
The nShield modules security policy
nShield F2 PCI, nShield F2 PCI Ultrasign



Date: 16 January 2004

Version: 1.2.40

© Copyright 2004 nCipher Corporation Limited, Cambridge, United Kingdom.

Reproduction is authorised provided the document is copied in its entirety without modification and 
including this copyright notice.

nCipher™, nForce™, nShield™, nCore™, KeySafe™, CipherTools™, CodeSafe™, SEE™ and the SEE 
logo are trademarks of nCipher Corporation Limited.

nFast® and the nCipher logo are registered trademarks of nCipher Corporation Limited.
All other trademarks are the property of the respective trademark holders.

nCipher Corporation Limited makes no warranty of any kind with regard to this information, including, 
but not limited to, the implied warranties of merchantability and fitness to a particular purpose. nCipher 
Corporation Limited shall not be liable for errors contained herein or for incidental or consequential 
damages concerned with the furnishing, performance or use of this material. 

Patents

UK Patent GB9714757.3. Corresponding patents/applications in USA, Canada, South Africa, Japan and 
International Patent Application PCT/GB98/00142.

nCipher 



Contents
Chapter 1: Purpose 1

Roles 3

Services available to each role 4

Keys 16

Rules 21

Physical security 26

Strength of functions 27

Algorithms 28
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 i



Chapter 1: Purpose
The nShield Hardware Security Modules are multi-tasking hardware modules that are optimized for 
performing modular arithmetic on very large integers. The nShield F2 PCI, nShield F2 PCI Ultrasign also 
offer a complete set of key management protocols.

The nShield modules: nShield F2 PCI, nShield F2 PCI Ultrasign are FIPS 140-2 level 2 embedded 
devices. The units are identical in operation and only vary in the processing speed.

The module runs firmware provided by nCipher. There is the facility for the user to upgrade this 
firmware. In order to determine that the module is running the correct version of firmware they should 
use the NewEnquiry service which reports the version of firmware currently loaded. The validated 
firmware versions are 2.0.0, 2.0.2, 2.0.4 and 2.0.5.

The module can be initialized to comply with the roles and services section at either level 2, role based 
authorization, or level 3, identity based authorization. See “To comply with FIPS 140-2 level 3 roles and 
services and key management” on page 22. The initialization parameters are reported by the NewEnquiry 
and SignModuleState services. A user can determine which mode the module is operating in using the 
KeySafe GUI or the command line utilities supplied with the module, or their own code - these operate 
outside the security boundary.

The module offers some general services that do not involve stored keys and are therefore excluded from 
FIPS 140-2. While the module is executing these services or SEE code it is operating in a non-FIPS 140-2 
mode. When it is executing any of the FIPS 140-2 services using one of the FIPS approved algorithms, 
the module is operation in a FIPS 140-2 approved mode, See “Cryptographic services” on page 5. 

The nShield modules connects to the host computer via a PCI bus. The nShield modules must be accessed 
by a custom written application. Full documentation for the nCipher API can be downloaded from the 
nCipher web site: http://www.ncipher.com.

The nShield modules stores keys on the hard disk of the host computer in encrypted form called key 
blobs.

Unit ID Model Number Format

RT
C

N
V

R
A

M SEE

Potting

EM
C

 C
lass

FIPS 140-2 
overall level

nShield F2 PCI nC4022P-150 embedded Yes Optional Yes A 2

nShield Ultrasign F2 PCI nC4022P-300 embedded Yes Optional Yes A 2

nShield Ultrasign 32 PCI nC4122P-300 embedded Yes Optional Yes A 2

payShield nC4122P-300 embedded Yes Yes Yes A 2

nShield modules have on-board non-volatile memory. There are new services that enable memory to be 
allocated as files. Files have Access Control Lists (ACLs,) an ACL can be applied to specific bytes within 
a file. This enables specific bytes to be used for different purposes. nShield modules have on-board Real-
time clock. There are new services to set and read the clock.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 1

http://www.ncipher.com


nCipher 
The nShield modules can be connected to a computer running one of the following operating systems:

• Windows NT 4.0 for Intel

• Windows 2000

• Solaris

• HP-UX

• AIX

• Linux x86

• FreeBSD x86

Windows NT was used for the validation.

nShield modules include a technology called, the Secure Execution Engine (SEE). This users to load a 
SEE machine. A SEE machine is user written code that implements a specific Software Interrupt 
interface. This enables users to extend the nCipher API by writing new algorithms or by implementing 
policy enforcing code on the module. 

The SEE functionality is feature enabled, in order to use this functionality a customer must purchase a 
licence from nCipher.

SEE code is executed in a protected environment. The SEE machine can only access objects stored on 
the module via the nCipher API. Before a user can send commands to the SEE machine they must create 
an instance called a SEE World. Each SEE World is treated as a separate user by the module. The services 
to load a SEE machine and to submit jobs to it and the interface between the nCipher core and the SEE 
machine are included in the validation. However, the SEE machine itself is excluded from the FIPS 140-2 
validation, as this is to be supplied by the user. 
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 2



nCipher Roles
Roles

The nShield modules defines the following roles:

User

All users initially connect to the nShield modules in the User role. In this role the user can load previously 
created tokens and use these to load keys from key blobs. Once they have loaded a key they can then use 
it to perform cryptographic operations as defined by the Access Control List (ACL) stored with the key. 

Each key blob contains an ACL that determines what services can be performed on that key. This ACL 
can require a certificate from a Security Officer authorizing the action. Some actions including writing 
tokens always require a certificate.

nCipher Security Officer

The nCipher Security Officer (NSO) is responsible for overall security of the module.

The nCipher Security Officer is identified by a key pair, referred to as KNSO. The hash of the public half 
of this key is stored when the unit is initialized. Any operation involving a module key or writing a token 
requires a certificate signed by KNSO.

The nCipher Security Officer is responsible for creating the authentication tokens (smart cards) for each 
user and ensuring that these tokens are physically handed to the correct person.

A user assumes the role of NSO by loading the private half of KNSO and presenting the KeyID for this 
key to authorize a command.

