

IBM® Crypto for C

version 8.4.1.0

FIPS 140-2 Non-Proprietary

Security Policy, version 1.9
July 16, 2015

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 31

This document is the property of International Business Machines Corporation. This
document may only be reproduced in its entirety without modifications.

© Copyright 2015 IBM Corp. / atsec information security corp. All Rights Reserved

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 31

Table of Contents

1. References and Abbreviations ... 5

1.1 References ... 5

1.2 Abbreviations .. 5

2. Introduction .. 8

3. Cryptographic Module Definition .. 9

3.1 Cryptographic Module Boundary .. 11

4. FIPS 140-2 Specifications .. 13

4.1 Ports and Interfaces .. 13

4.2 Roles, Services and Authentication .. 13

4.2.1 Roles and Authentication .. 13

4.2.2 Authorized Services .. 14

4.2.3 Access Rights within Services .. 19

4.2.4 Operational Rules and Assumptions .. 19

4.3 Operational Environment .. 20

4.3.1 Assumptions ... 21

4.3.2 Installation and Initialization .. 21

4.4 Cryptographic Key Management .. 21

4.4.1 Implemented Algorithms ... 21

4.4.2 Key Generation ... 21

4.4.3 Key Establishment .. 22

4.4.4 Key Entry and Output ... 23

4.4.5 Key Storage .. 23

4.4.6 Key Zeroization ... 23

4.5 Self-Tests .. 24

4.5.1 Show Status.. 24

4.5.2 Startup Tests .. 24

4.5.3 Conditional Tests .. 25

4.5.4 Severe Errors ... 26

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 31

4.6 Mitigation of Other Attacks.. 26

5. API Functions ... 27

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 31

1. References and Abbreviations

1.1 References

Reference Author Title

FIPS140-2 NIST FIPS PUB 140-2: Security Requirements For
Cryptographic Modules, May 2001

FIPS140-2-DTR NIST Derived Test Requirements for FIPS PUB 140-2,
November 2001

FIPS140-2-IG NIST Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program

FIPS180-4 NIST SECURE HASH STANDARD (SHS)

FIPS186-4 NIST Digital Signature Standard (DSS)

FIPS197 NIST Specification for the ADVANCED ENCRYPTION
STANDARD (AES)

FIPS198-1 NIST The Keyed Hash Message Authentication Code (HMAC)

SP800-38B NIST Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication

SP800-38C NIST Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality

SP800-38D NIST Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC

SP800-38E NIST Recommendation for Block Cipher Modes of Operation:
The XTS-AES Mode for Confidentiality on Storage Devices

SP800-56A NIST Recommendation for Pair Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography

SP800-67 NIST Recommendation for the Triple Data Encryption Algorithm
(TDEA) Block

SP800-131A NIST Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths

1.2 Abbreviations

ANS.1 Abstract Syntax Notation One. A notation for describing data structures.

AES The Advanced Encryption Standard. The AES is intended to be issued as a FIPS
standard and will replace DES. In January 1997 the AES initiative was announced
and in September 1997 the public was invited to propose suitable block ciphers as
candidates for the AES. NIST is looking for a cipher that will remain secure well
into the next century. NIST selected Rijndael as the AES algorithm.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 31

AES_CCM AES counter mode as documented in NIST SP800-38C

AES_GCM AES Galois counter mode as documented in NIST SP800-38D

AES_XTS AES XEX-based Tweaked-codebook mode with ciphertext Stealing mode as
documented in NIST SP800-38E

AES-NI Intel
®
 Advanced Encryption Standard (AES) New Instructions (AES-NI)

Camellia A 128 bit block cipher developed by NTT

CMAC Cipher-based Message Authentication Code, as documented in NIST SP800-38B

CMVP (The NIST) Cryptographic Module Validation Program; an integral part of the
Computer Security Division at N IST, the CMVP encompasses validation testing for
cryptographic modules and algorithms

CPACF CP (central processor) assist for Cryptographic Functions

Crypto Cryptographic capability/functionality

DES The Data Encryption Standard, an encryption block cipher defined and
endorsed by the U.S. government in 1977 as an official standard; the details
can be found in the latest official FIPS (Federal Information Processing
Standards) publication concerning DES. It was originally developed at IBM.
DES has been extensively studied since its publication and is the most well-
known and widely used cryptosystem in the world.

DH Diffie-Hellman key agreement protocol (also called exponential key agreement)
was developed by Diffie and Hellman in 1976 and published in the ground-
breaking paper “New Directions in Cryptography”. The protocol allows two users
to exchange a secret key over an insecure medium without any prior secrets.

DSA The Digital Signature Algorithm (DSA) was published by NIST in the Digital
Signature Standard (DSS)

ECC Elliptic Curve Cryptography. A potentially faster and more secure
replacement for prime field based asymmetric algorithms such as RSA and
Diffie-Hellman

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ICC IBM Crypto for C-language.

MD2
MD4
MD5

MD2, MD4, and MD5 are message-digest algorithms developed by Rivest. They
are meant for digital signature applications where a large message has to be
"compressed" in a secure manner before being signed with the private key. All
three algorithms take a message of arbitrary length and produce a 128-bit
message digest. While the structures of these algorithms are somewhat similar, the
design of MD2 is quite different from that of MD4 and MD5 and MD2 was optimized
for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines.
Description and source code for the three algorithms can be found as Internet
RFCs 1319 - 1321.

MDC2 A seldom used hash algorithm developed by IBM

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 7 of 31

NIST (The) National Institute of Standards and Technology; NIST is a non-regulatory
federal agency within the U.S. Commerce Department's Technology

Administration. NIST's mission is to develop and promote measurement,
standards, and technology to enhance productivity, facilitate trade, and improve
the quality of life. NIST oversees the Cryptographic Module Validation
Program.

OpenSSL A collaborative effort to develop a robust, commercial-grade, full-featured and
Open Source toolkit implementing the Secure Socket Layer (SSL V1/V3) and
Transport Layer Security (TLS V1) protocols.

PKCS#1 A standard that describes a method for encrypting data using the RSA public-
key crypto system

PRNG Pseudo-Random number generator. Essentially a sequence generator which, if
the internal state is unknown, is unpredictable and has good distribution
characteristics.

