nuvoTon

NPCT6XX TPM 2.0

FIPS 140-2 SECURITY POLICY

DOCUMENT VERSION: 5.1

LAST REVISION: APRIL 18, 2016

NUVOTON

TECHNOLOGY

CORPORATION

8 HASADNAOT STREET

HERZLIA, 46130

ISRAEL

CONTENTS

1. Module Description
2. Cryptographic Functions
3. Ports and Interfaces 10
4. Roles and Services
5. Key Management 17
6. Power-On Self Tests
7. Conditional Self-Tests
8. Crypto-Officer Guidance
9. User Guidance
10. Acronyms

LIST OF TABLES AND FIGURES

Figure 1: TPM 2.0 ImageS4
Figure 2: TPM 2.0 Logical Block Diagram6
Гable 1: Security Levels7
Fable 2: Cryptographic Functions8
Гable 3: Ports and Interfaces11
Гable 4: Roles12
Гable 5: Services14
Гable 6: Cryptographic Keys17
Table 7: Self-Tests 22

1. MODULE DESCRIPTION

The Nuvoton Trusted Platform Module ("MODULE") is a hardware cryptographic module that implements advanced cryptographic algorithms, including symmetric and asymmetric cryptography, as well as key generation and random number generation.

The Module is a SINGLE-CHIP MODULE that provides cryptographic services utilized by external applications. The Module meets the requirements of FIPS Pub 140-2.

The Module meets commercial-grade specifications for power, temperature, reliability, shock, and vibrations, and includes chip packaging to meet the physical security requirements at Security Level 2.

The Module has two silicon revisions: FB5C85D and FB5C85E. The latter includes several issue fixes related to interface, power management and versioning. The changes have no impact on the security of the Module.

The FIPS 140-2 conformance testing was performed on the following four configurations for the Nuvoton NPCT6xx TPM 2.0 Firmware Version: 1.3.0.1:

- HARDWARE VERSION 1: FB5C85D IN TSSOP28 PACKAGE
- HARDWARE VERSION 2: FB5C85D IN QFN32 PACKAGE
- HARDWARE VERSION 3: FB5C85E IN TSSOP28 PACKAGE
- HARDWARE VERSION 4: FB5C85E IN QFN32 PACKAGE

Images depicting the Module are shown in Figure 1:

FIGURE 1: TPM 2.0 IMAGES

FB5C85D IN TSSOP28 PACKAGE

FB5C85D IN QFN32 PACKAGE

FB5C85E IN TSSOP28 PACKAGE

FB5C85E IN QFN32 PACKAGE

The PHYSICAL CRYPTOGRAPHIC BOUNDARY of the Module is the outer boundary of the chip packaging.

A LOGICAL DIAGRAM of the Module is shown in Figure 2:

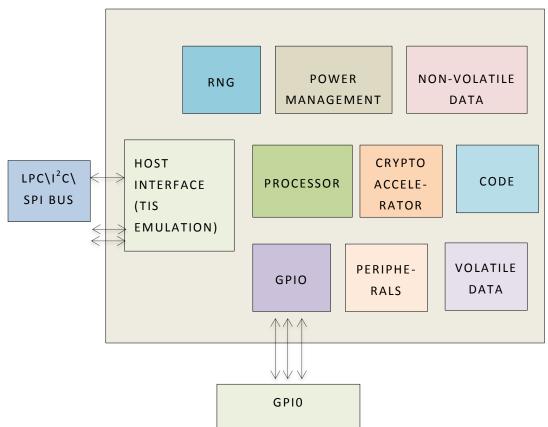


FIGURE 2: TPM 2.0 LOGICAL BLOCK DIAGRAM

The Module was tested to meet OVERALL SECURITY LEVEL 2 of the FIPS PUB 140-2 standard. The Security Level for each section of FIPS PUB 140-2 is specified in Table 1.

TABLE 1: SECURITY LEVELS

FIPS 140-2 SECTION	SECURITY LEVEL
CRYPTOGRAPHIC MODULE SPECIFICATION	2
CRYPTOGRAPHIC MODULE PORTS AND INTERFACES	2
Roles, Services and Authentication	2
FINITE STATE MODEL	2
PHYSICAL SECURITY	2
OPERATING ENVIRONMENT	N/A
CRYPTOGRAPHIC KEY MANAGEMENT	2
EMI/EMC	2
SELF-TESTS	2
DESIGN ASSURANCE	2
MITIGATION OF OTHER ATTACKS	N/A

2. CRYPTOGRAPHIC FUNCTIONS

The Module's cryptographic functions are outlined in Table 2.