Junior Security Officer

Where the nCipher Security Officer want to delegate responsibility for authorizing an action they can 
create a key pair and give this to their delegate who becomes a Junior Security Officer (JSO). An ACL 
can then refer to this key, and the JSO is then empowered to sign the certificate authorizing the action. 
The JSO’s keys should be stored on a key blob protected by a token that is not used for any other purpose.

In order to assume the role of JSO the user loads the JSO key and presents the KeyID of this key, and if 
required the certificate singed by KNSO that delegates authority to the key, to authorize a command.

A JSO can delegate portions of their authority to a new user in the same way. The new user will be a JSO 
if they have authority they can delegate, otherwise they will be a user.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 3



nCipher Services available to each role
Services available to each role

For more information on each of these services refer to the nCipher Developer’s Guide and nCipher 
Developer’s Reference.

Non Cryptographic services

Status information

The status of the module is also indicated by the LED on the rear panel. 

Self Test

The module self tests be initiated by clearing the module: either by pressing the Clear button on the rear 
panel, or by submitting the ClearUnit command.

Module state

The following services change the module state.

• Fail
A test service that causes the module to fail.

• Clear unit
Clears the module - equivalent to pressing the clear button.

Note The nCipher server will only issue these commands if the user is connected with Administrator privileges.

Firmware Upgrade

It is possible to upgrade the firmware in the nShield modules. The module will only accept new firmware 
that has been signed by nCipher, using the Firmware Integrity Key and encrypted by the Firmware 
Confidentiality Keys. The monitor also checks that the VSN of the firmware is as high or higher than the 
VSN of the firmware currently installed.

Note The module will only be operating in a FIPS approved mode if you install firmware that has been validated by 
NIST/CSE. Users who require FIPS validation should only upgrade firmware after NIST/CSE issue a new certificate.

The module must be in the Pre-Monitor state. The user uses the LoadROM utility which issues the correct 
commands to load the new firmware. 
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 4



nCipher Services available to each role
The following commands/services are only ever issued by the LoadROM utility: 

• Maintenence

• ProgrammingBegin

• ProgrammingBeginChunk

• ProgrammingLoadBlock

• ProgrammingEndChunk

• ProgrammingEnd

Cryptographic services

The following services provide user authentication or cryptographic functionality. The functions 
available depend on whether the user is in the unauthorized role, an authorized user including junior 
security officer (JSO), or the nCipher Security Officer (NSO):

For each operation it lists the supported algorithms:

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO

Bignum 
Operation

yes Yes Yes
Performs simple mathematical operations.

No access to keys or CSPs

Change Share 
PIN

-
pass 
phrase

pass 
phrase

Updates the pass phrase used to encrypt a token share. The 
pass phrase supplied by the user is not used directly, it is first 
hashed and then combined with the module key. To achieve this 
the command decrypts the existing share using the old share 
key derived from old pass phrase, module key and smart card 
identity. It then derives a new share key based on new pass 
phrase, module key and smart card identity, erases old share 
from smart card and writes a new share encrypted under the 
new share key.

Sets the pass phrase for a share, uses module key, uses share key, 
uses module key, creates share key, uses new share key, exports 
encrypted share, erases old share

Channel Open -
handle, 
ACL

handle, 
ACL

Opens a communication channel which can be used for bulk 
encryption or decryption.

Uses a key object

AES, DES, Triple DES, Arc Four, Blowfish, CAST 5, CAST 6, 
Serpent, SEED, Twofish
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 5



nCipher Services available to each role
Channel Update - handle handle

Performs encryption/decryption on a previously opened 
channel. The operation and key are specified in ChannelOpen

Uses a key object

AES, DES, Triple DES, Arc Four, Blowfish, CAST 5, CAST 6, 
Serpent, SEED, Twofish

Create Buffer -
cert
[handle]

cert
[handle]

Allocates an area of memory to load data. If the data is 
encrypted, this service specifies the encryption key and IV 
used. This service is feature enabled. The decrypt operation is 
performed by LoadBuffer

Uses a key object

Create SEE 
World

-
handle 
cert

handle 
cert

Creates a SEE World, passing in the initialization data stored in 
a buffer. This command checks the DSA signatures on the 
buffer using the public key provided. It also specifies whether 
debugging is allowed or not. Enabling debugging requires a 
certificate from the nCipher Security Officer.

No access to keys or CSPs

Decrypt -
handle, 
ACL

handle, 
ACL

Decrypts a cipher text with a stored key returning the plain 
text.

Uses a key object

AES, DES, Triple DES, Arc Four, Blowfish, CAST 5, CAST 6, 
Serpent, SEED, Twofish, Diffie-Helman, RSA, El Gamal, KCDSA

Derive Key -
handle, 
ACL

handle, 
ACL

Creates a new key object from a variable number of other keys 
already stored on the module and returns a handle for the new 
key. This service can be used to split, or combine, encryption 
keys.

Uses a key object, create a new key object

AES, DES, Triple DES, PKCS #8, SSL key derivation, XOR 
CAST 5, CAST 6, Blowfish, Arc Four, Serpent, SEED, Twofish

Destroy - handle handle

Removes an object, if an object has multiple handles as a result 
of RedeemTicket service, this removes the current handle.

Erases a Impath, SEEWorld, logical token, or any key object.

Duplicate -
handle, 
ACL

handle, 
ACL

Creates a second instance of a key object with the same ACL 
and returns a handle to the new instance. 

Creates a new key object

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 6



nCipher Services available to each role
Encrypt -
handle, 
ACL

handle, 
ACL

Encrypts a plain text with a stored key returning the cipher 
text. 

Uses a key object

AES, DES, Triple DES, Arc Four, Blowfish, CAST 5, CAST 6, 
Serpent, SEED, Twofish, RSA, El Gamal, KCDSA

EraseFile
level 2 
only 

cert yes

Removes a file, but not a logical token, from a smart card or 
software token. 

No access to keys or CSPs

Erase Share
level 2 
only 

cert yes
Removes a share from a smart card or software token.

Erases a share

Existing Client yes yes yes
Starts a new connection as an existing client.