RC2 A variable key-size block cipher designed by Rivest for RSA Data Security. "RC"
stands for "Ron's Code" or "Rivest's Cipher." It is faster than DES and is designed
as a "drop-in" replacement for DES. It can be made more secure or less secure
than DES against exhaustive key search by using appropriate key sizes. It has a
block size of 64 bits and is about two to three times faster than DES in software.
The algorithm is confidential and proprietary to RSA Data Security. RC2 can be
used in the same modes as DES.

RC4 A stream cipher designed by Rivest for RSA Data Security. It is a variable key-size
stream cipher with byte-oriented operations.

RSA A public-key cryptosystem for both encryption and authentication; it was invented in
1977 by Ron Rivest, Adi Shamir, and Leonard Adleman.

SHA-1 The Secure Hash Algorithm, the algorithm specified in the Secure Hash Standard
(SHS), was developed by NIST and published as a federal information processing
standard. SHA-1 was a revision to SHA that was published in 1994. The revision
corrected an unpublished flaw in SHA.

SHA-2 A set of hash algorithms intended as an upgrade to SHA-1. It includes SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

Triple-DES Based on the DES standard; the plaintext is, in effect, encrypted three times. Triple-
DES (TDEA), as specified in SP 800-67 TDEA, is recognized as a FIPS approved
algorithm.

TRNG True Random Number Generator. A random number generator using an entropy
source. May have worse distribution characteristics than a PRNG, but its output
cannot be predicted even with knowledge of its previous state.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 8 of 31

2. Introduction
This document is a non-proprietary FIPS 140-2 Security Policy for the IBM Crypto for C
(ICC), version 8.4.1.0 cryptographic module. It contains a specification of the rules
under which the module must operate and describes how this module meets the
requirements as specified in FIPS PUB 140-2 (Federal Information Processing
Standards Publication 140-2) for a security level 1 multi-chip standalone software
module.

The table below shows the security level claimed for each of the eleven sections that
comprise the FIPS 140-2 standard:

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

This document is intended to be part of the package of documents that are submitted
for FIPS validation. It is intended for the following people:

 Developers working on the release

 Product Verification

 Documentation

 Product and Development Managers

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 9 of 31

3. Cryptographic Module Definition
The IBM Crypto for C version 8.4.1.0 (ICC) cryptographic module is implemented in the
C programming language. It is packaged as a dynamic (shared) library usable by
applications written in a language that supports C language linking conventions (e.g., C,
C++, Java, Assembler, etc.) for use on commercially available operating systems. The
ICC allows these applications to access cryptographic functions using an Application
Programming Interface (API) provided through an ICC import library and based on the
API defined by the OpenSSL group.

The software provided to the customer consists of:

 ICC static stub: static library (object code) that is linked into the customer’s
application and communicates with the Crypto Module. It includes the C headers
(source code) containing the API prototypes and other definitions needed for
linking the static library. This static library is not part of the cryptographic module.

 ICC shared library (libicclib84.dll for Windows, libicclib084.so for the rest):
shared library (executable code) containing proprietary code needed to meet
FIPS and functional requirements not provided by OpenSSL (e.g., TRNG,
PRNG, self-tests, startup/shutdown), the OpenSSL cryptographic library and the
zlib used for NRBG entropy estimation. This shared library constitutes the
cryptographic module.

 ICCSIG.txt file: contains the signature file used for integrity tests. This file is not
part of the cryptographic module (that is, it is not within the logical boundary).

There is a different software package for each of the target platforms and also for 32-
bit and 64-bit variants.

The cryptographic module takes advantage of the hardware cryptographic accelerator
features supported by the testing platforms that are part of the operational environment,
as shown in the following table:

Processor Processor Algorithm
Acceleration (PAA)

functions utilized by the
module

Algorithms affected in the
Cryptographic Module

Intel E5 2697v2 AES-NI AES

IBM POWER 8 vcipher, vshasigma AES, SHA-2

SPARC T4 T4 cryptographic instructions SHA-1, SHA-2, AES, RSA, Prime
Curve ECC

zSeries Central Processor Assist for
Cryptographic Functions
(CPACF)

AES, SHA-1, SHA-2

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 10 of 31

The following table presents the variants of the cryptographic module that were tested
and validated with their corresponding hardware and software platforms in the
operational environment:

Hardware platform Operating system ICC variants

32-bits 64-bits

S2600CP, Intel E5
2697v2

Microsoft Windows Server 2008® 64-bit

(with and without hardware support)

IBM 8286-42A
POWER 8

AIX® 7.1

(with and without hardware support)

Netra SPARC T4-1
Server

Solaris 11 64-bit

(with and without hardware support)

S2600CP, Intel E5
2697v2

Red Hat Linux Enterprise Server 7.0 64-bit

(with and without hardware support)

IBM 8247-22L,
POWER 8

Ubuntu 14.04 LE

(with and without hardware support)

IBM 8286-42A
POWER 8

Red Hat Linux Enterprise Server 7.0 BE 64-bit

(with and without hardware support)

IBM zSeries z196
type 2817 model
M32

SLES 11 64-bit

(with and without hardware support)

Table 1 - Target platforms

As outlined in G.5 of the Implementation Guidance for FIPS 140-2 (December 21,
2012 Update), the module maintains its compliance on other operating systems
(Windows, AIX®, Solaris® and Linux), provided:

 The operating system meets the operational environment requirements at the
module’s level of validation, and runs in a single-user mode.

 The module does not require modification to run in the new environment.

CMVP makes no statement as to the correct operation of the module or the security
strengths of the generated keys when so ported if the specific operational environment
is not listed on the validation certificate.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 11 of 31

3.1 Cryptographic Module Boundary

The relationship between ICC and IBM applications is shown in the following diagram.
ICC comprises a static stub linked into the IBM application which binds the API
functions with the shared library containing the cryptographic functionality.

 IBM Application - The IBM application using ICC. This contains the application
code, and the ICC static stub.

 IBM Application code - The program using ICC to perform cryptographic
functions.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 12 of 31

 ICC Static stub - Linked into the calling application to bind the API with the
implementation of the cryptographic services in the shared library.

