

FIPS 140-2 Non-Proprietary Security Policy

Symantec DLP Cryptographic Module Version 1.0

Document Version 0.6

January 14, 2015

Prepared For:

Symantec Corporation 350 Ellis Street Mountain View, CA 9404 www.symantec.com Prepared By:

SafeLogic Inc. 530 Lytton Avenue, Suite 200 Palo Alto, CA 94301 www.safelogic.com

Abstract

This document provides a non-proprietary FIPS 140-2 Security Policy for the DLP Cryptographic Module Version 1.0.

Table of Contents

1	Intr	odu	tion	5
	1.1	Abc	out FIPS 140	5
	1.2	Abc	out this Document	5
	1.3	Exte	ernal Resources	5
	1.4	Not	ices	5
	1.5	Acr	onyms	5
2	Syn	nante	ec DLP Cryptographic Module Version 1.0	7
	2.1	Cry	ptographic Module Specification	7
	2.1	1.1	Validation Level Detail	7
	2.1	1.2	Approved Cryptographic Algorithms	
	2.1	1.3	Non-Approved Cryptographic Algorithms	8
	2.2	Мо	dule Interfaces	8
	2.3	Role	es, Services, and Authentication	10
	2.3	3.1	Operator Services and Descriptions	10
	2.3	3.2	Operator Authentication	11
	2.4	Phy	sical Security	11
	2.5	Оре	erational Environment	11
	2.6	Cry	otographic Key Management	
	2.6	5.1	Random Number Generation	14
	2.6	5.2	Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function	14
	2.6	5.3	Key/CSP Storage	14
	2.6	5.4	Key/CSP Zeroization	
	2.7	Self	-Tests	14
	2.7	7.1	Power-On Self-Tests	14
	2.7	7.2	Conditional Self-Tests	15
	2.7	7.3	Cryptographic Function	16
	2.8	Mit	igation of Other Attacks	16
3	Gui		e and Secure Operation	
	3.1	Cry	oto Officer Guidance	17
	3.1	1.1	Software Installation	17
	3.1	1.2	Enabling FIPS Module within the DLP Application	17
	3.1	1.3	Additional Rules of Operation	17
	3.2	Use	r Guidance	18
	3 :	2 1	General Guidance	18

List of Tables

Table 1 – Acronyms and Terms	6
Table 2 – Validation Level by DTR Section	7
Table 3 – FIPS-Approved Algorithm Certificates	8
Table 4 – Logical Interface / Physical Interface Mapping	10
Table 5 – Role Descriptions	10
Table 6 – Module Services and Descriptions	11
Table 7 – Module Keys/CSPs	13
Table 8 – Power-On Self-Tests	15
Table 9 – Conditional Self-Tests	15
List of Figures	
Figure 1 – Module Boundary and Interfaces Diagram	9

1 Introduction

1.1 About FIPS 140

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) runs the FIPS 140 program. The CMVP accredits independent testing labs to perform FIPS 140 testing; the CMVP also validates test reports for modules meeting FIPS 140 validation. *Validated* is the term given to a product that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for the DLP Cryptographic Module Version 1.0 from Symantec provides an overview of the product and a high-level description of how it meets the security requirements of FIPS 140-2. This document contains details on the module's cryptographic keys and critical security parameters. This Security Policy concludes with instructions and guidance on running the module in a FIPS 140-2 mode of operation.

The Symantec DLP Cryptographic Module Version 1.0 may also be referred to as the "module" in this document.

1.3 External Resources

The Symantec website (http://www.symantec.com) contains information on Symantec products. The Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/) contains links to the FIPS 140-2 certificate and Symantec contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

1.5 Acronyms

The following table defines acronyms found in this document:

Acronym	Term			
AES	Advanced Encryption Standard			
ANSI	American National Standards Institute			
API	Application Programming Interface			
CMVP	Cryptographic Module Validation Program			
CO	Crypto Officer			
CSE	Communications Security Establishment			
CSP	Critical Security Parameter			
DES	Data Encryption Standard			
DH	Diffie-Hellman			
DLP	Data Loss Prevention			
DSA	Digital Signature Algorithm			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
FCC	Federal Communications Commission			
FIPS	Federal Information Processing Standard			
GPC	General Purpose Computer			
GUI	Graphical User Interface			
HMAC	(Keyed-) Hash Message Authentication Code			
KAT	Known Answer Test			
MAC	Message Authentication Code			
MD	Message Digest			
NIST	National Institute of Standards and Technology			
OS	Operating System			
PKCS	Public-Key Cryptography Standards			
PRNG	Pseudo Random Number Generator			
PSS	Probabilistic Signature Scheme			
RNG	Random Number Generator			
RSA	Rivest, Shamir, and Adleman			
SHA	Secure Hash Algorithm			
SSL	Secure Sockets Layer			
Triple-DES	Triple Data Encryption Algorithm			
TLS	Transport Layer Security			
USB	Universal Serial Bus			

