.SSLMSCAPIToken) YES

X.500 name services (com.ibm.sslite140.SSLName) YES

Netscape token services (com.ibm.sslite140.SSLNSToken) YES

PKCS #11 token services (com.ibm.sslite140.SSLPKCS11Token) YES

PKCS #12 token services (com.ibm.sslite140.SSLPKCS12Token) YES

PKCS #7 token services (com.ibm.sslite140.SSLPKCS7Token) YES

SSL server services (com.ibm.sslite140.SSLServerSocket) YES

SSL session services (com.ibm.sslite140.SSLSession) YES

SSL socket services (com.ibm.sslite140.SSLSocket) YES

SSL general token services (com.ibm.sslite140.SSLToken) YES

Transaction layer services (com.ibm.sslite140.TL) YES

Certificate SubjectAltName/IssuerAltName extension services
(com.ibm.sslite140.XAltName)

YES

Certificate AuthorityInformationAccess extension services
(com.ibm.sslite140.XAuthorityInfoAccess)

YES

Certificate BasicConstaints extension services (com.ibm.sslite140.XBasicConstraints) YES

Certificate CRL distribution points extension services (com.ibm.sslite140.XCRLDist) YES

Certificate CRL distribution point services (com.ibm.sslite140.XCRLDist.Point) YES

Certificate ExtKeyUsage extension services (com.ibm.sslite140.XExtKeyUsage) YES

Certificate SubjectKeyIdentifier/AuthorityKeyIdentifier extension services
(com.ibm.sslite140.XKeyIdentifier)

YES

Certificate KeyUsage extension services (com.ibm.sslite140.XKeyUsage) YES

Certificate policy services (com.ibm.sslite140.XPolicyInfo) YES

Certificate policy qualifier services (com.ibm.sslite140.XPolicyInfo.Qualifier) YES

CryptoLite for Java exception services (com.ibm.sslite140.CL3Exception) YES

SSL exception services (com.ibm.sslite140.SSLException) YES

SSL runtime exception services (com.ibm.sslite140.SSLRuntimeException) YES

© Copyright IBM Corp. 2004 Page 12 of 17

5. Cryptographically Sensitive Material

5.1 Cryptographic Keys

5.1.1 Key Storage
The SSLite module does not provide long-term cryptographic key storage. If an application program
makes use of SSLite service to implement cryptographic key storage functionality, it is the responsibility
of the application program developer to ensure FIPS 140-2 compliance of key storing techniques they
implement.

5.1.2 Key establishment
SSLite provides protocol services for SSLv2.0, SSLv3.0 and SSLv3.1/TLSv1.0. Each of these protocols
involves the generation of key material based on elements within the handshake protocol.
SSLv3.0/TLSv1.0 depends on SHA-1 for the generation of key material. SSLv2.0 and SSLv3.0 generally
depend on MD5 for key material generation and thus are not FIPS 140-2 compliant. There is an exception
for 2 SSLv3.0 cipher suites, namely 0xFEFE and 0xFEFF, where SSLite will use the SSLv3.1/TLSv1.0
method for key generation which is based on SHA-1.

5.1.3 Key Protection
The management and allocation of memory is the responsibility of the operating system. It is assumed
that a unique process space is allocated for each request, and that the operating system and the
underlying central processing unit (CPU) hardware control access to that space. Each instance of the
cryptographic module is self-contained within a process space. All keys are associated with the user role.
It is the responsibility of application program developers to protect keys exported from the SSLite module.

5.1.4 Key Generation
Key generation is handled using the CryptoLite subsystem which uses a FIPS 140-2 approved RNG
algorithm based on SHA-1. The RNG has a maximum number of internal states of 2160; this being limited
by the compression function in SHA-1. The RSA and DH key generation algorithms use the RNG engine
seeded with 20 bytes of true random data. This true random generator is based on IBM patented
technology where statistical analysis used to estimate the entropy of the clock jitter. The internal RNG
engine is enhanced using an automatic reseeding policy that insert a true random byte every 128 bytes of
output if more than 30 seconds passed since last being reseeded. Applications can additionally provide
their own seeding data and also increase the automatic reseeding policy of the internal RNG engine for
example to add true random data every 8th byte without time constraint.

