Ciena Corporation

Ciena 6500 Packet-Optical Platform 4x10G

Hardware Version: 1.0 Firmware Version: 1.10

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: 3
Document Version: 1.1

Prepared for:

Ciena Corporation

7035 Ridge Road Hanover, Maryland 21076 United States of America

Phone: +1 (410) 694-5700

Contact: http://www.ciena.com/about/contact-

us/?navi=top http://www.ciena.com Prepared by:

Corsec Security, Inc.

13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, Virginia 22033 United States of America

Phone: +1 (703) 267-6050

Email: info@corsec.com
http://www.corsec.com

Table of Contents

I IN	TRODUCTION	,
I IIN .		
1.1		
1.3		
2 CI	ENA 6500 PACKET-OPTICAL PLATFORM 4X10G	
2.1	-	
2.2		
2.3		
2.4		
	2.4.1 Authorized Roles	
	2.4.2 Services	
	2.4.3 Authentication Mechanisms	
2.5	Physical Security	11
2.6		
2.7		
2.8	B EMI/EMC	17
2.9	SELF-TESTS	17
	2.9.1 Power–Up Self–Tests	17
	2.9.2 Conditional Self-Tests	17
	2.9.3 Critical Functions Tests	17
	2.9.4 Self-Test Failure Handling	18
2.1	0 MITIGATION OF OTHER ATTACKS	18
3 SE	CURE OPERATION	10
3. 3. I		
3.1		
3.2		
	3.2.2 Physical Inspection	
	3.2.3 Monitoring Status	
2.3		
3.3	User Guidance	2 1
4 A	CRONYMS	22
Tah	le of Figures	
iab	ic of Figures	
FIGURE	I – The Module on Circuit Pack for Secure Communication	4
	T — THE MODULE ON CIRCUIT PACK FOR SECURE COMMUNICATION	
	3 – MEZZANINE CONNECTOR	
FIGURE	4 – Circuit Pack with Module Installed (Tamper-Evident Screws and Labels Shown)	19
<u>List</u>	of Tables	
TABLE I	- SECURITY LEVEL PER FIPS 140-2 SECTION	5
TABLE 2	- FIPS-APPROVED ALGORITHM IMPLEMENTATIONS	6
	- LOGICAL INTERFACE MAPPING	
	– AUTHORIZED OPERATOR SERVICES	
	- Additional Services	
	– AUTHENTICATION MECHANISM	
	– CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS	
	- ACRONYMS	

Introduction

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy (SP) for the Ciena 6500 Packet-Optical Platform 4x10G (Hardware Version: 1.0, Firmware Version: 1.10) from Ciena Corporation. This Security Policy describes how the Ciena 6500 Packet-Optical Platform 4x10G meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 3 FIPS 140-2 validation of the module. The Ciena 6500 Packet-Optical Platform 4x10G is referred to in this document as the cryptographic module or the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Ciena website (http://www.ciena.com/) contains information on the full line of products from Ciena Corporation.
- The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact information for individuals to answer technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Ciena. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Ciena and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Ciena.

Ciena 6500 Packet-Optical Platform 4x10G

2.I Overview

The module is the Ciena 6500 Packet-Optical Platform 4x10G, which is a daughter/mezzanine card designed for use on the 4x10G Encryption OTR¹ circuit pack of the 6500 series Packet-Optical Platform. The module, also known as the Krypto Daughter Card, provides fully secure cryptographic functionality (including key generation and management, physical security, and identification and authentication of the module's operators) on the 6500 Packet-Optical Platform.

Architected for network modernization, Ciena's 6500 Packet-Optical Platform converges comprehensive Ethernet, TDM², and WDM³ capabilities in one platform for delivery of emerging and existing services, from the access edge to the backbone core. By using the 4x10G Encryption OTR circuit pack, customers can deploy solutions for 10Gbps⁴ client services with high capacity and offer differentiated service options including several path/equipment protection options.

The 4x10G Encryption OTR circuit pack is a single-slot card that supports wire-speed point-to-point encryption and decryption (see Figure 1 below). The card contains eight $10G^5$ ports; four SFP^6+/SFP -based client ports (ports 1, 2, 3, and 4) and four XFP^7 -based line ports (ports 5, 6, 7, and 8), with full 10Gbps throughput for all client ports.

