

Security Builder® FIPS Java Module

Version 2.8, 2.8.7 and 2.8.8

FIPS 140-2 Non-Proprietary
Security Policy

Certicom Corp.

January 18, 2016

2	

	

Copyright © 2005-2016 Certicom Corp.

This document may be freely reproduced and distributed whole and intact including this
Copyright Notice.

This software contains trade secrets, confidential information, and other intellectual property of
Certicom Corp. and its licensors. This software cannot be used, reproduced, or distributed in
whole or in part by any means without the explicit prior consent of Certicom Corp. Such consent
must arise from a separate license agreement from Certicom or its licensees, as appropriate.

Certicom, Certicom AMS, ACC, Asset Control Core, Certicom Bar Code Authentication Agent,
Certicom ECC Core, Certicom Security Architecture, Certicom Trusted Infrastructure, Certicom
CodeSign, Certicom KeyInject, ChipActivate, DieMax, Security Builder, Security Builder API,
Security Builder API for .NET, Security Builder BSP, Security Builder Crypto, Security Builder
ETS, Security Builder GSE, Security Builder IPSec, Security Builder MCE, Security Builder
NSE, Security Builder PKI, Security Builder SSL and SysActivate are trademarks or registered
trademarks of Certicom Corp. All other companies and products listed herein are trademarks or
registered trademarks of their respective holders.

BlackBerry®, RIM®, Research In Motion® and related trademarks are owned by Research In
Motion Limited. Used under license.

3	

	

Contents	

1	
 INTRODUCTION	
 ..	
 5	

1.1	
 OVERVIEW	
 ...	
 5	

1.2	
 PURPOSE	
 ...	
 5	

1.3	
 REFERENCES	
 ...	
 5	

1.4	
 CHANGE	
 NOTES	
 ..	
 6	

2	
 CRYPTOGRAPHIC	
 MODULE	
 SPECIFICATION	
 ...	
 9	

2.1	
 PHYSICAL	
 SPECIFICATIONS	
 ...	
 9	

2.2	
 COMPUTER	
 HARDWARE,	
 OS	
 AND	
 JVM	
 ...	
 9	

2.3	
 SOFTWARE	
 SPECIFICATIONS	
 ...	
 11	

3	
 CRYPTOGRAPHIC	
 MODULE	
 PORTS	
 AND	
 INTERFACES	
 ...	
 13	

4	
 ROLES,	
 SERVICES,	
 AND	
 AUTHENTICATION	
 ...	
 14	

4.1	
 ROLES	
 ...	
 14	

4.2	
 SERVICES	
 ...	
 15	

4.3	
 OPERATOR	
 AUTHENTICATION	
 ..	
 18	

5	
 FINITE	
 STATE	
 MODEL	
 ..	
 19	

6	
 PHYSICAL	
 SECURITY	
 ..	
 20	

7	
 OPERATIONAL	
 ENVIRONMENT	
 ...	
 21	

8	
 CRYPTOGRAPHIC	
 KEY	
 MANAGEMENT	
 ...	
 22	

8.1	
 KEY	
 GENERATION	
 ..	
 22	

8.2	
 KEY	
 ESTABLISHMENT	
 ..	
 22	

8.3	
 KEY	
 ENTRY	
 AND	
 OUTPUT	
 ..	
 22	

8.4	
 KEY	
 STORAGE	
 ...	
 22	

8.5	
 ZEROIZATION	
 OF	
 KEYS	
 ..	
 23	

9	
 SELF-­‐TESTS	
 ..	
 24	

9.1	
 POWER-­‐UP	
 TESTS	
 ..	
 24	

9.1.1	
 Tests	
 upon	
 Power-­‐up	
 ...	
 24	

9.1.2	
 On-­‐Demand	
 Self-­‐Tests	
 ...	
 24	

9.2	
 CONDITIONAL	
 TESTS	
 ..	
 24	

9.4	
 FAILURE	
 OF	
 SELF-­‐TESTS	
 ..	
 24	

10	
 DESIGN	
 ASSURANCE	
 ..	
 25	

10.1	
 CONFIGURATION	
 MANAGEMENT	
 ..	
 25	

10.2	
 DELIVERY	
 AND	
 OPERATION	
 ..	
 25	

10.3	
 DEVELOPMENT	
 ...	
 25	

10.4	
 GUIDANCE	
 DOCUMENTS	
 ...	
 25	

11	
 MITIGATION	
 OF	
 OTHER	
 ATTACKS	
 ..	
 26	

11.1	
 TIMING	
 ATTACK	
 ON	
 RSA	
 ..	
 26	

11.2	
 ATTACK	
 ON	
 BIASED	
 PRIVATE	
 KEY	
 OF	
 DSA	
 ..	
 26	

4	

	

