

Page © Copyright IBM Corp. 2003

IBM Java JCE FIPS 140-2 Cryptographic Module

Security Policy

IBM JAVA JCE FIPS 140-2 Cryptographic
module

January 15, 2004

Revision: 1.1

 Status: Final

First Edition (October 2003)
This edition applies to the First Edition of the IBMJCEFIPS – Security Policy and to all subsequent versions until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003.
All rights reserved. This document may be freely reproduced and distributes in its entirety and without modification.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems in the US
and other countries

© Copyright IBM Corp. 2003 Page 2 of 22

© Copyright IBM Corp. 2003 Page 3 of 22

Table of Contents

Introduction..4
Operation of the Cryptographic Module ..5
Cryptographic Module Specification ...6
Cryptographic Module Interfaces...9
Cryptographic Module Services...9

Data Encryption/Decryption and Hashing (Digest) ..11
Key Generation..11
Key Security ...12

Cryptographic Module Roles ...14
Cryptographic Officer role ..14
Cryptographic User role ...14

Cryptographic Module Key Management..15
Key Generation ..15
Key Storage..15
Key Protection..15
Key Zeroization..16

Cryptographic Module Self-Tests ..16
User Guidance..17
Cryptographic Module Operating system environment ...18

Framework ...18
Single user access (operating system requirements) ..19
Java object model...20
Operating system restriction ..20

Mitigation of other attacks ...20
Notices ...21

© Copyright IBM Corp. 2003 Page 4 of 22

Introduction

The IBM® Java® JCE (Java Cryptographic Extension) FIPS provider
(IBMJCEFIPS) for Multi-platforms is a scalable, multi-purpose cryptographic
module that supports only FIPS approved cryptographic operations via the Java2
Application Programming Interfaces (APIs). The IBM Java JCE FIPS provider
(hereafter referred to as IBMJCEFIPS) comprises the following Federal
Information Processing Standards (FIPS) 140-2 [Level 1] compliant components:

• IBMJCEFIPS for Solaris®, Windows®, AIX®, z/OS®, AS/400®, Linux® (Red
Hat and SuSE®)

In order to meet the requirements set forth in the FIPS publication 140-2, the
encryption algorithms utilized by the IBMJCEFIPS provider are isolated into the
IBMJCEFIPS provider cryptographic module (hereafter referred to as
cryptographic module), which is accessed by the product code via the Java JCE
framework APIs. As the IBMJCEFIPS provider utilizes the cryptographic module
in an approved manner, the product complies with the FIPS 140-2 requirements
when properly configured.

This document focuses on the features and security policy provided by the
cryptographic module, and describes how the module is designed to meet FIPS
140-2 compliance.

© Copyright IBM Corp. 2003 Page 5 of 22

Operation of the Cryptographic Module

The cryptographic module must be utilized in a compliant manner, as described
herein, to maintain FIPS 140-2 compliance. It is the application and application
administrator’s responsibility to understand and deploy the proper configuration
for compliance.

The module is available as a software module on multiple platforms. The
platforms tested are outlined in the Cryptographic Module Specification section
of this document. The module must be used in one of the specified
environments.

An application utilizes the module through the interfaces specified in the
Cryptographic Module Interfaces section of this document. A list of the basic
services provided through these interfaces may be found in the Cryptographic
Module Services section of this document. A complete list of all services and
details on their usage can be found in the IBM Java JCE FIPS (IBMJCEFIPS)
Cryptographic Module API Javadoc.

The module provides for two operator roles:

• Crypto Officer

• User

There is no maintenance role in this cryptographic module.

An application must use the IBMJCEFIPS provider to enable the use of
appropriate cryptographic functions in a FIPS approved manner. The application
calling the IBMJCEFIPS provider must understand the roles of the APIs, Crypto
Officer vs User. The Cryptographic Module Roles section of this document
details the APIs that apply to each role. This cryptographic module contains only
FIPS compliant operations, there are no special actions needed or limited
cryptographic operations to instantiate FIPS mode.