Table 1 – Acronyms and Terms

2 Symantec DLP Cryptographic Module Version 1.0

2.1 Cryptographic Module Specification

The module, the Symantec DLP Cryptographic Module Version 1.0, is a software shared library that provides cryptographic services required by the Symantec Data Loss Prevention solution. The Module's logical cryptographic boundary is the shared library files and their integrity check HMAC files, which are as follows:

Windows: fipscanister.lib

Mac: fipscanister.dylib

The module is a multi-chip standalone embodiment installed on a General Purpose Computer.

All operations of the module occur via calls from the Symantec applications and their respective internal daemons/processes. As such there are no untrusted services calling the services of the module, as APIs are not exposed.

2.1.1 Validation Level Detail

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
Electromagnetic Interference / Electromagnetic Compatibility	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Table 2 - Validation Level by DTR Section

2.1.2 Approved Cryptographic Algorithms

The module's cryptographic algorithm implementations have received the following certificate numbers from the Cryptographic Algorithm Validation Program:

Algorithm	CAVP Certificate
AES	2397
HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512	1490
DSA	749
RSA (X9.31, PKCS #1.5, PSS)	1240
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	2060
Triple-DES	1495
RNG (ANSI X9.31)	1188
SP800-90 DRBG	318
ECDSA	395

Table 3 – FIPS-Approved Algorithm Certificates

2.1.3 Non-Approved Cryptographic Algorithms

The module supports the following non-FIPS 140-2 approved but allowed algorithms:

- Diffie-Hellman, key sizes 2048-10000 bits (key agreement; key establishment methodology provides between 112 and 219 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- RSA encrypt/decrypt with key sizes 2048-15360 (key wrapping; key establishment methodology provides between 112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- MD5 (for use in TLS only)
- NDRNG

The module includes the following non-Approved algorithms that shall not be used in FIPS mode:

- Diffie-Hellman when using key sizes less than 2048 bits
- 1024-bit DSA PQG, key, and signature generation
- ECDSA, DSA and RSA signature generation with SHA-1
- 1024 and 1536-bit RSA key and signature generation
- Public Key Generation using curves P-192, B-163, and K-163

2.2 Module Interfaces

The figure below shows the module's physical and logical block diagram:

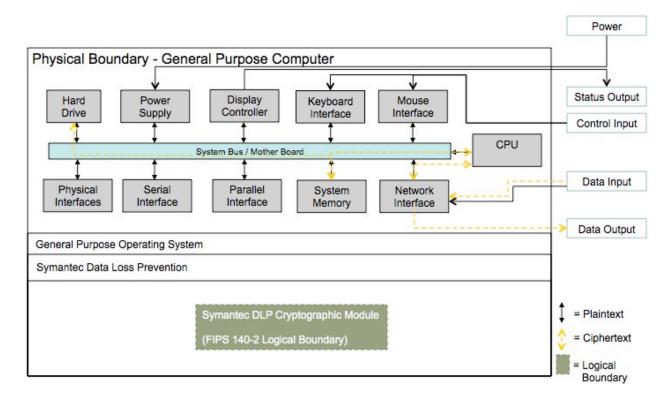


Figure 1 - Module Boundary and Interfaces Diagram

The interfaces (ports) for the physical boundary include the computer keyboard port, CDROM drive, floppy disk, mouse, network port, parallel port, USB ports, monitor port and power plug. When operational, the module does not transmit any information across these physical ports because it is a software cryptographic module. Therefore, the module's interfaces are purely logical and are provided through the Application Programming Interface (API) that a calling daemon can operate. The logical interfaces expose services that applications directly call, and the API provides functions that may be called by a referencing application (see Section 2.3 – Roles, Services, and Authentication for the list of available functions). The module distinguishes between logical interfaces by logically separating the information according to the defined API.