A	
 CRYPTO	
 OFFICER	
 AND	
 USER	
 GUIDE	
 ...	
 27	

A.1	
 INSTALLATION	
 ...	
 27	

A.1.1	
 Installing	
 ..	
 27	

A.1.2	
 Uninstalling	
 ..	
 27	

A.2	
 COMMANDS	
 ...	
 27	

A.2.1	
 Initialization	
 ...	
 27	

A.2.2	
 De-­‐Initialization	
 ..	
 27	

A.2.3	
 Self-­‐Tests	
 ..	
 27	

A.2.4	
 Show	
 Status	
 ..	
 27	

A.3	
 WHEN	
 MODULE	
 IS	
 DISABLED	
 ...	
 27	

	
 	

5	

	

1	
 Introduction	

1.1	
 Overview	

This is a non-proprietary Federal Information Processing Standard (FIPS) 140-2 Security
Policy for Certicom’s Security Builder® FIPS Java Module Version 2.8, 2.8.7 and
2.8.8 (SB FIPS Java Module). SB FIPS Java Module is a cryptographic toolkit for Java
language users, providing services of various cryptographic algorithms such as hash
algorithms, encryption schemes, message authentication, and public key cryptography.
This Security Policy specifies the rules under which SB FIPS Java Module must operate.
These security rules are derived from the requirements of FIPS 140-2 [1], and related
documents [6, 7, 8].

1.2	
 Purpose	

This Security Policy is created for the following purposes:

1. It is required for FIPS 140-2 validation.
2. To outline SB FIPS Java Module’s conformance to FIPS 140-2 Level 1 Security

Requirements.
3. To provide users with how to configure and operate the cryptographic module in

order to comply with FIPS 140-2.

1.3	
 References	

References

[1] NIST Security Requirements For Cryptographic Modules, FIPS PUB 140-2,

December 3, 2002.

[2] NIST Security Requirements For Cryptographic Modules, Annex A: Approved

Security Functions for FIPS PUB 140-2, January 27, 2010.

[3] NIST Security Requirements For Cryptographic Modules, Annex B: Approved

Protection Profiles for FIPS PUB 140-2, June 14, 2007.

[4] NIST Security Requirements For Cryptographic Modules, Annex C: Approved

Random Number Generators for FIPS PUB 140-2, July 21, 2009.

[5] NIST Security Requirements For Cryptographic Modules, Annex D: Approved Key

Establishment Techniques for FIPS PUB 140-2, October 8, 2009.

[6] NIST Derived Test Requirements for FIPS 140-2, Draft, March 24, 2004.

[7] NIST Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module

Validation Program, June 15, 2010.

[8] NIST Frequently Asked Questions for the Cryptographic Module Validation

Program, December 4, 2007.

6	

	

1.4	
 Change	
 Notes	

Change history is recorded in Table 1.

Table 1: Change History

Date Author Description
2010/08/03 A.Y. Moved to Subversion

Algorithm certificate numbers are added.
2010/08/13 A.Y. Updated IP notices
2011/01/25 R.W. Editorial corrections
2011/01/25 R.W. Updated copyright year
2011/08/15 R.W. Editorial modifications
2011/09/07 A.Y. Response to 2nd round comments
2012/06/01 A.Y. Editorial fix for clarification based on the comments on

rebranded Security Policy
2012/06/14 A.Y. Added Version 2.8.7, which contains an improvement on

concurrent access to RNG context
2015/05/19 R.T. Modified for version 2.8.8.
2015/06/16 R.T. Modified Appendix A. Integrity and other tests are run

automatically.
2015/07/15 R.T. Added algorithm certificate numbers for version 2.8.8.
2015/07/29 R.T. Incorporated comments from EWA.
2015/11/10 R.T. Updated per comments from CMVP.
2015/11/11 R.T. Added guidance for GCM per comment from CMVP.
2015/11/12 R.T. Minor updates after internal review.
2015/11/25 R.T. Updated per second round of comments from CMVP.
2015/12/16 R.T. Updated per additional comments from CMVP.
2016/01/11 R.T. NIST SP 800-131A transitions.
2016/01/15 R.T. Updated per comments from lab.
2016/01/18 R.T. More comments from lab.

The following were placed here by RCS upon check-in.

Revision 1.50 2010/04/21 13:10:23 ayamada
Editorial corrections.

Revision 1.49 2010/04/20 15:45:06 ayamada
Updated with the latest information.

Revision 1.48 2010/01/08 17:53:52 ayamada
Added key agreement algorithms for SB FIPS Module Version 2.8.

Revision 1.47 2010/01/07 20:04:25 rwilliam
Merged 2.2.1 details from development branch.

Revision 1.46 2008/09/15 14:00:42 ayamada
Revised based on the comments from CMVP.