The module can provide for protection of sensitive data, such as keys or
contexts. Information on key protection is outlined in the Cryptographic Module
Key Management section. When the module is initialized, it validates its own
integrity, and verifies the algorithms are functioning correctly. The Cryptographic
Module Self-Tests section details the internal tests performed by the module.

© Copyright IBM Corp. 2003 Page 6 of 22

The module’s physical security relies on the physical security of the computer.
Steps to deploy and maintain this secure environment are outlined in the User
Guidance section of this document.

Cryptographic Module Specification

The cryptographic module is a software module, implemented as a Java archive
(JAR). The software module is accessible from Java language programs through
an application program interface (API). Some of the available API functions are
listed below in the Cryptographic Module Services section. Usage guidelines and
details of the full API function set are available in the IBM Java JCE FIPS
(IBMJCEFIPS) Cryptographic Module API Javadoc.

The module is validated to the following FIPS 140-2 defined levels:

Overall Security Level 1
Cryptographic Module
Specification

Security Level 1

Cryptographic Module
Ports and Interfaces

Security Level 1

Roles, Services, and
Authentication

Security Level 1

Finite State Model Security Level 1
Physical Security Security Level 1
Operational
Environment

Security Level 1

Cryptographic Key
Management

Security Level 1

EMI/EMC Security Level 1
Self-Tests Security Level 1
Design Assurance Security Level 1
Mitigation of Other
Attacks

Security Level 1

© Copyright IBM Corp. 2003 Page 7 of 22

As outlined in section G.5 of the Implementation Guidance for FIPS 140-2, the
module maintains its compliance on other operating systems, provided:

• The GPC uses the specified single user operating system/mode specified
on the validation certificate, or another compatible single user operating
system, and

• The source code of the software cryptographic module does not require
modification prior to recompilation to allow porting to another compatible
single user operating system.

The IBMJCEFIPS provider was tested on a machine running Microsoft Windows
2000 Advanced Server with Service Pack 4 with JVM 1.4.1 and Microsoft
Windows 2000 with Service Pack 4 operating system with JVM 1.3.1 03. The
software module maintains compliance when running on the Microsoft Windows
95, Microsoft Windows 98, Microsoft Windows Me, Microsoft Windows NT,
Microsoft Windows 2000, and Microsoft Windows XP operating systems, as
well as, JVMs at the 1.4.x level on those operating systems.

The IBMJCEFIPS provider was tested on a machine running the AIX 5.2
operating system with JVM 1.3.1 and JVM 1.4.1. The software module maintains
compliance when running on other versions of AIX, as well as, JVMs at the
1.4.x level on those AIX versions.

The IBMJCEFIPS provider was tested on a machine running the Solaris 5.8
operating system with JVM 1.3.1 and JVM 1.4.1. The software module maintains
compliance when running on other UNIX based operating systems, such as HP-
UX, as well as, JVMs at the 1.4.x level on those operating systems.

The IBMJCEFIPS provider was tested on a machine running the Red Hat Linux
AS 2.1 operating system with JVM 1.4.1. The software module maintains
compliance when running on other Linux based operating systems, as well as,
JVMs at the 1.3.1 or 1.4.x level on those operating systems.

The IBMJCEFIPS provider was tested on a machine running the SuSE Linux
SLES 8.0 operating system with JVM 1.4.1. The software module maintains
compliance when running on other Linux based operating systems, as well as,
JVMs at the 1.3.1 or 1.4.x level on those operating systems.

The IBMJCEFIPS provider was tested on a machine running the z/OS R1V4
operating system with JVM 1.4.1. The software module maintains compliance
when running on other z/OS operating system releases, as well as, JVMs at the
1.3.1 or 1.4.x level on those operating system releases.

© Copyright IBM Corp. 2003 Page 8 of 22

The IBMJCEFIPS provider was tested on a machine running the IBM Operating
System/400 V5R2M0 operating system with JVM 1.4.1. The software module
maintains compliance when running on other IBM Operating System/400
operating system releases, as well as, JVMs at the 1.3.1 or 1.4.x level on those
operating system releases.

