

SPYRUS USB-3 MODULE FIPS 140-2 Non-Proprietary Security Policy

Revision: 1.3

__

@≬≬

K D

This document may be freely reproduced and distributed whole and intact, including this copyright notice.

Copyright © 2014-2015 SPYRUS, Inc. All rights reserved. SPYRUS Document number: 554-490001-04

This document is provided only for informational purposes and is accurate as of the date of publication. This document may be copied subject to the following conditions:

- All text must be copied without modification and all pages must be included.
- All copies must contain the SPYRUS copyright notices and any other notices provided herein.

Trademarks

SPYRUS, the SPYRUS logos, SPYCOS, Rosetta, Rosetta Micro[®], are either registered trademarks or trademarks of SPYRUS, Inc. in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Patents

Rosetta Authentication Products including SPYCOS[®], Rosetta Micro[®], the Rosetta[®] Series II Smart Cards and USB Security Devices, Rosetta SDHCTM Card, Rosetta MicroSD Memory Card, may be covered by one or more of the following patents: U.S. Patent No. 6,088,802 and U.S. Pat. No. 6,981,149.

Contents

1	INT	RODUCTION	. 1
	1.1 1.2 1.3 1.4 1.5	SPYRUS USB-3 Module Overview SPYRUS USB-3 Module Implementation SPYRUS USB-3 Module Cryptographic Boundary Approved Mode of Operation FIPS 140-2 Security Levels	. 1 . 2 . 5
2	POF	RTS AND INTERFACES	. 8
3	Roi	LES AND SERVICES	. 9
	3.1	Services	. 9
4	IDE	NTIFICATION AND AUTHENTICATION	14
	4.1 4.2 4.3 4.3. 4.3. 4.3.	2 Non-weakening Effect of Feedback	14 15 16 16
5	Key	Y MANAGEMENT	17
	5.1 5.2 5.3 5.4	CSP Management Public Key Management Parameters CSP Access Matrix Destruction of Keys and CSPs	17 17
6	Set	UP AND INITIALIZATION	21
7	Рну	SICAL SECURITY	21
8	Sel	F-TESTS	22
9	Мп	FIGATION OF OTHER ATTACKS	23
1() App	PENDIX A: CRITICAL SECURITY PARAMETERS AND PUBLIC KEYS	24

1 Introduction

This Security Policy specifies the security rules under which the SPYRUS USB-3 Module operates. Included in these rules are those derived from the security requirements of FIPS 140-2 and additionally, those imposed by SPYRUS, Inc. These rules, in total, define the interrelationship between:

- 1. Operators,
- 2. Services, and
- 3. Critical Security Parameters (CSPs).

1.1 SPYRUS USB-3 Module Overview

The SPYRUS USB-3 Module enables security critical capabilities such as operator authentication, message privacy, integrity, authentication, and non-repudiation; and secure storage, all within a hard, opaque, tamper-evident potting material and a strong aluminum metal enclosure. The SPYRUS USB-3 Module communicates with a host computer via the ports/interfaces defined in Table 2-1 below.

1.2 SPYRUS USB-3 Module Implementation

The SPYRUS USB-3 Module is implemented as a multiple-chip standalone cryptographic module as defined by FIPS 140-2. The hardware platform physical embodiment contains multiple IC chips interconnected and physically protected by a hard opaque potting material covering all ICs and internal circuitry and a strong aluminum metal enclosure.

All Interfaces have been tested and are compliant with FIPS 140-2. Product Identification (including unique part number) for the SPYRUS USB-3 Module is shown in the table below:

Form Factor	Capacity	Part Number	FW Version
USB-3 SPYRUS Secure Portable Workplace	32GB	SFP100000-1	3.0.2
USB-3 SPYRUS Secure Portable Workplace	64GB	SFP100000-2	3.0.2
USB-3 SPYRUS Secure Portable Workplace	128GB	SFP100000-3	3.0.2
USB-3 SPYRUS Secure Portable Workplace	256GB	SFP100000-4	3.0.2
USB-3 SPYRUS WorkSafe Pro	32GB	SFP200000-1	3.0.2
USB-3 SPYRUS WorkSafe Pro	64GB	SFP200000-2	3.0.2
USB-3 SPYRUS WorkSafe Pro	128GB	SFP200000-3	3.0.2
USB-3 SPYRUS WorkSafe Pro	256GB	SFP200000-4	3.0.2

Table 1-1 SPYRUS USB-3 Module Product Identification

USB-3 SPYRUS Pocket Vault P-3X	32GB	SFP300000-1	3.0.2
USB-3 SPYRUS Pocket Vault P-3X	64GB	SFP300000-2	3.0.2
USB-3 SPYRUS Pocket Vault P-3X	128GB	SFP300000-3	3.0.2
USB-3 SPYRUS Pocket Vault P-3X	256GB	SFP300000-4	3.0.2

1.3 SPYRUS USB-3 Module Cryptographic Boundary

The Cryptographic Boundary is defined to be the physical perimeter of the SPYRUS USB-3 Module and the metal enclosure it is embedded in (see Figure 3).

No hardware or firmware components that comprise the SPYRUS USB-3 Module are excluded from the requirements of FIPS 140-2.