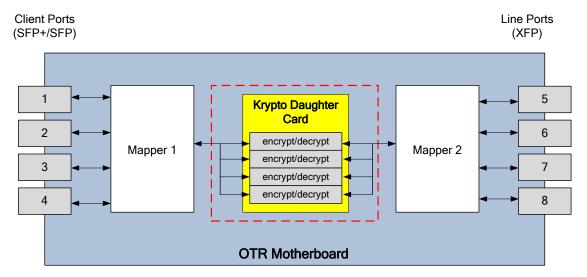


Figure I - The Module on Circuit Pack for Secure Communication

The circuit pack is composed of two primary components: the OTR motherboard and the module (shown as 'Krypto Daughter Card' above). The OTR motherboard contains two traffic-mapping devices, where 'Mapper 1' connects to the four client ports and 'Mapper 2' connects to the four line ports. The Krypto Daughter Card connects to the OTR motherboard via a mezzanine connector, and provides the bulk encryption and decryption capabilities.

Ciena 6500 Packet-Optical Platform 4x10G

¹ OTR – Optical Transponder

² TDM – Time-Division Multiplexing

³ WDM – Wavelength-Division Multiplexing

⁴ Gbps – Gigabits Per Second

⁵ G – Gigabit

⁶ SFP – Small Form Factor Pluggable

⁷ XFP – (10 Gigabit) Small Form Factor Pluggable

This validation focuses on the Ciena 6500 Packet-Optical Platform 4x10G daughter card depicted in Figure 1 with red-colored dotted line. The module is housed in an aluminum enclosure with a heat sink lid secured with tamper-resistant screws. Any attempts to remove the lid will provide tamper evidence via two tamper evident labels and tamper-resistant screws, and additionally the module will immediately zeroize all keys and CSPs if the lid is removed.

Figure 2 below shows the top and bottom view of the module.

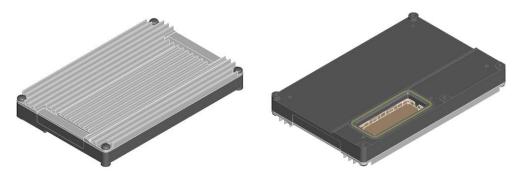


Figure 2 - Top and Bottom View of the Module

The module is validated at the FIPS 140-2 section levels as shown in Table 1 below.

Section **Section Title** Level 3 Ι Cryptographic Module Specification 2 3 Cryptographic Module Ports and Interfaces 3 Roles, Services, and Authentication 3 4 Finite State Model 3 5 3 **Physical Security** N/A⁸ 6 Operational Environment 7 Cryptographic Key Management 3 8 EMI/EMC9 3 9 Self-tests 3 10 Design Assurance 3 П N/A Mitigation of Other Attacks

Table I - Security Level Per FIPS 140-2 Section

2.2 Module Specification

The Ciena 6500 Packet-Optical Platform 4x10G is a hardware cryptographic module with a multiple-chip embedded embodiment. The module consists of firmware and hardware components enclosed in an aluminum metal enclosure. The main hardware components consist of integrated circuits, processors, Random Access Memories (SDRAM and BBRAM), flash memories (NOR and EEPROM), FPGAs¹⁰, and

⁸ N/A – Not Applicable

⁹ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

¹⁰ FPGA – Field Programmable Gate Array

the enclosure. The overall security level of the module is 3. The cryptographic boundary of the module surrounds the module enclosure, which includes all the hardware components, firmware, and the metal case.

The Ciena 6500 Packet-Optical Platform 4x10G implements the FIPS-Approved algorithms as listed in Table 2 below.

Table 2 - FIPS-Approved Algorithm Implementations

Al-anidhua	Certifica	te Number
Algorithm	FPGA	Firmware
AES ¹¹ – CTR ¹² and ECB ¹³ modes with 256-bit keys	2964	-
AES – CBC ¹⁴ mode with 128, 192, and 256-bit keys	-	2963
Triple-DES – CBC (3-key)	-	1759
SHA ¹⁵ -1, SHA-256, and SHA-512	-	2493
HMAC ¹⁶ with SHA-1, SHA-256, and SHA-512	-	1880
NIST ¹⁷ SP ¹⁸ 800-90A CTR_DRBG ¹⁹	-	562
RSA ²⁰ Key generation (2048-bit) (FIPS 186-4)	-	1559
RSA (PKCS#1 v1.5) Signature generation/verification (2048-bit)	-	1559
ECDSA Signature Verification	-	543
Section 4.2.2 TLSv1.2 (SP 800-135)	-	357
Section 4.1.1 IKEv1 (SP 800-135)	-	357

Additionally, the module implements the following algorithms that are allowed for use in a FIPS-Approved mode of operation:

- True Random Number Generator (TRNG)
- Diffie-Hellman²¹ (2048-bit)

2.3 Module Interfaces

The module's design separates the physical ports into four logically distinct and isolated categories. They are:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

¹¹ AES – Advanced Encryption Standard

¹² CTR – Counter

¹³ ECB – Electronic Codebook

¹⁴ CBC – Cipher Block Chaining

¹⁵ SHA – Secure Hash Algorithm

¹⁶ HMAC – (Keyed) Hash Message Authentication Code

¹⁷ NIST – National Institute of Standards and Technology

¹⁸ SP – Special Publication

¹⁹ DRBG – Deterministic Random Bit Generator

²⁰ RSA – Rivest Shamir Adleman

²¹ Caveat: Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption strength). Please see NIST Special Publication 800-131A for further details.