 ICC shared library - This contains proprietary code needed to meet FIPS
requirements and cryptographic services not provided by OpenSSL, a statically
linked copy of zlib used for TRNG entropy estimation, and a statically linked
copy of the OpenSSL cryptographic library.

The logical boundary of the cryptographic module consists of the ICC shared
library bounded by the dashed red line in the figure. The signature used for the integrity
check of the ICC during its initialization is contained in the file ICCSIG.txt (not shown in
the figure). This file is not considered within the logical boundary.

The physical boundary of the cryptographic module is defined to be the enclosure
of the computer that runs the ICC software.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 13 of 31

4. FIPS 140-2 Specifications

4.1 Ports and Interfaces

The ICC meets the requirements of a multi-chip standalone module. Since the ICC is a
software module, its interfaces are defined in terms of the API that it provides:

 Data Input Interface is defined as the input data parameters of those API functions
that accept, as their arguments, data to be used or processed by the module.

 The return value or arguments of appropriate types, data generated or otherwise
processed by the API functions to the caller constitute Data Output Interface.

 Control Input Interface is comprised by the API function ICC_Init (used to initiate
the context handle of the module), the API function ICC_Attach (used to bind the
entry point of the API functions with their implementation in the shared library), the
API functions used to control the operation of the module, and configuration
parameters and environment variables used to provide alternative values before
the module has been initialized.

 Status Output Interface is defined as the API function ICC_GetStatus that provides
information about the status of the module. The function may be called once the
context of the module has been obtained.

4.2 Roles, Services and Authentication

4.2.1 Roles and Authentication

The ICC assumes the following two roles: Crypto-Officer role and User role (there is
no Maintenance Role). The Operating System (OS) provides functionality to require
any user to be successfully authenticated prior to using any system services. However,
the Module does not support user identification or authentication that would allow for
distinguishing users between the two supported roles. Only a single operator
assuming a particular role may operate the Module at any particular moment in time.
The OS authentication mechanism must be enabled to ensure that none of the
Module’s services are available to users who do not assume an authorized role.

The Module does not identify nor authenticate any user (in any role) that is accessing
the Module. The roles are implicitly assumed by the services that are requested as
follows:

1. Crypto Officer - any entity that can install and initialize the Module.

2. User - any entity that can access services implemented in the Module as listed
in Table 2 and 4.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 14 of 31

4.2.2 Authorized Services

An operator is implicitly assumed in the User or Cryptographic Officer role based
upon the operations chosen. If an operator installs and/or initializes the Module, then
the operator is in the Cryptographic Officer role. Otherwise, the operator is in the User
role.

The following table shows the services and algorithms allowed in FIPS mode of
operation. Requesting these services will implicitly put the module in FIPS mode of
operation.

Service Key size / Modes / Standards CAVP Cryptographic Keys,
CSPs and access

Symmetric Algorithms

AES encryption
& decryption

128, 192,or 256-bit keys

CBC,ECB, CFB1, CFB8, CFB128, OFB
modes

[FIPS197]

Yes AES Symmetric
keys

R/W

Triple-DES
encryption &
decryption

192-bit (of which 168 bits are key bits and the
rest are parity bits) keys

CBC, ECB, CFB64, OFB modes

[SP800-67]

Yes Triple-DES
Symmetric key

R/W

AES_XTS
encryption &
decryption

128 or 256 bit keys

[FIPS197], [SP800-38E]

Yes AES_XTS key

W

Public Key Algorithms

DSA Signature
Verification

L=1024, N=160

L=2048, N=224

L=2048, N=256

L=3072, N=256

[FIPS186-4]

Yes DSA public key R

ECDSA KeyPair
Generation

P: 224, 256, 384, 521

K: 233, 283, 409, 571

B: 233, 283, 409, 571

[FIPS186-4]

Yes ECDSA public and
private key

W

ECDSA PKV P: 192, 224, 256, 384, 521

K: 163, 233, 283, 409, 571

B: 163, 233, 283, 409, 571

[FIPS 186-4], [SP800-56A]

Yes ECDSA key material W

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 15 of 31

Service Key size / Modes / Standards CAVP Cryptographic Keys,
CSPs and access

ECDSA
Signature
Generation

P: 224, 256, 384, 521

K: 233, 283, 409, 571

B: 233, 283, 409, 571

[FIPS186-4], [SP800-56A]

Yes ECDSA private key R

ECDSA
Signature
Verification

P: 192, 224, 256, 384, 521

K: 163, 233, 283, 409, 571

B: 163, 233, 283, 409, 571

[FIPS186-4], [SP800-56A]

Yes ECDSA public key R

RSA Key
Generation

ANSI X9.31

2048 and 3072 bits

[FIPS186-4]

Yes RSA public and
private key

W

RSA Signature
Generation

PKCS#1.5

2048 and 3072 bits

SHA-224,SHA-256,SHA-384,SHA-512

[FIPS186-4]

Yes RSA private key R

RSA Signature
Verification

PKCS#1.5

1024, 2048 and 3072 bits

SHA-1,SHA-224,SHA-256,SHA-384,SHA-512

[FIPS186-4]

Yes RSA public key R

Key Wrapping, Key Agreement and Key Establishment

RSA Key
encryption/
decryption

2048 and 3072 bits

Allowed to be used in FIPS mode

[SP800-56B]

No

RSA public and
private key

R

Diffie-Hellman
(DH) Key
agreement and
establishment

2048 to 4096 bits modulus

Allowed to be used in FIPS mode

[SP800-56A]

No

DH public and
private key

R/W

EC Diffie-
Hellman (ECDH)
Key agreement
and
establishment

P: 224, 256, 384, 521

K: 233, 283, 409, 571

B: 233, 283, 409, 571

[SP800-56A]

Yes

ECDH public and
private key

R/W

Hash Functions

SHA-1 message
digest
generation

Not valid for signature generation

[FIPS180-4]

Yes None N/A

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 16 of 31

Service Key size / Modes / Standards CAVP Cryptographic Keys,
CSPs and access

SHA-224, SHA-
256, SHA-384,
SHA-512
message digest
generation

SHA-2 algorithms

[FIPS180-4]