No access to keys or CSPs

Export -
handle, 
ACL

handle, 
ACL

Exports a key in plain text. If the unit has been initialized to 
comply with FIPS 140-2 level 3 roles and services and key 
management, this service is only available for public keys.

Exports a [public] key object.

Any key type

Feature Enable - cert cert

Enables a service.
This requires a certificate signed by the nCipher Master 
Feature Enable key. 

Uses the public half of the nCipher Master Feature Enable Key

Firmware 
Authenticate

yes yes yes

Performs a zero knowledge challenge response protocol based 
on HMAC that enables a user to ensure that the firmware in 
the module matches the firmware supplied by nCipher. 
The protocol generates a random value to use as the HMAC 
key.

No access to keys or CSPs

Foreign Token 
Command

- handle handle

Sends an ISO-7816 command to a smart card over the channel 
opened by ForeignTokenOpen.

No access to keys or CSPs

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 7



nCipher Services available to each role
Foreign Token 
Open

- FE, cert FE

Opens a channel to foreign smart card that accepts ISO-7816 
commands. This service cannot be used if the smart card has 
been formatted using FormatToken. The channel is closed 
when the card is removed from the reader, or if the handle is 
destroyed. This service is feature enabled.

No access to keys or CSPs

FormatToken
level 2 
only

cert yes
Formats a smart card or software token ready for use.

May use a module key to create challenge response value

Generate Key
level 2 
only

cert yes

Generates a symmetric key of a given type with a specified ACL 
and returns a handle. Optionally returns a certificate containing 
the ACL.

Creates a new symmetric key object. Sets the ACL and Application 
data for that object. Optionally uses module signing key and 
exports the key generation certificate

AES, DES, Triple DES, Arc Four, Blowfish, CAST 5, CAST 6, 
Serpent, SEED, Twofish

Generate Key 
Pair

level 2 
only

cert yes

Generates a key pair of a given type with specified ACLs for 
each half or the pair. Performs a pair wise consistency check on 
the key pair. Returns two key handles. Optionally returns 
certificates containing the ACL.

Creates two new key objects Sets the ACL and Application data for 
those objects. Optionally uses module signing key and exports two 
key generation certificates.

RSA, El Gamal, KCDSA, DSA

Generate KLF - FE FE

Generates a new long term key. 

Erases the module long term key, creates new module long term 
key

Generate Logical 
Token

level 2 
only

cert yes

Creates a new logical token, which can then be written as 
shares to smart cards or software tokens

Uses module key, Creates a logical token

Get ACL -
handle, 
ACL

handle, 
ACL

Returns the ACL for a given handle.

Exports the ACL for a key object

Get Application 
Data

-
handle, 
ACL

handle, 
ACL

Returns the application information stored with a key.

Exports the application data of a key object

Get Challenge yes yes yes
Returns a random nonce that can be used in certificates

No access to keys or CSPs

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 8



nCipher Services available to each role
Get Key Info - handle handle
Superseded by GetKeyInfoEx retained for compatability.

Exports the SHA-1 hash of a key object

Get Key Info 
Extended

- handle handle
Returns the hash of a key for use in ACLs

Exports the SHA-1 hash of a key object

Get Logical 
Token Info

- handle handle

Superseded by GetLogicalTokenInfoEx retained for 
compatability.

Exports the SHA-1 hash of a logical token

Get Logical 
Token Info 
Extended

- handle handle

Returns the token hash and number of shares for a logical 
token

Exports the SHA-1 hash of a logical token

Get Module 
Signing Key

yes yes yes

Returns the public half of the module’s signing key. This can be 
used to verify certificates signed with this key.

Exports the public half of the module’s signing key

Get Module 
Long Term Key

yes yes yes

Returns a handle to the public half of the module’s signing key. 
this can be used to verify key generation certificates and to 
authenticate inter module paths.

Exports the public half of the module’s long term key

Get RTC yes yes yes
Returns the time according to the on-board real-time clock

No access to keys or CSPs

Get Share ACL yes yes yes
Returns the access control list for a share

Exports the ACL for a token share on a smart card

GetSlot Info yes yes yes

Returns status of the physical token in a slot. Enables a user to 
determine if the correct token is present before issuing a 
ReadShare command. If the token is formatted with a challenge 
response key, performs the protocol.

May use a module key 

Get Slot List yes yes yes
Returns the list of slots available from this module.

No access to keys or CSPs

GetTicket - handle handle

Gets a ticket - an invariant identifier - for a key. This can be 
passed to another client or to a SEE World which can redeem 
it using RedeemTicket to obtain a new halndle to the object,

Uses a key object, logical token, Impath, SEEWorld

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 9



nCipher Services available to each role
Hash yes yes yes

Hashes a value, see “Strength of functions” on page 25 for a list 
of supported algorithms.

No access to keys or CSPs

HSA-160, MD2, MD5, RIPEMD 160, SHA-1, SHA-256, SHA-
384, SHA-512

Impath Get Info - handle handle
Returns status information about an impath

Uses an Impath, exports status information

Impath Key 
Exchange Begin

yes yes yes

Creates a new inter-module path and returns the key exchange 
parameters to send to the peer module. This service is feature 
enabled. 

Creates a set of Impath keys

Impath Key 
Exchange Finish

- handle handle

Completes an impath key exchange. Require the key exchange 
parameters from the remote module. 

Creates a set of Impath keys

Impath Receive - handle handle
Decrypts data with the Impath decryption key. 

Uses an Impath key

Impath Send - handle handle
Encrypts data with the impath encryption key. 
Uses an Impath key

Import
level 2 
only

cert yes

Loads a key and ACL from the host and returns a handle. 
Imports a key in plain text. If the unit has been initialized to 
comply with FIPS 140-2 level 3 roles and services and key 
management, this service is only available for public keys.

Creates a new key object, sets the key value, ACL and App data.

Any key type 

Load Blob - handle handle

Loads a key that has been stored in a key blob. The user must 
first have loaded the token or key used to encrypt the blob.