Revision 1.45 2008/06/16 18:00:39 ayamada
1. Algorithm Certificate numbers are provided.
2. Updated references.
3. Editorial correction.

Revision 1.44 2008/05/09 19:45:52 rwilliam
Clarified runSelfTests

Revision 1.43 2008/05/09 15:29:34 ayamada
Correction on the date.

7	

	

Revision 1.42 2008/05/09 15:29:05 ayamada
Fixed the description to correctly represent the behavior in Java.

Revision 1.41 2008/04/18 17:04:55 ayamada
Corrections on the supported algorithms.
Editorial corrections.

Revision 1.40 2008/04/18 13:28:40 ayamada
For SB FIPS Jave Module 2.2.
1. Updated the list of tested platforms.
2. The tested JRE version is now 1.6.
3. Added new algorithms: AES CMAC, AES GCM, DRBG.
4. Clarification on the operational environment.

Revision 1.39 2008/04/15 12:35:28 ayamada
Fixed a typo.

Revision 1.38 2008/04/11 22:09:50 ayamada
For Version 2.2.
New platform list and JRE list.
Includes new algorithms such as NIST SP 800-90 RNG.

Revision 1.37 2008/03/14 17:50:42 ayamada
The first draft for SB FIPS Java Module 2.2.

Revision 1.36 2008/01/24 15:25:36 ayamada
Updated from the 2.1 branch.

Revision 1.35.6.1 2007/08/29 19:04:22 ayamada
Updated to add Solaris 10 32-bit.

Revision 1.35 2006/12/08 14:17:26 ayamada
Date update.

Revision 1.34 2006/12/08 14:15:55 ayamada
Correction on the DSS certificate number.

Revision 1.33 2006/12/07 19:46:09 ayamada
Updated the date on the document.

Revision 1.32 2006/12/07 19:44:24 ayamada
Added FIPS Algorithm certificate numbers.

Revision 1.31 2006/11/03 17:45:58 ayamada
Added extra space on page 2.

Revision 1.30 2006/11/03 17:39:02 ayamada
Added patent statement.

Revision 1.29 2006/11/03 15:07:49 ayamada
Addition of some clarifications and reference update.

Revision 1.28 2006/11/02 19:58:52 ayamada
Simplified operational environment description.

Revision 1.27 2006/10/13 14:22:49 ayamada
Improved to have clearer statements.

Revision 1.26 2006/09/14 14:04:22 ayamada
Revised to add 2 platforms.
Windows OS is updated to XP.

Revision 1.25 2006/06/28 14:09:02 ayamada
A bit more editorial improvements.

Revision 1.24 2006/06/28 14:01:32 ayamada
Some editorial fixes.

Revision 1.23 2006/06/27 20:15:40 mmezheri
updated supported hardware, software diagram and algorithms table

8	

	

Revision 1.22 2006/06/26 15:20:06 mmezheri
updated regarding gse-j 2.1

Revision 1.21 2006/06/05 21:52:41 mmezheri
new algorithms updating.Revision 1.20 2005/12/14 17:02:48 zlieber

Merged sbgsej_2_0 branch: -j root-of-sbgsej_2_0-branch -j sbgsej_2_0_9

Revision 1.11.2.2 2005/09/27 18:10:34 ayamada
Further revised the notes on the security of key establishment techniques.

Revision 1.19 2005/09/27 13:42:29 ayamada
Added notes on security levels of Diffie-Hellman, Elliptic Curve Diffie-Hellman, and ECMQV.

Revision 1.18 2005/09/21 20:01:27 ayamada
Added clarification on key size for the RSA key wrapping techniques.

Revision 1.17 2005/09/14 18:47:47 ayamada
Further clarified the status of DES in Table 3.

Revision 1.16 2005/09/14 17:20:11 ayamada
1. Fix on Table 3 to clarify the legacy status of DES.
2. FIPS Approved is corrected to FIPS allowed for key establishment techniques.

Revision 1.15 2005/04/22 13:19:47 ayamada
Further clarifications.

Revision 1.14 2005/03/31 17:46:50 ayamada
Editorial corrections.

Revision 1.13 2005/03/28 15:26:50 ayamada
Correction on the date.

Revision 1.12 2005/03/28 15:21:17 ayamada
The algorithm certificate numbers are obtained.
Some minor editorial corrections.

Revision 1.11 2005/02/18 18:53:36 ayamada
A few minor corrections.

Revision 1.10 2005/02/18 16:04:20 ayamada
More clarifications and editorial corrections.

Revision 1.9 2005/02/15 17:10:11 efung
Typo

Revision 1.8 2005/02/11 21:16:22 efung
Superscript the (R)

Revision 1.7 2005/02/10 23:00:19 efung
supertab isn’t actually being used (package seems to be superseded by
supertabular)

Revision 1.6 2005/02/10 19:08:35 ayamada
Further corrections.

