

FIPS 140-2 Non-Proprietary Security Policy

IBM Security XGS 3100, XGS 4100, XGS 5100, and XGS 7100

FW version 5.3.1

Document Version 0.9

February 17, 2016

Prepared For:

IBM Security 6303 Barfield Road Atlanta, GA 30328 www.ibm.com Prepared By:

SafeLogic Inc. 530 Lytton Ave, Suite 200 Palo Alto, CA 94301 www.safelogic.com

Table of Contents

1 Introduction	4
1.1 About FIPS 140-2	4
1.2 About this Document	4
1.3 External Resources	4
1.4 Notices	4
1.5 Acronyms	5
2 IBM Security XGS 3100, XGS 4100, XGS 5100, and XGS 7100	6
2.1 Product Overview	6
2.2 Validation Level Detail	6
2.3 Cryptographic Algorithms	7
2.3.1 Approved Algorithms and Implementation Certificates	7
2.3.2 Non-Approved but Allowed Algorithms	12
2.4 Cryptographic Module Specification	13
2.4.1 Excluded Components	13
2.4.2 FIPS Mode	14
2.5 Module Interfaces	15
2.6 Roles, Services, and Authentication	16
2.6.1 Management Options	16
2.6.2 Operator Services and Descriptions	18
2.6.3 Operator Authentication	19
2.7 Physical Security	20
2.8 Operational Environment	20
2.9 Cryptographic Key Management	21
2.10 Self-Tests	33
2.10.1 Power-On Self-Tests	33
2.10.2 Conditional Self-Tests	35
2.11 Mitigation of Other Attacks	37
3 Guidance and Secure Operation	38
3.1 Crypto Officer Guidance	38
3.1.1 Firmware Installation	38
3.1.2 Enabling FIPS Mode	38
3.1.3 Placement of Tamper Evidence Labels	39
3.2 User Guidance	50
3.2.1 General Guidance	50

List of Tables

Table 1 – Acronyms and Terms	5
Table 2 – Validation Level by DTR Section	6
Table 3 – Algorithm Certificates (OpenSSL)	11
Table 4 – Algorithm Certificates (GSKIT)	12
Table 5 – Interface Descriptions	15
Table 6 – Logical Interface / Physical Interface Mapping	15
Table 7 – Operator Services and Descriptions	19
Table 8 - Key/CSP Management Details	31
Table 9 - OpenSSL Self-Tests	34
Table 10 - GSKIT Self-Tests	35
List of Figures	
Figure 1 - Block Diagram	13
Figure 2 - Module Illustrations	14
Figure 3 - Additional CLI Commands	17
Figure 4 - XGS 3100 Tamper evidence label placement (top left)	41
Figure 5 – XGS 3100 Tamper evidence label placement (bottom back)	42
Figure 6 - XGS 3100 Tamper evidence label placement (top front)	42
Figure 7 - XGS 4100 Tamper evidence label placement (top left).	44
Figure 8 – XGS 4100 Tamper evidence label placement (bottom back)	44
Figure 9 – XGS 4100 Tamper evidence label placement (top and bottom front)	45
Figure 10 – XGS 5100 Tamper evidence label placement (top left)	46
Figure 11 – XGS 5100 Tamper evidence label placement (bottom back)	47
Figure 12 – XGS 5100 Tamper evidence label placement (top and bottom front)	47
Figure 13 – XGS 7100 Tamper evidence label placement (top left)	49
Figure 14 – XGS 7100 Tamper evidence label placement (bottom back)	49
Figure 15 – XGS 7100 Tamper evidence label placement (top and bottom front)	50

1 Introduction

1.1 About FIPS 140-2

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) runs the FIPS 140-2 program. The CMVP accredits independent testing labs to perform FIPS 140-2 testing; the CMVP also validates test reports for products meeting FIPS 140-2 validation. *Validated* is the term given to a product that is documented and tested against the FIPS 140-2 criteria.

More information is available on the CMVP website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for the XGS 3100, XGS 4100, XGS 5100, and XGS 7100 from IBM Security provides an overview of the product and a high-level description of how it meets the security requirements of FIPS 140-2. This document contains details on the module's cryptographic keys and critical security parameters. This Security Policy concludes with instructions and guidance on running the module in a FIPS-approved mode of operation.

The IBM Security XGS 3100, XGS 4100, XGS 5100, and XGS 7100 may also be referred to as the "modules" in this document.

1.3 External Resources

The IBM Security website (http://www.ibm.com) contains information on the full line of products from IBM Security, including a detailed overview of the XGS 3100, XGS 4100, XGS 5100, and XGS 7100 solution. The Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/validation.html) contains links to the FIPS 140-2 certificate and IBM Security contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

1.5 Acronyms

The following table defines acronyms found in this document:

Acronym	Term
AES	Advanced Encryption Standard
ВМС	Baseboard Management Controller (a
	motherboard system management
	process)
CBC	Cipher Block Chaining
CSE	Communications Security
	Establishment
CSP	Critical Security Parameter
DRBG	Deterministic Random Bit Generator
PCT	Pairwise Consistency Test
DTR	Derived Testing Requirement
ECDSA	Elliptic Curve Digital Signature
	Algorithm
FIPS	Federal Information Processing
	Standard
FW	Firmware
GPC	General Purpose Computer
GUI	Graphical User Interface
HMAC	Hashed Message Authentication Code
IBM	International Business Machines
ISS	Internet Security Systems
KAT	Known Answer Test
NDRNG	Non-deterministic Random Number
	Generator
NIM	Network Interface Module
NIST	National Institute of Standards and
	Technology
RSA	Rivest Shamir Adelman
SEL	System Error Log
SHA	Secure Hashing Algorithm

Table 1 – Acronyms and Terms

2 IBM Security XGS 3100, XGS 4100, XGS 5100, and XGS 7100

2.1 Product Overview

The Network Intrusion Prevention System (IPS) automatically blocks malicious attacks while preserving network bandwidth and availability. The appliances are purpose-built, Layer 2 network security appliances that you can deploy either at the gateway or the network to block intrusion attempts, denial of service (DoS) attacks, malicious code, backdoors, spyware, peer-to-peer applications, and a growing list of threats without requiring extensive network reconfiguration.

The XGS 3100, XGS 4100, XGS 5100, and XGS 7100 can be securely managed via SiteProtector, which is a central management console for managing appliances, monitoring events, and scheduling reports

2.2 Validation Level Detail

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
Electromagnetic Interference / Electromagnetic	2
Compatibility	
Self-Tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A
Overall Validation Level	2

Table 2 – Validation Level by DTR Section

The "Mitigation of Other Attacks" section is not relevant as the module does not implement any countermeasures towards special attacks.

2.3 Cryptographic Algorithms

2.3.1 Approved Algorithms and Implementation Certificates

The module's cryptographic algorithm implementations have received the following certificate numbers from the Cryptographic Algorithm Validation Program:

Algorithm Type	Algorithm	CAVP Certificate	Use
Asymmetric Key	RSA	XGS3100: 1691	Sign / verify operations
		XGS4100: 1692	Key transport
	FIPS186-2:	XGS5100: 1693	
	ALG[ANSIX9.31]:	XGS7100: 1694	
	SIG(ver); 1024 , 1536 ,		
	2048 , 3072 , 4096 ,		
	ALG[RSASSA-PKCS1_V1_5]:		
	SIG(ver): 1024 , 1536 ,		
	2048 , 3072 , 4096 , SHS,		
	FIPS186-4:		
	186-4KEY(gen): FIPS186-		
	4_Fixed_e _Value		
	PGM(ProbRandom: (2048		
	, 3072) PPTT:(C.2 , C.3)		
	ALG[ANSIX9.31] Sig(Ver):		
	(1024 SHA(1 , 256 , 384 ,		
	512)) (2048 SHA(1 , 256 ,		
	384 , 512)) (3072 SHA(1 ,		
	256 , 384 , 512))		
	ALG[RSASSA-PKCS1_V1_5]		
	SIG(gen) (2048 SHA(224 ,		
	256 , 384 , 512)) (3072		
	SHA(224 , 256 , 384 , 512		
))		
	SIG(Ver) (1024 SHA(224 ,		
	256 , 384 , 512)) (2048		
	SHA(224 , 256 , 384 , 512		
)) (3072 SHA(224 , 256 ,		
	384 , 512))		