Data input/output consists of the data utilizing the services provided by the module. This data enters and exits the module through the mezzanine connector of the module. Control input consists of configuration or administration data entered into the module through the mezzanine connector of the module remotely using the MyCryptoTool interface or locally using the Transport Control Subsystem (TCS) interface. Control input that enters the module through MyCryptoTool is secured with an HTTPS/TLS session. Status output consists of the signals output via the mezzanine connector that are then translated into alarms, LED²² signals, and log information by the circuit pack.

The physical ports and interfaces of the Ciena 6500 Packet-Optical Platform 4x10G are depicted below in Figure 3.

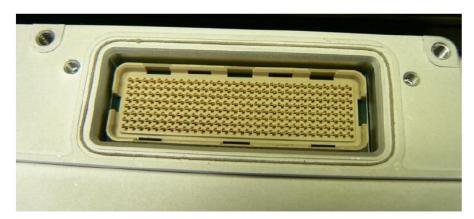


Figure 3 - Mezzanine Connector

Table 3 lists the physical ports and interfaces available in the module, and provides the mapping from the physical ports and interfaces to logical interfaces as defined by FIPS 140-2.

FIPS 140-2 Logical Interface	Module Interface
Data Input Interface	Mezzanine Connector
Data Output Interface	Mezzanine Connector
Control Input Interface	Mezzanine Connector, tamper switch
Status Output Interface	Mezzanine Connector
Power Interface	Mezzanine Connector

Table 3 - Logical Interface Mapping

2.4 Roles, Services, and Authentication

The following sections described the authorized roles supported by the module, the services provided for those roles, and the authentication mechanisms employed.

2.4.1 Authorized Roles

The module supports two authorized roles: a Crypto Officer (CO) role and a User role. The Crypto Officer and the User roles are responsible for module initialization and module configuration, including security parameters, key management, status activities, and audit review. All CO and User services (except the

Ciena 6500 Packet-Optical Platform 4x10G

²² LED – Light Emitting Diode

firmware upgrade service via the TCS interface) are provided through the MyCryptoTool. MyCryptoTool interface is secured via an HTTPS/TLS session. The TCS interface is available to the CO only and is used for the firmware load.

Operators must assume an authorized role to access module services. Operators explicitly assume both the CO and User role by a mutually authenticated HTTPS/TLS session over MyCryptoTool using digital certificates. Operators explicitly assume the CO role over the TCS interface using a username and password credential.

2.4.2 Services

The services that require operators to assume an authorized role are listed in Table 4 below. Please note that the keys and Critical Security Parameters (CSPs) listed in Table 4 use the following indicators to show the type of access required:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

Table 4 - Authorized Operator Services

Cambia	Operator		D	Laurent	Outroot	CCD LT (A	
Service	СО	User	Description	Input	Output	CSP and Type of Access	
Initialize the module	~	✓	Initialize the module	Command	Status output	None	
Configure the module	✓	~	Define and configure enterprise network interfaces and settings, identity information, and load certificates	Command and parameter	Command response	RSA Public Key – R/X MKEK ²³ – R/X KEK ²⁴ – R/X	
Monitor alarms	~	✓	Monitor specific alarms for diagnostic purposes	Command	Status output	None	
Manage data encryption certificate	✓	✓	Manage data encryption certificate enrollment, signing CA certificate information, trusted CA certificates, import CA certificate and CRL, and clear CSPs	Command and parameters	Command response	DEK ²⁵ – R/W BKEK ²⁶ – R/X MKEK – R/X KEK – R/X RSA Public Key – R/X	
Manage Web Access	✓	✓	Manage web access certificate and CRL loading	Command and parameters	Command response	Module RSA Public Key – R/X	
Show FIPS status and statistics	✓	✓	Show the system status, FIPS-Approved mode, configuration settings, and active alarms.	Command	Status output	None	