Yes None N/A

Message Authentication Codes (MACs)

HMAC-SHA
message
authentication
code

HMAC-SHA-1,

HMAC-SHA-224,

HMAC-SHA-256,

HMAC-SHA-384,

HMAC-SHA-512

[FIPS198-1]

at least 112 bits

Yes HMAC key W

AES-CMAC
message
authentication
code

128, 192 or 256 bit keys

[FIPS197]

Yes CMAC-AES keys W

Triple-DES
CMAC message
authentication
code

192-bit keys

[FIPS197]

Yes CMAC-Triple-DES
key

W

AES_CCM 128, 192,or 256 bit keys

[FIPS197], [SP800-38C]

Yes AES_CCM key W

AES_GCM 128, 192,or 256 bit keys

[FIPS197], [SP800-38D] (compliant to section
8.2.1 for IV generation)

Yes AES_GCM key W

Random Number Generation

DRBG 800-90A HMAC_DRBG (SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512)

HASH_DRBG (SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512)

CTR_DRBG (AES-128-ECB, AES-192-ECB,
AES-256-ECB)

[SP800-90A]

Yes Seed W

Other services

Get Status N/A N/A ICC_GetStatus()
API function

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 17 of 31

Service Key size / Modes / Standards CAVP Cryptographic Keys,
CSPs and access

On demand self-
tests

N/A N/A ICC_SelfTest() API
function

Zeroization N/A N/A All CSPs

Table 2 - Services and Access in FIPS mode

Algorithms with a "Yes" in the CAVP column indicate that the algorithm has been
validated through the CAVP. The table below shows the corresponding certificate
numbers:

Algorithm CAVP certificate numbers

AES

#3226, #3227, #3228, #3229, #3230, #3231, #3232, #3233, #3235, #3236, #3237,
#3238, #3239, #3240, #3241, #3242, #3243, #3244, #3245, #3246, #3247, #3248,
#3249, #3250, #3251, #3252

Triple-DES #1832, #1833, #1834, #1835, #1836, #1837, #1838, #1839, #1840, #1841, #1842,
#1843, #1844

DSA #919, #920, #921, #922, #923, #924, #925, #926, #927, #928, #929, #930, #931

RSA #1640, #1641, #1642, #1643, #1645, #1646, #1647, #1648, #1649, #1650, #1651,
#1652, #1653, #1654, #1655

ECDSA #596, #597, #598, #599, #600, #601, #602, #603, #604, #605, #606, #607, #608,
#609, #610

SHA #2666, #2667, #2668, #2669, #2670, #2671, #2672, #2673, #2675, #2676, #2677,
#2678, #2679, #2680, #2681, #2682, #2683, #2684, #2685, #2686, #2687, #2688

DRBG #687, #688, #689, #690, #691, #692, #693, #694, #696, #697, #698, #699, #700,
#701, #702, #703, #704, #705, #706, #707, #708, #709, #710, #711, #712, #713

HMAC #2030, #2031, #2032, #2033, #2034, #2035, #2036, #2037, #2038, #2039, #2040,
#2041, #2042, #2043, #2044, #2045, #2046, #2047, #2048, #2049, #2050, #2051

EC Diffie-Hellman
(ECDH) Primitive

CVL

#441, #442, #443, #444, #445, #446, #447, #448, #449, #450, #451, #452, #453

Table 3 - CAVP certificate numbers

The table below shows the non-approved algorithms; requesting these services will
implicitly put the module in non-FIPS mode of operation.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 18 of 31

Algorithm Notes

DSA Key/Parameter Generation L=512, N=160;

L=1024, N=160;

L=2048, N=224;

L=2048, N=256;

L=3072, N=256

(Algorithm was not tested under the CAVP)

DSA Signature Generation

L=512, N=160;

L=1024, N=160;

L=2048, N=224;

L=2048, N=256;

L=3072, N=256

(Algorithm was not tested under the CAVP)

DSA Signature Verification L=512, N=160

(Algorithm was not tested under the CAVP)

ECDSA KeyPair Generation P-192, K-163, B-163

(Key sizes do not meet [SP800-131A])

ECDSA Signature Generation P-192, K-163, B-163

(Key sizes do not meet [SP800-131A])

RSA Key Generation Key size with 1024 bits, greater or equal than 4096 bits

(Key sizes do not meet [SP800-131A])

RSA Signature Generation Key size with 1024 bits, greater or equal than 4096 bits

(Key sizes do not meet [SP800-131A])

RSA Key Wrapping Key size with 1024 bits, greater or equal than 4096 bits

(Key sizes do not meet [SP800-131A])

Diffie-Hellman (DH) 1024 bit modulus

(Key sizes do not meet [SP800-131A])

EC Diffie-Hellman (ECDH) P-192, K-163, B-163

(Key sizes do not meet [SP800-131A])

DES encryption/decryption Non-approved algorithm

CAST encryption/decryption Non-approved algorithm

Camellia encryption/decryption Non-approved algorithm

Blowfish encryption/decryption Non-approved algorithm

RC4 encryption/decryption Non-approved algorithm

RC2 encryption/decryption Non-approved algorithm

MD2 encryption/decryption Non-approved algorithm

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 19 of 31

Algorithm Notes

MD4 encryption/decryption Non-approved algorithm

MD5 encryption/decryption Non-approved algorithm

Password Based Encryption Non-approved algorithm

HMAC-MD5 message
authentication code

Non-approved algorithm

MDC2 message digest Non-approved algorithm

RIPEMD message digest Non-approved algorithm

Key Derivation Function

SP800-108 KDF

Algorithm was not tested under the CAVP

TRNG Supplies seed to the DRBG.

Table 4- non-approved algorithms in FIPS mode

4.2.3 Access Rights within Services

An operator performing a service within any role can read/write cryptographic keys and
critical security parameters (CSP) only through the invocation of a service by use of the
Cryptographic Module API. Each service within each role can only access the
cryptographic keys and CSPs that the service’s API defines. The following cases exist:

 A cryptographic key or CSP is provided to an API as an input parameter; this
indicates read/write access to that cryptographic key or CSP.

 A cryptographic key or CSP is returned from an API as a return value; this indicates
read access to that cryptographic key or CSP.