Uses module key, logical token, or archiving key, creates a new key 
object

Load Buffer - handle handle

Loads signed data into a buffer. Several load buffer commands 
may be required to load all the data, in which case it is the 
responsibility of the client program to ensure they are supplied 
in the correct order.
Requires the handle of a buffer created by CreateBuffer

No access to keys or CSPs

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 10



nCipher Services available to each role
Load Logical 
Token

yes yes yes

Allocates space for a new logical token - the individual shares 
can then be assembled using ReadShare or ReceiveShare. Once 
assembeld the token can be used in LoadBlob or MakeBlob 
commands

Uses module key

Make Blob -
handle, 
ACL

handle, 
ACL

Creates a key blob containing the key and returns it. The key 
object to be exported may be any algorithm.

Uses module key, logical token or archiving key, exports encrypted 
key object

Mod Exp yes yes yes

Performs a modular expoentiation on values supplied with the 
command.

No access to keys or CSPs

Mod Exp CRT yes yes yes

Performs a modular expoentiation on values, supplied with the 
command using Chinese Remainder Theorem.

No access to keys or CSPs

Module Info yes yes yes

Returns low level status information about the module. This 
service is designed for use in nCipher’s test routines.

No access to keys or CSPs

NewClient yes yes yes
Returns a client id.

No access to keys or CSPs

New Enquiry yes yes yes
Returns status information

No access to keys or CSPs

No Operation yes yes yes

Does nothing, can be used to determine that the module is 
responding to commands.

No access to keys or CSPs

NVMem 
Allocate

- cert yes

Allocates an area of non-volatile memory as a file and sets the 
ACLs for this file.

No access to keys or CSPs

NVMem Free - cert yes
Frees a file stored in non-volatile memory.

No access to keys or CSPs

NVMem List yes yes yes
Lists a list of files stored in the non-volatile memory

No access to keys or CSPs

NVMem 
Operation

- cert ACL

Performs an operation on a file stored in non-volatile memory. 
Operations include: read, write, increment, decrement, etc.

No access to keys or CSPs

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 11



nCipher Services available to each role
Pause For 
Notifications

yes yes yes

This service enables the module to send status information to 
the nCipher server. The command is automatically submitted 
by the server.

No access to keys or CSPs

Random 
Number

yes yes yes

Generates a random number for use in a application using the 
on-board random number generator.

Note There are separate services for generating keys. 

The Random Number services are designed to enable an 
application to access the random number source for its own 
purposes - for example an on-line casino may use 
GenerateRandom to drive its applications.

No access to keys or CSPs

Random Prime yes yes yes

Generates a random prime. This uses the same mechanism as 
is used for DSA, RSA and Diffie-Helman key generation. 

No access to keys or CSPs

Read File - cert yes

Reads a file, but not a logical token, from a smart card or 
software token. 

No access to keys or CSPs

Read Share yes yes yes

Reads a share from a physical token. Once sufficient shares 
have been loaded recreates token- may require several 
ReadShare or ReceiveShare commands.

Uses pass phrase, module key, creates share key, uses share key, 
creates a logical token 

Receive Share -
handle, 
encrypted 
share

handle, 
encrypted 
share

Takes a share encrypted with SendShare and a pass phrase and 
uses them to recreate the logical token. - may require several 
ReadShare or ReceiveShare commands

Uses an Impath key, uses pass phrase, module key, creates share 
key, uses share key, creates a logical token 

Redeem Ticket ticket ticket ticket

Gets a handle in the current name space for the object referred 
to by a ticket created by GetTicket. 

Uses a key object, logical token, Impath, or SEEWorld

Remove KM - cert yes
Removes a loaded module key.

Erases a module key

SEE Job - cert yes
Sends a command to a SEE World.

No access to keys or CSPs

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 12



nCipher Services available to each role
Set ACL -
handle, 
ACL

handle, 
ACL

Sets the ACL for an existing key. The existing ACL for the key 
must allow the operation.

Sets the Access Control List for a key object

Set Application 
Data

-
handle, 
ACL

handle, 
ACL

Stores information with a key.

Sets the application data stored with a key object

Set KM - cert yes
Loads a Triple DES key object as a module key.

Uses a key object, sets a module key

Set KNSO init init -

Superseded by SetNSOPerm. Although this command can still 
be used it cannot authorize recently added services added.

Sets the nCipher Security officer’s key hash

Set NSO Perm init init -

Loads a key hash as the nCipher Security Officer’s Key and sets 
the security policy to be followed by the module. This can only 
be performed while the unit is in the initialisation state.

Sets the nCipher Security officer’s key hash

Set RTC - cert yes
Sets the real-time clock.

No access to keys or CSPs

Set SEE Machine -
cert
handle

handle

Loads the contents of a buffer (created by CreateBuffer / 
LoadBuffer) as the SEE machine for this module. This command 
checks the signatures on the buffer. 

Uses a public key provided in buffer

DSA, DES MAC, Triple DES MAC, HMAC

Sign -
handle, 
ACL

handle, 
ACL

Returns the digital signature or MAC of plain text using a 
stored key. See “Strength of functions” on page 27 for a list of 
supported algorithms.

Uses a key object

RSA, DSA, DES MAC, Triple DES MAC, HMAC

Sign Module 
State

-
handle, 
ACL

handle, 
ACL

Signs a certificate describing the modules security policy, as set 
by SetNSOPerm

Uses the module signing key

Send Share -
handle, 
ACL

handle, 
ACL

Reads a logical token share and encrypts it under an impath key 
for transfer to another module where it can be loaded using 
ReceiveShare

Uses an Impath key, exports encrypted share.

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 13



nCipher Services available to each role
Statistics 
Enumerate Tree

yes yes yes
Lists the statistics available.

No access to keys or CSPs

Statistic Get 
Value

yes yes yes
Returns a particular statistic.

No access to keys or CSPs

Trace SEE World - cert yes
Reads debugging output from a SEE World.

No access to keys or CSPs

Verify -
handle, 
ACL

handle, 
ACL

Verifies a digital signature using a stored key. See “Strength of 
functions” on page 27 for a list of supported algorithms.

Uses a key object

RSA, DSA, DES MAC, Triple DES MAC, HMAC

Write File - cert yes

Writes a file, but not a logical token, to a smart card or 
software token. 