Revision 1.5 2005/02/10 18:34:20 ayamada
Editorial corrections.

Revision 1.4 2005/02/04 18:35:07 ayamada
Completed the appendix.

Revision 1.3 2005/02/01 15:56:28 ayamada
Editorial corrections.

Revision 1.2 2005/01/28 14:54:00 ayamada
Revised for differences of Java from C.

Revision 1.1 2005/01/28 13:48:21 ayamada
Initial revision: copied from GSE-C 2.0.	

9	

	

2	
 Cryptographic	
 Module	
 Specification	

SB FIPS Java Module is a multiple-chip standalone cryptographic module that operates with the
following components:

• A commercially available general-purpose computer hardware.
• A commercially available Operating System (OS) that runs on the computer hardware.
• A commercially available Java Virtual Machine (JVM) that runs on the computer hardware

and OS.

2.1	
 Physical	
 Specifications	

The general-computer hardware component consists of the following devices:

1. CPU (Microprocessor)

2. Memory

(a) Working memory is located on the RAM containing the following spaces:

i. Input/output buffer

ii. Plaintext/ciphertext buffer

iii. Control buffer

Key storage is not deployed in this module.

(b) Program memory is also located on RAM.

3. Hard Disk (or disks)

4. Display Controller

5. Keyboard Interface

6. Mouse Interface

7. Network Interface

8. Serial Port

9. Parallel Port

10. Power Supply

The configuration of this component is illustrated in Figure 1.

2.2	
 Computer	
 Hardware,	
 OS	
 and	
 JVM	

Versions 2.8 and 2.8.7 of SB FIPS Java Module has been tested on the following representative
combinations of computer hardware and OS, running the Java Runtime Environment (JRE) 1.5.0
and 1.6.0 by Sun Microsystems:

1. Solaris 10, 32-bit SPARC (Binary compatible to Solaris 9)
2. Solaris 10, 64-bit SPARC (Binary compatible to Solaris 9)
3. Red Hat Linux AS 5.5, 32-bit x86 (Binary compatible to AS 2.1/3.0/4.0/5.0)
4. Red Hat Linux AS 5.5, 64-bit x86 (Binary compatible to AS 4.0/5.0)
5. Windows Vista, 32-bit x86 (Binary compatible to Windows 98/2000/2003/XP)
6. Windows Vista, 64-bit x86 (Binary compatible to Windows 64-bit XP)
7. Windows 2008 Server, 64-bit x86

Versions 2.8.8 of SB FIPS Java Module has been tested on the following representative
combinations of computer hardware and OS, running the Java Runtime Environment (JRE) 1.8.0 by
Oracle:

1. CentOS Linux 7.0 64-bit x86	

10	

	

	

 : Physical Cryptographic Boundary

 : Flow of data, control input, and status output

 : Flow of control input : Flow of status output

Figure 1: Cryptographic Module Hardware Block Diagram

	

Display	

Terminal	

Keyboard	
 Mouse	
 External	

Source	
 of	

Power	

Hard	
 Disk	

Drive	

Display	

Controller	

Keyboard	

Interface	

Mouse	

Interface	

Power	

Supply	

System	
 Bus	

CPU	
 Memory	

Network	

Interface	

Serial	

Interface	

Network	
 Serial	

Port	

Parallel	

Interface	

Parallel	

Port	

11	

	

The module will run on the JREs 1.3.1, and 1.4.2, and on various hardware and OS such as,

1. Any other Solaris Platforms,
2. Any other Linux Platforms,
3. Any other Windows Platforms,
4. AIX Platforms, and
5. HP-UX Platforms,

while maintaining its compliance to the FIPS 140-2 Level 1 requirements. Thus, this validation is
applicable to these JREs and platforms as well.

2.3	
 Software	
 Specifications	

SB FIPS Java Module software is manufactured by Certicom Corp., providing services to the Java
computer language users in the form of a Java archive (JAR). The same binary is used for all
identified computer hardware and OS because the JVM underneath SB FIPS Java Module will
absorb the differences of the computer and hardware and OS.

The interface into SB FIPS Java Module is via Application Programmer’s Interface (API) method
calls. These method calls provide the interface to the cryptographic services, for which the
parameters and return codes provide the control input and status output (see Figure 2).

12	

	

: Cryptographic Boundary

: Data flows

Figure 2: Cryptographic Module Software Block Diagram

Java Virtual Machine	

Application	
 Program	

SB FIPS JavaModule	

Module Interface (API)	

13	

	

3	
 Cryptographic	
 Module	
 Ports	
 and	
 Interfaces	

The physical and logical interfaces are summarized in Table 2.