SPYRUS USB 32 GB

Figure 1 SPYRUS USB-3 Module (32GB)

Note: the cap is not part of the module's cryptographic boundary

Front Side View

SPYRUS USB 64 GB

View

Right Side View

Back Side View

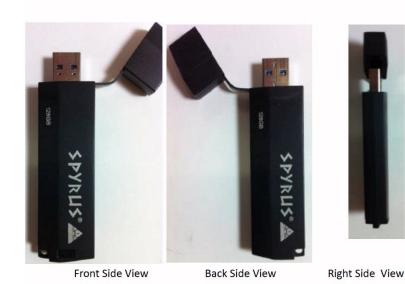


Figure 2 SPYRUS USB-3 Module (64GB)

Note: the cap is not part of the module's cryptographic boundary

SPYRUS USB 128 GB

Left Side View

Top View without Cap

Bottom Side View

Figure 3 SPYRUS USB-3 Module (128GB)

Note: the cap is not part of the module's cryptographic boundary

Bottom Side View

Figure 4 SPYRUS USB-3 Module (256GB)

Note: the cap is not part of the module's cryptographic boundary

SPYRUS USB 256 GB

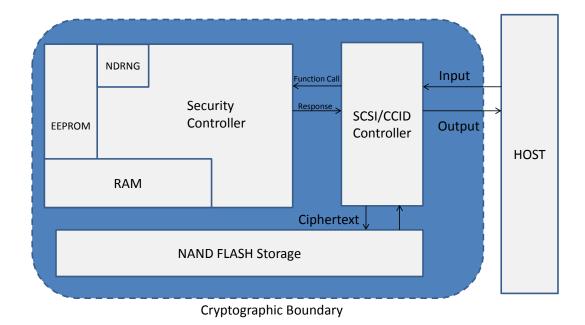


Figure 5 Block Diagram of the SPYRUS USB-3 Module

1.4 Approved Mode of Operation

The module only operates in an Approved mode of operation.

The SPYRUS USB-3 Module Approved mode of operation is comprised of the SPYRUS USB-3 Module command set.

Approved mode of operation commands which are successfully completed will return a standard success return code. The Error return codes are dependent upon the cause of the failure. Services available under the approved mode of operations are detailed in Table 3-1 of this Security Policy.

The SPYRUS USB-3 Module supports the following FIPS 140-2 Approved algorithms:

Approved Algorithms	Certificate #			
Encryption & Decryption				
Three-Key Triple-DES	1772			
AES (128-bit, 192-bit, 256-bit key)	3028			
AES XTS (128-bit, 256-bit)	3406			
Digital Signatures and Key Generation				
ECDSA (key generation, signature generation and	578			
signature verification) [P-256, P-384, P-521]				
RSA (key generation, signature generation and	1611			
signature verification)				
Message Authentication Code				
HMAC (Minimum 112 bit key)	1913			
Hash				
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	2529			
Key Agreement / Key Establishment				
CVL (Section 5.7.1.2: ECC CDH Primitive) [P-256, P-	419			
384, P-521]				
KAS [P-256, P-384, P-521]	52			
KTS (AES KW with 128-bit, 192-bit, 256-bit key)	3115			
Key Derivation				
KBKDF (SP 800-108 KDF)	54			
Approved Deterministic Random Bit Generator				
SP 800-90A DRBG	658			

Table 1-2
SPYRUS USB-3 Module Approved Algorithms

Approved ECDSA (Cert. #578). The Digital Signature will provide between 128bits to 256-bits of equivalent computational resistance to attack depending upon the size of the curves that are used (P-256, P-384, P-521).

Approved RSA (Cert. #1611). The Digital Signature with a 2048 key size will provide 112 bits of equivalent computational resistance to attack.

Approved SP800-56A, Section 5.7.1.2: ECC CDH Primitive (Cert. #419). The key establishment process will provide between 128-bits to 256-bits of equivalent computational resistance to attack depending upon the size of the ECC CDH curves that are used (P-256, P-384, P-521).

Approved KAS ECC (Cert. #52). The key establishment process will provide between 128-bits to 256-bits of equivalent computational resistance to attack depending upon the size of the keys that are used (P-256, P-384, P-521).

Approved KTS (Cert. #3115; key establishment methodology provides between 128 and 256 bits of encryption strength).

The following services are available as "non-Approved" algorithms but allowed:

 Table 1-3

 SPYRUS USB-3 Module Non-Approved but allowed Algorithms

Algorithms
RNG
HW NDRNG (Only used for seeding Approved SP800-90A DRBG)
Key Wrap & Unwrap
RSA (key wrapping; key establishment methodology provides 112
bits of encryption strength)

1.5 FIPS 140-2 Security Levels

The SPYRUS USB-3 Module complies with the requirements for FIPS 140-2 validation to the levels defined in Table 1-4. The FIPS 140-2 overall rating of the SPYRUS USB-3 Module is Level 3.

FIPS 140-2 Category	Level
1. Cryptographic Module Specification	3
2. Cryptographic Module Ports and Interfaces	3
3. Roles, Services, and Authentication	3
4. Finite State Model	3
5. Physical Security	3
6. Operational Environment	N/A
7. Cryptographic Key Management	3
8. EMI/EMC*	3
9. Self-tests	3
10. Design Assurance	3
11. Mitigation of Other Attacks	N/A
Overall Security Level	3

Table 1-4FIPS 140-2 Certification Levels

*Note: The SPYRUS USB-3 Module conforms to Level 3 EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Class B.