Algorithm Type	Algorithm	CAVP Certificate	Use
0 / //·	ECDSA	XGS3100: 640	
		XGS4100: 641	
	FIPS186-4:	XGS5100: 642	
	PKG: CURVES(P-224 P-256	XGS7100: 643	
	P-384 P-521 K-233 K-283		
	K-409 K-571 B-233 B-283		
	B-409 B-571		
	ExtraRandomBits		
	TestingCandidates)		
	PKV: CURVES(ALL-P ALL-K		
	ALL-B)		
	SigGen: CURVES(P-224:		
	(SHA-224, 256, 384, 512)		
	P-256: (SHA-224, 256, 384,		
	512) P-384: (SHA-224, 256,		
	384, 512) P-521: (SHA-224,		
	256, 384, 512) K-233:		
	(SHA-224, 256, 384, 512)		
	K-283: (SHA-224, 256, 384,		
	512) K-409: (SHA-224, 256,		
	384, 512) K-571: (SHA-224,		
	256, 384, 512) B-233:		
	(SHA-224, 256, 384, 512)		
	B-283: (SHA-224, 256, 384,		
	512) B-409: (SHA-224, 256,		
	384, 512) B-571: (SHA-224,		
	256, 384, 512))		
	SigVer: CURVES(P-192:		
	(SHA-1, 224, 256, 384, 512)		
	P-224: (SHA-1, 224, 256,		
	384, 512) P-256: (SHA-1,		
	224, 256, 384, 512) P-384:		
	(SHA-1, 224, 256, 384, 512)		
	P-521: (SHA-1, 224, 256,		
	384, 512) K-163: (SHA-1,		
	224, 256, 384, 512) K-233:		
	(SHA-1, 224, 256, 384, 512)		
	K-283: (SHA-1, 224, 256,		
	384, 512) K-409: (SHA-1,		
	224, 256, 384, 512) K-571:		
	(SHA-1, 224, 256, 384, 512		
	B-163: (SHA-1, 224, 256,		
	384, 512) B-233: (SHA-1,		
	224, 256, 384, 512) B-283:		
	(SHA-1, 224, 256, 384, 512)		
	B-409: (SHA-1, 224, 256,		
	384, 512) B-571: (SHA-1,		
	224, 256, 384, 512)		

FIPS 140-2 Non-Proprietary Security Policy: IBM Security XGS 3100, XGS 4100, XGS 5100, and XGS 7100

Algorithm Type	Algorithm	CAVP Certificate	Use
Hashing	SHA-1, SHA-224, SHA-256,	XGS3100: 2740	Message digest in TLS sessions
	SHA-384, SHA-512	XGS4100: 2741	Module integrity via SHA-1
		XGS5100: 2742	
		XGS7100: 2743	
Keyed Hash	HMAC: SHA-1, SHA-224,	XGS3100: 2099	Message verification
	SHA-256, SHA-384, SHA-	XGS4100: 2100	
	512	XGS5100: 2101	
		XGS7100: 2102	

Algorithm Type	Algorithm	CAVP Certificate	Use
Symmetric Key	AES	XGS3100: 3307	Data encryption / decryption
, ,		XGS4100: 3308	, , , , , , , , , , , , , , , , , , , ,
	ECB (e/d; 128, 192, 256);	XGS5100: 3309	
	CBC (e/d; 128 , 192 , 256);	XGS7100: 3310	
	CFB1 (e/d; 128, 192, 256	7.007 2001 0020	
); CFB8 (e/d; 128 , 192 ,		
	256); CFB128 (e/d; 128 ,		
	192 , 256); OFB (e/d; 128 ,		
	192 , 256); CTR (ext only;		
	128 , 192 , 256)		
	CCM (KS: 128 , 192 , 256)		
	(Assoc. Data Len Range: 0 -		
	0, 2^16) (Payload Length		
	Range: 0 - 32 (Nonce		
	Length(s): 7 8 9 10 11 12		
	13 (Tag Length(s): 4 6 8 10		
	12 14 16)		
	CMAC		
	(Generation/Verification)		
	(KS: 128; Block Size(s): Full		
	/ Partial; Msg Len(s) Min:		
	0 Max: 2^16 ; Tag Len(s)		
	Min: 0 Max: 16) (KS: 192;		
	Block Size(s): Full / Partial;		
	Msg Len(s) Min: 0 Max:		
	2^16 ; Tag Len(s) Min: 0		
	Max: 16) (KS: 256; Block		
	Size(s): Full / Partial ; Msg		
	Len(s) Min: 0 Max: 2^16;		
	Tag Len(s) Min: 0 Max: 16)		
	GCM (KS: AES_128(e/d)		
	Tag Length(s): 128) (KS:		
	AES_192(e/d) Tag		
	Length(s): 128)		
	(KS: AES_256(e/d) Tag		
	Length(s): 128)		
	IV Generated: (Internally		
	(using Section 8.2.2)); PT		
	Lengths Tested: (0, 128,		
	256,8,248);AAD		
	Lengths tested: (0,128,		
	256); IV Lengths Tested: (
	96,1024);		
	96BitIV_Supported;		
	OtherIVLen_Supported		
	GMAC_Supported		
	Triple-DES TECB, TCBC,	XGS3100: 1883	
	TCFB64, TOFB;	XGS4100: 1884	
		XGS5100: 1885	
		XGS7100: 1886	

Algorithm Type	Algorithm	CAVP Certificate	Use
DRBG 800-90A	DRBG (HMAC_DRBG (SHA-	XGS3100: 756	Deterministic Random Bit
	1, SHA-224, SHA-256, SHA-	XGS4100: 757	Generation
	384, SHA-512), HASH_DRB	XGS5100: 758	
	G (SHA-1, SHA-224, SHA-	XGS7100: 759	
	256, SHA-384, SHA-512),		
	CTR_DRBG (AES-128- ECB,		
	AES- 192-ECB, AES-256-		
	ECB)		

Table 3 – Algorithm Certificates (OpenSSL)

	Algorithm	CAVP Certificate	Use
RSA Key	186-4KEY(gen)	XGS3100: 1677	Sign / verify operations
Generation	(2048 to 3072 bits)	XGS4100: 1679	Key transport
RSA Signature	PKCS#1.5	XGS5100: 1680	
Generation	(2048 to 3072 bits)	XGS7100: 1681	
	(SHA-224,SHA-256,SHA-384,SHA-512)		
RSA Signature	PKCS#1.5 (1024, 2048, 3072 bits)		
Verification	(SHA-1,SHA-224,SHA- 256,SHA-384,SHA-		
	512)		
ECDSA KeyPair	P: 224, 256, 384, 521	XGS3100: 633	Sign / verify operations
Generation	K: 233, 283, 409, 571	XGS4100: 635	
	B: 233, 283, 409, 571	XGS5100: 636	
		XGS7100: 637	
ECDSA PKV	P: 192, 224, 256, 384, 521 K: 163, 233, 283,		
	409, 571 B: 163, 233, 283, 409, 571		
ECDSA	P: 224, 256, 384, 521		
Signature	K: 233, 283, 409, 571		
Generation	B: 233, 283, 409, 571		
ECDSA	P: 192, 224, 256, 384, 521 K: 163, 233, 283,		
Signature	409, 571 B: 163, 233, 283, 409, 571		
Verification			
ECC CDH	P: 224, 256, 384, 521	XGS 3100	Cofactor Diffie-Hellman
Component (SP800-56A)		CVL: #463	Primitive
(3. 300 307.)		XGS 4100	
		CVL: #465	
		XGS 5100	
		CVL: #466	
		XGS 7100	
		CVL: #467	
SHA message	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	XGS3100: 2718	Message digest in TLS
digest		XGS4100: 2720	sessions
generation		XGS5100: 2721	Module integrity via
		XGS7100: 2722	SHA-1