The module supports the following approved algorithms:

Type Algorithm Specification

Symmetric Cipher AES (ECB, CBC, OFB, CFB
and PCBC)

FIPS 197

 DES (ECB, CBC, OFB, CFB
and PCBC) – For legacy
systems only

Triple DES (ECB, CBC,
OFB, CFB and PCBC)

FIPS 46-3

Message Digest SHA1

HMAC-SHA1

FIPS 180-1

FIPS 198

Asymmetric
Cipher

RSA PKCS #1

Key Agreement Diffie-Hellman PKCS #3 (Allowed in
Approved mode)

Random Number
Generation

X 9.31 PRNG ANSI X 9.31 1998

 FIPS 186-2 Appendix 3.1 FIPS 186-2

Digital Signature DSA (512 - 1024) FIPS 186-2

Digital Signature RSA (512 – 2048) FIPS 186-2

In addition, the module supports the following non-approved algorithms:

Type Algorithm Specification

Random Number
Generation

Universal Software Based
Random Number Generator

Available upon request from
IBM. Patented by IBM, EC
Pat. No. EP1081591A2, U.S.
pat. Pend.

© Copyright IBM Corp. 2003 Page 9 of 22

Cryptographic Module Interfaces

The cryptographic physical boundary is defined at the perimeter of the computer
system enclosure on which the cryptographic module is to be executed, and
includes all the hardware components within the enclosure. The cryptographic
module interfaces with the Central Processing Unit (CPU) of the respective
platform. The RAM and hard disk found on the computer are memory devices
that store and execute the cryptographic module and its data.

The cryptographic module is classified as a “multi-chip standalone module” for
FIPS 140-2 purposes. Thus, the module’s physical interfaces consist of those
found as part of the computer’s hardware, such as the keyboard, mouse, disk
drive, CD drive, network adapters, serial and USB ports, monitor, speakers, etc.
The module’s logical interface is provided through the documented API.

Each of the FIPS 140-2 defined logical interfaces are implemented as follows:

• Data Input Interface – variables passed in with the API function calls

• Data Output Interface – variables passed back with the API function calls

• Control Input Interface – the API function calls exported from the module

• Status Output Interface – return values and error exceptions provided with
the API method calls

Cryptographic Module Services

The module services are accessible from Java language programs through an
Application Program Interface (API). The application will be required to call the
IBMJCEFIPS provider (as opposed to another JCE provider) through the normal
Java 2 mechanisms such as specifically adding the provider name to the
getInstance call as part of the instantiation of a cryptographic object or by placing
the IBMJCEFIPS provider higher in the provider list and allowing the JVM to
select the first provider that has the requested cryptographic capability. Usage
guidelines and details of the API function are available in the IBM Java JCE
FIPS (IBMJCEFIPS) Cryptographic Module API document.

The following is a high level description of the basic capabilities available in the
cryptographic module (all services are for the user role unless otherwise noted).

© Copyright IBM Corp. 2003 Page 10 of 22

This is intended to outline the basic services available in the cryptographic
module to allow a determination as to whether these services will adequately
address the security needs of an application. Usage guidelines and details of all
of the API functions are available in the IBM Java JCE FIPS (IBMJCEFIPS)
Cryptographic Module API document.

Self Test

This section describes some of the capabilities that are available as they relate
to the self test the cryptographic module performs to validate its own integrity
and to verify the algorithms are functionally correct.

Services Description

IsSelfTestInProgress Identifies if a self test is currently in progress.
Call is based on a SelfTest object returned
from the getSelfTest call.

GetSelfTestFailure Returns the exception associated with the self
test failure or null if no failure was encountered.
Call is based on a SelfTest object returned
from the getSelfTest call.

RunSelfTest Performs the known answer self tests. Call is
based on a SelfTest object returned from the
getSelfTest call. This is a Cryptographic
Officer role, call.

IsFipsRunnable Identifies if the crypto module is runnable, has
completed self test with no errors, and is in
“Ready” state. Call is based on a SelfTest
object returned from the getSelfTest call.