2 Ports and Interfaces

The pin configuration of the SPYRUS USB-3 Module's USB physical receptacle interface is shown in Figure 4. The standard USB 3.0 pins form a set of 9 active contact points that comprise the physical ports of the cryptographic module. Table 2-1 shows the mapping of the pins to their functional description and logical interface description.

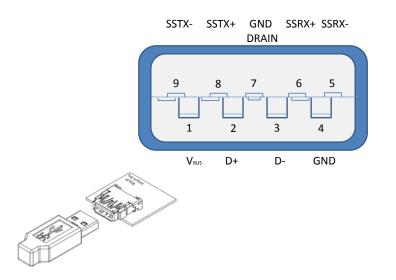


Figure 6 USB-3 Receptacle Interface showing head-on view of pin alignment

Pin	Function	FIPS 140-2 Logical Interface
V _{BUS}	Operating voltage	Power Interface
D-	USB 2.0 Data Input/ Output	Data Input / Data Output; Control Input; Status
	(half-duplex)	Output
D+	USB 2.0 Data Input /	Data Input / Data Output; Control Input; Status
	Output (half-duplex)	Output
GND	Ground for power return	Power Interface
SSRX-	SuperSpeed Receiver	Data Input; Control Input
SSRX+	SuperSpeed Receiver	Data Input; Control Input
GND DRAIN	Ground for signal return	Power Interface

Table 2-1SPYRUS USB-3 Module Pins and Logical Interfaces

SSTX-	SuperSpeed Transmitter	Data Output; Status Output
SSTX+	SuperSpeed Transmitter	Data Output; Status Output

3 Roles and Services

The SPYRUS USB-3 Module supports two roles, Crypto-officer (CO) and User, and enforces the separation of these roles by restricting the services available to each one.

<u>Crypto-officer Role</u>: The Crypto-officer is responsible for initializing the SPYRUS USB-3 Module. Before issuing a SPYRUS USB-3 Module to an end User, the Crypto-officer initializes the SPYRUS USB-3 Module as described in section 6. The Crypto-officer cannot use private keys loaded on the module. The SPYRUS USB-3 Module validates the Crypto-officer identity before accepting any initialization commands. The Crypto-officer is also referred to as the Site Security Officer (SSO) or Administrator.

<u>User Role</u>: The User role is available after the SPYRUS USB-3 Module has been loaded with a User personality by the Crypto-Officer. The User can load, generate and use private keys.

The SPYRUS USB-3 Module validates the User and SSO identity before access is granted.

3.1 Services

The following table (Table 3-1) describes the services provided by the SPYRUS USB-3 Module. The User/SSO column denotes the roles that may execute the service.

Service	Description	User / SSO
AES UNWRAPKEY	Supports key export by using the AES unwrap key process to decrypt a wrapped key data block, and then storing it in the internal key register or the key file.	User
AES WRAPKEY	Supports key export by using the AES wrap key process to encrypt the internal symmetric key data that is transmitted to the host.	User
AUTHENTICATE SECURE CHANNEL	Validates the secure channel between the host and the module.	User, SSO

Table 3-1SPYRUS USB-3 Module Services

Service	Description	User / SSO
BLOCK PIN	Blocks user PIN access. Resets attempt count for	User,
	the User PIN to zero and prohibits User PIN logon	SSO
	until an UNBLOCK PIN command is executed by	
	the SSO / Administrator role.	
CHANGE PASSWORD	Change the User password or SSO password.	User,
		SSO
CHECK PASSWORD	User / SSO Inputs a password Phrase to	User,
	authenticate the SSO or the User.	SSO
CREATE	A file of type DF, SF, or EF is created ¹ .	User,
		SSO
DECRYPT	Performs a decryption process on the input data	User
	and sets up the plaintext data for retrieval.	
	Supports multiple modes of decryption for user	
	data.	
DELETE	Deletion of a file or directory.	User,
		SSO
DIRECTORY	Retrieval of directory.	User,
		SSO
ECC GENERATE KEY	Creates an ECC public/private key pair for	User
	signing/verifying or transport.	
ECDH COMPUTE SECRET	Generates a shared secret, Z, and either returns it	User
	to the caller or caches it for use with the KDF	
	function.	
ECDSA SIGN	Computation of a digital signature using the	User
	ECDSA algorithm using the hash value.	0001
ECDSA VERIFY	Performs an ECDSA signature verification on the	User,
	provided hash data. The signature is returned	SSO
	using SPYRUS Elliptic Curve RAW encoding.	
ENCRYPT	Performs a symmetric encryption process on the	User
	input data and returns the ciphertext data.	0001
	Supports multiple modes of encryption for user	
	data. Get Response must be issued to retrieve the	
	data.	
ENVELOPE	Sends the APDU commands through the secure	User,
	channel established previously between the host	SSO
	and the SPYCOS 3.0 QFN module. The session	000
	key is generated during the secure channel	
	establishment (see Manage Secure Channel). The	
	encryption mode used is the AES CBC mode.	
EXTEND	Extension of the length of a file or directory.	User,
		SSO
	Poturne a value indicating whether the module is in	İ.
FIPS_INFO	Returns a value indicating whether the module is in EIPS Mode (1) or pot (0)	User,
	FIPS Mode (1) or not (0).	SSO
GENERATE HMAC KEY	Generates an HMAC key and initializes the	User
	currently selected file for use with the HMAC	
	commands.	

