

Unisys Linux Kernel Cryptographic API Module
Version 1.0

FIPS 140-2 Level 1 Validation

Non-Proprietary Security Policy

February 11, 2016

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 1

Table of Contents

1. Introduction
2. Cryptographic Module Specification

2.1. Module Description
2.2. Description of Modes of Operation
2.3. AES Implementations

2.4. Module Boundary

3. Ports and Interfaces
4. Roles and Services

4.1. Crypto-Officer Role
4.2. User Role

5. Physical Security
6. Operational Environment
7. Cryptographic Key Management

7.1. Critical Security Parameters
7.2. Key Generation
7.3. Key Entry and Output
7.4. Key Storage
7.5. Key Zeroization

8. Electromagnetic Interference/Electromagnetic Compatibility
9. Self-Tests

9.1. Power-up Self-tests
10. Mitigation of Other Attacks
11. Secure Operation

11.1. Crypto-Officer Guidance
11.2. Initialization
11.3. AES-GCM Key/IV Usage

12. Glossary and Abbreviations

Figures

1. Software Block Diagram
2. Hardware Block Diagram

Tables

1. Security Levels
2. Tested Operational Environments
3. Ports and Interfaces
4. Crypto-Officer Services
5. User Services
6. FIPS-approved Algorithm Implementations
7. Listing of Key and Critical Security Parameters
8. Electromagnetic Interference and Compatibility

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 2

1. Introduction

This is the non-proprietary security policy for the Unisys Linux Kernel Cryptographic API Module Version
1.0, which is referred to as the module. This document describes how the module meets the security
requirements of Federal Information Processing Standards (FIPS) Publication140-2. This document also
describes how to run the module in a secure, FIPS-approved mode of operation.

2. Cryptographic Module Specification

The module meets overall Level 1 requirements for FIPS 140-2, and the following table describes
the level achieved by the module in each of the eleven sections of the FIPS 140-2 requirements.

Table 1 – Security Levels

Security Component Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

The following table describes the multi-chip standalone platforms on which the module has been tested.

Table 2 – Tested Operational Environments

Manufacturer Model Operating System

Intel® Pentium® Processor G3420

R220 Ubuntu 12.04 LTS distribution

Intel Pentium Processor G3420

(with PCLMULQDQ and SSSE3)

R220 Ubuntu 12.04 LTS distribution

Intel Xeon® Processor E5-2697 v3
(with AES-NI, PCLMULQDQ, and
SSSE3)

R630 Ubuntu 12.04 LTS distribution

Intel Xeon Processor E5-2697 v3
(with AES-NI and PCLMULQDQ)

R630 Ubuntu 12.04 LTS distribution

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 3

Intel Xeon Processor E5-4627 v2
(with AES-NI, PCLMULQDQ, and
SSSE3)

R820 VMware ESXi 5.5, Ubuntu 12.04 LTS
distribution

Intel Xeon Processor E5-4627 v2
(with AES-NI and PCLMULQDQ)

R820 VMware ESXi 5.5, Ubuntu 12.04 LTS
distribution

2.1 Module Description

The module is a software-only cryptographic module that comprises a set of Linux kernel modules. It
provides general purpose cryptographic services to the remainder of the Linux kernel.

The module performs a software integrity check on itself using an HMAC SHA-512. The Linux kernel is
configured so that the Linux kernel modules are loaded separately from other kernel functions. Only
FIPS-approved and validated algorithms are loadable.

2.2 Description of Modes of Operation

The module supports only a FIPS-approved mode, and the module must always be configured as
described in Section 11.

The module supports the following approved functions:

 AES for x86_64 – supporting 128-, 192-, and 256-bit keys in x86-64 assembly and C code (Cert.
#3513)

 AES using AES-NI – supporting 128-, 192-, and 256-bit keys in x86-64 assembly and C code using the
AES-NI instruction set when the underlying processor supports AES-NI (see Section 2.3 for more
information) (Cert. #3519)

 Generic implementation of SHA – supporting SHA-1, SHA-224, SHA-256, SHA-384, and SHA-
512 in C code (Cert. #2901)

 SSSE3 implementation of SHA – supporting SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512
in x86-64 assembly and C code when the underlying processor supports the SSSE3 instruction
set (Cert. #2900)

 HMAC using any of the secure hashing algorithms listed previously (Cert. #2247 and #2246)

The module also implements cipher algorithms other than those listed previously. These ciphers are
technically unavailable. When calling these ciphers, the module returns an error.