IsFipsCertified Identifies if the cryptographic module is FIPS
140-2 validated. Call is based on a provider
object.

GetFipsLevel Returns the FIPS 140-2 validation level of the
cryptographic module. Call is based on a
provider object.

GetSelfTest Returns a SelfTest object that can be used to
execute any of the SelfTest class methods.
Call is based on a provider object.

IsFipsApproved Identifies if the cryptographic operation is FIPS
140-2 validated. Call is based on a

© Copyright IBM Corp. 2003 Page 11 of 22

cryptographic object.

Data Encryption/Decryption and Hashing (Digest)
This section describes some of the capabilities that are available as they relate
to encryption/decryption (Cipher) of data and digesting or hashing
(MessageDigest) of data.

Services Description

getInstance

Cipher.getInstance

MessageDigest.getInstanc
e

Creates a cryptographic object
(Cipher/MessageDigest) for a selected
algorithm. Also used to select the
cryptographic provider to be used by that
object.

Cipher allows for DES, 3DES, and AES
algorithms with various cipher modes and
paddings. MessageDigest allows for SHA-1
hashing.

Init

Cipher.init

MessageDigest.init

Intitializes the cryptographic object for use.
This includes the mode (encryption or
decryption) and the cryptographic key. This
call is based on a cryptographic object.

Update

Cipher.update

MessageDigest.uipdate

Updates the cryptographic object with data to
be encrypted/decrypted. This call is based on
a cryptographic object.

doFinal

Cipher.doFinal

MessageDigest.doFinal

Updates the cryptographic object with data to
be encrypted/decrypted and returns the data in
encrypted or decrypted form (based on the
init). This call is based on a cryptographic
object

Key Generation
This section describes some of the capabilities that are available as they relate
to keys.

Services Descritption

© Copyright IBM Corp. 2003 Page 12 of 22

getInstance

KeyGenerator.getInstance

Creates a cryptographic object (KeyGenerator)
for a selected algorithm. Also used to select
the cryptographic provider to be used by that
object.

Init

Intitializes the cryptographic object for use.
This call is based on a cryptographic object.

GenerateKey Generates a cryptographic key. This call is
based on a cryptographic object.

Services Description

getInstance

KeyPairGenerator.getInsta
nce

Creates a cryptographic object
(KeyPairGenerator) for a selected algorithm.
Also used to select the cryptographic provider
to be used by that object.

initialize Intitializes the cryptographic object for use.
This call is based on a cryptographic object.

generateKeyPair Generates a cryptographic key pair. This call is
based on a cryptographic object.

Key Security
In accordance with the FIPS 140-2 standards this cryptographic module provides
the user of keys the ability to zero out the key information via a new API.

Service Description

(crypto key object).
zeroize

Zeros out the key(s) associated with a
cryptographic object. This call is based on a
cryptographic object.

Signature
This section describes some of the capabilities that are available as they relate
to signature generation and verification.

© Copyright IBM Corp. 2003 Page 13 of 22

Service Description

getInstance

Signature.getInstance

Creates a cryptographic object (Signature) for a
selected algorithm. Also used to select the
cryptographic provider to be used by that
object.

InitSign Intitializes the cryptographic object for use. This
includes the cryptographic private key. This
call is based on a cryptographic object.

Update Update a byte or byte array in the data to be
signed or verified. This call is based on a
cryptographic object.

Sign Get message digest for all the data thus far
updated, then sign the message digest. This
call is based on a cryptographic object.

InitVerify Intitializes the cryptographic object for use. This
includes the cryptographic public key. This call
is based on a cryptographic object.

verify Verify the signature (compare the result with
the message digest). This call is based on a
cryptographic object.

Secret Key Factory
This section describes some of the capabilities that are available as they relate
to symmetric keys.

Service Description

GetInstance Creates a cryptographic object
(SecretKeyFactory) for a selected algorithm.
Also used to select the cryptographic provider
to be used by that object.