No access to keys or CSPs

Write Share -
cert
handle

handle

Writes a new share to a smart card or software token. The 
number of shares that can be created is specified when the 
token is created. All shares must be written before the token is 
destroyed.

Sets pass phrase, uses module key, creates share, uses pass 
phrase and module key, creates share key, uses module key, uses 
share key, exports encrypted share

Code Description

- The user can not perform this service in this role.

yes The user can perform this service in this role without further authorization.

handle

The user can perform this service if they possess a valid handle for the resource: key, channel, 
impath, token, buffers, SEEWorld. 
The handle is an arbitrary number generated when the object is created.
The handle for an object is specific to the user that created the object.
The ticket services enable a user to pass an ID for an object they have created to another user or 
SEEWorld.

ACL

The user can only perform this service with a key if the ACL for the key permits this service. The 
ACL may require that the user present a certificate signed by a Security Officer or another key.

The ACL may specify that a certificate is required, in which case the module verifies the signature on the 
certificate before permitting the operation.

Command/
Service

Role Description
Key/CSP access
Key typesUnuath

User /
JSO

NSO
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 14



nCipher Services available to each role
pass phrase
A user can only load a share, or change the share PIN, if they possess the pass phrase used to 
encrypt the share. The module key with which the Pass Phrase was combined must also be 
present.

cert

A user can only perform this service if they are in possession of a certificate from the nCipher 
Security Officer. This certificate will reference a key. 

The module verifies the signature on the certificate before permitting the operation.

FE
This service is not available on all modules. It must be enabled using the FeatureEnable service 
before it can be used.

level 2 only

These services are available to the unauthorized user only when the module is initialized in it FIPS 
140-2 level 2 mode.
The module can be initialized to comply with FIPS 140-2 level 3 roles and services and key 
management by setting the fIPS_level3_compliance flag. 
If this flag is set:
the Generate Key, Generate Key Pair and Import commands require authorization with a 
certificate signed by the nCipher Security Officer.
the Import command fails if you attempt to import a key of a type that can be used to Sign or 
Decrypt messages.
the Generate Key, Generate Key Pair, Import and Derive Key operations will not allow you to 
create an ACL for a secret key that allows the key to be exported in plain text.

encrypted share
The ReceiveShare command requires a logical token share encrypted using an Impath key. created 
by the SendShare command.

ticket The RedeemTicket command requires the ticket generated by GetTicket

init

These services are used to initialise the module. They are only available when the module is in the 
initialisation mode. To put the module into initialisation mode you must have physical access to 
the module and put the mode switch into the initialisation setting. In order to restore the module 
to operational mode you must put the mode switch back to the Operational setting.

Key access Description

Create Creates a in-memory object., but does not reveal value. 

Erase Erases the object from memory, smart card or non-volatile memory without revealing value

Export Discloses a value, but does not allow value to be changed.

Set Changes a CSP to a given value

Use Performs an operation with an existing CSP - without revealing or changing the CSP

Code Description
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 15



nCipher Keys
Keys

For each type of key used by the nShield modules, the following section describes the access that a user 
has to the keys.

The nShield modules refers to keys by their handle, an arbitrary number, or by its SHA-1 hash.

Security Officer’s key

The nCipher Security officer’s key must be set as part of the initialisation process. This is a public/private 
key pair that the nCipher Security Officer uses to sign certificates to authorize key management and other 
secure operations. 

The SHA-1 hash of the public half of this key pair is stored in the module EEPROM.

The public half of this key is included as plain text in certificates.

The module treats anyone in possession of the private half of this key as the Security Officer. 

If you use the standard tools supplied by nCipher to initialise the module, then this key is a DSA key 
stored as a key blob protected by a logical token on the Administrator Card Set. If a customer writes their 
own tools to initialise the module, they can choose between RSA, DSA or KDSA, and are responsible 
for ensuring the private half of this key is stored securely.

Junior Security Officer’s key

Because the nCipher Security Officer’s key has several properties, it is good practice to delegate 
authority to one or more Junior Security Officers, each with authority for defined operations.

To create a Junior Security Officer (JSO) the NSO creates a certificate signing key for use as their JSO 
key. This key must be protected by a logical token in the same manner as any other application key.

Then to delegate authority to the JSO the nCipher Security Officer creates a certificate containing an 
Access Control List specifying the authority to be delegated and the hash of the JSO key to which the 
powers are to be delegated.

The JSO can then authorize the actions listed in the ACL - as if they were the NSO - by presenting the 
JSO key and the certificate. 

If the JSO key is created with the Sign permission in its ACL the JSO may delegate parts of their authority 
to another key, the holder of the delegate key will need to present the certificate singed by the NSO and 
the certificate singed by the JSO. If the JSO key only has UseAsCertificate permissions, then they cannot 
delegate authority.

If you use the standard tools supplied by nCipher to initialise the module, then this key is a DSA key 
stored as a key blob protected by a logical token on the Administrator Card Set. If a customer writes their 
own tools to initialise the module, they can choose between RSA, DSA or KDSA, and are responsible 
for ensuring the private half of this key is stored securely.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 16



nCipher Keys
Long term signing key

The nShield modules stores a 160 bits in the EEPROM provided by the Dallas 4320. This data is 
combined with a discrete log group stored in the module firmware to produce a DSA key. 

This key can be reset to a new random value by the GenerateKLF service. It can be used to sign a module 
state certificate using the SignModuleState service and the public value retrieved by the non-
cryptographic service Get Long Term Key.

This key is not used to encrypt any other data. It only serves to provide a cryptographic identity for a 
module that can be included in a PKI certificate chain. nCipher may issue such certificates to indicate 
that a module is a genuine nCipher module.

Module signing key

When the nShield modules is initialized it automatically generate a DSA key pair that it uses to sign 
certificates. The private half of this pair is stored internally in EEPROM and never released. The public 
half is revealed in plaintext, or encrypted as a key blob under some other key. This key is only ever used 
to verify that a certificate was generated by a specified module.

Module keys

Module keys are triple DES used to protect tokens. The nShield modules generates the first module key 
KM0 when it is initialized. This module key is guaranteed never to have been known outside this module. 