The module maintains a process flag to indicate that the module is in a FIPS-approved mode. The flag is
provided in the file /proc/sys/crypto/fips_enabled. If this file contains a value of 1, the module is operational
in a FIPS-approved mode. If it contains a value of 0, then the power-up self-tests failed, and the system
must be rebooted. See Section 9 and Section 11 for more information.

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 4

2.3 AES Implementations

The module supports two implementations of AES as follows:

 AES using the new Intel instruction set when the aesni-intel kernel module is loaded (this is
only used if the underlying processor provides the AES-NI instruction set)

 AES implemented with streamlined assembler code when the aes-x86_64 kernel module is
loaded

Note that if more than one of the previously listed kernel modules are loaded, the respective
implementation can be requested by using the following cipher mechanism strings with the
initialization calls (for example, crypto_alloc_blkcipher):

 aesni-intel kernel module: “__aes-aesni”

 aes-x86_64 kernel module: “aes-asm”

For example: If the kernel modules aesni-intel and aes-asm are loaded, and the caller uses the
initialization call (for example, crypto_alloc_blkcipher) with the cipher string of "__aes", then the aesni-
intel implementation is used. Or, if only the aes-x86_64 kernel module is loaded, the cipher string of
"aes" implies that the aes-x86_64 implementation is used.

The discussion about the naming and priorities of the AES implementation also applies when cipher
strings are used that include the block chaining mode, such as "cbc(aes-asm)", "cbc(aes)", or
"cbc(__aes-aesni)".

2.4 Module Boundary

The module is a software-only cryptographic module that comprises a set of Linux kernel modules; this
set defines the module’s cryptographic boundary. It provides cryptographic functionality for any application
that calls into it. The module is embodied by the Linux kernel modules implementing the ciphers in
/lib/modules/$(uname -r)/kernel/crypto and /lib/modules/$(uname -r)/kernel/arch/x86/crypto. Only the Linux
kernel modules implementing the approved mechanisms are available and loaded at boot time.

The following figure, Figure 1, is the software block diagram of the module, and it illustrates the module
boundary.

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 5

Figure 1 – Software Block Diagram

The physical boundary of the module is defined by the surface of the case of the platform. The following
figure, Figure 2, illustrates the hardware block diagram that comprises the platform.

Figure 2 – Hardware Block Diagram

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 6

3. Ports and Interfaces

The physical ports of the module are the same as the computer system on which the software module is
executing. The logical interface is an application program interface (API) as shown in the following table,
Table 3.

Table 3 – Ports and Interfaces

FIPS 140-2 Logical
Interface

Module Logical Interface Physical Ports

Data Input Provider Interface and
Consumer Interface

SAS port, DVD port, Network Port,
USB port, Serial Port

Data Output Provider Interface and
Consumer Interface

SAS port, Network Port, USB port,
Serial Port

Control Input Provider Interface and
Consumer Interface

Network Port, USB port, Serial Port

Status Output Provider Interface and
Consumer Interface

SAS port, Network Port, USB port,
Serial Port status LEDs, VGA port

Power Input Not Applicable Power Supply

When the module is performing self-tests or is in an error state, all output on the logical data output
interface is inhibited. As a software module, it cannot control the physical ports.

4. Roles and Services

There are two roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto-Officer role
and a User role. The Crypto-Officer and User roles are implicitly assumed by the entity accessing the services
implemented by the module. No further authentication is required for a Level 1 validation. The module
does not allow concurrent operators.

The following section describes the services available to each role, and each service’s corresponding
interface, which is depicted in Figure 1.

4.1 Crypto-Officer Role

The Crypto-Officer is any operator on the host appliance with the permissions to check the status of the module.
Descriptions of the services available to the Crypto-Officer role are provided in Table 4. The Crypto-Officer also
has access to all User services, as described in Table 5.

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 7

Note that the last column in Table 4 and Table 5 indicates the type of access each service has to its Critical
Security Parameter (CSP) using the following notation:

 R – Read: The CSP is read.

 W – Write: The CSP is established, generated, modified, or zeroized.

 X – Execute: The CSP is used within an approved or allowed security function or authentication
mechanism.