GetKeySpec Returns a specification (key material) of the
given key in the requested format.

generateSecret Generates a SecretKey object from the
provided key specification (key material).

© Copyright IBM Corp. 2003 Page 14 of 22

KeyFactory
This section describes some of the capabilities that are available as they relate
to asymmetric keys.

GetInstance Creates a cryptographic object (KeyFactory) for
a selected algorithm. Also used to select the
cryptographic provider to be used by that object

GeneratePublic Generates a public key object from the
provided key specification (key material).

GeneratePrivate Generates a private key object from the
provided key specification (key material).

getKeySpec Returns a specification (key material) of the
given key object in the requested format.

Cryptographic Module Roles

The cryptographic module implements both a Crypto Officer and a User role,
meeting all FIPS 140-2 level 1 requirements for roles and services. A
Maintenance Role is not implemented.

Cryptographic Officer role

The Crypto Officer role has responsibility for initiating on-demand self test
diagnostics. This is accomplished through the runSelfTest API call described in
the IBMJCEFIPS provider Cryptographic Module API document.

Cryptographic User role

The User role has the responsibility for operating cryptographic functions on
data.

User guidance information is available in the IBMJCEFIPS provider
Cryptographic Module API document.

There is no maintenance role.

© Copyright IBM Corp. 2003 Page 15 of 22

Only one role is implicitly active in the module at a time.

Cryptographic Module Key Management
The module supports the use of the following cryptographic keys: Diffie-Hellman
public/private keys, DES, Triple DES, AES, RSA public/private keys, DSA
public/private keys, and HMAC SHA1.

Operators of the module have full access to key material. These keys are
accessed by calling the various cryptographic services specified in the
IBMJCEFIPS provider Cryptographic Module API document.

Key Generation

Symmetric keys are generated using the X9.31 pseudo random-number
generation algorithm.

DSA parameters, along with public and private keys are generated using the
random number algorithms as defined in FIPS 186-2. DSA and RSA key pairs
are generated as defined in FIPS 186-2.

IBM has invented a scheme to generate randomness on a wide range of
computer systems. The patented scheme, called the Universal Software Based
True Random Number Generator, utilizes random events influenced by
concurrent activities in the system (e.g. interrupts, process scheduling, etc). The
run time of the algorithm will vary depending of the state of the system at the
time of seed generation, and will be dependent on the type of system. The
Universal Software Based True Random Number Generator is used to create a
random seed value that is used in the PRNG algorithms.

Key Storage
We do not support key storage within the IBMJCEFIPS cryptographic module.

Key Protection

The management and allocation of memory is the responsibility of the operating
system. It is assumed that a unique process space is allocated for each request,

© Copyright IBM Corp. 2003 Page 16 of 22

and that the operating system and the underlying central processing unit (CPU)
hardware control access to that space.

Each instance of the cryptographic module is self-contained within a process
space. Only one instance of the module is available in each process space. All
keys are associated with the User role.

Key Zeroization

All cryptographic keys and contexts are zeroized when an operator:

• Disposes of a key using the zeroize API call for that key object.

• When Java garbage collection is performed for an object no longer
referenced, as part of the objects finalize method.

• Powers off the module by unloading it from memory

Cryptographic Module Self-Tests

When an application references the cryptographic module within the JVM in its
process space, an initialization routine is called by the JVM before control is
handed to the application. This initialization route automatically executes the
power up tests to ensure correct operation of the cryptographic algorithms.

The integrity of the module is verified by performing a HMAC validation of the
cryptographic module’s classes contained in the module’s jar file. The
initialization route will only succeed if the HMAC is valid.

Self-tests include known answer tests for the RSA, Diffie-Hellman, SHA1, DES,
Triple DES, AES, RSA, DSA, HMAC SHA1 cryptographic algorithms and pseudo
random number generation. Should any self-test fail, the module transitions to
the Error state.

Additionally, conditional tests are performed when symmetric or asymmetric keys
are generated. These tests include a continuous random number generator test
and pair-wise consistency tests of the generated DSA and RSA keys.