¹ Refer to ISO/IEC 7816-4 for definition of file types and file system

Service	Description	User / SSO
GENERATE IV	See Generate Symmetric Key Command	User
GENERATE RANDOM	Generates a random number and also handles the generation of Initialization Vectors (IVs) and Message Encryption Keys (MEKs). Can be invoked prior to authentication (GET UNAUTHENTICATED RANDOM)	User
GENERATE SYMMETRIC KEY	Used to generate Message Encryption Keys (MEKs). It can also generate random numbers and IVs.	User
GET PUBLIC	Retrieves the public key information of an ECC key.	User, SSO
GET RESPONSE	Retrieval of the module response.	User, SSO
GET SPYCOS VERSION	Retrieves firmware version of module.	User, SSO
GET STATUS	Query on the current status of a File.	User, SSO
HASH FINALIZE	Completes the hash operation and returns the hash value.	User, SSO
HASH INITIALIZE	Initializes internal state to prepare for hashing operations.	User, SSO
HASH PROCESS	Optional function called to hash a block of data when its length is an even multiple of the hash algorithm block size.	User, SSO
HMAC FINALIZE	Processes any remaining bytes in the message and retrieves the HMAC value.	User
HMAC INITIALIZE	Generates a HMAC message authentication code.	User
HMAC PROCESS	Processes the message in even multiples of the hash algorithm's block size.	User
IMPORT HMAC KEY	Imports an HMAC key and initialize the currently selected file for use with the HMAC commands.	User
INIT PIN FILE	Used to generate the K of N authentication shared data to the current selected PIN file. Upon a successful execution of the Init PIN File command, two external shared secrets and two logon PINs are generated with the default values.	SSO
KDFEXTERNAL	Passes the external KDF data to the hash function.	User
KDFFINAL	Completes the generation of the key and queues it for output to the host.	User
KDFINTERNAL	Passes the KDF data found inside the module to the hash function.	User
KDFSTART	Sets up the internal hash engine for hashing the subsequent data. The hash type is determined by the settings in specified input parameters.	User
LOAD CRYPTOGRAPHIC DATA	Supports RSA / ECDSA signature verification or RSA Wrap Key operation.	User, SSO
LOAD IV	See Load Key.	See Load Key
LOAD KEY	An overloaded function that performs Load MEK	User

Service	Description	User / SSO
	(Message Encryption Key), Load IV, or Delete Key.	
LOAD SECRET	Loads one of two authentication codes required for K of N logon. This is a prerequisite to changing the Admin/SSO password, User password, or either of the authentication codes.	User, SSO
LOCK	Disables all operations on this file. The file can still be selected and the status information can still be retrieved, but its contents cannot be accessed.	User, SSO
MANAGE SECURE CHANNEL	Establishes the secure channel between the host and the SPYCOS 3.0 QFN module. Specific codes, sent by the host, initialize and terminate the secure channel.	User, SSO
READ BINARY	Binary read from a file, given the offset and length.	User, SSO
RSA GENERATE KEYPAIR	Creates an RSA key pair to be used for signing/verifying or transport. The user must have created the RSA keying file (with appropriate access controls) prior to issuing the GENERATE command.	User
RSA SIGN DATA	Signing a message or data object using RSA signature.	User
RSA UNWRAP KEY	Enables completion of public key exchange of a MEK.	User
RSA VERIFY SIGNATURE	Verifying an RSA signature on a message.	User, SSO
RSA WRAP KEY	Invocation of an RSA Key wrap service.	User
SELECT	Setting a current file within a logical channel.	User, SSO
SELF TEST	Automatically performed at power-up and can be executed on-demand via power cycling the module.	User, SSO
SET KEY	Setting one of the 3 key pointers to the key registers to be used for encryption and decryption using the following symmetric encryption algorithms: AES, 3TDES.	User
UNBLOCK PIN	Used by an SSO to restore User PIN logon access.	SSO
UNLOCK	Enable a previously Locked file.	User, SSO
UPDATE BINARY	Update of the data in the currently selected EF ² with the data provided.	User, SSO
XAUTH ENROLL	Set up the shared symmetric key for use with the challenge and response authentication process.	User, SSO
XAUTH EXTERNAL AUTHENTICATION	Submits the encrypted result of the challenge data retrieved from the XAUTH Get Challenge command.	User, SSO

² Refer to ISO/IEC 7816-4 for definition of file types

Service	Description	User / SSO
XAUTH GET CHALLENGE	Establishes the challenge and response	User,
	authentication process by first requesting the	SSO
	random challenge for the current session. The	
	resulting challenge data is output to the host to	
	calculate the encrypted response for use in	
	comparison with the XAUTH External	
	Authentication command.	
ZEROIZE	Zeroization of the module. Performed using	User,
	DELETE FILE with recursive argument.	SSO
CCID_Mount	Mounts or un-mounts the encrypted drive.	User
CCID_SetAdminSettings	Sets the Admin Settings of the initialized USB 3.0	SSO
	device.	
CCID_FirmwareUpdate	Loads new firmware and verifies the signature.	SSO
Authenticated_SCSI_Read	Reading operations to the encrypted compartment	User
Authenticated_SCSI_Write	Writing operations to the encrypted compartment	User