HMAC	HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-	XGS3100: 2077	Message verification
	256, HMAC-SHA-384, HMAC-SHA-512	XGS4100: 2079	
	,	XGS5100: 2080	
		XGS7100: 2081	
AES	AES-128-CMAC, AES-192-CMAC, AES-256-	XGS3100: 3280	Data encryption /
	CMAC. ECB, CBC, CFB1, CFB8, CFB128 & OFB	XGS4100: 3282	decryption
		XGS5100: 3283	,,
	AES_CCM 128, 192,or 256 bit keys (SP800-38C)	XGS7100: 3284	
	AES_GCM 128, 192,or 256 bit keys (FIPS 197, SP800-38D)		
	AES_XTS 128, 256 bit keys (FIPS SP 800-38E) ¹		
Triple-DES	Triple-DES 192-bit keys in ECB, CBC, CFB64,	XGS3100: 1867	Data encryption /
r	and OFB mode, CMAC	XGS4100: 1869	decryption
	,	XGS5100: 1870	,,
		XGS7100: 1871	
DRBG 800-90A	HMAC_DRBG (SHA-1, SHA-224, SHA-256,	XGS3100: 738	DRBG
	SHA-384, SHA-512), HASH_DRBG (SHA-1,	XGS4100: 740	
	SHA-224, SHA-256, SHA-384, SHA-512),	XGS5100: 741	
	CTR_DRBG (AES-128- ECB, AES- 192-ECB,	XGS7100: 742	
	AES-256- ECB)		
DSA	[(1024, 160) bits; (2048, 224) bits; (2048,	XGS 3100	Verify operations
	256) bits; (3072, 256) bits] (SHA-1, SHA-224, SHA-256, SHA-256)	DSA: #937	
		XGS 4100	
		DSA: #939	
		XGS 5100	
		DSA: #940	
		VCC 74.00	
		XGS 7100	
		DSA: #941	

Table 4 – Algorithm Certificates (GSKIT)

The TLS, SSH, and SNMP protocols have not been reviewed or tested by the CAVP and CMVP. Please see NIST document SP800-131A for guidance regarding the use of non FIPS-approved algorithms.

2.3.2 Non-Approved but Allowed Algorithms

The module implements the following non-FIPS approved but allowed algorithms:

- True Random Number Generator (TRNG), a non-deterministic RNG (NDRNG) used to seed the DRBG.
- GSKIT: RSA Key Wrapping Encrypt / Decrypt (2048, 3072 bits) Allowed to be used in FIPS mode (key wrapping; key establishment methodology provides 112 or 128 bits of encryption strength)

¹ AES XTS mode was CAVS validated but not implemented within the module.

- Diffie-Hellman (key agreement; key establishment methodology provides 112 or 128 bits of encryption strength)
- EC Diffie-Hellman (key agreement; key establishment methodology provides between 128 and 256 bits of encryption strength)

2.4 Cryptographic Module Specification

The modules are running firmware version 5.3.1. Each module is classified as a multi-chip standalone cryptographic module and contains a cryptographic module to manage secure communications with SiteProtector Management System. The physical cryptographic boundary is defined as the module case (shown in Figure 1).

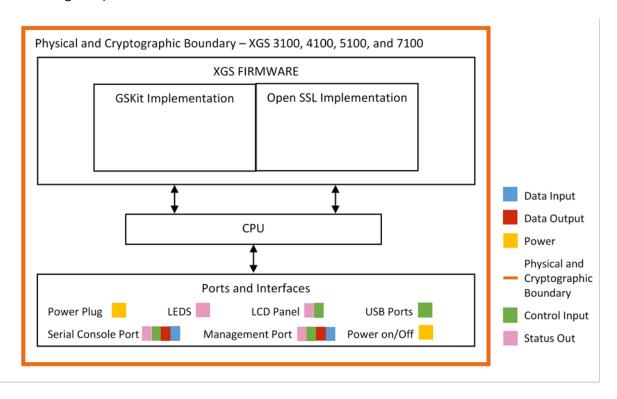


Figure 1 - Block Diagram

2.4.1 Excluded Components

Excluded components include the following:

- Monitoring Ports
 - The network card provides input/output functionality from the motherboard to the exterior network; it does not provide any FIPS security relevant processing.

 These ports accept and pass data traffic that is analyzed by the internal IDS analysis engine. The traffic is not security relevant and does not interact with the cryptographic processing of the appliance.

• Management Port 2

o Excluded when configured for TCP reset

Although the actual data over these interfaces is excluded, the appliances do provide analysis of data. These scan results are encrypted by the cryptographic module and sent to the management interfaces for review.

The module illustrations are provided in the table below. Top to bottom: XGS 3100, XGS 4100, XGS 5100 and XGS 7100.

Figure 2 - Module Illustrations

2.4.2 FIPS Mode

The module can only be enabled for FIPS mode at the time of initial configuration. Additionally, if the module enters an error state (e.g., a known answer test fails), the module must be powered off and reimaged to FIPS mode of operation.

2.5 Module Interfaces

Each appliance runs the same version of firmware and has the same basic physical interfaces; the main difference is the number of Monitoring Ports (i.e., traffic monitoring interfaces) and the processing speed. The table below describes the main interface on each module:

Physical Interface	Description / Use
LCD	Initial network configuration, restarting or shutting down the appliance
Monitoring Ports	Either inline intrusion prevention (IPS mode) or passive intrusion detection
(excluded)	(IDS mode). Inline prevention uses a pair of ports per segment. Passive
	detection uses a single port per segment. IDS traffic is excluded from the
	validation.
Serial Console Port	Optional terminal-based setup and recovery
USB Ports	Connection to a CD-ROM or similar peripheral for loading images
Management Port 1	Communication with SiteProtector Management System
Management Port 2	Communication with SiteProtector Management System and for sending
(excluded)	TCP Reset responses. This interface is excluded from the validation when
	configured for TCP Reset processing otherwise it is identical to
	Management Port #1.

Table 5 – Interface Descriptions

Each module provides a number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to four FIPS 140-2 defined logical interfaces: data input, data output, control input, and status output. The logical interfaces and their mapping are described in the following table:

FIPS 140-2 Logical Interface	Module Physical Interface
Data Input	Management Port
	Serial Console Port
Data Output	Management Port
	Serial Console Port
Control Input	Management Port
	Serial Console Port
	USB Ports
	LCD Panel
Status Output	Management Port
	Serial Console Port
	LCD Panel
	LEDs
Power	Power Plug
	On/Off Switch

Table 6 - Logical Interface / Physical Interface Mapping

2.6 Roles, Services, and Authentication

The module is accessed via Local Management Interface (LMI), Command Line Interface (CLI) or the SiteProtector management application. The CLI is additionally used for installation and initial configuration of the module. The module supports basic management via the LCD panel during module initialization. The LCD Management is unauthenticated but requires physical access and only allows:

- View the IP address
- Restart the appliance
- Shutdown the appliance

As required by FIPS 140-2, there are two roles (a Crypto Officer role and User role) in the module that operators may assume. The module supports identity-based authentication, and the respective services for each role are described in the following sections.

2.6.1 Management Options²

2.6.1.1 Command Line Interface

The command line interface offers the Crypto Officer role basic functions for installation and initial configuration. An authorized Crypto Officer operator can use the CLI to initially configure the following functions:

- Change Password
- Network Configuration Information
- Host Configuration
- Time Zone/Data/Time Configuration
- Agent Name Configuration
- Port Link Configuration
- Adapter Mode Configuration.

Additional commands are below:

 $^{^2}$ Please note that SiteProtector is outside of the module boundary and only the module interface to these applications are relevant to the validation.

Figure 3 - Additional CLI Commands

2.6.1.2 LMI

XGS also offers the Crypto-Officer a browser-based graphical user interface for local, single appliance management (LMI) with the functional overlap to the CLI. Besides the functions similar to the CLI, the LMI can also configure IPS related application policies and monitor the security events detected by the appliance.