5.1.5 Key zeroization
Key objects are normally zeroed and any associated data discarded when the key object is garbage
collected through the finalizer method. The CryptoLite module provides an additional mechanism which
helps to ensure key zeroization through a dispose method. An application can explicitly call this method in
order to clear and release key material associated with a key object without waiting for a possible pending
invocation of the finalizer method.

© Copyright IBM Corp. 2004 Page 13 of 17

5.1.6 Key Import/Export
The SSLite module provides a series of services for applications to access cryptographic material
contained within various long term storage elements or tokens. These key repositories and tokens are
outside of SSLite’s cryptographic boundary. The SSLite module temporarily holds and uses key material
on behalf of the calling applications and processes. Key material imported is stored internally in token key
rings. This temporary internal storage of key material and its subsequent use is on behalf of the calling
applications.

5.2 Cryptographic Tokens

5.2.1 PKCS #7
PKCS #7 describes a general syntax for data that may have cryptography applied to it, such as digital
signatures and digital envelopes. The syntax admits recursion, so that, for example, one envelope can be
nested inside another, or one party can sign some previously enveloped digital data. It also allows
arbitrary attributes, such as signing time, to be authenticated along with the content of a message, and
provides for other attributes such as countersignatures to be associated with a signature. This token is a
soft token and can be retrieved from different media. It contains a set of certificates and, optionally,
associated CRLs. Keys cannot be stored in this type of repository. This repository does not require
authentication. Certificates and CRLs are protected by a signature. This type of token is used when the
expected set of items is defined by some context.

5.2.2 PKCS #11
PKCS #11 specifies an application programming interface (API), called “Cryptoki,” to devices which hold
cryptographic information and perform cryptographic functions. Cryptoki, “follows a simple object-based
approach, addressing the goals of technology independence (any kind of device) and resource sharing
(multiple applications accessing multiple devices), presenting to applications a common, logical view of
the device called a “cryptographic token”. The standard specifies the data types and functions available to
an application requiring cryptographic services using the ANSI C programming language. PKCS #11
tokens can store keys and certificates. Storage of CRLs is not supported. Access to a token is protected
by a personal identification number (PIN).

5.2.3 PKCS #12
PKCS #12 is a standard format for exchange of private keys and certificates supported by most browsers
and cryptographic applications. It describes a transfer syntax for personal identity information, including
private keys, certificates, miscellaneous secrets, and extensions. Machines, applications, browsers,
Internet kiosks, and so on, that support this standard will allow a user to import, export, and exercise a
single set of personal identity information. This standard supports direct transfer of personal information
under several privacy and integrity modes. This token is a soft token and can be retrieved from different
media. It contains private keys, certificates, and associated CRLs. The content is protected by a user
pass-phrase. The public items (certificates, CRLs) and the private items (keys) can be protected by
algorithms with different strengths.

5.2.4 Microsoft CryptoAPI
Microsoft CryptoAPI (MS-CAPI) provides services that enable application developers to add security
based on cryptography to applications. MS-CAPI includes functionality for encoding to and decoding from
ASN.1, hashing, encrypting and decrypting data, for authentication using digital certificates, and for

© Copyright IBM Corp. 2004 Page 14 of 17

managing certificates in certificate stores. Encryption and decryption are provided both using both
session keys and with public/private key pairs. MS-CAPI functions use cryptographic service providers
(CSP’s) to perform encryption and decryption, and to provide key storage and security. These CSP’s are
independent modules. Ideally, CSP’s are written to be independent of a particular application, so that any
application will run with a variety of CSP’s.

MS-CAPI support is available on Microsoft Windows operating systems only (95/98, NT, 2000, or above).
An intermediate system DLL is required which mediates the Java calls to the underlying operating system
APIs.

5.2.5 Java KeyStore
Java KeyStore is a database of private keys and their associated certificates or certificate chains. The
certificate chains aid in authenticating end entity certificates. The Java Cryptography Architecture (JCA)
provides extensible architecture to manage keys. This architecture is embodied in java.security as a
KeyStore. The Java KeyStore follows the existing JCA architecture which provides a framework and
implementations for a KeyStore.

© Copyright IBM Corp. 2004 Page 15 of 17

6. Security Rules

6.1 Operating System
The cryptographic module is dependant on the operating system environment being set up in accordance
with FIPS 140-2 specifications. This includes that the host operating system be restricted to a single
operator mode. An additional requirement for this cryptographic provider is the availability of a valid
commercial grade installation of a Java SDK 1.3.1 or greater JVM.