²³ MKEK – Master Key Encryption Key

²⁴ KEK – Key Encryption Key

²⁵ DEK – Data Encryption Key

²⁶ BKEK – Base Key Encryption Key

	Operator		.			CCD and Town of Assess	
Service	СО	User	Description	Input	Output	CSP and Type of Access	
View system logs	√	√	View system status messages in historical and provisioning logs.	Command	Status output	None	
Zeroize using MyCryptoTool	✓	✓	Zeroize certificates and KEK	Command	Command response	Certificates – W KEK – W	
Employ encryption / decryption service	✓	√	Encrypt or decrypt user data, keys, or management traffic	Command and parameters	Command response	BKEK – R/X MKEK – X DEK – X TLS Session Key – X	
Message Authentication service	✓	✓	Authenticate management traffic	Command and parameters	Command response	TLS Authentication Key – X	
Generate asymmetric key pair (data path)	✓	√	Generate the asymmetric key pair (RSA)	Command and parameters	Key pair	Module RSA Private Key – W Module RSA Public Key – W	
Generate asymmetric key pair (web access)	✓	√	Generate the asymmetric key pair (RSA)	Command and parameters	Key pair	Module RSA Private Key – W Module RSA Public Key – W	
Generate signature (CSR)	~	✓	Generate a signature for the supplied message using specified key and RSA algorithm	Command and parameters	Status, signature	Module RSA Private Key – R/X	
Verify signature	✓	✓	Verify the signature on the supplied message using the specified key and RSA algorithm	Command and parameters	Status	Module RSA Public Key – R/X	
Perform device diagnostics	~	✓	Test the module during operation, and monitor the module	Command and parameters	Command response and status via log and LEDs	None	
Upgrade firmware	✓		Upgrade the module firmware using ECDSA signature verification	Command and parameters	Command response and status output	ECDSA Public Key – R/X	

In FIPS-Approved mode, the module provides a limited number of services for which the operator is not required to assume an authorized role (see Table 5). None of the services listed in the table disclose cryptographic keys and CSPs or otherwise affect the security of the module.

Table 5 - Additional Services

Service	Description	Input	Output	CSP and Type of Access
Perform operator authentication	Authenticates operators to the module	Command	Status output	CO RSA Public key - R/X User RSA Public key - R/X CA RSA Public Key - R/X Preshared Authentication String - R/X
Perform peer authentication	Authenticates peer devices to the module	Command	Status output	Peer RSA Public key – R/X
Zeroize using TCS	Zeroize certificates and KEK	Command	Command response	Certificates – W KEK – W
Perform on- demand self-tests	Performs Power-up Self-Tests on demand via module restart	Use power button on the host system, Command	Status output	All plaintext keys and CSPs –
Show system status and statistics using TCS	Show the system status, system identification, and configuration settings of the module	Command	Status output	None
Carrier Provisioning using TCS	Configure and manage the carrier provisioning	Command	Response and status output	None
Process data traffic	affic Encrypt and decrypt data traffic		Status output	DEK – W/X Entropy Input string – R DRBG seed – W/R

2.4.3 Authentication Mechanisms

The module supports identity-based authentication. Module operators must authenticate to the module before being allowed access to services that require the assumption of an authorized role. The module authenticates an operator using digital certificates containing public key of the operator. The authentication is achieved via the process of initiating a TLS session and using digital certificates towards mutual authentication. The process of mutual authentication provides assurance to the module that it is communicating with an authenticated operator. The strength calculation below provides minimum strength based on the public key size in the digital certificates.

The module employs the authentication methods described in Table 6 to authenticate Crypto Officers and Users.

Table 6 - Authentication Mechanism

Authentication Type	Strength
Public Key Certificates	The module supports RSA digital certificate authentication of Crypto Officers and Users during MyCryptoTool access. Using conservative estimates and equating a 2048-bit RSA key to a 112-bit symmetric key, the probability for a random attempt to succeed is: $1:2^{112} \text{ or } 1:5.19 \times 10^{33}$ which is less than 1:1,000,000 as required by FIPS 140-2
	The fastest network connection supported by the modules over Management interfaces is 5 Mbps. Hence, at most $(5 \times 10^6 \times 60 = 3 \times 10^8 =) 300,000,000$ bits of data can be transmitted in one minute. Therefore, the probability that a random attempt will succeed or a false acceptance will occur in one minute is: 1: $(2^{112}$ possible keys / $((3 \times 10^8$ bits per minute) / 112 bits per key)) 1: $(2^{112}$ possible keys / 2,678,572 keys per minute) 1: 19.38×10^{26} which is less than 1:100,000 within one minute as required by FIPS 140-2.
Preshared Key	The module supports the use of Preshared authentication string for the TCS interface accessing the module on behalf of the Crypto Officer. An HMAC-SHA-256 operation with a 512-bit key is performed on the Preshared authentication string. The 256-bit output value of the HMAC-SHA-256 value will have an equivalent symmetric key strength of 128 bits, Using conservative estimates, the probability for a random attempt to succeed is: $1:2^{128} \ or \ 1: 3.40 \times 10^{38}$ which is less than 1:1,000,000 as required by FIPS 140-2
	The module implements a 200 ms delay between authentication attempts yielding a rate of five (5) attempts per second, and therefore 300 attempts per minute. Given that an attacker will have at most, 300 attempts in one minute, and there are 1: 3.40×10^{38} possibilities, the probability that a random attempt will succeed or a false acceptance will occur in one minute is: 1: 3.40×10^{38} / 300 attempts per minute 1: 1.13×10^{36} which is less than 1:100,000 within one minute as required by FIPS 140-2.