FUNCTION	KEYSIZE	USE	CERT NUMBER
Approved Functions	-		
AES MODES: ECB (ENCRYPT), OFB (ENCRYPT/DECRYPT), CFB128(ENCRYPT/DECRYP T), CTR (ENCRYPT)	128 BITS	ENCRYPTION AND DECRYPTION	3541 3542
RSA VERIFY	1024 & 2048 вітs	DIGITAL SIGNATURE VERIFICATION	1819 1820
ECDSA SIGNATURE GENERATION AND VERIFICATION USING P-256 CURVE	256 BITS	DIGITAL SIGNATURES	719 720
HMAC KEYED HASH USING SHA-1 AND SHA-256	160 вітя, 256 вітя	Keyed Message Digest	2262 2263
SHS HASH USING SHA-1 AND SHA-256	160 вітs, 256 вітs	Message Digest	2919 2920

TABLE 2: CRYPTOGRAPHIC FUNCTIONS

I	1	1	j i
GENERATION OF RSA KEYS	2048 BITS	Key Pair	1819
FIPS 186-4		GENERATION	1820
GENERATION OF ECDSA	256 BITS	Key Pair	719
Keys		GENERATION	720
FIPS 186-4			
ECC KEY AGREEMENT	256 BITS	Key	66
		AGREEMENT	67
SP 800-90A DRBG	N/A	Random	898
	N/ A	NUMBER	899
		GENERATION	055
		&	
		Symmetric	
		Key	
		GENERATION	
Approved Services			
CVL	N/A	TPM KEY	594
SP 800-135 REV1		DERIVATION	596
CVL	N/A	ΤΡΜ Κεγ	593
SP 800-56A USING P-256	,	DERIVATION	595
CURVE			
ALLOWED FOR USE FUNCTION	IS		
RSA KEY WRAPPING	2048 BITS	WRAP &	N/A
		Unwrap	
		SYMMETRIC	
		KEYS	
NDRNG (ENTROPY	N/A	GENERATE	N/A
SOURCE).		THE SEED	
		INPUT FOR	
		THE DRBG	

In the Approved mode of operation, the Module supports a key size of 2048 bits for RSA key wrapping. This is equivalent to a key strength of 112 bits.

Note: Neither the TLS protocol nor the TPM protocol were tested by the CAVP or CMVP.

2.1 Non-Approved, Allowed Function

The Module supports key wrapping, using the AES algorithm with 128-bit keys in CFB128 mode to wrap and unwrap 1024bit and 2048-bit RSA keys and 256-bit ECC keys. This key wrapping methodology is not compliant with SP800-38F.

2.2 Non-Approved, Non-Allowed Function

The Module supports signature generation using RSA-SHA-1. This function is Non-Approved and is considered equivalent to plaintext or obfuscation.

3. PORTS AND INTERFACES

The physical ports of the Module are

- LPC Bus
- SPI Bus
- I2C Bus
- GPIO Bus

The logical interfaces and the mapping of the logical interfaces to the physical ports of the Module are described in Table 3.

TABLE 3: PORTS AND INTERFACES

LOGICAL INTERFACE	DESCRIPTION	PHYSICAL PORTS
	CONTROL INPUT COMMANDS ISSUED TO THE CHIP	LPC BUS SPI BUS I2C BUS GPIO BUS
STATUS OUTPUT INTERFACE	STATUS DATA OUTPUT BY THE CHIP	LPC BUS SPI BUS I2C BUS GPIO BUS
DATA INPUT INTERFACE	DATA PROVIDED TO THE CHIP AS PART OF THE DATA PROCESSING COMMANDS	LPC BUS SPI BUS I2C BUS GPIO BUS
DATA OUTPUT Interface	DATA OUTPUT BY THE CHIP A PART OF THE DATA PROCESSING COMMANDS	LPC BUS SPI BUS I2C BUS GPIO BUS
Power Interface	POWER INTERFACE OF THE	Power pin ground pin

The Module does not include a maintenance interface.

4. ROLES AND SERVICES

The OPERATOR ROLES implemented by the Module are summarized in Table 4.

ROLE	HIGH LEVEL DESCRIPTION
CRYPTO OFFICER	INSTALLS AND CONFIGURES THE PRODUCT, EXECUTES CRYPTO
USER	ALGORITHMS AND GENERATES KEYS EXECUTES CRYPTO ALGORITHMS AND GENERATES KEYS
CRYPTO OFFICER	INSTALLS AND CONFIGURES THE PRODUCT, EXECUTES CRYPTO ALGORITHMS AND GENERATES KEY EXECUTES CRYPTO ALGORITHMS

TABLE 4: ROLES

The Module provides the set of SERVICES described in Table 5. For each service, the table includes a description of the service and lists the roles for which the service is available.