The Security Officer can load further module keys. These can be generated by the module or may be 
loaded from an external source. Setting a key as a module key stores the key in EEPROM. 

Module keys can not be exported once they have been assigned as module keys. They may only be 
exported on a key blob when they are initially generated.

Logical tokens

A logical token is a Triple DES key used to protect key blobs.

When you create a logical token, you must specify parameters, including the total number of shares, and 
the number or shares required to recreate the token, the quorum. The total number can be any integer 
between 1 and 64 inclusive. The quorum can be any integer from 1 to the total number.

A logical token is always generated randomly, using the on-board random number generator. 

While loaded in the module logical tokens are stored in the object store.

Tokens keys are never exported from the module, except on physical tokens or software tokens. When a 
module key is exported the logical token - the Triple DES key plus the token parameters - is first 
encrypted with a module key. Then the encrypted token is split into shares using the Shamir Secret 
Sharing algorithm, even if the total number of shares is one. Each share is then encrypted using a share 
key and written to a physical token - a smart card - or a software token. Logical tokens can be shared 
between one or more physical token. The properties for a token define how many shares are required to 
recreate the logical token. Shares can only be generated when a token is created. The firmware prevents 
a specific share from being written more than once.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 17



nCipher Keys
Share Key

A share key is used to protect a logical token share when they are written to a smart card or software 
token. A share may be protected using a pass phrase. The pass phrase is combined with a module key, 
the share number and the smart card id to form a unique Triple DES key used to encrypt the share. This 
Triple DES key is not stored on the module. It is recalculated every time share is loaded. The share data 
includes a MAC, if the pass phrase is incorrect the MAC will not verify correctly and the share is rejected.

Impath keys

An impath is a secure channel between two modules. 

To set up an impath two modules perform a validated key-exchange, currently using Diffie Helman. 

The key exchange parameters are signed by the modules signing key Once the modules have validated 
the signatures the module derives four symmetric keys using a protocol based on SHA-1. Currently 
symmetric keys are Triple DES. 

The four keys are used for encryption, decryption, MAC creation, MAC validation. The protocol ensures 
that the key Module 1 uses for encryption is used for decryption by module 2.

All impath keys are stored as objects in the object store in DRAM.

Key objects

Keys used for encryption, decryption, signature verification and digital signatures are stored in the 
module as objects in the object store in DRAM. All key objects are identified by a random identifier that 
is specific to the user and session.

All key objects are stored with an Access control List or ACL. The ACL specifies what operations can 
be performed with this key.

Whenever a user generates a key or imports a key in plain text they must specify a valid ACL for that 
key type. The ACL can be changed using the SetACL service. The ACL can only be made more 
permissive if the original ACL includes the ExpandACL permission. 

Key objects may be exported as key blobs if there ACL permits this service. Each blob stores a single 
key and an ACL. The ACL specifies what operations can be performed with this copy of the key. The 
ACL stored with the blob must be at least as restrictive as the ACL associated with the key object from 
which the blob was created. When you load a key blob, the new key object takes its ACL from the key 
blob. Working key blobs are encrypted under a logical token. Key objects may also be exported as key 
blobs under an archiving key.

Key objects can only be exported in plain text if their ACL permits this operation. If the module has been 
initialized to comply with FIPS 140-2 level 3 roles and services and key management the ACL for a 
private or secret key cannot include the export as plain service. 

A user may pass a key to another user - or to a SEE World - using the ticketing mechanism. The GetTicket 
mechanism takes a key identifier and returns a ticket. This ticket refers to the key identifier - it does not 
include any key data. A ticket can be passed as a byte block to the other user who can then use the 
RedeemTicket service to obtain a key identifier for the same object that is valid for their session. As the 
new identifier refers to the same object the second user is still bound by the original ACL.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 18



nCipher Keys
Session keys

Keys used for a single session are generated as required by the module. They are stored along with their 
ACL as objects in the object store. These may be of any supported algorithm.

Archiving keys

It is sometimes necessary to create an archive copy of a key, protected by another key. Keys may be 
archived using:

• Triple DES keys

• A combination of Triple DES and RSA keys. 
In this case a random Triple DES key is created which is used to encrypt working key and then this 
key is wrapped by the RSA key.

When a key is archived in this way it is stored with its ACL

When you generate or import the archiving, you must specify the UseAsBlobKey option in the ACL. The 
archiving key is treated as any other key object.

When you generate or import the key that you want to archive you must specify the Archival options in 
the ACL. This options can specify the hash(es) of the allowed archiving key(s). If you specify a list of 
hashes, no other key may be used.

Certificate signing keys

The ACL associated with a key object can call for a certificate to be presented to authorize the action. 
The required key can either be the nCipher Security Officer’s key or any other key. Keys are specified in 
the ACL by an identifying key SHA-1 hash. The key type is also specified in the ACL although DSA is 
standard, any signing algorithm may be used, all nCipher tools use DSA.

Certain services can require certificates signed by the nCipher Security Officer.

Firmware Integrity Key

All firmware is signed using a DSA key pair. A module only loads new firmware if the signature decrypts 
and verifies correctly.

The private half of this key is stored at nCipher. 

The public half is included in all firmware. The firmware is stored in flash memory when the module is 
switched off, this is copied to DRAM as part of the start up procedure.

Firmware Confidentiality Key

All firmware is encrypted using triple DES to prevent casual decompilation. 

The encryption key is stored at nCipher’s offices and is in the firmware. 

The firmware is stored in flash memory when the module is switched off, this is copied to DRAM as part 
of the start up procedure.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 19



nCipher Keys
nCipher Master Feature Enable Key

For commercial reasons not all nCipher modules offer all services. Certain services must be enabled 
separately. In order to enable a service the user presents a certificate signed by the nCipher Master 
Feature Enable Key. This causes the module to set the appropriate bit in the Dallas EEPROM.

The nCipher Master Feature Enable Key is a DSA key pair, The private half of this key pair is stored at 
nCipher’s offices. 

The public half of the key pair is included in the firmware. The firmware is stored in flash memory when 
the module is switched off, this is copied to DRAM as part of the start up procedure.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 20



nCipher Rules
Rules

Identification and authentication

All communication with the nShield modules is performed via a server program running on the host 
machine, using standard inter process communication, using sockets in UNIX operating system, named 
pipes under Windows NT.