In addition to the services listed above in table 3-1, the following non-security relevant services may be executed while the operator is unauthenticated:

- CREATE
- DELETE
- DIRECTORY
- EXTEND
- FIPS INFO
- GET UNAUTHENTICATED RANDOM
- GET RESPONSE
- GET SPYCOS VERSION
- GET STATUS
- READ BINARY
- SELECT
- SELF TEST
- UPDATE BINARY
- CCID_GetIDData
- CCID_GetFactorySettings
- CCID_GetAdminSettings
- USB Mass Storage Commands

4 Identification and Authentication

4.1 Initialization Overview

The SPYRUS USB-3 Module is initialized at the factory with a Default SSO Password Phrase. The SSO (Site Security Officer) must change the default value during logon to make the module ready for initialization. During initialization, the module only allows the execution of the commands that are required to complete the initialization process.

Before a User can access or operate the module, the SSO must initialize it with the User Password Phrase. The SSO is authorized to log on to the module any time after initialization to change parameters. The module allows 10 consecutive failed SSO logon attempts before it zeroizes all key material and initialization values. In the *zeroized* state, the SSO must use the Default SSO Password Phrase to log on to the module and must reinitialize all module parameters.

A User must log on to a module to access any on-board cryptographic functions. To log on the User must provide the correct User Password Phrase. The module allows 10 consecutive failed logon attempts before it blocks the stored User Password Phrase. User information stored in the module in non-volatile memory remains resident.

4.2 Authentication

The SPYRUS USB-3 Module implements identity-based authentication which is accomplished by PIN or Password Phrase³ entry by the operator. On invocation by the operator, the SPYRUS USB-3 Module waits for authentication of the User or SSO role by entry of a Password Phrase. There is only one User and one SSO Password Phrase allowed per module. Multiple User and SSO accounts are not permitted. The authentication password strength available for each supported role is indicated in Table 4.1 below.

Role	Type of Authentication	Authentication Data (Strength)
Crypto-officer (SSO)	Identity-based	Password Phrase (6 - 20 Bytes)
User	Identity-based	Password Phrase (6 - 20 Bytes)

Table 4-1Identification and Authentication Roles and Data

³ The terms PIN and Password Phrase are used synonymously in this document.

Once a valid Password Phrase has been accepted the SPYRUS USB-3 Module cryptographic services may be accessed. The CHECK PASSWORD command includes either the User Password Phrase as a parameter (or) the SSO Password Phrase as a parameter. If successful, either the User or SSO gains access to the module.

The SPYRUS USB-3 Module stores the number of logon attempts in non-volatile memory. The count is reset after every successful entry of a User Password Phrase by a User and after every successful entry of the SSO Password Phrase by the SSO. If the User fails to logon to the SPYRUS USB-3 Module in 10 consecutive attempts, the SPYRUS USB-3 Module will zeroize the User Password Phrase, block all of the User Private Keys and Public Keys, block all of the User Key Registers and disallow User access. The SPYRUS USB-3 Module then transitions to a state that is initialized only for the SSO to perform restorative actions. Restorative actions performed by the SSO may include reloading of initialization parameters, unblocking the User Password Phrase, or zeroization of the module. When the SPYRUS USB-3 Module is powered up after a zeroize, it will transition to the Zeroized State, where it will only accept the Default SSO Password Phrase. After the Default SSO Password Phrase has been accepted, the SPYRUS USB-3 Module transitions to the Uninitialized State and must be reinitialized, as described in section 6.

4.3 Strength of Authentication

The strength of the authentication mechanism conforms to the following specifications in Table 4-2. The calculations are based on the enforced minimum Password Phrase size of 6 bytes.

Authentication Mechanism	Strength of Mechanism
Single Password-entry attempt / False Acceptance	The probability that a random 6-byte Password-entry
Rate	(using only 93 keyboard characters ⁴) attempt will
	succeed or a false acceptance will occur is
	1.5456185 x 10 ⁻¹² . The requirement for a single-
	attempt / false acceptance rate of no more than 1 in
	1,000,000 (i.e. less than a probability of 10^{-6}) is
	therefore met.
Multiple Password-entry attempt in one minute	There is also a maximum bound of 10 successive failed authentication attempts before zeroization occurs. The probability of a successful attack of multiple attempts in a one minute period is no more than $1.5456185 \times 10^{-11}$ due to the enforced maximum number of logon attempts. This is less than one in 100,000 (i.e., 1×10^{-5}), as required.

Table 4-2Strength of Authentication

4.3.1 Obscuration of Feedback

Feedback of authentication data to an operator is obscured during authentication (e.g., no visible display of characters result when entering a password). The Password Phrase value is input to the CHECK PASSWORD command as a parameter by the calling application. No return code or pointer to a return value that contains the Password Phrase is provided.

4.3.2 Non-weakening Effect of Feedback

Feedback provided to an operator during an attempted authentication shall not weaken the strength of the authentication mechanism. The only feedback provided by the CHECK PASSWORD command is a return code denoting success or failure of the operation. This information in no way affects the probability of success or failure in either single or multiple attacks.

4.3.3 Generation of Random Numbers

The Generate Random Number command can be invoked before or after authentication of the user. The SP 800-90A DRBG algorithm is used for all authenticated RNG calls.

⁴ The character set available for PINs is at least all alphanumeric characters (upper and lower cases) and 31 special keyboard characters comprising the set {~ ! @ # \$ % ^ & * () _ + - = { } [] | : ; " : < , > . ? /}.