The API provided by the module is mapped onto the FIPS 140- 2 logical interfaces: data input, data output, control input, and status output. Each of the FIPS 140- 2 logical interfaces relates to the module's callable interface, as follows:

FIPS 140-2 Interface	Logical Interface	Module Physical Interface	
Data Input	Input parameters of API function	Network Interface	
	calls		
Data Output	Output parameters of API function	Network Interface	
	calls		
Control Input	API function calls	Keyboard Interface, Mouse	
		Interface	

Status Output	For FIPS mode, function calls	Display Controller
	returning status information and	
	return codes provided by API	
	function calls.	
Power	None	Power Supply

Table 4 - Logical Interface / Physical Interface Mapping

As shown in Figure 1 – Module Boundary and Interfaces Diagram and Table 6 – Module Services and Descriptions, the output data path is provided by the data interfaces and is logically disconnected from processes performing key generation or zeroization. No key information will be output through the data output interface when the module zeroizes keys.

2.3 Roles, Services, and Authentication

The module supports a Crypto Officer and a User role. The module does not support a Maintenance role. The supported role definitions are as follows:

Role	Services		
User	Encryption, Decryption (symmetric and public/private), Random Numbers		
Crypto Officer	Configuration of FIPS 140-2 validated mode, Encryption, Decryption (symmetric		
	and public/private), Random Numbers		

Table 5 - Role Descriptions

The User and Crypto-Officer roles are implicitly assumed by the entity accessing services implemented by the Module.

2.3.1 Operator Services and Descriptions

The module supports services that are available to users in the various roles. All of the services are described in detail in the module's user documentation. The following table shows the services available to the various roles and the access to cryptographic keys and CSPs resulting from services:

Service	Roles	CSP / Algorithm	Permission
Symmetric encryption/de cryption	User, Crypto Officer	AES Key, Triple-DES Key	User and CO: read/write/execute
Key transport	User, Crypto Officer	RSA Private Key	User and CO: read/write/execute
Digital signature	User, Crypto Officer	RSA Private Key, DSA Private Key, ECDSA Private Key	User and CO: read/write/execute
Symmetric key generation	User, Crypto Officer	AES Key, Triple-DES Key	User and CO: read/write/execute
TLS	User, Crypto Officer	AES Key, Triple-DES Key, RSA Public Key, RSA Private Key, HMAC Key	User and CO: read/write/execute

TLS Key	User, Crypto	AES Key, Triple-DES Key, RSA Public Key, RSA	User and CO:
Agreement	Officer	Private Key, HMAC Key, DH Private Key, DH	read/write/execute
		Public Key, ECDSA Private Key	
Asymmetric	User, Crypto	RSA Private Key, DSA Private Key, ECDSA	User and CO:
key	Officer	Private Key	read/write/execute
generation			
Keyed Hash	User, Crypto	HMAC Key	User and CO:
(HMAC)	Officer	HMAC SHA-1, HMAC SHA- 224, HMAC SHA-	read/write/execute
		256, HMAC SHA-384, HMAC SHA-512	
Message	User, Crypto	SHA-1, SHA-224, SHA-256, SHA-384, SHA-	User and CO:
digest (SHS)	Officer	512	read/write/execute
Random	User, Crypto	PRNG Seed and Seed Key	User and CO:
number	Officer		read/write/execute
generation			
Show status	User, Crypto	none	User and CO:
	Officer		execute
Module	User, Crypto	none	User and CO:
initialization	Officer		execute
Self test	User, Crypto	Integrity Key (HMAC SHA-256)	User and CO:
	Officer		read/execute
On-Demand	User, Crypto	All CSPs	User and CO:
Self Test	Officer		read/write/execute
Zeroize	User, Crypto	All CSPs	User and CO:
	Officer		read/write/execute

Table 6 - Module Services and Descriptions

2.3.2 Operator Authentication

As required by FIPS 140-2, there are two roles (a Crypto Officer role and User role) in the module that operators may assume. As allowed by Level 1, the module does not support authentication to access services.

2.4 Physical Security

This section of requirements does not apply to this module. The module is a software-only module and does not implement any physical security mechanisms.

2.5 Operational Environment

The module operates on a general purpose computer (GPC) running on a modern version of Microsoft Windows or Mac OS X as a general purpose operating system (GPOS). For FIPS purposes, the module is running on this operating system in single user mode and does not require any additional configuration to meet the FIPS requirements.

The module was tested on the following platforms:

- Intel i5 w/ Microsoft Windows 7 32-bit
- Intel i5 w/ Microsoft Windows Server 2008 R2 64-bit
- Intel i5 w/ Apple Mac OS X 10.7 64-bit
- Intel i5 w/ Apple Mac OS X 10.7 32-bit

Compliance is maintained for other versions of the respective operating systems family where the binary is unchanged.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

The GPC(s) used during testing met Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined by 47 Code of Federal Regulations, Part15, Subpart B. FIPS 140-2 validation compliance is maintained when the module is operated on other versions of the GPOS running in single user mode, assuming that the requirements outlined in NIST IG G.5 are met.