Table 2: Logical and Physical Interfaces

I/O Logical Interface Physical Interface
Data Input API Ethernet port
Data Output API Ethernet port
Control Input API Keyboard and Mouse
Status Output Return Code Display
Power Input Initialization Function The Power Supply is the power interface.
Maintenance Not supported Not supported

14	

	

4	
 Roles,	
 Services,	
 and	
 Authentication	

4.1	
 Roles	

SB FIPS Java Module supports Crypto Officer and User Roles (see Table 3). These roles
are enforced by this Security Policy.

Table 3: Roles and Services

Service Crypto Officer User
Initialization, etc.
Initialization X X

Deinitialization X X

Self-tests X X

Show status X X

Symmetric Ciphers (AES and Triple DES)
Key generation (Triple-DES only) X X

Encrypt X X

Decrypt X X

Key zeroization X X

Hash Algorithms and Message Authentication (SHA, HMAC)
Hashing X X

Message Authentication X X

Random Number Generation (pRNG)
Instantiation X X

Request X X

CSP/Key zeroization X X

Digital Signature (DSA, ECDSA, RSA)
Key pair generation X X

Sign X X

Verify X X

Key zeroization X X

Key Agreement (Diffie-Hellman, Elliptic Curve Diffie-Hellman, ECMQV)
Key pair generation X X

Shared secret generation X X

Key zeroization X X

Key Wrapping (RSA)
Key pair generation X X

Wrap X X

Unwrap X X

Key zeroization X X

In order to operate the module securely, it is the Crypto Officer and User’s responsibility
to confine calls to those methods that have been FIPS 140-2 Approved. Thus, in the
approved mode of operation, all Roles shall confine themselves to calling FIPS Approved
algorithms, as marked in Table 4.

15	

	

4.2	
 Services	

SB FIPS Java Module supports many cryptographic algorithms. The set of cryptographic
algorithms supported by SB FIPS Module is given in Table 4.

Table 4: Supported Algorithms and Standards

 Algorithm
FIPS

Approved or
Allowed

Cert #
(version 2.8
and 2.8.7)

Cert #
(version

2.8.8)
Block Ciphers DES (ECB, CBC, CFB64, OFB64)

Triple DES (ECB, CBC, CFB64, OFB64 [SP 800-67] X #964 #1954

DESX (ECB, CBC, CFB64, OFB64)

AES (ECB, CBC, CFB128, OFB128,
CTR, CCM, CMAC, GCM) [FIPS 197] X #1411 #3465

ARC2 (ECB, CBC, CFB64, OFB64) [RFC 2268]

Stream Cipher ARC4

Hash Functions SHA-1 [FIPS 180-4] X #1281 #2860

SHA-224 [FIPS 180-4] X #1281 #2860

SHA-256 [FIPS 180-4] X #1281 #2860

SHA-384 [FIPS 180-4] X #1281 #2860

SHA-512 [FIPS 180-4] X #1281 #2860

MD5 [RFC 1321]

MD2 [RFC 1115]

Message Authentication HMAC-SHA-1 [FIPS 198-1] X #832 #2210

HMAC-SHA-224 [FIPS 198-1] X #832 #2210

HMAC-SHA-256 [FIPS 198-1] X #832 #2210

HMAC-SHA-384 [FIPS 198-1] X #832 #2210

HMAC-SHA-512 [FIPS 198-1] X #832 #2210

HMAC-MD5 [RFC 2104]

pRNG ANSI X9.62 RNG [ANSI X9.62]

DRBG [NIST SP 800-90 Rev. 1] X #52 #852

NDRGB (GenerateSeed()) X

Digital Signature DSA [FIPS 186-4] X #455 #978

ECDSA [FIPS 186-4] X #179 #702

RSA PKCS #1 v1.5 Signature [PKCS #1 v2.1] X #687 #1776

RSA PSS [PKCS #1 v2.1] X #687 #1776

ECQV

Key Agreement Diffie-Hellman [NIST SP 800-56A] X #8 #61

Elliptic Curve Diffie Hellman [NIST SP 800-56A] X #8 #62

ECMQV [NIST SP 800-56A] X #8 #62

Key Wrapping RSA PKCS #1 v1.5 Encryption [PKCS #1 v2.1]

RSA OAEP [NIST SP 800-56B] X

ECIES [ANSI X9.63]

16	

	

The Triple-DES, AES (ECB, CBC, CFB128, OFB128, CTR, CCM, GCM, and CMAC modes),
SHS (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512), HMAC-SHS (HMACSHA-1,
HMAC-SHA-224, HMAC-SHA256, HMAC-SHA-384, and HMAC-SHA-512), pRNG (NIST SP
800-90), DSA, ECDSA, RSA PKCS #1 v1.5 Signature, and RSA PSS algorithms, and NIST SP
800-56A Key Establishment techniques (key agreement) Diffie-Hellman with strength >= 112 bits,
Elliptic Curve Diffie-Hellman, and ECMQV have been independently tested. SB FIPS Java Module
also supports a NIST SP 800-56B Key Establishment technique (key wrapping), RSA OAEP. In
order to operate the module in a FIPS Approved mode of operation only these FIPS Approved or
allowed algorithms may be used. GCM encryption should not be performed in order to remain FIPS
compliant.