5 Key Management

5.1 CSP Management

Table 5-1 SPYRUS USB-3 Module CSPs

CSP Designation	Use	
ECDSA Private Key	The Private Key of the User employed in Elliptic Curve digital signing	
	operations.	
EC-keypair	Used in ECC CDH key agreement.	
Hash DRBG Seed	Used only in generating the initial state of the SP800-90A Hash_DRBG.	
HMAC Key	Used to generate HMAC message authentication code.	
Message Encryption Key	AES Key or Three-Key Triple-DES Key for User data encryption/decryption.	
(MEK)		
RSA Private Key for Digital	The Private Key of the User employed in RSA digital signing operations.	
Signatures		
RSA Private Key for Key	The Private Key of the User employed in RSA Key Unwrapping.	
Establishment		
Secure Channel Session	ECDH / AES key used to encrypt and decrypt Password data transmitted to	
Key	the module.	
SSO Password Phrase	A secret 20-byte value used for SSO authentication.	
User Password Phrase	A secret 20-byte value used for User authentication.	
Drive Encryption Key	A pair of AES-256 keys used for SP 800-38E XTS-AES encryption of User	
	data on the encrypted drive.	

5.2 Public Key Management Parameters

Table 5-2SPYRUS USB-3 Module Public Key Management Parameters

Key Management Parameter	Use
ECDSA Public Key	The Public Key of the User employed in Elliptic Curve digital signing operations.
RSA Public Key for	The Public Key of the User employed in RSA digital signature verification
Digital Signatures	operations.
RSA Public Key for	The Public Key of the User employed in RSA Key Wrapping.
Key Establishment	
Firmware Load	ECDSA P-384 SHA-384 Public Key used for Firmware Loading
Public Key	

5.3 CSP Access Matrix

The following table (Table 5-3) shows the services (see section 3.1) of the SPYRUS USB-3 Module, the roles (see section 3) capable of performing the

service, the CSPs (see section 5.1) that are accessed by the service and the mode of access (see next paragraph) required for each CSP. The following convention is used: If only one of the roles applies to the service, that role appears alone. If both roles may execute the service, then "User, SSO" is indicated. If either one (but not the other) then "User or SSO" is indicated. In the last option it is a matter of organizational policy which of the roles may execute the service.

Access modes are R (read), W (write) and E (execute). Destruction is represented as a W.

Service	User / SSO	Access Type	CSP Access
AES UNWRAPKEY	User	R,E	AES Secret Key
AES WRAPKEY	User	R,E	AES Secret Key
AUTHENTICATE SECURE	User,	R,W,E	Secure Channel Session Key
CHANNEL	SSO		
BLOCK PIN	User, SSO	E	User Password, SSO Password
CHANGE PASSWORD	User, SSO	W	User Password, SSO Password
CHECK PASSWORD	User, SSO	R	User Password, SSO Password
CREATE	User, SSO	N/A	N/A
DECRYPT	User	R	AES/TDES Secret Key
DELETE	User, SSO	N/A	N/A
DIRECTORY	User, SSO	N/A	N/A
ECC GENERATE KEY	User	W	EC-keypair
ECDH COMPUTE SECRET	User	N/A	N/A
ECDSA SIGN	User	R	ECDSA Private Key
ECDSA VERIFY	User, SSO	R	ECDSA Private Key
ENCRYPT	User	R	AES/TDES Secret Key
ENVELOPE	User, SSO	R,E	Secure Channel Session Key
EXTEND	User, SSO	N/A	N/A
FIPS_INFO	User, SSO	N/A	N/A
GENERATE HMAC KEY	User	R,E	HMAC Key
GENERATE IV	User	N/A	N/A
GENERATE RANDOM	User	R	HASH DRBG Seed
GENERATE SYMMETRIC KEY	User	W	МЕК

18

Table 5-3SPYRUS USB-3 Module Access Matrix

SPYRUS, Inc

Service	User / SSO	Access Type	CSP Access
GET PUBLIC	User,	N/A	N/A
	SSO		
GET RESPONSE	User,	N/A	N/A
	SSO		
GET SPYCOS VERSION	User,	N/A	N/A
	SSO		
GET STATUS	User,	N/A	N/A
	SSO		
HASH FINALIZE	User,	N/A	N/A
	SSO		
HASH INITIALIZE	User,	N/A	N/A
	SSO		
HASH PROCESS	User,	N/A	N/A
	SSO		
HMAC FINALIZE	User	W	HMAC Key
HMAC INITIALIZE	User	W	HMAC Key
HMAC PROCESS	User	W	HMAC Key
IMPORT HMAC KEY	User	R,W	HMAC Key
INIT PIN FILE	SSO	R,W	User Password, SSO Password
KDFEXTERNAL	User	N/A	N/A
KDFFINAL	User	W	AES/TDES Secret Key
KDFINTERNAL	User	N/A	N/A
KDFSTART	User	N/A	N/A
LOAD CRYPTOGRAPHIC	User,	N/A	N/A
DATA	SSO		
LOAD IV	User	N/A	N/A
LOAD KEY	User	W,D	MEK
LOAD SECRET	User,	R	User Password, SSO Password
	SSO		, , , , , , , , , , , , , , , , , , ,
LOCK	User,	N/A	N/A
	SSO		
MANAGE SECURE	User,	W,D	Secure Channel Session Key
CHANNEL	SSO	,	, ,
READ BINARY	User,	N/A	N/A
	SSO		
RSA GENERATE KEYPAIR	User	W	RSA Private Key
RSA SIGN DATA	User	R,E	RSA Private Key
RSA UNWRAP KEY	User	R	RSA Private Key
		R	MEK
RSA VERIFY SIGNATURE	User,	R,E	RSA Private Key
	SSO		
RSA WRAP KEY	User	R,	RSA Private Key
		W,D	MEK
SELECT	User,	N/A	N/A
	SSO		
SELF TEST	User,	N/A	N/A
	SSO		