2.6 Cryptographic Key Management

The table below provides a complete list of Critical Security Parameters used within the module:

Keys and CSPs	Storage Locations	Storage Method	Input Method	Output Method	Zeroization	Access
AES Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD
Triple-DES Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD
RSA Public Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD
RSA Private Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD
DSA Public Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD
DSA Private Key	RAM	Plaintext	API call parameter	None	free() power cycle	CO: RWD
						U: RWD

ECDSA Public Key	RAM	Plaintext	API call	None	free()	CO: RWD
			parameter		power cycle	
						U: RWD
ECDSA Private	RAM	Plaintext	API call	None	free()	CO: RWD
Key			parameter		power cycle	
						U: RWD
HMAC Key	RAM	Plaintext	API call	None	free()	CO: RWD
			parameter		power cycle	
						U: RWD
PRNG Seed	RAM	Plaintext	API call	None	free()	CO: RWD
			parameter		power cycle	
						U: RWD
PRNG Seed Key	RAM	Plaintext	API call	None	free()	CO: RWD
			parameter		power cycle	
						U: RWD
Integrity Key	RAM	Plaintext	None	None	free()	CO: RWD
					power cycle	
						U: RWD
DH Private Key	RAM	Plaintext	None	API call	free()	CO: RWD
				parameter	power cycle	
						U: RWD
DH Public Key	RAM	Plaintext	None	API call	free()	CO: RWD
				parameter	power cycle	
						U: RWD
DRBG Entropy	RAM	Plaintext	None	API call	free()	CO: RWD
				parameter	power cycle	
						U: RWD
DRBG S Value	RAM	Plaintext	None	API call	free()	CO: RWD
				parameter	power cycle	
						U: RWD
DRBG V Value	RAM	Plaintext	None	API call	free()	CO: RWD
				parameter	power cycle	
						U: RWD
DRBG init_seed	RAM	Plaintext	None	API call	free()	CO: RWD
-				parameter	power cycle	
				'		U: RWD

R = Read W = Write D = Delete

Table 7 – Module Keys/CSPs

The application that uses the module is responsible for appropriate destruction and zeroization of the key material. The library provides functions for key allocation and destruction which overwrite the memory that is occupied by the key information with zeros before it is deallocated.

2.6.1 Random Number Generation

The module employs an ANSI X9.31-compliant random number generator for creation of asymmetric and symmetric keys. The module also employs an SP800-90 DRBG for creation of asymmetric keys.

The module accepts results from /dev/urandom as an entropy source of random numbers for RNG seeds.

The module performs continual tests on the random numbers it uses to ensure that the seed and seed key input to the Approved RNG do not have the same value. The module also performs continual tests on the output of the approved RNG to ensure that consecutive random numbers do not repeat.

2.6.2 Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function

An authorized application as user (the User role) has access to all key data generated during the operation of the Module.

2.6.3 Key/CSP Storage

Public and private keys are provided to the Module by the calling process, and are destroyed when released by the appropriate API function calls. The Module does not perform persistent storage of keys.

2.6.4 Key/CSP Zeroization

The memory occupied by keys is allocated by openss1 mem.c and OPENSSL_cleanse(). The application is responsible for calling the appropriate destruction functions from the API. The destruction functions then overwrite the memory occupied by keys with zeros and deallocates the memory with the free() call.

2.7 Self-Tests

FIPS 140-2 requires that the module perform self tests to ensure the integrity of the module and the correctness of the cryptographic functionality at start up. In addition some functions require continuous verification of function, such as the random number generator. All of these tests are listed and described in this section. In the event of a self-test error, the module will log the error and will halt. The module must be initialized into memory to resume function.

The following sections discuss the module's self-tests in more detail.

2.7.1 Power-On Self-Tests

Power-on self-tests are executed automatically when the module is loaded into memory. The FIPS_mode_set() function verifies the integrity of the runtime executable using a HMAC SHA-256 digest computed at build time. If the digest match, the power-up self-tests are then performed. If the

power-up self-test is successful, FIPS_mode_set() sets the FIPS_mode flag to TRUE and the Module is in FIPS mode.