DES, DESX, AES CCM* (CCM star) mode, pRNG (ANSI X9.62), ARC2, ARC4, MD5, MD4,
MD2, and HMAC-MD5, ECQV, ECIES, RSA PKCS #1 v1.5 Encryption algorithm, and Diffie-
Hellman with strength < 112 bits are supported as non FIPS Approved algorithms. In order to
operate the module in a FIPS Approved mode of operation these algorithms must not be used.

Please be advised, 2-Key Triple-DES decryption is permitted for legacy purposes. 2-Key Triple-
DES encryption is now considered a non-FIPS Approved algorithm as of January 1, 2016. Please
see NIST SP 800-131A for more information.

Table 5 summarizes the keys and CSPs used in the FIPS mode.

Table 5: Key and CSP, Key Size, Security Strength, and Access

Algorithm Key and SP Key Size Strength Access

AES key 128-256 bits 128-256 bits Use

Triple-DES key 192 bits 112 bits Create, Read,
Use

HMAC key 160-512 bits 160-512 bits Use

pRNG (DRBG) seed key 160-512 bits 160-512 bits Use

DSA key pair 2048-15360 bits 112-256 bits Create, Read,
Use

ECDSA key pair 224-571 bits 112-256 bits Create, Read,
Use

RSA Signature key pair 2048-15360 bits 112-256 bits Create, Read,
Use

Diffie-Hellman static/ephemeral key pair 2048-15360 bits 112-256 bits Create, Read,
Use

Elliptic Curve Diffie-
Hellman static/ephemeral key pair 224-571 bits 112-256 bits Create, Read,

Use

ECMQV static/ephemeral key pair 224-571 bits 112-256 bits Create, Read,
Use

RSA Key wrapping key pair 2048-15360 bits 112-256 bits Create, Read,
Use

Note:

Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 256 bits
of encryption strength; non-compliant less than 112-bits of encryption strength)

Elliptic Curve Diffie-Hellman (key agreement; key establishment methodology provides between 112
and 256 bits of encryption strength; non-compliant less than 112-bits of encryption strength)

ECMQV (key agreement; key establishment methodology provides between 112 and 256 bits of
encryption strength; non-compliant less than 112-bits of encryption strength)

In FIPS approved mode, only the elliptic curves P-224, P-256, P-384, P-521, K-233, K-283, K-409,
K-571, B-233, B-283, B-409 and B-571 can be used.

SB FIPS module supports the elliptic curves K-163, B-163, P-192, secp160r1, sect239k1 and wTLS5
that are not FIPS approved. They can be used with the ECDSA, ECDH, ECMQV and ECIES
algorithms, but not in FIPS approved mode.

RSA (key wrapping; key establishment methodology provides between 112 and 256 bits of
encryption strength; non-compliant less than 112-bits of encryption strength)

17	

	

Digital signature generation that provides less than 112 bits of security (using RSA, DSA or ECDSA)
is disallowed beginning January 1st, 2014.

Digital signature generation using SHA-1 as its underlying hash function is disallowed beginning
January 1st, 2014.

HMAC-SHA-1 shall have a key size of at least 112 bits

18	

	

4.3	
 Operator	
 Authentication	

SB FIPS Java Module does not deploy authentication mechanism. The roles of Crypto Officer and
User are implicitly selected by the operator.

19	

	

5	
 Finite	
 State	
 Model	

The Finite State model contains the following states:

• Installed/Uninitialized

• Initialized

• Self-Test

• Idle

• Crypto Officer/User

• Error

The following is the important features of the state transition:

1. When the module is installed by the Crypto Officer, the module is in the In- stalled/Uninitialized

state.

2. When the initialization command is applied to the module, i.e., the module is loaded on the

memory, turning to the Initialization state. Then, it transits to the Self-Test state automatically,
running the Power-up Tests. While in the Self-Test state, the module prohibits all data output via
the data output interface. On success the module enters Idle; on failure the module enters Error
and the module is disabled. From the Error state the Crypto Officer may need to re-install to
attempt correction.

3. From the Idle state (which is only entered if Self-Tests have succeeded), the module can transit

to the Crypto Officer/User state when an API method is called.

4. When the API method has completed successfully, the state transits back to Idle.

5. If the Conditional Test (Continuous RNG Test or Pair-wise Consistency Test) fails, the state

transits to Error and the module is disabled.