2.6.1.3 SiteProtector

SiteProtector is the IBM central management console. SiteProtector can manage appliances, monitor events, and schedule reports. If managing a group of appliances along with other sensors, the centralized management capabilities of SiteProtector may be preferred. SiteProtector controls the following management functions of the appliance:

- Monitor appliance status
- View log files
- Configure password

2.6.2 Operator Services and Descriptions

The services available to the User and Crypto Officer roles in the module are as follows:

Service	Description	Service Input /	Interface	Key/CSP Access	Roles
		Output (API)			
Configure	Initializes the module for FIPS mode of operation	Configuration Parameters / Module configured	Serial Console Port USB Ports LCD Panel	None	Crypto Officer
Self Test	Performs self tests on critical functions of module	Initiate self tests / Self tests run	Management Port Power switch	None	Crypto Officer User
Decrypt	Decrypts a block of data	Initiate decryption / data decrypted	Management Port	AES Session Key Triple-DES Session Key Private Key SNMP AES Key	Crypto Officer User
Encrypt	Encrypts a block of data	Initiate encryption/ data encrypted	Management Port	AES Session Key Triple-DES Session Key Public Key External Entity Public Key SNMP AES Key	Crypto Officer User
Establish Session	Provides a protected session for establishment of encryption keys with peers	Initiate session establishment / session established	Management Port	Private Key Public Key HMAC Key Premaster Secret (48 Bytes) Master Secret (48 Bytes) Session Key Symmetric Key External Entity Public Key Session Key DRBG Seed Key Entropy Input String	Crypto Officer User

Service	Description	Service Input /	Interface	Key/CSP Access	Roles
		Output (API)		Hash_DRBG mechanism HMAC_DRBG mechanism CTR_DRBG mechanism	
Zeroize CSPs	Clear CSPs from memory	Terminate Session / CSPs cleared	Management Port	None	Crypto Officer User
	Clear CSPs from disk	Reimage module / CSPs cleared and module restored to factory settings	USB Serial	None	Crypto Officer
Show Status	Shows status of the module	Show status commands / Module status	Management Port Serial Console Port USB Ports LCD Panel LEDs	None	Crypto Officer User

Table 7 – Operator Services and Descriptions

2.6.3 Operator Authentication

The CO role authentication via CLI (when initially configuring the module for FIPS mode) is over SSH. The LMI connection is over HTTPS/TLS in FIPS mode. Other than the LCD panel services and status functions available by viewing LEDs, the services described in the table above are available only to authenticated operators.

The operator authenticates via username/password, and passwords are stored on the module. The module checks these parameters before allowing access. The module enforces a minimum password length of 6 characters (see Guidance and Secure Operation section of this document). The password can consist of alphanumeric values, $\{a-zA-Z0-9\}$, yielding 62 choices per character. The probability of a successful random attempt is $1/62^6$, which is less than 1/1,000,000. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one minute period is $600/62^6$, which is less than 1/100,000.

³ The password complexity rules are configurable; users can have more strict password rules. The guidance The minimum password length can be configured to be 6 to 15 characters and can be configured to require special, numeric, upper and lower case characters. The default minimum password length is 6 characters, and the account should be locked after 3 unsuccessful attempts; therefore this analysis.

Per the Configuration Guidance, the module will lock an account after 3 failed authentication attempts; thus, the maximum number of attempts in one minute is 3. Therefore, the probability of a success with multiple consecutive attempts in a one minute period is 3/62⁶ which is less than 1/100,000.

For authentication of SiteProtector sessions (i.e., the User Role), the module supports a public key based authentication with 2048 bit keys via RSA. A 2048-bit RSA key has 112-bits of equivalent strength. The probability of a successful random attempt is 1/2^112, which is less than 1/1,000,000. Assuming the module can support 60 authentication attempts in one minute, the probability of a success with multiple consecutive attempts in a one minute period is 60/2^112 which is less than 1/100,000.

2.7 Physical Security

Each module is a multiple-chip standalone module and conforms to Level 2 requirements for physical security. The modules' production-grade enclosure is made of a hard metal, and the enclosures contain a removable cover. The baffles installed by IBM Security satisfy FIPS 140-2 Level 2 requirements for module opacity. For details on tamper evidence, please see Section 1.16.4 – Placement of Tamper Evidence Labels.

2.8 Operational Environment

The modules operate in a limited operational environment and do not implement a General Purpose Operating System.

The modules meet Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined by 47 Code of Federal Regulations, Part15, Subpart B.

2.9 Cryptographic Key Management

The table below provides a complete list of Critical Security Parameters used within the module:

Key/CSP Name	Description / Use	Generation	Storage	Establishment / Export	Interface	Privileges
GSKIT Implemen	tation					
AES Session	AES 128, 192, 256	Internal generation at	Storage: RAM plaintext	Agreement: Via secure	Decrypt	Crypto
Key	encryption &	installation by DRBG		TLS tunnel	Encrypt	Officer
	decryption of		Type: Ephemeral			
	management traffic			Entry: NA		R W D
			Association : The system is the			
			one and only owner.	Output: NA		User
			Relationship is maintained by			RWD
			the operating system via			
			protected memory.			
Triple-DES	Triple-DES 192	Internal generation at	Storage: RAM plaintext	Agreement: Via secure	Decrypt	Crypto
Session Key	encryption &	installation by DRBG		TLS tunnel	Encrypt	Officer
	decryption		Type: Ephemeral			
	of management traffic			Entry: NA		R W D
			Association : The system is the			
			one and only owner.	Output: NA		User
			Relationship is maintained by			RWD
			the operating system via			
			protected memory.			
HMAC key	HMAC-SHA-1, HMAC-	Internal generation at	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
	SHA-224, HMAC-SHA-	installation by DRBG				Officer
	256, HMAC-SHA-384,		Type: Ephemeral	Entry: NA		
	HMAC-SHA-512 for					R W D

	message verification		Association : The system is the	Output: None		User
			one and only owner.			
			Relationship is maintained by			R W D
			the operating system via			
			protected memory.			
Crypto Officer	Alphanumeric	Not generated by the	Storage: on disk/obfuscated	Agreement: NA	Configure	Crypto
Password	passwords externally	module; defined by the				Officer
	generated by a human	human user of the	Type: Static	Entry: Manual entry		R W D
	user for	workstation		via operating system		
	authentication to the		Association: controlled by the			
	operating system.		operating system	Output: NA		
User Password	Alphanumeric	Not generated by the	Storage: on disk/obfuscated	Agreement: NA	Configure	Crypto
	passwords externally	module; defined by the				Officer
	generated by a human	human user of the	Type: Static	Entry: Manual entry		D
	user for	workstation		via operating system		User
	authentication to the		Association: controlled by the			R W
	operating system.		operating system	Output: NA		
External Entity	RSA Public key	External generation by	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Public Key	associated with	FIPS-approved				Officer
	remote entities (such	technique	Type: Ephemeral	Entry: Plaintext		
	as SiteProtector)					R W D
			Association : The system is the	Output: NA		User
			one and only owner.			
			Relationship is maintained by			R W D
			the operating system via X509			
			certificates.			
DRBG Seed Key	256-bit value to seed	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
	the FIPS-approved	by non-Approved RNG				Officer
	DRBG		Type: Ephemeral	Entry: NA		None

			Association: The system is the one and only owner. Relationship is maintained by the operating system via protected memory.	Output: NA		User None
Entropy Input String	Input value for entropy calculation	Generated internally by non-Approved RNG	Storage: RAM plaintext Type: Ephemeral	Agreement: NA Entry: NA	Establish Session	Crypto Officer None User
			Association: The system is the one and only owner. Relationship is maintained by the operating system via protected memory.	Output: NA		None
Hash_DRBG mechanism	V and C values	Generated internally by non-Approved RNG	Storage: RAM plaintext Type: Ephemeral	Agreement: NA Entry: NA	Establish Session	Crypto Officer None User
			Association: The system is the one and only owner. Relationship is maintained by the operating system via protected memory.	Output: NA		None
HMAC_DRBG mechanism	V and Key values	Generated internally by non-Approved RNG	Storage: RAM plaintext Type: Ephemeral	Agreement: NA Entry: NA	Establish Session	Crypto Officer None User
			Association: The system is the one and only owner. Relationship is maintained by the operating system via protected memory.	Output: NA		None

CTR_DRBG	V and Key values	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
mechanism		by non-Approved RNG				Officer
			Type: Ephemeral	Entry: NA		None
						User
			Association : The system is the	Output: NA		None
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			
RSA Private	Private key for sign /	Internal generation at	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
Key	verify operations and	installation by DRBG				Officer
	key establishment ⁴ for		Type: Static	Entry: NA		
	XGS TLS connections					R W D
			Association : The system is the	Output: None		User
			one and only owner.			R
			Relationship is maintained by			.,
			the operating system via			
			protected memory.			
RSA Public Key	Public key for sign /	Internal generation at	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
	verify operations and	installation by DRBG				Officer
	key establishment ⁵ for		Type: Static	Entry: NA		
	XGS TLS connections					R W D
			Association : The system is the	Output: plaintext		User
	Encryption/Decryption		one and only owner.	during TLS negotiation		R
	of the Premaster		Relationship is maintained by			
	Secret for		the operating system via X509			
	entry/output		certificates.			