For more information on each CSP, see Section 7.1.

Table 4 – Crypto-Officer Services

Service Description
Software Block

Diagram
Interface

Type of
Access to

CSP
API Calls

Initialize FIPS-
approved
mode

Performs integrity check
and power-up self-tests.
Sets the FIPS-approved
mode flag to on.

Provider Interface
(Cryptomgr)

WX N/A

Run self-tests Restarting the appliance
will force the self-tests to
run when the module is
loaded.

Provider Interface
(Cryptomgr)

WX N/A

Show Status Uses the
“/opt/unisys/fips status”
command to return the
current status of the
module from the dmesg
log file

Provider Interface
(Cryptomgr)

R N/A

Zeroize keys Cycling the power
zeroizes and de-allocates
memory containing
sensitive data.

N/A W N/A

The credentials for the Crypto-Officer are not considered CSPs, as requirements for module
authentication are not enforced for Level 1 validation. The credentials are provided to the host operating
system, and are not part of the module.

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 8

4.2 User Role

The User role is able to utilize the cryptographic operations of the module through its APIs. Descriptions
of the services available to the User role are provided in Table 5.

Table 5 – User Services

Service Description
Software Block

Diagram Interface

Type of
Access
to CSP

API Calls

Encryption/
Decryption

Encrypt or decrypt
a block of data
using a symmetric
algorithm.

Consumer Interface

RWX crypto_alloc_ablkcipher
crypto_alloc_blkcipher
crypto_free_ablkcipher
crypto_free_blkcipher
crypto_ablkcipher_setkey
crypto_blkcipher_setkey
crypto_ablkcipher_encrypt
crypto_blkcipher_encrypt
crypto_blkcipher_encrypt_iv
crypto_ablkcipher_decrypt
crypto_blkcipher_decrypt
crypto_blkcipher_decrypt_iv
crypto_blkcipher_set_iv
ablkcipher_request_alloc
ablkcipher_request_free
ablkcipher_request_set_callback
ablkcipher_request_set_crypt

Authenticated
Encryption
with
Associated
Data (AEAD)

A combined
cryptographic
protocol that only
supports the
approved
algorithms used in
the module. Keys
for each approved
algorithm are
associated as
required by
Section 8.2.1,
“Deterministic
Construction” in
NIST Special
Publication 800-
38D.

Consumer Interface RWX crypto_alloc_aead
aead_givcrypt_alloc
crypto_free_aead
aead_givcrypt_free
crypto_aead_setkey
crypto_aead_encrypt
crypto_aead_givencrypt
aead_request_alloc
aead_request_free
aead_request_set_callback
aead_givcrypt_set_callback
aead_request_set_crypt
aead_givcrypt_set_crypt
crypto_aead_setauthsize
aead_request_set_assoc
aead_givcrypt_set_assoc

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 9

Service Description
Software Block

Diagram Interface

Type of
Access
to CSP

API Calls

Hashing Perform a hashing
operation on a
block of data,
using SHA-1,
SHA-224, SHA-
256, SHA-384, or
SHA-512.

Consumer Interface RWX crypto_alloc_hash
crypto_alloc_ahash
crypto_alloc_shash
crypto_free_hash
crypto_free_ahash
crypto_free_shash
crypto_hash_init crypto_ahash_init
crypto_shash_init
crypto_hash_update
crypto_ahash_update
crypto_shash_update
crypto_hash_final
crypto_ahash_final
crypto_shash_final
crypto_ahash_finup
crypto_shash_finup
crypto_ahash_digest
crypto_shash_digest
ahash_request_alloc
ahash_request_free
ahash_request_set_callback
ahash_request_set_crypt

HMAC
signing

Perform a hashing
operation on a
block of data,
using a keyed
Hashed Message
Authentication
Code with SHA-1,
SHA-224, SHA-
256, SHA-384, or
SHA-512.

Consumer Interface RWX crypto_alloc_hash
crypto_alloc_ahash
crypto_alloc_shash
crypto_free_hash
crypto_free_ahash
crypto_free_shash
crypto_hash_init crypto_ahash_init
crypto_shash_init
crypto_hash_update
crypto_ahash_update
crypto_shash_update
crypto_hash_final
crypto_ahash_final
crypto_shash_final
crypto_ahash_finup
crypto_shash_finup
crypto_ahash_digest
crypto_shash_digest
crypto_hash_setkey
crypto_ahash_setkey
crypto_shash_setkey
ahash_request_alloc
ahash_request_free
ahash_request_set_callback
ahash_request_set_crypt

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 10

5. Physical Security

This is a software module and provides no physical security.