6. When On-demand Self-Test is executed, the module enters the Self-Test state. On success the

module enters Idle; on failure the module enters Error and the module is disabled.

7. When the de-initialization command is executed, the module goes back to the

Installed/Uninitialized state.

20	

	

6	
 Physical	
 Security	

Physical security is not applicable to this software module at Level 1 Security.

21	

	

7	
 Operational	
 Environment	

This module is to be run in single user operational environment, where each user application runs
in virtually separated independent space. Note that modern Operating Systems such as UNIX,
Linux and Windows provide such operational environment.

22	

	

8	
 Cryptographic	
 Key	
 Management	

SB FIPS Java Module provides the underlying methods to support FIPS 140-2 Level 1 key
management. The user will select FIPS Approved algorithms and will handle keys with appropriate
care to build up a system that complies with FIPS 140-2. It is the Crypto Officer and User’s
responsibility to select FIPS 140-2 validated algorithms (see Table 4).

8.1	
 Key	
 Generation	

SB FIPS Module provides FIPS 140-2 compliant key generation. The underlying random number
generation uses a FIPS Approved method, a DRBG (hash, HMAC or cipher).

The module also supports Dual_EC DRBG, however, the use of Dual_EC DRBG is non-approved
for key generation. No keys generated using this version of the DRBG can be used to protect
sensitive data in the Approved mode. Any random output in Approved mode using the DUAL_EC
DRBG is equivalent to plaintext.

8.2	
 Key	
 Establishment	

SB FIPS Java Module provides the following FIPS allowed key establishment techniques [5]:

1. Diffie-Hellman

2. Elliptic Curve Diffie-Hellman

3. ECMQV

4. RSA OAEP

The Elliptic Curve Diffie-Hellman and ECMQV key agreement technique implementations support
elliptic curve sizes from 160 bits to 571 bits that provide between 80 and 256 bits of security
strength, where 224 bits and above must be used to provide a minimum of 112 bits of security in
the FIPS mode. The Diffie-Hellman key agreement technique implementation supports modulus
sizes from 512 bits to 15360 bits that provide between 56 and 256 bits of security strength, where
2048 bits and above must be used to provide a minimum of 112 bits of security in the FIPS mode.
The RSA OAEP key wrapping implementation supports modulus sizes from 512 bits to 15360 bits
that provides between 56 and 256 bits of security, where 2048 bits and above must be used to
provide minimum of 112 bits of security in the FIPS mode.

It is the users responsibility to ensure that the appropriate key establishment techniques are applied
to the appropriate keys.

8.3	
 Key	
 Entry	
 and	
 Output	

Secret (security sensitive) keys must be imported into or exported from the SB FIPS Java Module
in encrypted form using a FIPS Approved algorithm when crossing the module’s physical
boundary.

8.4	
 Key	
 Storage	

SB FIPS Java Module is a low-level cryptographic toolkit, and as such does not provide key
storage.

23	

	

8.5	
 Zeroization	
 of	
 Keys	

SB FIPS Java Module provides zeroizable interfaces which implement zeroization methods.
Zeroization of all keys and CSPs are performed in the finalizing methods of the objects; JVM
executes the finalizing methods every time it operates garbage collection.

24	

	

9	
 Self-­‐Tests	

9.1	
 Power-­‐up	
 Tests	

9.1.1	
 Tests	
 upon	
 Power-­‐up	

Self-tests are initiated automatically by the module at start-up. The following tests are applied:

1. Known Answer Tests (KATs):
KATs are performed on Triple-DES, AES, SHS (via HMAC-SHS), HMAC-SHS, DRBG
health tests (instantiate, generate, reseed and un-instantiate), RSA Signature Algorithm,
Diffie-Hellman, Elliptic Curve Diffie-Hellman, ECMQV and KDF (via key agreement).
For DSA and ECDSA, Pair-wise Consistency Test is used.

2. Software Integrity Test:
The software integrity test deploys ECDSA signature validation to verify the integrity of
the module.

9.1.2	
 On-­‐Demand	
 Self-­‐Tests	

On-demand self tests may be invoked by the Cryptographic Officer or User by invoking a method,
which is described in the Crypto Officer And User Guide in Appendix A.

9.2	
 Conditional	
 Tests	

The Continuous RNG Test is executed on all data generated by the NIST SP 800-90A DRBG,
examining the first 160 bits of each requested random generation for repetition. This ensures that
the RNG is not stuck at any constant value.

Also, upon each generation of a RSA, DSA or ECDSA key pair, the generated key pair is tested of
their correctness by generating a signature and verifying the signature on a given message as a Pair-
wise Consistency Test.