The module also performs authentication of Peers using public key certificates but the module does not provide any authenticated services to the Peer.

2.5 Physical Security

All CSPs are stored and protected within the module's hard aluminum enclosure. The enclosure is completely opaque within the visible spectrum. The enclosure is secured using tamper-resistant screws, tamper-evident labels, and tamper switches with tamper-response circuitry. The enclosure has a total of two tamper-evident labels applied at the factory; the tamper-evident label locations can be seen below in Figure 4. Any attempts to defeat or bypass the tamper-response mechanism on the enclosure to access the module's internal components would result in zeroization of all the plaintext keys and CSPs.

Once the module is commissioned and the tamper-response circuitry is activated, it continuously monitors the enclosure via the tamper switches. On removal of the cover, detection of unauthorized access, or tamper event, the tamper-response circuitry inside the enclosure immediately erases all the plaintext keys and CSPs stored within the module.

Further, the enclosure of the module has been tested for hardness at a temperature of 74°F; no assurance is provided for Level 3 hardness conformance at any other temperature.

2.6 Operational Environment

The operational environment of the module does not provide access to a general-purpose operating system (OS) to the module operator. The module's Xilinx XC7Z045 processor runs an embedded Linux Kernel in a non-modifiable operational environment. The operating system is not modifiable by the operator, and only the module's signed image can be executed. All firmware downloads are digitally signed, and a conditional self-test (ECDSA signature verification) is performed during each download. If the signature test fails, the new firmware is ignored and the current firmware remains loaded. Only FIPS validated firmware may be loaded into the module to maintain the module's validation.

2.7 Cryptographic Key Management

The module uses the FIPS-Approved SP 800-90A CTR_DRBG to generate cryptographic keys. The DRBG is seeded from seeding material provided by a hardware-based True Random Number Generator (TRNG), which provides an entropy source and whitening circuitry to supply a uniform distributed unbiased random sequence of bits to the DRBG.

Additionally, the module uses RSA (as specified in ANSI X9.31 standard) for generation of RSA key pairs in the FIPS-Approved mode of operation.

The module supports the CSPs described in Table 7.

May 8, 2015 Security Policy, Version 1.1

Table 7 - Cryptographic Keys, Cryptographic Key Components, and CSPs

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization ²⁷	Use
Base Key Encryption Key (BKEK)	AES 256-bit key	Preloaded at the factory	Never exits the module	Stored in plaintext in battery backed (BB) RAM ²⁸ in the module	Power is removed from BB RAM	Used for encrypting/decrypting MKEK and ECDSA public keys stored in nonvolatile memory of the module
Master Key Encryption Key (MKEK)	AES 256-bit key	Preloaded at the factory	Never exits the module	Encrypted with BKEK and stored in the non-volatile memory	Power is removed from BB RAM	Used for encrypting/decrypting authentication (RSA key and entity certificates) and access control of security materials
Key Encryption Key (KEK)	AES 256-bit key	Generated internally	Never exits the module	Encrypted with MKEK and stored in non-volatile memory	Power is removed from BB RAM	Used for encrypting/decrypting private key of an entity key pair
Data Encryption Key (DEK)	AES 256-bit key	Generated internally	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Used for encrypting or decrypting payload data between an authorized external entity and the module
Initialization Vector (IV)	l 28-bit value	Generated internally	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Used for encrypting or decrypting payload data between an authorized external entity and the module
Preshared Authentication String	256-bit value	Hardcoded at the factory	Never exits the module	Stored plaintext in non-volatile memory	N/A	Used for authenticating a CO for the Firmware Load service

 $^{^{27}}$ Zeroization – Upon the detection of a tamper event, the module zeroizes all keys and CSPs listed in Table 7. 28 RAM – Random Access Memory