6. Operational Environment

This module will operate in a modifiable operational environment per the FIPS 140-2 definition.

The operating system shall be restricted to a single operator mode of operation (i.e., concurrent operators
are explicitly excluded).

The external application that makes calls to the cryptographic module is the single user of the
cryptographic module, even when the application is serving multiple clients.

7. Cryptographic Key Management

The module implements the following FIPS-approved algorithms, as described in Table 6.

Table 6 – FIPS-approved Algorithm Implementations

Algorithm Modes Certificate Number

AES for x86_64 ECB, CBC, CTR, and GCM #3513

AES-NI ECB, CBC, CTR, and GCM #3519

Generic implementation
of SHA

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

#2901

SSSE3 implementation
of SHA

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

#2900

HMAC on any of the
above hashing functions

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

#2247 for generic
implementation of SHA

#2246 for SSSE3
implementation of SHA

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 11

7.1 Critical Security Parameters

The module supports the CSPs listed in Table 7.

Table 7 – Listing of Key and Critical Security Parameters

Key or
CSP

Key/IV Type
Generation/

Entry
Output Storage Zeroization Use

AES
key

AES 128-, 192-,
256-bit key

Input via API
in plaintext

Never The module
does not
store keys

Reboot
operating
system; API
call; Cycle
host power

Encryption/

Decryption

AES-
GCM
IV

Deterministic
Construction (in
compliance with
Section 8.2.1,
“Deterministic
Construction” in
NIST Special
Publication 800-
38D)

64-bit IV: 32-
bit invocation
counter, 32-bit
context
counter
concatenated

Never The module
does not
store keys

Reboot
operating
system; API
call; Cycle
host power

IV input to
AES GCM
function

HMAC
key

HMAC key

Input via API
in plaintext

Never The module
does not
store keys

Reboot
operating
system; API
call; Cycle
host power

Message
Integrity/
Authentication
with SHS

Note: The fixed key lengths for HMAC are equal to the block size of the underlying hash function (that is,
the fixed key length for the SHA-1, SHA-224, and SHA-256 block sizes is 64 bits, while the fixed key
length for the SHA-384 and SHA-512 block sizes is 128 bits).

7.2 Key Generation

The module does not generate keys. All keys are generated externally to the module.

7.3 Key Entry and Output

Keys are passed into the module’s logical boundary in plaintext via the exposed APIs, but only from
applications resident on the host platform. However, the module does not support key entry or key output
across the host platform’s physical boundary. Similarly, keys and CSPs exit the module in plaintext (but
remain in the physical boundary) via the well-defined exported APIs.

7.4 Key Storage

Keys are not persistently stored by the module.

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 12

7.5 Key Zeroization

The module does not persistently store keys (with the exception of the module integrity key and HMAC
digests). Keys are provided to the module by the calling application and are destroyed when released by
the appropriate API function calls. No keys enter or exit the physical boundary of the module’s tested
platform. All memory is managed by the host operating system. Volatile memory used to store keys and
CSPs is zeroized (destroyed) by power-cycling the host platform.

8. Electromagnetic Interference and Electromagnetic Compatibility

The module’s electromagnetic interference (EMI) and electromagnetic compatibility (EMC) features are
summarized in the following table, Table 8.

Table 8 – Electromagnetic Interference and Compatibility

Testing Platform Model Number EMI/EMC Notes

Intel Pentium Processor G3420 R220 FCC Class A

Intel Xeon Processor E5-2697 v3
(with AES-NI)

R630 FCC Class A

Intel Xeon Processor E5-4627 v2
(with AES-NI)

R820 FCC Class A

9. Self-tests

In order to prevent any secure data from being released, it is important to test the cryptographic
components of a security module to ensure all components are functioning correctly. All kernel modules
are loaded as a part of the operating system boot sequence, and power-up self-tests are performed
automatically by the module, without requiring any operator intervention.