The details of the access to cryptographic keys and CSPs for each service are
indicated in the rightmost column of Table 2. The indicated access rights apply to both
the User role and Cryptographic Officer role who invokes services.

4.2.4 Operational Rules and Assumptions

The following operational rules must be followed by any user of the cryptographic
module:

1. The Module is to be used by a single human operator at a time and may not be
actively shared among operators at any period of time.

2. The OS authentication mechanism must be enabled in order to prevent
unauthorized users from being able to access system services.

3. All keys entered into the module must be verified as being legitimate and
belonging to the correct entity by software running on the same machine as
the module.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20 of 31

4. In case the module’s power is lost and then restored, the keys used for
the AES GCM encryption/decryption shall be re-distributed. The GCM is
used in the context of TLS version 1.2 or higher. The mechanism for IV
generation is compliant with RFC 5288.

5. The AES algorithm in XTS mode can be only used for the cryptographic
protection of data on storage devices, as specified in [SP800-38E].

6. Since the ICC runs on a general-purpose processor all main data paths of the
computer system will contain cryptographic material. The following items
need to apply relative to where the ICC will execute:

 Virtual (paged) memory must be secure (local disk or a secure network)

 The system bus must be secure.

 The disk drive that ICC is installed on must be in a secure environment.

7. The above rules must be upheld at all times in order to ensure continued
system security and FIPS 140-2 mode compliance after initial setup of the
validated configuration. If the module is removed from the above environment, it
is assumed not to be operational in the validated mode until such time as it has
been returned to the above environment and re-initialized by the user to the
validated condition.

NOTE: It is the responsibility of the Crypto-Officer to configure the operating system to
operate securely and ensure that only a single operator may operate the Module at any
particular moment in time.

The services provided by the Module to a User are effectively delivered through the
use of appropriate API calls. In this respect, the same set of services is available to
both the User and the Crypto-Officer.

When a client process attempts to load an instance of the Module into memory, the
Module runs an integrity test and a number of cryptographic functionality self-tests. If
all the tests pass successfully, the Module makes a transition to the "Operational"
state, where the API calls can be used by the client to obtain desired cryptographic
services. Otherwise, the Module enters to “Error” state and returns an error to the
calling application. When the Module is in “Error” state, no services are available, and
all of data input and data output except the status information are inhibited.

4.3 Operational Environment

Along with the conditions stated in section 4.2.4 (“Operational Rules and
Assumptions”), the criteria below must be followed in order to achieve and maintain a
FIPS 140-2 mode of operation:

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 21 of 31

4.3.1 Assumptions

None.

4.3.2 Installation and Initialization

The following steps must be performed to install and initialize the module for operating
in a FIPS 140-2 compliant manner:

1. The operating system must be configured to operate securely and to prevent
remote login. This is accomplished by disabling all services (within the
Administrative tools) that provide remote access (e.g., – ftp, telnet, ssh, and
server) and disallowing multiple operators to log in at once.

2. The operating system must be configured to allow only a single user. This is
accomplished by disabling all user accounts except the administrator. This
can be done through the Computer Management window of the operating
system.

3. Before the module initialization, the user has a choice to configure the
TRNG alternatives and the DRBG algorithm to use. This can be set using
global setting ICC_TRNG’ and ‘ICC_RANDOM_GENERATOR’ respectively.

4. The module is initialized automatically and power-up self-tests (POST) are
executed by the module when the shared library is loaded in the calling
application process space. The calling application must include the following
calling sequence to have access to the cryptographic services::

 ICC_Init() creates the crypto module context.

 ICC_Attach() binds the cryptographic functions with the API entry
points.

4.4 Cryptographic Key Management

4.4.1 Implemented Algorithms

The IBM Crypto for C (ICC) version 8.4.1.0 supports the algorithms (and modes, as
applicable) listed in section 4.2.2.

4.4.2 Key Generation

Key generation has dependency on random number generator DRBG 800-90A, which
is detailed below. DRBG 800-90A is used to generate RSA/DSA/ECDSA/DH/ECDH
key pairs as well as AES keys and Triple-DES keys. Key sizes for AES keys can be
128-bit, 192-bit or 256-bit. Key size for Triple-DES key is 192 bits long of which 168
bits are key bits and the rest are the parity bits.

In FIPS mode, RSA key generation is carried out in accordance with the algorithms
described in ANSI X9.31.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 22 of 31

Also in FIPS mode, ECDSA key generation is carried out in accordance with the
algorithms described in FIPS 186-2 and ANSI X9.62, respectively.

The ICC provides X9.31 and PKCS#1 compatible algorithms for processing signatures
(creating and verifying) the function of which is available as specified in the API's in
this document. These algorithms are also available for encryption and decryption
where it is used as PKCS#1 compatible.

In addition, there is a set of lower level interfaces for encryption and decryption where
the algorithm can be used as PKCS#1 compatible but it also allows other types of
padding operations to be used. See RSA encryption functions for the definition of the
functions and for the list of padding modes.

DRBG 800-90A Random Number Generator

The DRBG service is compliant with SP800-90A. The default algorithm is Hash_DRBG
using SHA-256, but another algorithm from the Hash_DRBG, HMAC_DRBG and
CTR_DRBG algorithms (see Table 2 for the complete list) can be also configured (see
section 4.3.2). .

ICC allows for multiple entropy sources to instantiate and reseed the DRBG's, software
derived, and where available, hardware RBG's. Entropy processing is as in draft
SP800-90B, SP800-90C. The DRBG uses a True Random Number Generator (TRNG)
to establish the initial state of the DRBG and to reseed the engine after a certain
amount of time.

The TRNG's all extract noise from some source assumed to provide entropy, test to
guarantee that entropy level of this noise source is at least 0.5 bits/bit, then HMAC
compress and retest to guarantee that the output is better than 0.5 bits/bit. The
minimum guaranteed entropy of the raw entropy source (i.e. 1 bit from a timer sample)
is guaranteed to be least 0.5 bits per bit before and after HMAC compression.

In addition to the default TRNG, ICC offers multiple TRNG designs all providing the
same 0.5 bits/bit entropy guarantee.