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization ²⁷	Use
IKE DH ²⁹ Private Key	224-bit DH key	Generated internally during IKE negotiation	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Exchanging shared secret to derive session keys during IKE
IKE DH Public Key	2048-bit DH key	The module's public key is generated internally during IKE negotiation; public key of a peer enters the module in plaintext	The module's public key exits the module in plaintext; public key of the a peer never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Exchanging shared secret to derive session keys during IKE
IKE Session Encryption Key	AES 256-bit key	Generated internally during DH key negotiation	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Used for encrypting/decrypting IKE messages
IKE Session Authentication Key	HMAC SHA- 256	Generated internally during DH key negotiation	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Used for authenticating IKE messages

²⁹ DH – Diffie-Hellman

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization ²⁷	Use
TLS Session Key	AES 256-bit or Triple-DES 168-bit key	Generated internally during session negotiation	Never exits the module	Plaintext in RAM	Session is terminated, reboot, when power is turned off, or MyCryptoTool erasure	Used for encrypting/decrypting TLS messages
TLS Authentication Key	HMAC SHA- 256	Generated internally during session negotiation	Never exits the module	Plaintext in RAM	Session is terminated, reboot, When power is turned off, or MyCryptoTool erasure	Used for authenticating TLS messages
Peer RSA Public Key	2048-bit key	Enters the module in encrypted form	Never exits the module	Stored in plaintext in RAM	MyCryptoTool erasure	Used for authenticating the peers
CA RSA Public Key	2048 or 4096-bit key	Preloaded, or can enter the module in encrypted form	Never exits the module	Stored plaintext in non-volatile memory	MyCryptoTool erasure	Used for authenticating the operator
CO RSA Public Key	2048-bit key	Preloaded, or can enter the module in encrypted form	Never exits the module	Stored in plaintext in RAM	MyCryptoTool erasure	Used for authenticating the operator
User RSA Public Key	2048-bit key	Preloaded, or can enter the module in encrypted form	Never exits the module	Stored in plaintext in RAM	MyCryptoTool erasure	Used for authenticating the operator
Module RSA Private Key	2048-bit key	Generated internally using approved DRBG; imported in encrypted form	Never exits the module	Stored encrypted with KEK in non-volatile memory	MyCryptoTool erasure	Used for signature generation
Module RSA Public Key	2048-bit key	Generated internally using approved DRBG; imported in encrypted form	Exits the module encrypted	Stored plaintext in non-volatile memory	MyCryptoTool erasure	Used for mutual authentication

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization ²⁷	Use
DRBG seed	384-bit value	Generated internally using entropy input	Never exits the module	Plaintext in RAM	When power is turned off or MyCryptoTool erasure	Random number generation
Entropy Input string	512-bit value	Generated internally using TRNG	Never exits the module	Plaintext in RAM	When power is turned off or MyCryptoTool erasure	Random number generation

2.8 EMI/EMC

The module was tested and found to be conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (i.e., for home use).

2.9 Self-Tests

The module performs various Self-Tests (Power-Up Self-Tests, Conditional Self-Tests, and Critical Self-Test) on the cryptographic algorithm implementations to verify their functionality and correctness.

2.9.1 Power-Up Self-Tests

The Ciena 6500 Packet-Optical Platform 4x10G module performs the following self-tests at power-up to verify the integrity of the firmware images and the correct operation of the FIPS-Approved algorithms implemented in the module:

- Power up integrity test using ECDSA signature verification of the Krypto Application load.
- Power up integrity test using ECDSA signature verification of the Krypto FPGA load.
- Known Answer Tests (KATs) for all implementations of the following FIPS-Approved algorithms:
 - o AES Encryption (firmware)
 - AES Encryption (hardware)
 - o AES Decryption (firmware)
 - AES Decryption (hardware)
 - Triple-DES Encryption (firmware)
 - o Triple-DES Decryption (firmware)
 - o SHA-1 (firmware)
 - o SHA-256 (firmware)
 - o SHA-512 (firmware)
 - o HMAC SHA-1 (firmware)
 - o HMAC SHA-256 (firmware)
 - o HMAC SHA-512 (firmware)
 - o SP 800-90A CTR_DRBG (firmware)
 - RSA 186-4 Signature Generation (firmware)
 - o RSA 186-4 Signature Verification (firmware)
 - o ECDSA 186-4 Signature Verification (firmware)

The power-up self-tests can be performed at any time by power-cycling the module or via TCS command.