The Module implements authentication to authenticate operator actions using authentication tokens. The authentication token length is 32 bytes. Therefore, the total number of authentication token combinations is $2^256 =$ 10^77 , which meets the authentication strength requirements of FIPS 140-2.

The maximum number of authentication attempts before lockout is 10. The recovery time is 7,200 seconds (2 hours), and the lockout recovery time is 86,400 seconds (24 hours). Since only 10 tries are allowed, the probability of a successful random attempt during a one minute period is 10 / 2^256, which is less than one in 100,000.

The Module stores all authentication results in volatile memory, which is cleared when the Module is powered off.

The Module always encrypts cryptographic key on key input and output, which meets the key encryption requirements of FIPS 140-2 and Security Level 2.

The Module provides SP 800-90A DRBG random bit generation services without authentication, as permitted by FIPS 140-2 Implementation Guidance.

TABLE 5: SERVICES

r

SERVICE	DESCRIPTION	ROLE
GET STATUS	THE MODULE IMPLEMENTS A GET STATUS COMMAND THAT RETURNS THE STATUS OF THE MODULE, INCLUDING SUCCESS OR FAILURE OF SELF-TESTS. NOTE : THIS SERVICE DOES NOT REQUIRE AUTHENTICATION	OFFICER
RUN SELF-TESTS	THE MODULE RUNS POWER-UP SELF- TESTS AUTOMATICALLY WHEN POWERED ON. ONE CAN EXECUTE SELF-TESTS ON DEMAND BY POWER-CYCLING THE MODULE.	Crypto Officer User
ENCRYPT	USED TO ENCRYPT DATA	Crypto Officer User
DECRYPT	USED TO DECRYPT DATA	Crypto Officer User
Zeroize	USED TO ZEROIZE (IRREVERSIBLY DESTROY) MODULE'S CRYPTOGRAPHIC KEYS AND CSPS. THE KEYS AND CSPS STORED IN THE NON-VOLATILE AND VOLATILE MEMORY ARE ZEROIZED BY EXECUTING THE CORRESPONDING KEY/ENTITY ZEROIZATION COMMANDS: 1. TPM2_FLUSHCONTEXT 2. TPM2_CLEAR	Crypto Officer User

MAC & MAC VERIFY	USED TO CALCULATE AND VERIFY MAC FOR DATA	Crypto Officer User
KEY GENERATE	USED TO GENERATE KEYS	CRYPTO Officer User
RSA VERIFY	USED TO VERIFY DATA USING RSA	CRYPTO Officer User
ECDSA VERIFY	USED TO VERIFY DATA USING ECDSA	CRYPTO Officer User
ECDSA SIGN	USED TO SIGN DATA USING ECDSA	CRYPTO Officer User
RSA WRAP & UNWRAP	USED TO WRAP & UNWRAP CRYPTOGRAPHIC KEYS USING RSA	CRYPTO Officer User
Key Import	USED TO IMPORT KEYS	CRYPTO Officer User
Key Agreement	USED TO DERIVE A KEY	Crypto Officer User
TPM IDENTITY	USED TO AUTHENTICATE TPM IDENTITY TO OTHER PARTIES	Crypto Officer User
TPM ENDORSEMENT	USED TO PROVE TO OTHER PARTIES THAT TPM IS A GENUINE TPM	CRYPTO Officer User

TPM GET RANDOM	USED TO GENERATE RANDOM DATA	Crypto Officer
	NOTE: THIS SERVICE DOES NOT REQUIRE AUTHENTICATION	USER
TPM STIR RANDOM	USED TO ADD ENTROPY TO THE RANDOM BIT GENERATOR	Crypto Officer User
Install Module	INSTALLS MODULE	Crypto Officer
Firmware Update	UPDATES MODULE'S FIRMWARE	Crypto Officer User

5. KEY MANAGEMENT

Table 6 specifies each cryptographic key utilized by the Module. For each key, the table provides a description of its use; derivation or import; and storage.

NOTE: READ is defined as read access; **WRITE** is defined as write access.