The DRBG seed and nonce are of the same length (440 bits each for HMAC-SHA256)
and obtained from separate and independent calls to the TRNG. Since the DRBG is
internalized by 440 bit of entropy data ((440+440)*0.5 = 440), the DRBG supports 256
bits of effective security strength in its output.

4.4.3 Key Establishment

The ICC uses in FIPS mode of operation the following key establishment
methodologies:

 Diffie-Hellman (DH) with 2048-4096 bit keys providing 112-150 bits of security
strength.

 Elliptic Curve Diffie-Hellman (ECDH) with curves (P-224, P-256, P-384, P-521,
K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571) providing 112-256

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 23 of 31

bits of security strength.

 RSA Encrypt/Decrypt for Key Wrapping with 2048 or 3072 bit keys providing 112
or 128 bits of security strength, respectively.

4.4.4 Key Entry and Output

The ICC module does not support manual key entry or intermediate key generation key
output. In addition, the ICC module does not produce key output in plaintext format
outside its physical boundary.

4.4.5 Key Storage

The module does not provide any long-term key storage and no keys are ever stored
on the hard disk.

The only exception is the RSA public key used for integrity test, which is stored in the
crypto module and relies on the operating system for protection.

4.4.6 Key Zeroization

ICC modifies the default OpenSSL scrubbing code to zero objects instead of filling with
pseudo random data and adds explicit testing for zeroization.

Key zeroization services are performed via the following API functions:

Key Zeroization Services API functions

Clean up memory locations used by
low-level arithmetic functions

ICC_BN_clear_free()

ICC_BN_CTX_free()

Clean up symmetric cipher context ICC_EVP_CIPHER_CTX_free()

Clean up RSA context ICC_RSA_free()

Clean up DSA context ICC_DSA_free()

Clean up Diffie-Hellman context ICC_DH_free()

Clean up asymmetric key contexts ICC_EVP_PKEY_free()

Clean up HMAC context ICC_HMAC_CTX_free()

Clean up ECDSA and ECDH contexts ICC_EC_KEY_free()

Clean up CMAC context ICC_CMAC_CTX_free()

Clean up AES-GCM context ICC_AES_GCM_CTX_free()

Clean up RNG context ICC_RNG_CTX_free()

Table 5 - Key Zeroization

It is the calling application’s responsibility to appropriately utilize the provided
zeroization methods (i.e. API functions) as listed in the table above to clean up

file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%23eaef1b0d85a45ad477f594f83cfe7beb
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%238a381cb01df1f5e7c61dbc3f0964e224
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%23ddade425bc97dd5c96142b63badd7db6
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%236e45d7a69c0ccd49614d4778f3bfea97
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%23abf4b56874dd56932779c6eca9b85f59
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%235e0cf9533f4eaf92ac4e17819dc42301
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%237209213a1296479ac60c67f3a86f3275
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%23471936f30d3b4d97e4d9db79fffb55ab
file:///C:/Z:IBMGSKitFIPS43-129TID%2011-0002developerdesign_assuranceiccDoc4ATSEC1.2icchtmldetailedhtmlicc__a_8h.html%230a5c5ea68b97780cfd603b77a621d205

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 24 of 31

involved cryptographic contexts before they are released.

4.5 Self-Tests

The ICC implements a number of self-tests to check proper functioning of the module.
This includes power-up self-tests (which are also callable on demand) and conditional
self-tests.

Self-tests are automatically invoked by the module during power-up from the default
entry poing (DEP) of the shared library. The self-test can also be initiated by calling
the function ICC_SelfTest, which returns the operational status of the module (after the
self-tests are run) and an error code with description of the error (if applicable).

When the module is performing self-tests, no API functions are available and no data
output is possible until the self-tests are successfully completed. After the power-up
tests are successfully completed, the module turns to FIPS mode of operation.
Requesting any services from Table 4 will implicitly put the module in the non-FIPS
mode of operation.

4.5.1 Show Status

The status of the ICC module can be obtained with the following API function:

 ICC_GetStatus: shows the state of the ICC module

The function can be called anytime after the context of the module is obtained with the
ICC_Init API function.

4.5.2 Startup Tests

The module performs self-tests automatically when it is loaded. Self-tests can
also be requested on demand through the API function ICC_SelfTest.

Whenever the startup tests are initiated the module performs the following; if any
of these tests fail, the module enters the error state:

 Integrity Test: the ICC uses an integrity test which uses a 2048-bit CAVS-
validated RSA public key (PKCS#1.5) and SHA-256 hashing. This RSA public
key is stored inside the shared library and relies on the operating system for
protection.

 Cryptographic algorithm tests:

Known Answer Tests for encryption and decryption are performed for the
following FIPS approved and allowed algorithms:

- Triple-DES – CBC
- AES 256 – CBC
- AES_GCM
- AES_CCM

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 25 of 31

- AES_XTS

One way known answer tests are performed for the following FIPS
approved algorithms:

- SHA-1
- SHA-224
- SHA-256
- SHA-384
- SHA-512
- SHA-1 HMAC
- SHA-224 HMAC
- SHA-256 HMAC
- SHA-384 HMAC
- SHA-512 HMAC
- CMAC-AES-256-CBC

Known Answer Tests for signature generation and verification are
performed on the following algorithms:

- RSA signature generation with 2048 modulus

- RSA signature verification with 2048 modulus

- DSA signature verification with 2048 modulus

- ECDSA pairwise consistency test with P-384

- ECDSA signature verification with P-384

- ECDSA signature verification with B-233

- ECDSA signature verification with K-233

Other Known Answer Tests:

- DRBG 800-90A with Hash,HMAC,CTR

- RSA encryption with 2048 modulus

- RSA decryption with 2048 modulus

- ECC primitive Z computation KAT

4.5.3 Conditional Tests

Pairwise consistency tests for public and private key generation: the
consistency of the keys is tested by the calculation and verification of a digital
signature. If the digital signature cannot be verified, the test fails. Pairwise
consistency tests are performed on the following algorithms:

- ECDSA

- RSA

Continuous RNG tests: the module implements Continuous RNG tests as
follows:

DRBG 800-90A

- The DRBG 800-90A generates a minimum of 8 bytes per request.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 26 of 31

If less than 8 bytes are requested, the rest of the bytes is
discarded and the next request will generate new random data.