These self tests can also be run on demand by the cryptographic officer via the
runSelfTest method.

© Copyright IBM Corp. 2003 Page 17 of 22

User Guidance

Programming practices

This section contains guidance for application programmers to avoid practices
that could potentially compromise the secure use of this cryptographic module.

• Zeroize - the zeroize method should be used when a cryptographic key
object is no longer needed to remove the key from memory. While normal
Java garbage collection will zeroize the key from memory as part of the
object finalizer method it is a safer coding practice to explicitly call the
zeroize method when an application is finished with a key object.

• Statics – To ensure that each cryptographic object is unique and
accessible only by the individual user it is important not to use static
objects, as all users of the JVM share these objects.

As the Java architecture creates objects that are unique to the application
and this allows for “single” user access to the cryptographic operations
and data it is recommended that an application not create static objects.
Static objects are shared in the Java architecture and the creation of a
static object would be counter to the unique object method of controlling
access and data.

• An application that wishes to use FIPS validated cryptography must use
the IBM Secure random algorithm associated with the IBMJCEFIPS
provider for the source of random data needed by some algorithms.

• RSA Cryptographic Cipher may only be used to Encrypt and Decrypt keys
for transport to stay within the boundaries of the Approved Mode of FIPS
140-2 Level 1.

• One way to help alleviate performance problems is by creating a single
source of randomness (IBMSecureRandom) and using that object when
ever possible.

Installation and Security rules for using IBMJCEFIPS

This section contains guidance for the installation and use of the FIPS 140-2
level 1 cryptographic module.

© Copyright IBM Corp. 2003 Page 18 of 22

The IBMJCEFIPS provider jar file must be accessible via the Java CLASSPATH
and should be installed in the directory lib/ext as this is a secure location and is
also automatically available via the JVM without a CLASSPATH update.

The application will be required to call the IBMJCEFIPS provider (as opposed to
another JCE provider) through the normal Java 2 mechanisms such as
specifically adding the provider name to the getInstance call as part of the
instantiation of a cryptographic object or by placing the IBMJCEFIPS provider
higher in the provider list and allowing the JVM to select the first provider that
has the requested cryptographic capability.

Cryptographic Module Operating system environment

Framework
The cryptographic module is dependant on the operating system environment
being set up in accordance with FIPS 140-2 specifications. For this
cryptographic provider a valid commercial grade installation of a Java SDK 1.3.1
or higher JVM must be available.

A valid commercial grade installation of a Java SDK 1.3.1 or higher JVM that
includes the Java Cryptographic Extension framework (Version 1.2.1) is required.
(Please note that a JVM at 1.4.0 or higher already contains the JCE framework).
In addition to the SDK and the JCE framework the IBMJCEFIPS provider is
required.

The following is a brief overview of the JCE framework (A more detailed
explanation of this framework is available at
(http://java.sun.com/products/jce/doc/guide/HowToImplAProvider.html#MutualAu
th)

In order to prevent unauthorized providers from plugging into the JCE 1.2.1
framework (herein referred to as "JCE 1.2.1"), and to assure authorized
providers of the integrity and authenticity of the JCE 1.2.1 that they plug into,
JCE 1.2.1 and its providers will engage in mutual authentication. Only providers
that have authenticated JCE 1.2.1, and who in turn have been authenticated by
JCE 1.2.1, will become usable in the JCE 1.2.1 environment. For more
information about this, please see the above web page.

© Copyright IBM Corp. 2003 Page 19 of 22

In addition, each provider does do self-integrity checking to ensure that the JAR
file containing its code has not been tampered with. The JCE 1.2.1 framework is
digitally signed. Providers that provide implementations for JCE 1.2.1 services
must also be digitally signed. Authentication includes verification of those
signatures and ensuring the signatures were generated by trusted entities.
Certain Certificate Authorities are deemed to be "trusted" and any code signed
using a certificate that can be traced up a certificate chain to a certificate for one
of the trusted Certificate Authorities are considered trusted. Both JCE 1.2.1 and
provider packages do embed within themselves the bytes for the certificates for
the relevant trusted Certificate Authorities. At runtime, the embedded certificates
will be used in determining whether or not code is authentic. Currently, there are
two trusted Certification Authorities: Sun Microsystems' JCE Code Signing CA,
and IBM JCE Code Signing CA.