Service	User / SSO	Access Type	CSP Access
SET KEY	User	N/A	N/A
UNBLOCK PIN	SSO	W	User Password, SSO Password
UNLOCK	User,	N/A	N/A
	SSO		
UPDATE BINARY	User,	N/A	N/A
	SSO	N1/A	N//A
XAUTH ENROLL	User,	N/A	N/A
	SSO	N/A	N//A
XAUTH EXTERNAL	User,	N/A	N/A
AUTHENTICATION XAUTH GET CHALLENGE	SSO User,	N/A	N/A
AUTH GET CHALLENGE	SSO	IN/A	N/A
ZEROIZE	User,		ECDSA Private Key
	SSO		EC-keypair
			Hash DRBG Seed
			HMAC Key
			Message Encryption Key (MEK)
			RSA Private Key for Digital
			Signatures
			RSA Private Key for Key
			Establishment
			Secure Channel Session Key
			SSO Password Phrase
			Storage Key
			User Password Phrase
CCID_Mount	User	N/A	N/A
CCID_SetAdminSettings	SSO	N/A	N/A
CCID_FirmwareUpdate	SSO	N/A	N/A
Authenticated_SCSI_Read	User	R,E	Drive Encryption Key
Authenticated_SCSI_Write	User	W,E	Drive Encryption Key

5.4 Destruction of Keys and CSPs

The module has the ability to destroy all keys and CSPs by a recursive DELETE command. The contents of the file(s) being recursively deleted are erased and over written. Should a power-down occur during the execution of the recursive DELETE, the action of zeroization will resume on a subsequent power-on event, ensuring that access to zeroized information is prevented.

Setup and Initialization 6

The uninitialized module has only a root directory with minimal version and manufacturing information in specific files. There is no information pertaining to the User or SSO or their authentication data, such as Passwords, stored on the uninitialized module as shipped to the customer.

Initialization of the module is accomplished by setting up a security domain by way of the following actions:

- The SSO creates a new application directory on the module;
- The SSO creates a PIN file that is associated with the SSO and User;
- The SSO initializes the PIN files:
- The SSO may optionally set a default Password or set the User Password Phrase:
 - If the User Password Phrase is set by the SSO, the User will not be able to change their Password.
- The SSO uses FIPS INFO command to confirm FIPS mode •

The module is now in FIPS mode and operators may logon with the CHECK PASSWORD command. See Section 4.2 for a description of the CHECK PASSWORD process.

Physical Security 7

The module is designed to meet FIPS 140-2 Level 3 Security. The Module is designed with physical security mechanisms such that attempts at removal or penetration of the strong aluminum metal enclosure will have a high probability of causing serious damage to the module to the extent that it will no longer function. This is achieved using a hard, opaque, tamper-evident potting material and a strong aluminum metal enclosure.

The module hardness testing was only performed at a single temperature and no assurance is provided for Level 3 hardness conformance at any other temperature.

Table 7-1				
Inspection of Physical Security Mechanisms				
Physical Security Recommended Frequency of Inspection/Test Guidance				
Mechanisms	Inspections	Details		
Hard, opaque,	As often as feasible, based	Inspect the cryptographic		
tamper-evident	upon organization security	boundary for scratches,		
potting material	policy.	scrapes, divots and other		

Table 7-1

Physical Security	Recommended Frequency of	Inspection/Test Guidance
Mechanisms	Inspections	Details
and strong aluminum metal enclosure.		suspicious markings or indicators of malice and tampering. If any signs of suspicious activity are observed, return the cryptographic module to SPYRUS.

8 Self-Tests

The module performs both power-on and conditional self-tests. The power-on self-tests run automatically when power is restored to the module, without requiring any actions or inputs from the operator.

The module performs the following power-on self-tests:

- Firmware Integrity Test with 160-bit Error Detection Code and 32-bit checksum
- Cryptographic algorithm known answer tests (KAT) for:
 - Three-key Triple-DES KAT (encrypt)
 - Three-key Triple-DES KAT (decrypt)
 - AES KAT (encrypt)
 - AES KAT (decrypt)
 - AES-XTS KAT (encrypt)
 - AES-XTS KAT (decrypt)
 - ECDSA KAT (sign)
 - ECDSA KAT (verify)
 - ECC CDH (Primitive "Z" Computation) KAT
 - RSA KAT (sign)
 - RSA KAT (verify)
 - HMAC (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) KAT
 - SP800-90A DRBG KAT
 - SP800-108 KDF KAT

Power cycling allows either the User or SSO to perform any or all of the above tests on demand.