- The first 8 bytes of every request is compared with the last 8 bytes
requested, if the bytes match an error is generated.

- For the first request made to any instantiation of a DRBG 800-90A,
two internal 8 byte cycles are performed.

- The DRBG 800-90A performs known answer tests when first
instantiated and health checks at intervals as specified in the
standard.

True Random Number Generator (TRNG)

- A non-deterministic RNG (NDRNG) is used to seed the RNG.
Every time a new seed or n bytes is required (either to initialize
the RNG, reseed the RNG periodically or reseed the RNG by
user’s demand), the cryptographic module performs a comparison
between the SHA-256 message digest using the new seed and
the previously calculated digest. If the values match, the TRNG
generates a new stream of bytes until the continuous RNG test
passes.

4.5.4 Severe Errors

When severe errors are detected (e.g., self-test failure or a conditional test failure) then
all security related functions shall be disabled and no partial data is exposed through
the data output interface. The only way to transition from the error state to an
operational state is to reinitialize the cryptographic module (from an uninitialized state).
The error state can be retrieved via the status interface (see section 4.5.1).

4.6 Mitigation of Other Attacks

The cryptographic module is not designed to mitigate any specific attacks.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 27 of 31

5. API Functions

The module API functions are fully described in the IBM Crypto for C (ICC) Design
Document. The following list enumerates the API functions supported.