In order to use the module the user must first log on to the host computer and start an nCipher enabled 
application. The application connects to the nCipher server, this connection is given a client ID, a 120-
bit arbitrary number.

Before performing any service the user must present the correct authorization. Where several stages are 
required to assemble the authorization, all the steps must be performed on the same connection.

Access Control

Keys are stored on the host computer’s hard disk in an encrypted format, known as a key blob. In order 
to load a key the user must first load the token used to encrypt this blob.

Tokens can be divided into shares. Each share can be stored on a smart card or software token on the 
computer’s hard disk. These shares are further protected by encryption with a pass phrase and a module 
key. Therefore a user can only load a key if they possess the physical smart cards containing sufficient 
shares in the token, the required pass phrases and the module key are loaded in the module.

Module keys are stored in EEPROM in the module. They can only be loaded or removed by the nCipher 
Security Officer, who is identified by a public key pair created when the module is initialized. It is not 
possible to change the Security Officer’s key without re initializing the module, which clears all the 
module keys, thus preventing access to all other keys.

The key blob also contains an Access Control List that specifies which services can be performed with 
this key, and the number of times these services can be performed. These can be hard limits or per 
authorization limits. If a hard limit is reached that service can no longer be performed on that key. If a 
per-authorization limit is reached the user must reauthorize the key by reloading the token.

All objects are referred to by handle. Handles are cross-referenced to client IDs. If a command refers to 
a handle that was issued to a different client, the command is refused. Services exist to pass a handle 
between clientIDs.

Access Control List

All key objects have an Access Control List (ACL). The user must specify the ACL when they generate 
or import the key. The ACL lists every operation that can be performed with the key - if the operation is 
not in the ACL the module will not permit that operation. In particular the ACl can only be altered if the 
ACL includes the SetACL service. The ACL is stored with the key when it is stored as a blob and applies 
to the new key objected created when you reload the blob.

The ACL can specify limits on operations - or groups of operations - these may be global limits or per 
authorization limits. If a global limit is exceeded then the key cannot be used for that operation again. If 
a per authorization limit is exceeded then the logical token protecting the key must be reloaded before 
the key can be reused.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 21



nCipher Rules
An ACL can also specify a certifier for an operation. In this case the user must present a certificate signed 
by the key whose hash is in the ACL with the command in order to use the service. 

ACL design is complex - users will not normally need to write ACLs themselves. nCipher provide tools 
to generate keys with strong ACLs.

Object re-use

All objects stored in the module are referred to by a handle. The module’s memory management 
functions ensure that a specific memory location can only be allocated to a single handle. The handle also 
identifies the object type, and all of the modules enforce strict type checking. When a handle is released 
the memory allocated to it is actively zeroed.

Error conditions

If the nShield modules cannot complete a command due to a temporary condition, the module returns a 
command block with no data and with the status word set to the appropriate value. The user can resubmit 
the command at a later time. The server program can record a log of all such failures.

If the nShield modules encounters an unrecoverable error it enters the error state. This is indicated by the 
status LED flashing in the Morse pattern SOS. As soon as the unit enters the error state all processors 
stop processing commands and no further replies are returned. In the error state the unit does not respond 
to commands. The unit must be reset.

Security Boundary

The security boundary is the PCB

Code written for SEE machines are excluded from the FIPS 140-2 validation. The validation shows that 
there is a secure interface between the cryptographic core and the SEE machine, and that a malicious SEE 
machine cannot gain access to objects protected by the cryptographic core.

To comply with FIPS 140-2 level 3 roles and services and key management

The nCipher enabled application must perform the following services, for more information refer to the 
nCipher Security Officer’s Guide and Technical Reference Manual.

The following items are excluded from FIPS 140-2 validation as they are not security relevant.

• PCI connector

• jumper block

• clear button

• status LED

• heatsinks

• serial connector

• mini-DIN connector
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 22



nCipher Rules
To initialise a module

1 Fit the initialisation link and restart the module

2 Use the Initialise command to enter the Initialisation state.

3 Generate a key pair to use a Security Officer’s key.

4 Generate a logical token to use to protect the Security Officer’s key.

5 Write one or more shares of this token onto software tokens. 

6 Export the private half of the Security Officer’s key as a key blob under this token.

7 Export the public half of the Security Officer’s key as plain text.

8 Use the Set Security Officer service to set the Security Officer’s key and the operational policy of the 
module. In order to comply with FIPS 140-2 level 3 roles and services and key management you must 
set at least the following flags: 

• NSOPerms_ops_ReadFile

• NSOPerms_ops_WriteFile

• NSOPerms_ops_EraseShare

• NSOPerms_ops_EraseFile

• NSOPerms_ops_FormatToken

• NSOPerms_ops_GenerateLogToken

• NSOPerms_ops_SetKM

• NSOPerms_ops_RemoveKM

• NSOPerms_ops_StrictFIPS140

9 Keep the tokens and key blobs safe.

10 You can create extra module keys in order to distinguish groups of users.

11 You may want to create working keys and user authorization at this stage.

12 Remove the initialisation link and restart the module.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.

• If you use KeySafe, you must set the StrictFIPS 140 flag.

• If you use new-world, you must select the -F flag.

To return a module to factory state

This clears the Security Officer’s key, the module signing key and any loaded module keys.

1 Fit the initialisation link and restart the module

2 Use the Initialise command to enter the Initialisation state.

3 Load a random value to use as the hash of the security officer’s key.

4 Set Security Officer service to set the Security Officer’s key and the operational policy of the module.

5 Remove the initialisation link and restart the module.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 23



nCipher Rules
After this operation the module must be initialized correctly before it can be used in a FIPS approved 
mode.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.

To create a new user

1 Create a logical token.

2 Write one or more shares of this token onto software tokens.

3 For each key the user will require, export the key as a key blob under this token.

4 Give the user any pass phrases used and the key blob. 

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.