KEY OR CSP	USAGE	SERVICE & ACCESS	ORIGIN & STORAGE
AES	USED TO ENCRYPT	Encrypt	GENERATED
SYMMETRIC	AND DECRYPT	READ	OR IMPORTED
ENCRYPTION	DATA		BY THE
KEYS		DECRYPT	Module,
		READ	STORED IN
			OTP OR IN
		Key Gen	NON-VOLATILE
		WRITE	Flash in
			PLAINTEXT
		Key	
		WRAP/UNWRAP	
		WRITE	
		Key Import	
		WRITE	
		Zeroize	
		WRITE	

TABLE 6: CRYPTOGRAPHIC KEYS

RSA AND			
	USED TO VERIFY	RSA VERIFY	GENERATED
ECDSA PUBLIC	SIGNATURES ON	READ	OR IMPORTED
VERIFICATION	DATA		BY THE
KEYS			Module,
		Key Gen	STORED IN
		WRITE	volatile RAM
			OR IN NON-
		ZEROIZE	VOLATILE
		WRITE	FLASH IN
			PLAINTEXT
		Κεγ	
		WRAP/UNWRAP	
		WRITE	
		Key Import	
		WRITE	
	USED TO WRAP	RSA	GENERATED
		WRAP/UNWRAP	
		READ	BY THE
			Module,
			STORED IN
		Key Import	VOLATILE RAM
		WRITE	OR IN NON-
			VOLATILE
			FLASH IN
		RSA KEY GEN	PLAINTEXT
			PLAINIEAI
		WRITE	PLAINTEXT
		WRITE	PLAINTEXT
		WRITE Zeroize	PLAINTEXT
		WRITE	PLAINTEXT
		WRITE Zeroize	PLAINTEXT

RSA private	USED TO UNWRAP	RSA	GENERATED
STORAGE KEYS	SYMMETRIC KEYS	WRAP/UNWRAP	OR IMPORTED
		READ	BY THE
			Module,
		RSA KEY GEN	STORED IN
		WRITE	VOLATILE RAM
			OR IN NON-
		Key Import	VOLATILE
		WRITE	Flash in
			PLAINTEXT
		ZEROIZE	
		WRITE	
IDENTITY KEYS	AUTHENTICATION	TPM IDENTITY	GENERATED
	TOKENS USED TO	READ	OR IMPORTED
	PROVE TPM		BY THE
	IDENTITY TO		Module,
	OTHER PARTIES	RSA KEY GEN	STORED IN
		WRITE	VOLATILE RAM
			OR IN NON-
		Key Import	VOLATILE
		WRITE	FLASH IN
			PLAINTEXT
		ZEROIZE	
		WRITE	
RSA PRIVATE	USED TO UNBIND	Data Binding	GENERATED
BINDING KEYS	(UNWRAP) A KEY	READ	OR IMPORTED
	BOUND BY AN		ВҮ ТНЕ
	EXTERNAL ENTITY		Module,
		RSA KEY GEN	STORED IN
		WRITE	volatile RAM
			OR IN NON-
			VOLATILE
		ZEROIZE	FLASH IN

HMAC KEYS	Used to	MAC/MAC	GENERATED
	CALCULATE AND	VERIFY	OR IMPORTED
	VERIFY MAC	READ	BY THE
	CODES FOR DATA		Module,
			STORED IN
		Key Gen	VOLATILE RAM
		READ	OR IN NON-
			VOLATILE
			FLASH IN
		Key Import	PLAINTEXT
		WRITE	
		ZEROIZE	
		WRITE	
DRBG SEEDS	USED TO SEED THE	Key Gen	GENERATED BY
	DRBG	READ	THE MODULE
			USING THE
			NON-
		RSA KEY GEN	APPROVED
		READ	NON-
			DETERMINISTIC
			HARDWARE
			DRBG
		ZEROIZE	(ENTROPY
		WRITE	SOURCE)
			STORED IN
			VOLATILE RAM
			IN PLAINTEXT
Endorsement	AUTHENTICATION	ТРМ	GENERATED BY
Keys	TOKENS USED TO		THE MODULE
	PROVE TO THE		
	EXTERNAL PARTIES		
	THAT TPM IS A		
	THAT TPM IS A GENUINE TPM		

Platform Keys	Keys used by the Platform Firmware	RSA KEY GEN WRITE ECDSA KEY GEN WRITE	GENERATED BY THE MODULE
HMAC Authenticati on Key	USED FOR HMAC AUTHENTICATION OF DATA	KEY GENERATE WRITE MAC/MAC VERIFY READ	GENERATED BY THE MODULE
Firmware Update Key	USED TO VERIFY SIGNATURE ON FIRMWARE UPDATES	Firmware update READ	INSTALLED AT THE FACTORY

6. POWER-ON SELF TESTS

The Module implements a power-up integrity check using a 256-bit error detection code.

The Module implements power-up cryptographic algorithm tests that are described in Table 7.