2.9.2 Conditional Self-Tests

The Ciena 6500 Packet-Optical Platform 4x10G implements the following conditional self-tests:

- Continuous Random Number Generator Test (CRNGT) for the SP 800-90A CTR_DRBG
- CRNGT for the TRNG
- Pair-wise Consistency Test for RSA
- Firmware Load Test using ECDSA signature verification

2.9.3 Critical Functions Tests

The Ciena 6500 Packet-Optical Platform 4x10G performs the following critical functions self-tests:

- SP 800-90 CTR_DRBG Instantiate Health Test
- SP 800-90 CTR_DRBG Generate Health Test

Page **17** of 24

- SP 800-90 CTR DRBG Reseed Health Test
- SP 800-90 CTR_DRBG Uninstantiate Health Test

2.9.4 Self-Test Failure Handling

Upon the failure of any power-up self-test, conditional self-test (except firmware load test), or critical function test, the module goes into "Critical Error" state and it disables all access to cryptographic functions and CSPs. On failure of the firmware load test, the module enters "Soft Error" state. The soft error state is a non-persistent state wherein, the module resolves the error and continues to provide services. The module resolves the error by rejecting the loading of the new firmware, and continuing to provide services. All data outputs via data output interfaces are inhibited upon any self-test failure. A permanent error status will be relayed via the status output interface, which then is interpreted either in the illumination of an LED or recorded as an entry to the system log file or recorded as an alarm code in alarm history log file.

In addition, the module replies to all cryptographic service requests with a pre-defined error message to indicate the error status. The management interface does not respond to any commands until the module is operational. The module requires rebooting or power-cycling to come out of the error state and resume normal operations.

2.10 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 3 requirements for this validation.

The Ciena 6500 Packet-Optical Platform 4x10G meets overall Level 3 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-Approved mode of operation.

3.1 Initial Setup

The Ciena 6500 Packet-Optical Platform 4x10G module does not require any installation activities as it is delivered to the customer pre-installed on the circuit pack from the factory. Either the Crypto Officer or the User can perform the Secure Operation responsibilities and tasks listed here; however, this Security Policy places this responsibility solely on the Crypto Officer. On receipt of the circuit pack, the Crypto Officer must check that the tamper evident labels are in place as well as the battery in the battery holder. After the removing the circuit pack from the shipping package and prior to use, the Crypto Officer must perform a physical inspection of the unit for signs of damage. If damage is found, the Crypto Officer shall immediately contact Ciena.

The module is shipped from the factory with the required physical security mechanisms (tamper-evident labels, tamper-resistant screws, and tamper switches with tamper-response circuitry) installed. The Crypto Officer should check the package for any irregular tears or opening. If tampering is suspected, the Crypto Officer should immediately contact Ciena. The module is contained in a strong, hard metal enclosure, and is protected by tamper-evident labels, tamper-resistant screws, tamper switches, and tamper-response circuitry. See Figure 4 below for tamper-evident label and screw locations.

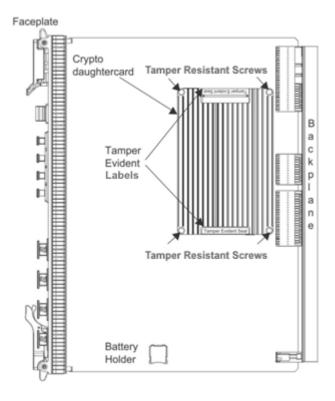


Figure 4 - Circuit Pack with Module Installed (Tamper-Evident Screws and Labels Shown)

The module is received in an uninitialized state and is not considered a Validated Cryptographic Module until the Crypto Officer has performed the necessary configuration steps. The Crypto Officer must

configure the data path parameters and the security parameters for the data path. First, the Crypto Officer must install the web server certificate and one or more CA Certificates in order for the module to be able to verify the submitted CO and User RSA Public keys during TLS mutual authentication for the MyCryptoTool interface. Please refer to Chapter 4, "Provisioning Certificate Management using MyCryptoTool" in Ciena's *User's Guide and Technical Practices* document for more information. Once the module's web server certificate has been configured, the web server software will restart for the certificate change to take effect and begin enforcing TLS mutual authentication. When the web server has completed the restart process, the module is considered initialized and only operates in a FIPS-Approved mode of operation. At any point of time, the "FIPS mode" status of the module can be viewed using the MyCryptoTool interface.

The module comes in an uninitialized state from the factory and requires the Crypto Officer to perform the above configuration before it can be considered a Validated Cryptographic Module. Once configured, the module will remain and operate in FIPS-Approved mode of operation unless decommissioned by the CO or the physical security has been breached.

3.2 Secure Management

The Crypto Officer is responsible for maintaining and monitoring the status of the module to ensure that it is running in its FIPS-Approved mode. For additional details regarding the management of the module, please refer to Ciena's *User's Guide and Technical Practices* document.