6.2 Application Usage
The application shall ensure that keys are exchange in a FIPS 140-2 compliant manner The application
shall be ensure that cryptographically sensitive material is not inadvertently output over physical ports.

The application shall ensure that:

• SSLv2.0 is not used

• SSLv3.0 is only used with the following cipher suites:

o SSLv3.0/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0xFEFE)*

o SSLv3.0/SSL_RSA_FIPS_WITH_3DES_EDE_SHA (0xFEFF)

The application shall ensure that SSLv3.1/ TLS1.0 is only used with the following cipher suites:

• SSLv3.0/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0xFEFE)*

• TLSv1/SSL_RSA_FIPS_WITH_DES_CBC_SHA (0x0009) *

• TLSv1/SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA (0x0011)*

• TLSv1/SSL_DHE_DSS_WITH_DES_CBC_SHA (0x0012)*

• TLSv1/SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA (0x0014)*

• TLSv1/SSL_DHE_RSA_WITH_DES_CBC_SHA (0x0015)*

• TLSv1/SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA (0x0019)*

• TLSv1/SSL_DH_anon_WITH_DES_CBC_SHA (0x001A)*

• TLSv1/ SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA (0x0062)*

• TLSv1/SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA (0x0063)*

• SSLv3.0/SSL_RSA_FIPS_WITH_3DES_EDE_SHA (0xFEFF)

• TLSv1/SSL_RSA_FIPS_WITH_3DES_CBC_SHA (0x000A)

• TLSv1/ SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA (0x0013)

• TLSv1/SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA (0x0016)

• TLSv1/SSL_DH_anon_WITH_3DES_EDE_CBC_SHA (0x001B)

• TLSv1/ SSL_RSA_WITH_AES_128_CBC_SHA (0x002F)

• TLSv1/SSL_DHE_DSS_WITH_AES_128_CBC_SHA (0x0032)

• TLSv1/ SSL_DHE_RSA_WITH_AES_128_CBC_SHA (0x0033)

• TLSv1/SSL_DH_anon_DSS_WITH_AES_128_CBC_SHA (0x0034)

• TLSv1/ SSL_RSA_WITH_AES_256_CBC_SHA (0x0035)

© Copyright IBM Corp. 2004 Page 16 of 17

• TLSv1/ SSL_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)

• TLSv1/SSL_DHE_DSS_WITH_AES_256_CBC_SHA (0x0038)

• TLSv1/ SSL_DH_anon_DSS_WITH_AES_256_CBC_SHA (0x003A)

* Only to be used for backwards compatibility.

6.3 Tokens
All tokens used for storing private cryptographic keys should be password protected. The password
should follow generally accepted guidelines for password security. Please note that encryption of keys
using a password-based key generation is not FIPS 140-2 approved. For FIPS 140-2 purposes, these
values are considered to be in plaintext.

Tokens that are used to supply cryptographic services in addition to key storage are recommended to be
FIPS 140-2 Level 2 validated.

All soft tokens should be configured local to the computer.

6.4 Single User Guidelines
The following list provides some high-Level guidelines for configuring a UNIX system for single user. The
general idea is the same across all UNIX variants:

1. Remove all login accounts except "root" (the super user)

2. Disable NIS and other name services for users and groups

3. Turn off all remote login, remote command execution, and file transfer daemon

For other operating systems please refer to the appropriate manuals.

© Copyright IBM Corp. 2004 Page 17 of 17

7. Notices
MD2, MD5, RC2, RC4, RC5, RC6 and RSA are registered trademarks of RSA Security Inc.

IBM, the IBM logo, and AIX are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered Sun Microsystems, Inc. in
the United States, other countries, or both.

HP-UX is a registered trademark Hewlett-Packard Development Company.

AIX, Everyplace, z/OS, AS/400 and IBM are trademarks or registered trademarks of IBM Corporation in
the United States, other countries, or both.

Pentium and X-Scale are trademarks or registered trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a trademark of Red Hat, Inc.

SuSE is a registered trademark of SuSE AG.

Other company, product, and service names may be trademarks or service marks of others.

© 2004 International Business Machines Corporation. All rights reserved.