In order to insure that an application is using the FIPS validated cryptographic
module, the application is required to call the IBMJCEFIPS provider (as opposed
to another JCE provider) through the normal Java 2 mechanisms such as
specifically adding the provider name to the getInstance call as part of the
instantiation of a cryptographic object or by placing the IBMJCEFIPS provider
higher in the provider list and allowing the JVM to select the first provider that
has the requested cryptographic capability.

Single user access (operating system requirements)
This cryptographic module adheres to the FIPS 140-2 level 1 requirement that
the operating system must be restricted to a single operator mode (concurrent
operators are explicitly excluded). The following explains how to configure a
Unix system for single user. The general idea is the same across all Unix
variants:

o Remove all login accounts except "root" (the superuser).
o Disable NIS and other name services for users and groups.
o Turn off all remote login, remote command execution, and file transfer

daemons.

The Windows Operating Systems can be configured in single user mode by
disabling all user accounts except the administrator. This can be done through
the Computer Management window of the operating system. Additionally, the
operating system must be configured to operate securely and to prevent remote
login. This is accomplished by disabling all services (within the Administrative
tools) that provide remote access (e.g. – ftp, telnet, ssh, and server) and
disallowing multiple operators to log in at once.

© Copyright IBM Corp. 2003 Page 20 of 22

Java object model
The use of Java objects within the cryptographic module. In Java each
cryptographic object is unique. Thus when an application generates a
cryptographic object for use that object is unique to that instance of the
application. In this regard other processes have no access to that object and
can therefore not interrupt or gain access to the information or activities
contained within that object. In this way the cryptographic module protects the
single users control of the cryptographic activities and data.
Further as the Self Test class is a Java static object there can be only one
instance of that class in the JVM and that instance controls the Self Test
activities. In other words if the Self Test fails, then no cryptographic objects for
the IBMJCEFIPS provider in the JVM will be operational as the cryptographic
module would be in “Error” state.

As the Java architecture creates objects that are unique to the application and
this allows for “single” user access to the cryptographic operations and data. It is
recommended that an application not create static objects. Static objects are
shared in the Java architecture and the creation of a static object would be
counter to the unique object method of controlling access and data.

Operating system restriction
The operation of the cryptographic module is assumed to be in single user mode
in that only one user is on the system at any point in time.

Mitigation of other attacks

The IBMJCEFIPS provider has been obfuscated. Code obfuscation is provided
by the commercial product KlassMaster. This level of optimized code makes it
difficult to decompile and reuse the derived source code. IBM's test with popular
de-compilers (e.g. Jasmine) has shown that de-compiled IBMJCEFIPS code for
Java code cannot be compiled and used without extensive alteration

No other mitigation of other attacks is provided.

© Copyright IBM Corp. 2003 Page 21 of 22

References

[1] National Institute of Standards and Technology. May 2001. Security
Requirements for Cryptographic Modules. Federal Information Processing
Standards Publication 140-2.

[2] National Institute of Standards and Technology. November 2001. AES Key
Wrap Specification. Internet. 22 April 2002.
http://csrc.nist.gov/encryption/kms/key-wrap.pdf

Notices

Java is a registered trademark of SUN. Inc.

AIX, z/OS, AS/400 and IBM are trademarks or registered trademarks of IBM
Corporation in the United States, other countries, or both.

HP-UX is a registered trademark Hewlet Packard, Inc

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a trademark of Red Hat, Inc.

SuSE is a registered trademark of SuSE AG

Other company, product, and service names may be trademarks or service
marks of others.

© Copyright IBM Corp. 2003 Page 22 of 22

© 2003 International Business Machines Corporation. All rights reserved. This
document may be freely reproduced and distributed in its entirety and without
modification.