9.1 Power-up Self-tests

To confirm correct functionality, the software library performs the following self-tests:

 Software Integrity Test using an HMAC SHA-512 on all of the module’s components

 Known Answer Tests (KATs)

o AES encrypt KAT;

o AES decrypt KAT;

o SHA (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) KAT; and

o HMAC (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) KAT

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 13

Data output from the module’s data output interface is inhibited while performing self-tests. All kernel
object modules must pass power-up self-tests before the system is allowed to enter any user modes. If
any of the power-up self-tests fail, the module enters an error state and ceases operation, inhibiting any
further data output from the module. The module does not perform any cryptographic operations while in
an error state.

If the module enters an error state, the Crypto-Officer must reboot the system to perform power-up self-
tests. Successful completion of the power-up self-tests will return the module to normal operation.

10. Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2
Level 1 requirements for this validation.

11. Secure Operation

The module consists of several Linux kernel object modules that provide cryptographic services as part
of the Unisys Stealth Secure Virtual Gateway software appliance.

The sections below describe how to install, configure, and keep the module in a FIPS-approved mode
of operation.

11.1 Crypto-Officer Guidance

To operate the module, the operating system must be restricted to a single-user mode of operation.

Installation and operation of the module requires the proper installation of the Secure Virtual Gateway
software appliance.

The ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall not be used. In addition, other
tracing mechanisms offered by the Linux environment, such as ftrace or systemtap shall not be used.

For complete instructions on installing and configuring the Secure Virtual Gateway, see the Unisys
Stealth Secure Virtual Gateway Installation and User’s Guide. This can be found on the Unisys Product
Support website (http://support.unisys.com/).

11.2 Initialization

The module is initialized during the operating system boot sequence, before any cryptographic
functionality is available. The module is designed with a default entry point (DEP) that ensures that the
power-up self-tests are initiated automatically when the module is loaded.

The module enters a FIPS-approved mode upon successful completion of the self-tests. To confirm that
each module component passed the self-tests, the operator must check the process flag in the
/proc/sys/crypto/fips_enabled file. If this file contains a value of 1, the module is operational in a FIPS-
approved mode. If it contains a value of 0, then the power-up self-tests failed, and the system must be
rebooted.

http://support.unisys.com/

Unisys Linux Kernel Cryptographic API Module Security Policy
Version 1.0

© Copyright 2016 Unisys Corporation
This document may be freely reproduced and distributed whole and intact including this Copyright Notice. 14

11.3 AES-GCM Key/IV Usage

The module implements a 32-bit context counter for the fixed field to construct IVs for AES-GCM. This
counter exists entirely within the module’s cryptographic boundary. The AES-GCM algorithm can only be
accessed through the module’s defined API, which controls the IV construction in compliance with
Section 8.2.1, “Deterministic Construction” in NIST Special Publication 800-38D. This counter is
persistent between power removal or reboots to ensure that the context counter does not repeat until all
2

32
combinations are exhausted.

All the keys and the constructed IVs used are ephemeral and have a limited lifetime. When the host
platform is powered off or rebooted, these keys and encryption contexts are destroyed. New encryption
contexts need to be created by the calling application when the operating system is rebooted.

To ensure the uniqueness of the AES-GCM key/IV pair for each encryption sent to the module, users of
the module shall not reuse keys between encryption contexts, even those on separate host systems.
Techniques for achieving this are documented in Section 7, “Generation of Keys for Symmetric-Key
Algorithms” in NIST Special Publication 800-133.

If the same encryption context is used more than 2

32
-1 times, the encryption operation will fail and a new

encryption context must be established.

12. Glossary and Abbreviations

 AES – Advanced Encryption Standard
 AES-NI – Advanced Encryption Standard New Instruction set
 API – Application Program Interface
 CBC – Cipher Block Chaining
 CMVP – Cryptographic Module Validation Program
 CSP – Critical Security Parameter
 CTR – Counter
 ECB – Electronic Code Book
 GCM – Galois/Counter Mode
 GMAC – Galois Message Authentication Code
 HMAC – Hash Message Authentication Code
 IV – Initialization Vector
 KAT – Known Answer Test
 MAC – Message Authentication Code
 NIST – National Institute of Science and Technology
 OS – Operating System
 PCLMULQDQ – Carry-less Multiplication Quadword

 SHA – Secure Hash Algorithm
 SHS – Secure Hash Standard

 SSSE3 – Supplemental Streaming SIMD Extensions 3

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133.pdf