3.2.1 Management

When configured according to the Crypto Officer guidance in this Security Policy, the module only runs in an Approved mode of operation. The Crypto Officer is able to monitor and configure the module via MyCryptoTool. Detailed instructions for monitoring and troubleshooting the module are provided in the Ciena's *User's Guide and Technical Practices* document.

3.2.2 Physical Inspection

As the labels are applied at the factory, the CO shall inspect the module to ensure that the labels are applied correctly. The CO shall periodically inspect the module for evidence of tampering at 1-year intervals. The CO shall visually inspect the tamper-evident seals for tears, rips, dissolved adhesive, and other signs of tampering. The CO shall also inspect the module's enclosure for any signs of damage. If evidence of tampering is found during periodic inspection, the Crypto Officer should send the module back to Ciena Corporation for repair or replacement.

3.2.3 Monitoring Status

The Crypto Officer should monitor the module's status regularly. The operational status of the module can be viewed using MyCryptoTool. At any point of time, the "FIPS mode" status of the module can be viewed by accessing the "Encryption Details", "Data Encryption Certificate Management", "Web Access Certificate Management", "Active Alarms", or "Historical Logs" web page of the MyCryptoTool interface. The line at the top of these pages indicates "FIPS mode" of the module.

3.2.4 Zeroization

All ephemeral keys used by the module are zeroized on reboot, session termination, factory reset, or tamper event. The "Clear CSP (Critical Security Parameter)" button on MyCryptoTool also allows an operator to clear certificates and the KEK. CSPs reside in SDRAM and Flash memory.

The BKEK is stored in battery-backed RAM. Other keys and CSPs are stored in the volatile and non-volatile memories of the module. The BKEK can be zeroized by removing power to the BB RAM or in

response to tamper events. The zeroization of the BKEK renders other keys and CSPs, including MKEK and KEK stored in non-volatile memory of the module useless, thereby, effectively zeroizing them. The zeroization of KEK renders asymmetric private keys inaccessible, thereby, rendering them unusable. The only public key that is stored in a file in the flash file system used for verifying the integrity of the image files cannot be zeroized. Resetting the module to factory state (software-controlled erasure) also erases all the volatile and non-volatile keys and CSPs from the module. Additionally, all keys and CSPs are also zeroized or become inaccessible when the module detects a tamper event.

3.3 User Guidance

The User shall follow all the instructions and guidelines provided for the Crypto Officer in Section 3 of this Security Policy document in order to ensure the secure operation of the module.

Acronyms

Table 8 below describes the acronyms used in this document.

Table 8 - Acronyms

Acronym	Definition				
AES	Advanced Encryption Standard				
ANSI	American National Standards Institute				
ВВ	Battery Backed				
BKEK	Base Key Encryption Key				
CA	Certificate Authority				
СВС	Cipher Block Chaining				
CMVP	Cryptographic Module Validation Program				
СО	Crypto Officer				
CRNGT	Continuous Random Number Generator Test				
CSE	Communications Security Establishment				
CSP	Critical Security Parameter				
CSR	Certificate Signing Request				
CTR	Counter				
DCC	Data Communication Channel				
DEK	Data Encryption Key				
DH	Diffie-Hellman				
DRBG	Deterministic Random Bit Generator				
EMC	Electromagnetic Compatibility				
EMI	Electromagnetic Interference				
FIPS	Federal Information Processing Standard				
FPGA	Field Programmable Gate Array				
Gb/s	Gigabit Per Second				
GbE	Gigabit Ethernet				
GCC	General Communication Channel				
GUI	Graphical User Interface				
HMAC	(Keyed-) Hash Message Authentication Code				
HTTPS	Hypertext Transfer Protocol Secure				
IKE	Internet Key Exchange				
IV	Initialization Vector				
KAT	Known Answer Test				

May 8, 2015 Security Policy, Version 1.1

Acronym	Definition
KEK	Key Encrypting Key
LED	Light Emitting Diode
MKEK	Master Key Encrypting Key
N/A	Not Applicable
NIST	National Institute of Standards and Technology
os	Operating System
OTN	Optical Transport Network
OTR	Optical Transponder
PKCS	Public-Key Cryptography Standards
PRNG	Pseudo Random Number Generator
RAM	Random Access Memory
RNG	Random Number Generator
ROM	Read Only Memory
RSA	Rivest, Shamir, and Adleman
SDRAM	Synchronous Dynamic Random Access Memory
SHA	Secure Hash Algorithm
SP	Special Publication
TLS	Transport Layer Security
TRNG	True Random Number Generator

13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, Virginia 22033 United States of America

> Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>