CRYPTO FUNCTION	ΤΕՏΤ ΤΥΡΕ
AES CTR ENCRYPT (ALL MODES)	KNOWN ANSWER TEST
AND DECRYPT (ALL MODES)	(ENCRYPT AND DECRYPT)
RSA VERIFY	KNOWN ANSWER TEST (VERIFY)
ECDSA SIGN/VERIFY	PAIR-WISE CONSISTENCY TEST
ECC KEY AGREEMENT	PAIR-WISE CONSISTENCY TEST
HMAC KEYED HASH	KNOWN ANSWER TEST
	(KEYED HASH)
SHS HASH	KNOWN ANSWER TEST (HASH)
DRBG RANDOM NUMBER	KNOWN ANSWER TEST
GENERATION	(GENERATE RANDOM BLOCK)

TABLE 7: SELF-TESTS

7. CONDITIONAL SELF-TESTS

The Module executes the following tests and checks:

- Continuous DRBG test on each execution of the SP 800-90A DRBG (both the entropy source and the approved algorithm are tested).
- Conditional pair-wise consistency check for RSA publicprivate key pairs each time an RSA key pair is generated, using FIPS 186-4 key pair generation algorithm.
- Conditional pair-wise consistency check for ECDSA public-private key pairs each time an ECDSA key pair is generated, using FIPS 186-4 key pair generation algorithm.
- Firmware update test during the firmware update. The digital signature is verified on the firmware image using an RSA (SHA-256) algorithm, utilizing a 2048-bit firmware update key.

If any of the conditional or power-on self-tests fail, the Module enters an error state where both data output and cryptographic services are disabled.

In addition, the Module executes DRBG Instantiate, DRBG Generation, DRBG reseed, and DRBG Instantiate tests, as prescribed by SP 800-90A.

8. CRYPTO-OFFICER GUIDANCE

To install the Module in the Approved Mode of operation, the following steps must be followed:

- The Module must be physically controlled during the installation.
- The Module must be placed on the PCB as described in the Module technical specifications.
- The Module arrives from the manufacturer, typically preconfigured with FIPS mode enabled according to the *NPCT65x TPM2.0 Programmer's Guide* (CFG_H[0] is zero). If the initialization sequence was not executed by the manufacturer, the Crypto Officer must initialize the Module using the NTC2_PreConfig command (see Section 3.1 in the *NPCT65x TPM2.0 Programmer's Guide*).

9. USER GUIDANCE

The user shall take security measures to protect the tokens used to authenticate the user to the Module.

10. ACRONYMS

AES	Advanced Encryption Algorithm
CPU	Central Processing Unit
ECC	Elliptic Curve Cryptography
EMC	Electro-Magnetic Compatibility
EMI	Electro-Magnetic Interference
FIPS	Federal Information Processing Standard
GPIO	General-Purpose Input Output bus
HMAC	Hash-based Message Authentication Code
I2C	Inter-Integrated Circuit bus
LPC	Low Pin Count bus
OTP	One-Time Programmable Memory
PCB	Printed Circuit Board
RAM	Random Access Memory
DRBG	Deterministic Random Bit Generator
RSA	Rivest-Shamir-Adleman
SHS	Secure Hash Standard
SP	Special Publication
SPI	Serial Peripheral Interface bus
TCG	Trusted Computing Group
TIS	TPM Interface Specification
TPM	Trusted Platform Module

Nuvoton provides comprehensive service and support. For product information and technical assistance, contact the nearest Nuvoton center.

Headquarters

Nuvoton Technology Corporation America

No. 4, Creation Rd. 3 Science-Based Industrial Park Hsinchu, Taiwan, R.O.C TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.nuvoton.com.tw (Ch.) http://www.nuvoton.com (Eng.) 2727 North First Street San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798 Nuvoton Technology (Shanghai) Ltd.

27F, 2299 Yan An W. Rd. Shanghai, 200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Taipei Office

Winbond Electronics Corporation Japan

1F, No.192, Jingye 1st Rd Zhongshan District, Taipei, 104 Taiwan, R.O.C. TEL: 886-2-2658-8066 FAX: 886-2-8751-3579 NO. 2 Ueno-Bldg., 7-18, 3-chome Shinyokohama Kohoku-ku Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800 Nuvoton Technology (H.K.) Ltd.

Unit 9-15, 22F, Millennium City 2 378 Kwun Tong Rd Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

For Advanced PC Product Line information contact: <u>APC.Support@nuvoton.com</u>

© 2016 Nuvoton Technology Corporation. All rights reserved

www.nuvoton.com