⁴ Key establishment methodology provides 112 or 128 bits of encryption strength

⁵ Key establishment methodology provides 112 or 128 bits of encryption strength

ECDHE Private	Private asymmetric	Internal generation	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Key	key for key					Officer
	establishment ⁶ for		Type: Static	Entry: NA		R W D
	XGS TLS connections.					
			Association : The system is the	Output: None		User
			one and only owner.			
			Relationship is maintained by			R
			the operating system via			
			protected memory.			
ECDHE Public	Public asymmetric key	Internal generation	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Key	for key establishment ⁷					Officer
	for XGS TLS		Type: Static	Entry: NA		R W D
	connections.					
			Association : The system is the	Output: Key handle		Heer
	Encryption/Decryption		one and only owner.	from API request is		User
	of the Premaster		Relationship is maintained by	output only to the		R
	Secret for		the operating system via X509	SiteProtector		
	entry/output		certificates.	application		
ECDSA Private	Private key for sign /	Internal generation	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
Key	verify operations and					Officer
	key establishment for		Type: Static	Entry: NA		R W D
	XGS TLS connections					User
			Association : The system is the	Output: None		R
			one and only owner.			
			Relationship is maintained by			
			the operating system via X509			
			certificates.			

 $^{^{\}rm 6}$ Key establishment methodology provides between 128 and 256 bits of encryption strength

⁷ Key establishment methodology provides between 128 and 256 bits of encryption strength

ECDSA Public	Public key for sign /	Internal generation	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
Key	verify operations and key establishment for XGS TLS connections		Type: Static	Entry: NA		Officer R W D
			Association : The system is the	Output: plaintext		
			one and only owner. Relationship is maintained by	during TLS negotiation		User R
			the operating system via X509 certificates.			
DSA Public Key	Public key for sign / verify operations and	Internal generation	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto Officer
	key establishment for XGS TLS connections		Type: Static	Entry: NA		R W D
			Association : The system is the	Output: plaintext		I I a a m
			one and only owner.	during TLS negotiation		User R
			Relationship is maintained by			I N
			the operating system via X509 certificates.			
OpenSSL Implen	nentation					<u> </u>
Session Key	AES CBC 256-bit key	Derived from the	Storage: RAM plaintext	Agreement: Via secure	Decrypt	Crypto
	for encryption /	Master Secret		TLS tunnel	Encrypt	Officer
	decryption of		Type: Ephemeral			
	management traffic			Entry: NA		R W D
			Association : The system is the			User
			one and only owner.	Output: NA		
			Relationship is maintained by			R W D
			the operating system via			
			protected memory.			
DRBG Seed	160-bit system	Use dev/random to	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
	Entropy seed the	gather bytes from				Officer
	DBRG	several areas of system	Type: Ephemeral	Entry: NA		
		data (including				None

		time/date),	Association: The system is the	Output: NA		User
		concatenate them	one and only owner.			
		together and hash via	Relationship is maintained by			None
		SHA-1	the operating system via			
			protected memory.			
RSA Private	Private key for sign /	Internal generation at	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
Key	verify operations and	installation by DRBG				Officer
	key establishment ⁸ for		Type: Static	Entry: NA		
	XGS TLS connections					R W D
			Association : The system is the	Output: None		
			one and only owner.			User
			Relationship is maintained by			R
			the operating system via			
			protected memory.			
RSA Public Key	Public key for sign /	Internal generation at	Storage: On disk in plaintext	Agreement: NA	Establish Session	Crypto
	verify operations and	installation by DRBG				Officer
	key establishment ⁹ for		Type: Static	Entry: NA		
	XGS TLS connections					R W D
			Association : The system is the	Output: plaintext		Llson
	Encryption/Decryption		one and only owner.	during TLS negotiation		User
	of the Premaster		Relationship is maintained by			R
	Secret for		the operating system via X509			
	entry/output		certificates.			
ECDHE Private	Private asymmetric	Internal generation	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Key	key for key					Officer
	establishment 10 for		Type: Static	Entry: NA		R W D
	XGS TLS connections.					

⁸ Key establishment methodology provides 112 or 128 bits of encryption strength
⁹ Key establishment methodology provides 112 or 128 bits of encryption strength

¹⁰ Key establishment mythology provides between 128 and 256 bits of encryption strength

			Association : The system is the	Output: None		User
			one and only owner.			R
			Relationship is maintained by			
			the operating system via			
			protected memory.			
ECDHE Public	Public asymmetric key	Internal generation	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Key	for key					Officer
	establishment 11 for		Type: Static	Entry: NA		R W D
	XGS TLS connections.					
			Association : The system is the	Output: Key handle		
			one and only owner.	from API request is		User
			Relationship is maintained by	output only to the		R
			the operating system via X509	SiteProtector		
			certificates.	application		
Premaster	RSA-Encrypted	Internal generation by	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
Secret (48	Premaster Secret	DRBG				Officer
Bytes)	Message		Type: Ephemeral	Entry: Input during TLS		None
				negotiation		User
			Association : The system is the			None
			one and only owner.	Output: Output to		
			Relationship is maintained by	server encrypted by		
			the operating system via	Public Key		
			protected memory.	·		
Master Secret	Used for computing	Internal generation by	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
(48 Bytes)	the Session Key	DRBG				Officer
			Type: Ephemeral	Entry: NA		None

.

 $^{^{11}}$ Key establishment mythology provides between 128 and 256 bits of encryption strength

			Association : The system is the	Output: NA		User None
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			
SNMP AES Key	AES CBC 256-bit key	Internal generation by	Storage: RAM plaintext	Agreement: NA	Encrypt	Crypto
	for encryption /	DRBG				Officer
	decryption of SNMP		Type: Ephemeral	Entry: NA		R W D
	traffic					User
			Association : The system is the	Output: NA		R W D
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			_
HMAC key	HMAC-SHA-1, HMAC-	Internal generation at	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
	SHA-224, HMAC-SHA-	installation by DRBG				Officer
	256, HMAC-SHA-384,		Type: Ephemeral	Entry: NA		
	HMAC-SHA-512 for					R W D
	message verification		Association : The system is the	Output: None		User
			one and only owner.			O S C I
			Relationship is maintained by			R W D
			the operating system via			
DDDC 5 14	250111 1 1	0 111	protected memory.		5 1 11:1 6 .	
DRBG Seed Key	256-bit value to seed	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto Officer
	the FIPS-approved	by non-Approved RNG	Towns Enhanced	Forton VA		
	DRBG		Type: Ephemeral	Entry: NA		None
			Association : The system is the	Output: NA		User
			one and only owner.	Output. NA		None
			Relationship is maintained by			
			the operating system via			
			protected memory.			
			protected memory.			

Entropy Input	Input value for	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
String	entropy calculation	by non-Approved RNG				Officer
			Type: Ephemeral	Entry: NA		None
			Association : The system is the	Output: NA		User None
			one and only owner.	Output. NA		None
			Relationship is maintained by			
			•			
			the operating system via protected memory.			
Hb DDDC	V = = d C - = l - = =	Company distance III.	<u> </u>	A NIA	Fatablish Carrier	Constant
Hash_DRBG	V and C values	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
mechanism		by non-Approved RNG	Towns Enhanced	Frature NIA		Officer
			Type: Ephemeral	Entry: NA		None
			A	0		User
			Association : The system is the	Output: NA		None
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			_
HMAC_DRBG	V and Key values	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
mechanism		by non-Approved RNG				Officer
			Type: Ephemeral	Entry: NA		None
						User
			Association : The system is the	Output: NA		None
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			
CTR_DRBG	V and Key values	Generated internally	Storage: RAM plaintext	Agreement: NA	Establish Session	Crypto
mechanism		by non-Approved RNG				Officer
			Type: Ephemeral	Entry: NA		None

			Association: The system is the one and only owner. Relationship is maintained by the operating system via protected memory.	Output: NA		User None
ECDSA Private Key	Private key for sign / verify operations and key establishment for XGS TLS connections	Internal generation	Storage: On disk in plaintext Type: Static Association: The system is the one and only owner. Relationship is maintained by the operating system via X509 certificates.	Agreement: NA Entry: NA Output: None	Establish Session	Crypto Officer R W D User
ECDSA Public Key	Public key for sign / verify operations and key establishment for XGS TLS connections	Internal generation	Storage: On disk in plaintext Type: Static Association: The system is the one and only owner. Relationship is maintained by the operating system via X509 certificates.	Agreement: NA Entry: NA Output: plaintext during TLS negotiation	Establish Session	Crypto Officer R W D User R

R = Read W = Write D = Delete

Table 8 - Key/CSP Management Details

Public keys are protected from unauthorized modification and substitution. The module ensures only authenticated operators have access to keys and functions that can generate keys. Unauthenticated operators to not have write access to modify, change, or delete a public key. Ephemeral CSPs are zeroized by the RAM clearing processes, and static CSPs are zeroized by reimaging the module.