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 28 of 31

 ICC_EC_GROUP_set_asn1_flag

 ICC_EVP_CIPHER_CTX_flags

 ICC_EVP_CIPHER_CTX_set_flags

 ICC_GetStatus

 ICC_Init

 ICC_Attach

 ICC_Cleanup

 ICC_SelfTest

 ICC_GenerateRandomSeed

 ICC_OBJ_nid2sn

 ICC_EVP_get_digestbyname

 ICC_EVP_get_cipherbyname

 ICC_EVP_MD_CTX_new

 ICC_EVP_MD_CTX_free

 ICC_EVP_MD_CTX_init

 ICC_EVP_MD_CTX_cleanup

 ICC_EVP_MD_CTX_copy

 ICC_EVP_MD_type

 ICC_EVP_MD_size

 ICC_EVP_MD_block_size

 ICC_EVP_MD_CTX_md

 ICC_EVP_Digestinit

 ICC_EVP_DigestUpdate

 ICC_EVP_DigestFinal

 ICC_EVP_CIPHER_CTX_new

 ICC_EVP_CIPHER_CTX_free

 ICC_EVP_CIPHER_CTX_init

 ICC_EVP_CIPHER_CTX_cleanup

 ICC_EVP_CIPHER_CTX_set_key_length

 ICC_EVP_CIPHER_CTX_set_padding

 ICC_EVP_CIPHER_block_size

 ICC_EVP_CIPHER_key_length

 ICC_EVP_CIPHER_iv_length

 ICC_EVP_CIPHER_type

 ICC_EVP_CIPHER_CTX_cipher

 ICC_DES_random_key

 ICC_DES_set_odd_parity

 ICC_EVP_EncryptInit

 ICC_EVP_EncryptUpdate

 ICC_EVP_EncryptFinal

 ICC_EVP_DecryptInit

 ICC_EVP_DecryptUpdate

 ICC_EVP_DecryptFinal

 ICC_EVP_OpenInit

 ICC_EVP_OpenUpdate

 ICC_EVP_OpenFinal

 ICC_EVP_SealInit

 ICC_EVP_SealUpdate

 ICC_EVP_SealFinal

 ICC_EVP_SignInit

 ICC_EVP_SignUpdate

 ICC_EVP_SignFinal

 ICC_EVP_VerifyInit

 ICC_EVP_VerifyUpdate

 ICC_EVP_VerifyFinal

 ICC_EVP_ENCODE_CTX_new

 ICC_EVP_ENCODE_CTX_free

 ICC_EVP_EncodeInit

 ICC_EVP_EncodeUpdate

 ICC_EVP_EncodeFinal

 ICC_EVP_DecodeInit

 ICC_EVP_DecodeUpdate

 ICC_EVP_DecodeFinal

 ICC_RAND_bytes

 ICC_RAND_seed

 ICC_EVP_PKEY_decrypt

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 29 of 31

 ICC_EVP_PKEY_encrypt

 ICC_EVP_PKEY_new

 ICC_EVP_PKEY_free

 ICC_EVP_PKEY_size

 ICC_RSA_new

 ICC_RSA_generate_key

 ICC_RSA_check_key

 ICC_EVP_PKEY_set1_RSA

 ICC_EVP_PKEY_get1_RSA

 ICC_RSA_free

 ICC_RSA_private_encrypt

 ICC_RSA_private_decrypt

 ICC_RSA_public_encrypt

 ICC_RSA_public_decrypt

 ICC_i2d_RSAPrivateKey

 ICC_i2d_RSAPublicKey

 ICC_d2i_PrivateKey

 ICC_d2i_PublicKey

 ICC_EVP_PKEY_set1_DH

 ICC_EVP_PKEY_get1_DH

 ICC_DH_new

 ICC_DH_new_generate_key

 ICC_DH_ check

 ICC_DH_free

 ICC_DH_size

 ICC_DH_compute_key

 ICC_DH_generate_parameters

 ICC_DH_get_PublicKey

 ICC_id2_DHparams

 ICC_d2i_DHparams

 ICC_EVP_PKEY_set1_DSA

 ICC_EVP_PKEY_get1_DSA

 ICC_DSA_dup_DH

 ICC_DSA_sign

 ICC_DSA_verify

 ICC_DSA_size

 ICC_DSA_new

 ICC_DSA_free

 ICC_DSA_generate_key

 ICC_DSA_generate_parameters

 ICC_i2d_DSAPrivateKey

 ICC_d2i_DSAPrivateKey

 ICC_i2d_DSAPublicKey

 ICC_d2i_DSAPublicKey

 ICC_i2d_DSAparams

 ICC_d2i_DSAparams

 ICC_ERR_get_error

 ICC_ERR_peek_error

 ICC_ERR_peek_last_error

 ICC_ERR_error_string

 ICC_ERR_error_string_n

 ICC_ERR_lib_error_string

 ICC_ERR_func_error_string

 ICC_ERR_reason_error_string

 ICC_ERR_clear_error

 ICC_ERR_remove_state

 ICC_BN_bn2bin

 ICC_BN_bin2bn

 ICC_BN_num_bits

 ICC_BN_num_bytes

 ICC_BN_new

 ICC_BN_clear_free

 ICC_RSA_blinding_off

 ICC_EVP_CIPHER_CTX_ctrl

 ICC_RSA_size

 ICC_BN_CTX_new

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 30 of 31

 ICC_BN_CTX_free

 ICC_BN_mod_exp

 ICC_HMAC_CTX_new

 ICC_HMAC_CTX_free

 ICC_HMAC_Init

 ICC_HMAC_Update

 ICC_HMAC_Final

 ICC_BN_div

 ICC_d2i_DSA_PUBKEY

 ICC_i2d_DSA_PUBKEY

 ICC_ECDSA_SIG_new

 ICC_ECDSA_SIG_free

 ICC_i2d_ECDSA_SIG

 ICC_d2i_ECDSA_SIG

 ICC_ECDSA_sign

 ICC_ECDSA_verify

 ICC_ECDSA_size

 ICC_EVP_PKEY_set1_EC_KEY

 ICC_EVP_PKEY_get1_EC_KEY

 ICC_EC_KEY_new_by_curve_name

 ICC_EC_KEY_new

 ICC_EC_KEY_free

 ICC_EC_KEY_generate_key

 ICC_EC_KEY_get0_group

 ICC_EC_METHOD_get_field_type

 ICC_EC_GROUP_method_of

 ICC_EC_POINT_new

 ICC_EC_POINT_free

 ICC_EC_POINT_get_affine_coordinates_GFp

 ICC_EC_POINT_set_affine_coordinates_GFp

 ICC_EC_POINT_get_affine_coordinates_GF2m

 ICC_EC_POINT_set_affine_coordinates_GF2m

 ICC_EC_KEY_get0_public_key

 ICC_EC_KEY_set_public_key

 ICC_EC_KEY_get0_private_key

 ICC_EC_KEY_set_private_key

 ICC_ECDH_compute_key

 ICC_d2i_ECPrivateKey

 ICC_i2d_ECPrivateKey

 ICC_d2i_ECParameters

 ICC_i2d_ECParameters

 ICC_EC_POINT_is_on_curve

 ICC_EC_POINT_is_at_infinity

 ICC_EC_KEY_check_key

 ICC_EC_POINT_mul

 ICC_EC_GROUP_get_order

 ICC_EC_POINT_dup

 ICC_PKCS5_pbe_set

 ICC_PKCS5_pbe2_set

 ICC_PKCS12_pbe_crypt

 ICC_X509_ALGOR_free

 ICC_OBJ_txt2nid

 ICC_EVP_EncodeBlock

 ICC_EVP_DecodeBlock

 ICC_CMAC_CTX_new

 ICC_CMAC_CTX_free

 ICC_CMAC_Init

 ICC_CMAC_Update

 ICC_CMAC_Final

 ICC_AES_GCM_CTX_new

 ICC_AES_GCM_CTX_free

 ICC_AES_GCM_CTX_ctrl

 ICC_AES_GCM_Init

 ICC_AES_GCM_EncryptUpdate

 ICC_AES_GCM_DecryptUpdate

 ICC_AES_GCM_EncryptFinal

IBM® Crypto for C, version 8.4.1.0

FIPS 140-2 Non-Proprietary Security Policy, version 1.9

July 16, 2015

© 2015 IBM Corp. / atsec information security corp.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 31 of 31

 ICC_AES_GCM_DecryptFinal

 ICC_AES_GCM_GenerateIV

 ICC_AES_GCM_GenerateIV_NIST

 ICC_GHASH

 ICC_AES_CCM_Encrypt

 ICC_AES_CCM_Decrypt

 ICC_get_RNGbyname

 ICC_RNG_CTX_new

 ICC_RNG_CTX_free

 ICC_RNG_CTX_Init

 ICC_RNG_Generate

 ICC_RNG_ReSeed

 ICC_RNG_CTX_ctrl

 ICC_RSA_sign

 ICC_RSA_verify

 ICC_EC_GROUP_get_degree

 ICC_EC_GROUP_get_curve_GFp

 ICC_EC_GROUP_get_curve_GF2m

 ICC_EC_GROUP_get0_generator

 ICC_i2o_ECPublicKey

 ICC_o2i_ECPublicKey

 ICC_BN_cmp

 ICC_BN_add

 ICC_BN_sub

 ICC_BN_mod_mul

 ICC_EVP_PKCS82PKEY

 ICC_EVP_PKEY2PKCS8

 ICC_PKCS8_PRIV_KEY_INFO_free

 ICC_d2i_PKCS8_PRIV_KEY_INFO

 ICC_i2d_PKCS8_PRIV_KEY_INFO

 ICC_d2i_ECPKParameters

 ICC_i2d_ECPKParameters

 ICC_EC_GROUP_free

 ICC_EC_KEY_set_group

 ICC_EC_KEY_dup

 ICC_SP800_108_get_KDFbyname

 ICC_SP800_108_KDF

 ICC_DSA_SIG_new

 ICC_DSA_SIG_free

 ICC_d2i_DSA_SIG

 ICC_i2d_DSA_SIG

 ICC_RSA_X931_derive_ex

 ICC_Init

 ICC_lib_init

 ICC_lib_cleanup

 ICC_MemCheck_start

 ICC_MemCheck_stop

 ICC_EC_GROUP_set_asn1_flag

 ICC_OPENSSL_cpuid_override

 ICC_OPENSSL_cpuid

 ICC_EVP_CIPHER_CTX_flags

 ICC_EVP_CIPHER_CTX_set_flags

 ICC_OPENSSL_HW_rand

 ICC_OPENSSL_rdtscX

 ICC_EVP_CIPHER_CTX_copy

 ICC_BN_is_prime_fasttest_ex