ТҮРЕ	DETAIL
Software Integrity Check	HMAC SHA-1
Known Answer Tests ¹	AES encrypt/decrypt
	HMAC SHA-1
	HMAC SHA-224
	HMAC SHA-256
	HMAC SHA-384
	HMAC SHA-512
	• SHA-1
	• SHA-224
	• SHA-256
	• SHA-384
	• SHA-512
	• RNG
	Triple-DES encrypt/decrypt
	DRBG
	RSA (sign/verify)
Pair-wise Consistency Tests	• DSA
	• ECDSA
	• RSA

Table 8 - Power-On Self-Tests

Input, output, and cryptographic functions cannot be performed while the Module is in a self-test or error state because the module is single-threaded and will not return to the calling application until the power-up self tests are complete. If the power-up self tests fail, subsequent calls to the module will also fail - thus no further cryptographic operations are possible.

2.7.2 Conditional Self-Tests

The module implements the following conditional self-tests upon key generation, or random number generation (respectively):

ТҮРЕ	DETAIL
Pair-wise Consistency Tests	• DSA
	• ECDSA
	• RSA
Continuous RNG Tests	ANSI X9.31 PRNG
	• SP 800-90 DRBG
	• NDRNG

Table 9 – Conditional Self-Tests

¹ Note that all SHA-X KATs are tested as part of the respective HMAC SHA-X KAT.

² The FIPS_mode_set() function could be re-invoked but such re-invocation does not provide a means from

2.7.3 Cryptographic Function

A single initialization call, FIPS_mode_set, is required to initialize the Module for operation in the FIPS 140-2 Approved mode. When the Module is in FIPS mode, all security functions and cryptographic algorithms are performed in Approved mode.

The FIPS mode initialization is performed when the application invokes the FIPS_mode_set() call which returns a "1" for success or a "0" for failure. The module will support either explicit FIPS mode initialization through the FIPS_mode_set() function or implicit initialization by querying the /proc/sys/crypto/fips_enabled flag. If the flag is set and the module is being initialized, it will automatically call FIPS_mode_set(1) during this initialization. Prior to this invocation the Module is uninitialized in a powered-off state.

The FIPS_mode_set() function verifies the integrity of the runtime executable using a HMAC SHA-256 digest which is computed at build time. If this computed HMAC SHA-256 digest matches the stored, known digest, then the power-up self-test (consisting of the algorithm-specific Pairwise Consistency and Known Answer tests) is performed. If any component of the power-up self-test fails, an internal global error flag is set to prevent subsequent invocation of any cryptographic function calls. Any such power-up self test failure is a hard error that can only be recovered by reinstalling the module². If all components of the power-up self-test are successful, then the module is in FIPS mode. The power-up self-tests may be performed at any time by reloading the module.

No operator intervention is required during the running of the self-tests.

2.8 Mitigation of Other Attacks

The Module does not contain additional security mechanisms beyond the requirements for FIPS 140-2 Level 1 cryptographic modules.

² The FIPS_mode_set() function could be re-invoked but such re-invocation does not provide a means from recovering from an integrity test or known answer test failure

3 Guidance and Secure Operation

This section describes how to configure and initialize the module for FIPS-Approved mode of operation. When configured and initialized per this Security Policy, the module will only operate in the FIPS Approved mode of operation.

3.1 Crypto Officer Guidance

3.1.1 Software Installation

The module is included with the Symantec Data Loss Prevention solution and is not available for direct download. The module is to be installed on an operating system specified in Section 2.5 or one where portability is maintained.

3.1.2 Enabling FIPS Module within the DLP Application

The DLP software is configured to use the module only in FIPS mode always as follows:

- When the DLP endpoint agent application comes up, it unconditionally enters the FIPS mode using the FIPS_mode_set (int 1) function exposed by the FIPS module.
- The Symantec DLP engineering team is responsible for ensuring the source files that comprise the DLP Cryptographic Module Version 1.0 are built into the DLP solution.

3.1.3 Additional Rules of Operation

- 1. All host system components that can contain sensitive cryptographic data (main memory, system bus, disk storage) must be located in a secure environment.
- 2. The writable memory areas of the Module (data and stack segments) are accessible only by the DLP application so that the operating system is in "single user" mode, i.e. only the DLP application has access to that instance of the Module.
- 3. The operating system is responsible for multitasking operations so that other processes cannot access the address space of the process containing the Module.
- 4. The end user of the operating system is also responsible for zeroizing CSPs via wipe/secure delete procedures.

3.2 User Guidance

3.2.1 General Guidance

The module is not distributed as a standalone library and is only used in conjunction with the DLP solution. As such, there is no direct User Guidance.