2.10 Self-Tests

The modules include an array of self-tests that are run during startup and periodically during operations to prevent any secure data from being released and to ensure all components are functioning correctly. In the event of any self-test failure, the modules will output an error dialog and will shut down. When a module is in an error state, no keys or CSPs will be output and the module will not perform cryptographic functions.

The module does not support a bypass function.

The following sections discuss the modules' self-tests in more detail.

2.10.1 Power-On Self-Tests

Power-on self-tests are run upon every initialization of each module and do not require operator intervention to run. If any of the tests fail, the module will not initialize. The module will enter an error state and no services can be accessed by the users. Each module implements the following power-on self-tests:

- Critical functions test: Checks, identifies, and initializes system devices such as the CPU, RAM, interrupt and DMA controllers and other parts of the chipset, BIOS FW integrity, video display memory, Storage drive, PCIe bus, network cards. System high-level POST issues are reported to the BMC, where the events are logged into the SEL.
- Module integrity check for OpenSSL and components other than GSKit are by digital signature verification based on a 3072-bit CAVS-validated RSA public key using SHA-256 hashing. The signatures are created when the modules are created by IBM. Signature verification is done performed before module initialization (part of system load procedure).
- Module integrity check for the GSKit cryptographic library is via 2048-bit CAVS-validated RSA public key (PKCS#1.5) and a single HMAC SHA-1 digest calculated over the module at the time it is created. This RSA public key is stored inside the static stub and relies on the operating system for protection. Self-test and library verification is performed at library load by hooking the shared library's 'call on load' entry points.

OpenSSL Implementation

Algorithm Typ	Description
---------------	-------------

SHA	KAT	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
HMAC	KAT	One KAT per SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512
AES	KAT	Separate encrypt and decrypt, ECB mode, 128 bit key length
AES CCM	KAT	Separate encrypt and decrypt, 192 key length
AES GCM	KAT	Separate encrypt and decrypt, 256 key length
AES CMAC	KAT	Sign and verify CBC mode, 128, 192, 256 key lengths
Triple-DES	KAT	Separate encrypt and decrypt, ECB mode, 3Key
Triple-DES CMAC	KAT	CMAC generate and verify, CBC mode, 3Key
RSA	KAT	Sign and verify using 2048 bit key, SHA256,PKCS#1, pairwise consistency test
DRBG	KAT	CTR_DRBG: AES, 256 bit with and without derivation function, HASH_DRBG: SHA256, HMAC_DRBG: SHA256
ECDSA	PCT	KeyGen, sign, verify using P224, K233 and SHA512, pairwise consistency test
RSA	PCT	RSA Pairwise consistency test on each generation of a key pair

Table 9 - OpenSSL Self-Tests

GSKIT Implementation

Algorithm	Туре	Description	
RSA	PCT	Pairwise consistency test	
RSA	KAT	signature generation with 2048 modulus	
RSA	KAT	signature verification with 2048 modulus	
RSA	KAT	encryption with 2048 modulus	
RSA	KAT	decryption with 2048 modulus	
ECDSA	PCT	pairwise consistency test with P-384	
ECDSA	KAT	signature verification with P-384	
ECDSA	PCT	pairwise consistency test with B-233	
ECDSA	KAT	signature verification with B-233	
ECDSA	PCT	pairwise consistency test with K-233	
ECDSA	KAT	signature verification with K-233	
Triple-DES-CBC	KAT	separate encrypt and decrypt	
AES 256-CBC	KAT	separate encrypt and decrypt	
AES_GCM	KAT	separate encrypt and decrypt	

AES_CCM	KAT	separate encrypt and decrypt
SHA	KAT	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
HMAC	KAT	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
DRBG 800-90A	KAT	CTR_DRBG: AES, 256 bit with and without derivation function, HASH_DRBG: SHA256, HMAC_DRBG: SHA256
DSA	PCT	Sign and verify using 2048 bit key
ECC CDH	KAT	Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6
DSA	KAT	Signing and signature verification

Table 10 - GSKIT Self-Tests

Each module performs all power-on self-tests automatically when the module is initialized. All power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by rebooting the module in FIPS approved Mode of Operation.

2.10.2 Conditional Self-Tests

Conditional self-tests are test that run continuously during operation of each module. If any of these tests fail, the module will enter an error state. The module can be re-initialized to clear the error and resume FIPS mode of operation. No services can be accessed by the operators. Each module performs the following conditional self-tests:

- OpenSSL Implementation
 - DRBG 800-90A
 - o Health Tests compliant with SP 800-90A Section 11.3.
 - The DRBG 800-90A generates a minimum of 8 bytes per request. If less than 8 bytes are requested, the rest of the bytes is discarded and the next request will generate new random data.
 - o The first 8 bytes of every request is compared with the last 8 bytes requested, if the bytes match an error is generated.
 - o For the first request made to any instantiation of a DRBG 800-90A, two internal 8 byte cycles are performed.
 - o The DRBG 800-90A relies on the environment (i.e. proper shutdown of the shared libraries) for resistance to retrospective attacks on data.
 - The DRBG 800-90A performs known answer tests when first instantiated and health checks at intervals as specified in the standard.
 - True Random Number Generator (TRNG)

- A non-deterministic RNG (NDRNG) is used to seed the DRBG. Every time a new seed or n bytes is required (either to initialize the DRBG, reseed the DRBG periodically or reseed the DRBG by user's demand), the cryptographic module performs a comparison between the SHA-256 message digest using the new seed and the previously calculated digest. If the values match, the TRNG generates a new stream of bytes until the continuous DRBG test passes.
- DRBG FIPS 140-2 continuous test for stuck fault
- ECDSA Pairwise consistency test on each generation of a key pair
- RSA Pairwise consistency test on each generation of a key pair

GSKIT Implementation

- Pairwise consistency test for RSA (Signature Generation, Signature Verification, Key Generation, Key Wrapping)
- Pairwise consistency test for ECDSA (KeyPair Generation, PKV, Signature Generation, Signature Verification)
- DSA Pairwise consistency test on each generation of a key pair
- DRBG 800-90A
 - Health Tests compliant with SP 800-90A Section 11.3.
 - The DRBG 800-90A generates a minimum of 8 bytes per request. If less than 8 bytes are requested, the rest of the bytes is discarded and the next request will generate new random data.
 - o The first 8 bytes of every request is compared with the last 8 bytes requested, if the bytes match an error is generated.
 - o For the first request made to any instantiation of a DRBG 800-90A, two internal 8 byte cycles are performed.
 - The DRBG 800-90A relies on the environment (i.e. proper shutdown of the shared libraries) for resistance to retrospective attacks on data.
 - o The DRBG 800-90A performs known answer tests when first instantiated and health checks at intervals as specified in the standard.
- True Random Number Generator (TRNG)
 - A non-deterministic RNG (NDRNG) is used to seed the DRBG. Every time a new seed or n bytes is required (either to initialize
 the DRBG, reseed the DRBG periodically or reseed the DRBG by user's demand), the cryptographic module performs a
 comparison between the SHA-256 message digest using the new seed and the previously calculated digest. If the values
 match, the TRNG generates a new stream of bytes until the continuous DRBG test passes.

The module will inhibit data output via the output interface when conditional tests are performed. Once the tests have passed and the keys have been generated, the module will pass the key to the calling daemon.

The modules do not perform a firmware load test because no additional firmware can be loaded in the module while operating in FIPS-approved mode. Please see Section 3 for guidance on configuring and maintaining FIPS mode.

2.11 Mitigation of Other Attacks

The module does not mitigate other attacks.

Document Version 0.6 © IBM Security Page 37 of 50

3 Guidance and Secure Operation

This section describes how to configure the modules for FIPS-approved mode of operation. Operating a module without maintaining the following settings will remove the module from the FIPS-approved mode of operation.

All updates via the My Software | Download menu are signed using SP 800-131a validated algorithms with RSA-3072 key-pair and SHA-256 integrity hash.

3.1 Crypto Officer Guidance

3.1.1 Firmware Installation

To install the appliance firmware, please follow these steps:

- 1. Log in to the ISS support site at https://ibmss.flexnetoperations.com/,
- 2. Select My Software | Download from the menu
- 3. Choose IBM Security Network Protection (XGS) and then the specific XGS model.
- 4. Select the appropriate firmware and recovery images from the New Versions dropdown menu then select Go
- 5. Accept the End User License and select **Submit**
- **6.** Select the appropriate Recovery image type (USB image)
- 7. Download the *.img image and follow the installation instructions.