Upon generation or reception of Diffie-Hellman, Elliptic Curve Diffie-Hellman, or ECMQV key
pair, the key pair is tested of their correctness by checking shared secret matching of two key
agreement parties as a Pair-wise Consistency Test.

9.4	
 Failure	
 of	
 Self-­‐Tests	

Failure of the Self-Tests places the cryptographic module in the Error state, wherein no
cryptographic operations can be performed. The module is disabled. Additionally, the
cryptographic module will throw a Java exception to the caller.

25	

	

10	
 Design	
 Assurance

10.1	
 Configuration	
 Management	

A configuration management system for the cryptographic module is employed and has been
described in a document to the certifying lab. It uses the Concurrent Versioning System (CVS) or
Subversion (SVN) to track the configurations.

10.2	
 Delivery	
 and	
 Operation	

Please refer to Section A.1 of Crypto Officer And User Guide in Appendix A to review the steps
necessary for the secure installation and initialization of the cryptographic module.

10.3	
 Development	

Detailed design information and procedures have been described in documentation submitted to the
testing laboratory. The source code is fully annotated with comments, and is also submitted to the
testing laboratory.

10.4	
 Guidance	
 Documents	

Crypto Officer Guide And User Guide is provided in Appendix A. This appendix outlines the
operations for Crypto Officer and User to ensure the security of the module.

26	

	

11	
 Mitigation	
 of	
 Other	
 Attacks	

SB FIPS Java Module implements mitigation of the following attacks:

1. Timing Attack on RSA

2. Attack on biased private key of DSA

11.1	
 Timing	
 Attack	
 on	
 RSA	

When employing Montgomery computations, timing effects allow an attacker to tell when the base
of exponentiation is near the secret modulus. This leaks information concerning the secret modulus.

In order to mitigate this attack, the following is executed: The bases of exponentiation are
randomized by a novel technique that requires no inversion to remove.

Note that Remote Timing Attacks are practical:
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

11.2	
 Attack	
 on	
 Biased	
 Private	
 Key	
 of	
 DSA	

The standard for choosing ephemeral values in DSA signature introduce a slight bias. Means to
exploit these biases were presented to ANSI by D. Bleichenbacher.

In order to mitigate this attack, the following is executed: The bias in the RNG is reduced to levels
which are far below the Bleichenbacher attack threshold.

Change Notice 1 of FIPS 186-2 is published to mitigate this attack:
http://csrc.nist.gov/CryptoToolkit/tkdigsigs.html

27	

	

A	
 Crypto	
 Officer	
 And	
 User	
 Guide	

A.1	
 Installation	

In order to carry out a secure installation of SB FIPS Java Module, the Crypto Officer must follow
the procedure described in this section.

A.1.1	
 Installing	

The Crypto Officer is responsible for the installation of SB FIPS Java Module. Only the Crypto
Officer is allowed to install the product.

Place the cryptographic module, EccpressoFIPS.jar in CLASSPATH or as in installed extension.

A.1.2	
 Uninstalling	

Remove the jar file, EccpressoFIPS.jar, from the computer hardware.

A.2	
 Commands	

A.2.1	
 Initialization	

FIPSManage.getInstance().activateFIPSMode()
The Self-Tests on the module are automatically run whenever a CryptoTransform or DRBG object
is created. These tests examine the integrity of the shared object, and the correct operation of the
cryptographic algorithms. If these tests are successful, the module will be enabled. There is no need
to initialize the module explicitly. If the module has been de-initialized by a previous call to
FIPSManage.getInstance().deactivateFIPSMode(), it can be re-initialized by calling this
method.

A.2.2	
 De-­‐Initialization	

FIPSManage.getInstance().deactivateFIPSMode()
This method de-initializes the module.

A.2.3	
 Self-­‐Tests	

FIPSManage.getInstance().runSelfTests()
This method runs a series of Self-Tests, and returns if the tests are successful, otherwise, an
exception is thrown. These tests examine the integrity of the shared object, and the correct
operation of the cryptographic algorithms. If these tests fail, the module will be disabled. Section
A.3 of this document describes how to recover from the disabled state.

A.2.4	
 Show	
 Status	

Status can be found by calling FIPSManager.getInstance().isFIPSMode() and
FIPSManager.getInstance().requestCryptoOperation(). If both methods return true, the
module is in the Idle state.

A.3	
 When	
 Module	
 is	
 Disabled	

When SB FIPS Java Module becomes disabled, attempt to bring the module back to the Installed
state by calling the de-initialization method, and then to initialize the module using the initialization
method. If the initialization is successful, the module is recovered. If this attempt fails, uninstall the
module and re-install it. If the module is initialized successfully by this re-installation, the recovery
is successful. If this recovery attempt fails, it indicates a fatal error. Please contact Certicom
Support immediately.