To authorize the user to create keys

1 Create a new key, with an ACL that only permits UseAsSigningKey. This action may need to be 
authenticated.

2 Export this key as a key blob under the users token.

3 Create a certificate signed by the nCipher Security Officer’s key that:

• includes the hash of this key as the certifier

• authorizes the action GenerateKey or GenerateKeyPair depending on the type of key required.

• if the user needs to store the keys, enables the action MakeBlob, limited to their token.

4 Give the user the key blob and certificate.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 24



nCipher Rules
To authorize a user to act as a Junior Security Officer

1 Generate a logical token to use to protect the Junior Security Officer’s key.

2 Write one or more shares of this token onto software tokens

3 Create a new key pair,

• Give the private half an ACL that permits Sign and UseAsSigningKey.

• Give the public half an ACL that permits ExportAsPlainText

4 Export the private half of the Junior Security Officer’s key as a key blob under this token.

5 Export the public half of the Junior Security Officer’s key as plain text.

• Create a certificate signed by the nCipher Security officer’s key includes the hash of this key as the 
certifier

• authorizes the actions GenerateKey, GenerateKeyPair

• authorizes the actions GenerateLogicalToken, WriteShare and MakeBlob, these may be limited to a 
particular module key.

6 Give the Junior Security Officer the software token, any pass phrases used, the key blob and certificate.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.

To authenticate a user to use a stored key

1 Use the LoadLogicalToken service to create the space for a logical token.

2 Use the ReadShare service to read each share from the software token.

3 Use the LoadBlob service to load the key from the key blob.

4 The user can now perform the services specified in the ACL for this key.

Note To assume Security Officer role load the Security Officer’s key using this procedure. The Security Officer’s key can 
then be used in certificates authorising further operations.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.

To authenticate a user to create a new key

1 If you have not already loaded your user token, load it as above.

2 Use the LoadBlob service to load the authorization key from the key blob.

3 Use the KeyId returned to build a signing key certificate.

4 Present this certificate with the certificate supplied by the security officer with the GenerateKey, 
GenerateKeyPair or MakeBlob command.

Note nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate these steps.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 25



nCipher Physical security
Physical security

All security critical components of the nShield modules are covered by epoxy resin.

The module has a clear button. Pressing this button put the module into the self-test state, clearing all 
stored key objects, logical tokens and impath keys and running all self-tests. The long term security 
critical parameters, module keys, module signing key and Security Officer’s key can be cleared by 
returning the module to the factory state, as described above.

Checking the module

To ensure physical security, make the following checks regularly:

• Examine the epoxy resin security coating for obvious signs of damage.

• The smart card reader is directly plugged into the module and the cable has not been tampered with.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 26



nCipher Strength of functions
Strength of functions

Attacking Object IDs

Connections are identified by a ClientID, a random 32 bit number.

Objects are identified by am KeyID - this should be renamed ObjectID as it can now be used for more 
than just keys but retains its old name for code compatibility reasons. Again this is a random 32 bit 
number.

In order to randomly gain access to a key loaded by another user you would need to guess two random 
32 bit numbers. The module can process about 216 commands per minute - therefore the chance of 
succeeding within a minute is 216 / 264 = 2-48.

Attacking Tokens

If a user chooses to use a logical token with only one share, no pass phrase and leaves the smart card 
containing the share in the slot than another user could load the logical token. The module does not have 
any idea as to which user inserted the smart card. this can be prevented by:

• not leaving the smart card in the reader
if the smart card is not in the reader, they can only access the logical token by correctly guessing the 
ClientID and ObjectID for the token.

• requiring a pass phrase
hen loading a share requiring a pass phrase the user must supply the SHA-1 hash of the pass phrase. 
The hash is combined with a module key, share number and smart card id to recreate the key used 
to encrypt the share. If the attacker has no knowledge of the pass phrase they would need to make 
280 attempts to load the share. The module enforces a five seconds delay between failed attempts to 
load a share. 

• requiring more than one share
if a logical token requires shares from more than one smart card the attacker would have to repeat 
the attack for each share required.

Logical tokens are 168 bit Triple DES keys. Shares are encrypted under a combination of a module key, 
share number and card ID. If you could construct a logical token share of the correct form without 
knowledge of the module key and the exact mechanism used to derive the share key the chance that it 
would randomly decrypt into a valid token are 2-168. 
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 27



nCipher Algorithms
Algorithms

FIPS approved algorithms:

Non-FIPS approved algorithms

Symmetric

• Arc Four (compatible with RC4)

• Blowfish

• CAST 5 (RFC2144)

• CAST 6 (RFC2612)

• Serpent

• SEED (Korean Data Encryption Standard) - requires Feature Enable activation

• Twofish

Asymmetric

• Diffie-Helman

• El Gamal

• KCDSA - requires Feature Enable activation

AES Certificate #15

DES Certificate #24

DES MAC Certificate #24 vendor affirmed. Verified implementation functions: 
genblk_signbegin,genblk_verifybegin, genblk_macdata, 
genblk_signend,genblk_verifyend.

Triple DES Certificate #34

Double and triple length keys
Approved for Federal Government Use - Modes are CBC and ECB 

Triple DES MAC Certificate #34 vendor affirmed

Verified implementation functions: genblk_signbegin,genblk_verifybegin, 
genblk_macdata, genblk_signend,genblk_verifyend

DSA/SHA-1 Certificate #11

RSA Vendor Affirmed to PKCS #1

HMAC SHA-1 HMAC implementation vendor affirmed, SHA-1 covered by DSA certificate #11 
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 28



nCipher Algorithms
Hash

• HSA-160 - requires Feature Enable activation

• MD2

• MD5 

• RIPEMD 160

• SHA-256

• SHA-384

• SHA-512

MAC

• HMAC (MD2, MD5, SHA-256, SHA-384, SHA-512, RIPEMD160) 

Other

• SSL master key derivation

• PKCS #8 key wrapping.
The nCipher modules security policy: nShield F2 PCI, nShield F2 PCI Ultrasign v1.2.40 29


	The nShield modules security policy
	Contents
	Chapter�1:� Purpose
	Roles
	Services available to each role
	Keys
	Rules
	Physical security
	Strength of functions
	Algorithms