3.1.2 Enabling FIPS Mode

When first powering on the module, the operator will be guided through a configuration wizard. In the CLI, the following will appear:

Enable FIPS mode

To initialize the module for FIPS mode, the Crypto Officer must select Y at this prompt then 1 to enable FIPS mode.

Note: The module can only be enabled for FIPS mode at the time of initial configuration. Additionally, if the module enters an error state (e.g., a known answer test fails), the module must be powered off and reimaged to FIPS mode of operation.

The Crypto Officer must configure and enforce the following initialization procedures in order to operate in FIPS approved mode of operation:

- Verify that the firmware version of the module is Version 5.3.1. No other version can be loaded or used in FIPS mode of operation.
- Apply tamper evidence labels as specified in Section 1.16.4 Placement of Tamper Evidence Labels. The tamper evident labels shall be installed for the module to operate in a FIPS Approved mode of operation.
- Ensure any unused labels are secure at all times.
- Inspect the tamper evidence labels periodically to verify they are intact.
- Do not disclose passwords and store passwords in a safe location and according to his/her organization's systems security policies for password storage.
- Root privilege to the module must be disabled.
- Configure the module to lock accounts after 3 unsuccessful authentication attempts.

3.1.3 Placement of Tamper Evidence Labels

To meet Physical Security Requirements for Level 2, each module enclosure must be protected with tamper evidence labels. The tamper evident labels shall be installed for the module to operate in a FIPS Approved mode of operation. The Crypto Officer is responsible for applying the labels; IBM Security does not apply the labels at time of manufacture. Once applied, the Crypto Officer shall not remove or replace the labels unless the module has shown signs of tampering, in which case the Crypto Officer shall reimage the module and follow all Guidance to place the module in FIPS mode.

Please note that if additional labels need to be ordered, the Crypto Officer shall contact IBM Security support and request part number *00VM255*.

The Crypto Officer is responsible for

- securing and having control at all times of any unused seals, and
- maintaining the direct control and observation of any changes to the module such as reconfigurations where the tamper evident seals or security appliances are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

Important – Do not disturb labels for 10 minutes after application. You must allow labels to set for 24 hours at room temperature to reach full tamper resistance.

3.1.3.1 XGS 3100

Up to five tamper evidence labels are required for XGS FIPS 140-2 Level 2 deployments. (Functional NIMs do not need tamper labels.) Application of the tamper evidence labels is as follows:

Note – Tamper labels are very fragile. Handle with care.

- 1. Turn off and unplug the system.
- 2. Clean the enclosure before you apply the tamper evidence labels.
- 3. Place Label #1 over the top left side of the enclosure, covering the cover screw, as shown in Figure 4 XGS 3100 Tamper evidence label placement (top left).
- 4. Place Label #2 over the bottom back side of the enclosure, covering the bottom right corner of the left fan (1), as shown in Figure 5 XGS 3100 Tamper evidence label placement (bottom back).
- 5. Place Label #3 over the bottom back side of the enclosure, covering the bottom right corner of the middle fan (2), as shown in Figure 5 XGS 3100 Tamper evidence label placement (bottom back).
- 6. Place Label #4 over the bottom back side of the enclosure, covering the bottom right corner of the right fan (3), as shown in Figure 5 XGS 3100 Tamper evidence label placement (bottom back).

7. Place Label #5 over the top front side of the enclosure, covering the right side of the storage tray (1), as shown in Figure 6 - XGS 3100 Tamper evidence label placement (top front).

Important – Do not disturb labels for 10 minutes after application. You must allow labels to set for 24 hours at room temperature to reach full tamper resistance.

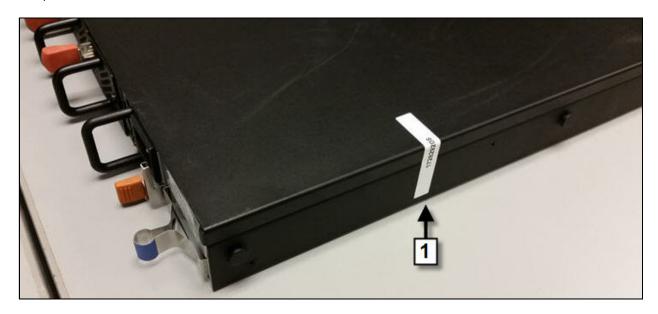


Figure 4 - XGS 3100 Tamper evidence label placement (top left)

Document Version 0.6 © IBM Security Page 41 of 50

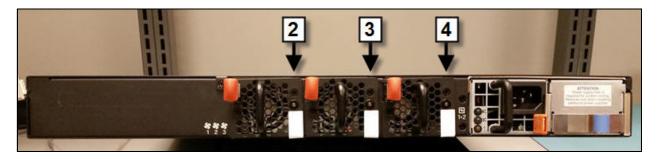


Figure 5 – XGS 3100 Tamper evidence label placement (bottom back)

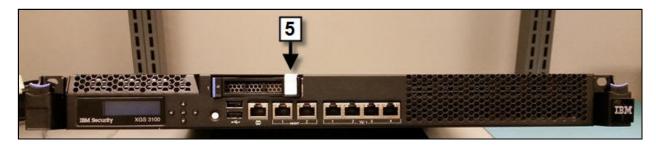


Figure 6 - XGS 3100 Tamper evidence label placement (top front)

3.1.3.2 XGS 4100

Up to seven tamper evidence labels are required for XGS FIPS 140-2 Level 2 deployments. (Functional NIMs do not need tamper labels.) Application of the tamper evidence labels is as follows:

Note – Tamper labels are very fragile. Handle with care.

- 1. Turn off and unplug the system.
- 2. Clean the enclosure before you apply the tamper evidence labels.

- 3. Place Label #1 over the top left side of the enclosure, covering the cover screw, as shown in Figure 7 XGS 4100 Tamper evidence label placement (top left).
- 4. Place Label #2 over the bottom back side of the enclosure, covering the bottom right corner of the left fan (1), as shown in Figure 8 XGS 4100 Tamper evidence label placement (bottom back).
- 5. Place Label #3 over the bottom back side of the enclosure, covering the bottom right corner of the middle fan (2), as shown in Figure 8 XGS 4100 Tamper evidence label placement (bottom back).
- 6. Place Label #4 over the bottom back side of the enclosure, covering the bottom right corner of the right fan (3), as shown in Figure 8 XGS 4100 Tamper evidence label placement (bottom back).
- 7. Place Label #5 over the top front side of the enclosure, covering the right side of the left storage (1) tray, as shown in Figure 9 XGS 4100 Tamper evidence label placement (top and bottom front).
- 8. Place Label #6 over the top front side of the enclosure, covering the right side of the right storage tray (2), as shown in Figure 9 XGS 4100 Tamper evidence label placement (top and bottom front).
- 9. Place Label #7 over the bottom front side of the enclosure, covering the middle of the NIM (2), as shown in Figure 9 XGS 4100 Tamper evidence label placement (top and bottom front).

Important – Do not disturb labels for 10 minutes after application. You must allow labels to set for 24 hours at room temperature to reach full tamper resistance.

Document Version 0.6 © IBM Security Page 43 of 50

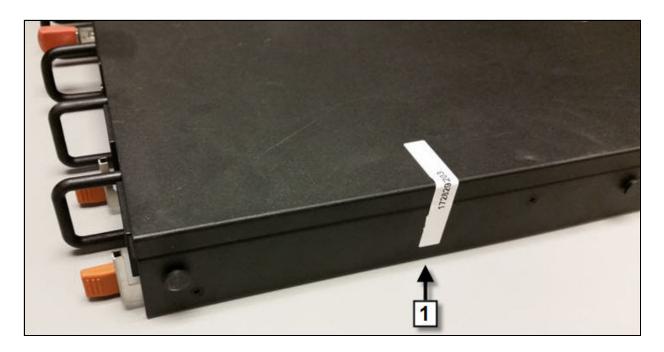


Figure 7 - XGS 4100 Tamper evidence label placement (top left).