The module performs the following conditional tests:

- ECDSA Pairwise Consistency Test
- ECC CDH Pairwise Consistency Test
- RSA Pairwise Consistency Test
- Continuous test for Approved SP800-90A DRBG
- Continuous test for non-Approved NDRNG
- Firmware Load Test: ECDSA P-384 SHA-384 Signature Verification
- Bypass test: N/A
- Manual key entry test: N/A

9 Mitigation of Other Attacks

The module is not claimed to mitigate against any specific attacks outside the scope of FIPS 140-2.

Mitigation of Other Attacks			
Other Attacks Mitigation Mechanism Specific limitations			
Not applicable.	Not applicable.	Not applicable.	

Table 9-1 Mitigation of Other Attacks

10 Appendix A: Critical Security Parameters and Public Keys

The Modules supports the following CSPs:

- 1. ECDSA Private Key
- Type: X9.62

- Use: The Private Key of the User employed in Elliptic Curve digital signing operations.

- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.

- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-Entity: User
- Zeroization: Actively overwritten during ZEROIZE service

2. EC-keypair

- Type: SP 800-56A
- Use: Used in ECC CDH key agreement.

- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the elliptic curve is the output of the SP800-90A DRBG; this is Approved as per SP800-56A.

- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; transient in RAM
- Key-to-Entity: User

- Zeroization: Actively overwritten after channel closure; actively overwritten during ZEROIZE service

- 3. Hash DRBG Seed
- Type: SP800-90A
- Use: Used only in generating the initial state of the SP800-90A DRBG
- Generation: Internally generated using the NDRNG
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: N/A
- Key-to-entity: Process
- Zeroization: Actively overwritten during ZEROIZE service
- 4. HMAC Key
- Type: FIPS 198 HMAC Key

- Use: Used to generate HMAC message authentication code
- Generation: As per SP800-133 Section 7.1, key generation is performed as per the
- "Direct Generation" of Symmetric Keys which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Plaintext; stored in key register
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

5. Message Encryption Key (MEK)

- Type: AES 128, 192, 256 ECB/CBC/CTR, Three-key Triple-DES ECB/CBC
- Use: Used for data encryption
- Generation: As per SP800-133 Section 7.1, key generation is performed as per the
- "Direct Generation" of Symmetric Keys which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with RSA 2048
- Storage: Plaintext; stored in key register
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

6. RSA Private Key for Digital Signature

- Type: FIPS 186-4
- Use: The Private Key of the User employed in RSA digital signing operations
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS

186-4 which is an Approved key generation method.

- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

7. RSA Private Key for Key Establishment

- Type: FIPS 186-4
- Use: The Private Key of the User employed in RSA Key Unwrapping
- Generation: As per SP800-133 Section 6.2, key generation is performed as per FIPS
- 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

8. Secure Channel Session Key

- Type: AES-256 CBC

- Use: AES-256 CBC key used to encrypt and decrypt data transmitted to the module

- Generation: N/A

- Establishment: ECC CDH key agreement as per SP800-56A; allowed method as per FIPS 140-2 IG D.8 Scenario 1

- Entry: N/A

- Output: N/A

- Storage: Plaintext; Transient in RAM
- Key-to-entity: User

- Zeroization: Actively overwritten after channel closure; actively overwritten during ZEROIZE service

9. SSO Password Phrase

- Type: 6 - 20 byte Password Phrase

- Use: A secret 6 - 20 byte value used for Cyrpto-officer (SSO) authentication that is externally - created by SSO during initialization

- Generation: N/A

- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Zeroization: Actively overwritten when CHECK PASSWORD and CHANGE

PASSWORD services are executed by the SSO; actively overwritten during ZEROIZE service

10. User Password Phrase

- Type: 6 - 20 byte Password Phrase

- Use: A secret 6 - 20 byte value used for User authentication that is externally created by SSO during initialization

- Generation: N/A
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Zeroization: Actively overwritten when CHECK PASSWORD and CHANGE

PASSWORD services are executed by the User; Actively overwritten during ZEROIZE service

11. Drive Encryption Key

- Type: AES-XTS

- Use: A pair of AES-256 keys used for SP 800-38E AES-XTS encryption of User data on the encrypted drive

- Generation: As per SP800-133 Section 7.4, derived using SP800-108 KBKDF

- Establishment: N/A

- Entry: N/A
- Output: N/A
- Storage: Plaintext; Transient in RAM and stored in PLX ROM
- Zeroization: Actively overwritten during ZEROIZE service

The module supports the following public keys:

- 1. ECDSA Public Key:
- Type: X9.62
- Use: The Public Key of the User employed in Elliptic Curve digital signing operations
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User

2. RSA Public Key for Digital Signatures

- Type: FIPS 186-4

- Use: The Public Key of the User employed in RSA digital signature verification operations

- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS

- 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User
- 3. RSA Public Key for Key Establishment
- Type: FIPS 186-4
- Use: The Public Key of the User employed in RSA Key Wrapping
- Generation: As per SP800-133 Section 6.2, key generation is performed as per FIPS
- 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User
- 4. Firmware Load Public Key
- Type: X9.62
- Use: ECDSA P-384 SHA-384 Public Key used for Firmware Loading
- Generation: N/A; installed during manufacturing
- Establishment: N/A

- Entry: N/A
- Output: N/A
- Storage: Plaintext; Transient in RAM and stored in PLX ROM
- Key-to-Entity: Process