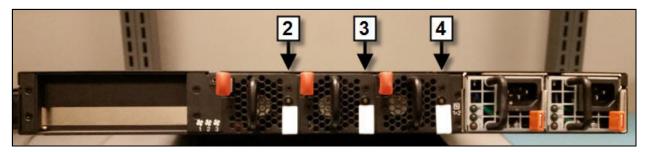


Figure 8 – XGS 4100 Tamper evidence label placement (bottom back)

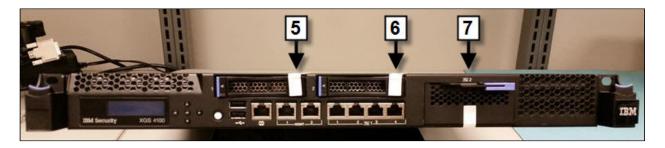


Figure 9 – XGS 4100 Tamper evidence label placement (top and bottom front)

3.1.3.3 XGS 5100

Up to eight tamper evidence labels are required for XGS FIPS 140-2 Level 2 deployments. (Functional NIMs do not need tamper labels.) Application of the tamper evidence labels is as follows:

Note – Tamper labels are very fragile. Handle with care.

- 1. Turn off and unplug the system.
- 2. Clean the enclosure before you apply the tamper evidence labels.
- 3. Place Label #1 over the top left side of the enclosure, covering the cover screw, as shown in Figure 10– XGS 5100 Tamper evidence label placement (top left).
- 4. Place Label #2 over the bottom back side of the enclosure, covering the bottom left corner of the left fan (1), as shown in Figure 11 XGS 5100 Tamper evidence label placement (bottom back).
- 5. Place Label #3 over the bottom back side of the enclosure, covering the bottom left corner of the middle fan (2), as shown in Figure 11 XGS 5100 Tamper evidence label placement (bottom back).
- 6. Place Label #4 over the bottom back side of the enclosure, covering the bottom left corner of the right fan (3), as shown in Figure 11 XGS 5100 Tamper evidence label placement (bottom back).

Document Version 0.6 © IBM Security Page 45 of 50

- 7. Place Label #5 over the top front side of the enclosure, covering the right side of the left storage tray (1), as shown in Figure 12 XGS 5100 Tamper evidence label placement (top and bottom front).
- 8. Place Label #6 over the top front side of the enclosure, covering the right side of the right storage tray (2), as shown in Figure 12 XGS 5100 Tamper evidence label placement (top and bottom front).
- 9. Place Label #7 over the bottom front side of the enclosure, covering the middle of the left NIM (2), as shown in Figure 12 XGS 5100 Tamper evidence label placement (top and bottom front).
- **10.** Place Label #8 over the bottom front side of the enclosure, covering the middle of the right NIM (3), as shown in Figure 12 XGS 5100 Tamper evidence label placement (top and bottom front).

Important – Do not disturb labels for 10 minutes after application. You must allow labels to set for 24 hours at room temperature to reach full tamper resistance.

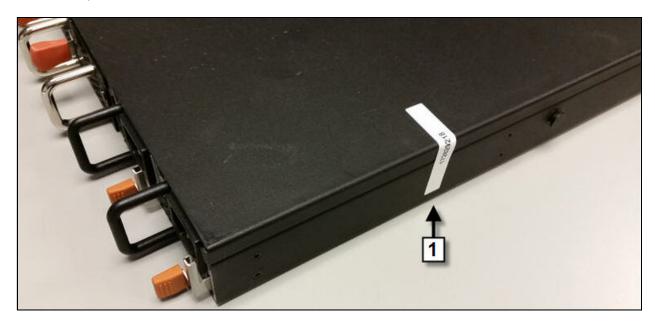


Figure 10 - XGS 5100 Tamper evidence label placement (top left)

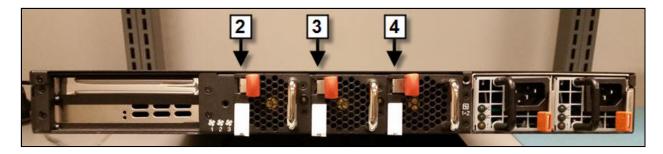


Figure 11 – XGS 5100 Tamper evidence label placement (bottom back)

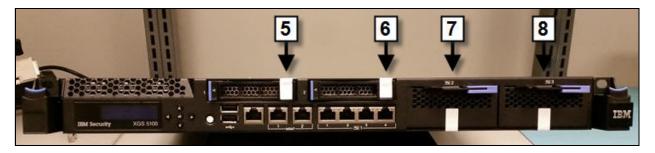


Figure 12 – XGS 5100 Tamper evidence label placement (top and bottom front)

3.1.3.4 XGS 7100

Up to 10 tamper evidence labels are required for XGS FIPS 140-2 Level 2 deployments. (Functional NIMs do not need tamper labels.) Application of the tamper evidence labels is as follows:

Note – Tamper labels are very fragile. Handle with care.

- 1. Turn off and unplug the system.
- 2. Clean the enclosure before you apply the tamper evidence labels.
- 3. Place Label #1 over the top left side of the enclosure, covering the cover screw, as shown in Figure 13 XGS 7100 Tamper evidence label placement (top left).

- 4. Place Label #2 over the bottom back side of the enclosure, covering the bottom left corner of the left fan (1), as shown in Figure 14 XGS 7100 Tamper evidence label placement (bottom back).
- 5. Place Label #3 over the bottom back side of the enclosure, covering the bottom left corner of the middle fan (2), as shown in Figure 14 XGS 7100 Tamper evidence label placement (bottom back).
- 6. Place Label #4 over the bottom back side of the enclosure, covering the bottom left corner of the right fan (3), as shown in Figure 14 XGS 7100 Tamper evidence label placement (bottom back).
- 7. Remove left NIM (1), place Label #5 in the middle of the bottom of the left storage tray (1), and then wrap the label up over the storage tray so that it covers the middle of the storage tray, as shown in Figure 15 XGS 7100 Tamper evidence label placement (top and bottom front). Replace the left NIM.
- 8. Remove second from the left NIM (2), place Label #6 on the middle of the bottom the left storage tray (2), and then wrap the label up over the storage tray so that it covers the middle of the storage tray, as shown in Figure 15 XGS 7100 Tamper evidence label placement (top and bottom front). Replace the second from the left NIM.
- 9. Place Label #7 over the bottom front side of the enclosure, covering the middle of the left NIM (1), as shown in Figure 15 XGS 7100 Tamper evidence label placement (top and bottom front).
- 10. Place Label #8 over the bottom front side of the enclosure, covering the middle of the second from the left NIM (2), as shown in Figure 15 XGS 7100 Tamper evidence label placement (top and bottom front).
- 11. Place Label #9 over the bottom front side of the enclosure, covering the middle of the third from the left NIM (3), as shown in Figure 14 XGS 7100 Tamper evidence label placement (top and bottom front).
- 12. Place Label #10 over the bottom front side of the enclosure, covering the middle of the fourth from the left NIM (4), as shown in Figure 15 XGS 7100 Tamper evidence label placement (top and bottom front).

Important – Do not disturb labels for 10 minutes after application. You must allow labels to set for 24 hours at room temperature to reach full tamper resistance.

Document Version 0.6 © IBM Security Page 48 of 50

Figure 13 – XGS 7100 Tamper evidence label placement (top left)

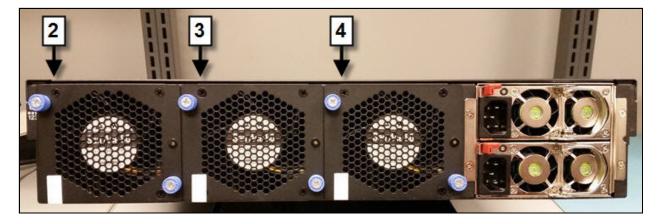


Figure 14 – XGS 7100 Tamper evidence label placement (bottom back)

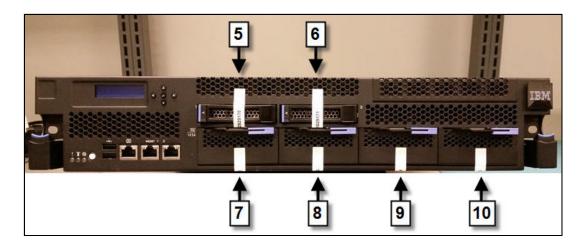


Figure 15 – XGS 7100 Tamper evidence label placement (top and bottom front)

3.2 User Guidance

3.2.1 General Guidance

The User role is defined by a management session over a TLS tunnel. As such, this role is authenticated, and no additional guidance is required to maintain FIPS mode of operation.

End of Document