proofpoint?

Proofpoint Security Library

FIPS 140-2 Non-Proprietary Security Policy

Level 1 Validation

Version 1.0

December 2014 Multi-chip standalone

© Copyright 2014 Proofpoint. Inc. This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

T/	TABLE OF CONTENTS 2		
1	INTRODUCTION	3	
	1.1 Purpose 1.2 Terminology 1.3 References	3	
2	THE PROOFPOINT SECURITY LIBRARY	3	
	2.1 CRYPTOGRAPHIC MODULE 2.2 MODULE INTERFACES 2.3 ROLES AND SERVICES 2.3.1 Roles 2.3.2 Services 2.4 PHYSICAL SECURITY 2.5 SOFTWARE AND OPERATING SYSTEM SECURITY 2.6 CRYPTOGRAPHIC KEY MANAGEMENT 261 Key Convertion	5 5 5 8 8 9	
	2.6.1 Key Generation	9 9 9 0	
3	SECURE OPERATION OF THE PROOFPOINT SECURITY LIBRARY 1	1	
4	ACRONYM LIST 1	1	

Table of Contents

1 Introduction

1.1 Purpose

This is a non-proprietary cryptographic module security policy for the Proofpoint Security Library (the Cryptographic Module), version 1.0. This security policy describes how the Proofpoint Security Library meets the security requirements of FIPS 140-2, and how to operate the Proofpoint Security Library in a FIPS 140-2 compliant manner. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the Proofpoint Security Library.

1.2 Terminology

Throughout this document the Proofpoint Security Library is also referred to as the module.

1.3 References

Additional information on Proofpoint can be found at http://www.proofpoint.com. Additional information on FIPS 140-2, including a list of FIPS-approved algorithms, can be found at http://www.nist.gov/cmvp.

2 The Proofpoint Security Library

The Proofpoint Security Library is a C++ language cryptography component used by Proofpoint's security products.

2.1 Cryptographic Module

The module consists of the following generic components:

- 1) A commercially available general-purpose hardware-computing platform.
- 2) A commercially available Linux Operating System (OS) that runs on the above platform (Cent OS 5 was using during testing for this Validation).
- 3) The Proofpoint Security Library version 1.0 that runs on the above platform and operating system. The compiled library filename is libppcrypto-1.0.so and the signature filename is libppcrypto-1.0.so.sig.

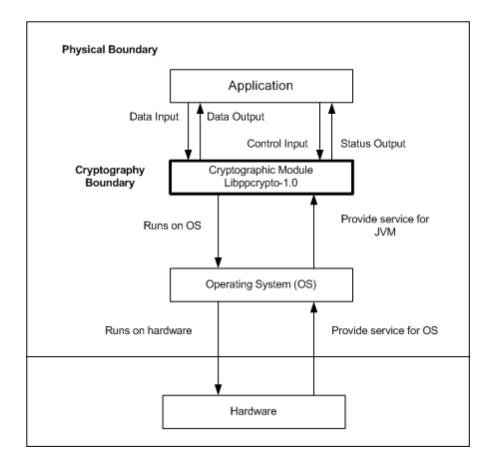


Figure 1 - Proofpoint Security Library Logical Diagram

The logical boundary for this module is described in the diagram above. The physical boundary is the general-purpose PC and operating system. The module is suitable for any general-purpose PC and operating system capable of running Cent OS 5. No claim can be made as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

2.2 Module Interfaces

The physical interfaces of the module are those of the general-purpose hardwarecomputing platform hosting the module, including: a computer keyboard, mouse, screen, floppy drives, CDROM drives, speakers, microphone inputs, serial ports, parallel ports, and power plug. The logical interface is the Application Programming Interface (API) of the library. The API is classified in terms of the FIPS 140-2 logical interfaces as follows:

- Data input input parameters to all functions available to operators assuming the User role
- Data output output parameters from all functions that produce output
- Control input input parameters to all functions available to operators assuming the Crypto Officer role
- Status output information returned via exception

2.3 Roles and Services

2.3.1 Roles

The module supports two distinct roles: a Crypto Officer role and a User role.

Role	Type of authentication	Authentication data	
User	None	N/A	
Crypto Officer	None	N/A	

Table	1 –	Roles
-------	-----	-------

As allowed by FIPS 140-2 level 1, the module does not support user identification or authentication. Only one role may be active at a time. The module does not allow concurrent operators.

Authentication mechanism	Strength of mechanism	
None	N/A	
Table 2 – Authentication Mechanism		

2.3.2 Services

The module provides several types of cryptographic services. The following table describes the type of access to cryptographic keys and CSPs available to operators exercising each type of service.

Approved Services:

Service/Method	Description	Cryptographic keys and CSPs	Types of access
Cipher AES	Cipher – an abstract class for a symmetric	Symmetric keys	R/W/X

	cipher. AES - implementation of Advanced Encryption Standard.		
ECDSA	Implementation of the Elliptic Curve Digital Signature Algorithm. All methods dealing with keys are static, so no keys are stored in an ECDSA instance. Signature Generation with SHA-1 is not allowed in the approved	ECDSA private/public keys	R/W/X
	mode.		
Hash SHA1, SHA-224, SHA-256, SHA-384, SHA-512	HASH - abstract class for a secure hash. Implantation for SHA1, SHA-224, SHA-256, SHA-384, SHA-512.	None	
POST	Power-On Self-Test. Verifies algorithms in security library pass Known Answer Tests, that the signature file is presented in the same directory as .so, and that signature is verified.	None	
Random SHA1PRNG	SHA1PRNG - a pseudo random number generator based on SHA-1.	DRNG secret values	W/X
RSA	Implementation of the RSA Signature Algorithm. Keys are provided to static methods and not stored.	RSA Public/Private keys	X
	Signature Generation with SHA-1 is not allowed in the approved mode.		

Table 3 –	Approved	Services
-----------	----------	----------

Non-approved Services:

Service/Method	Description	Cryptographic keys and CSPs	Types of access
Cipher RC2 Triple-DES	Cipher – an abstract class for a symmetric cipher.	Symmetric keys	R/W/X
	RC2 - implementation of Rivest Cipher 2. Triple-DES - implementation of Triple Data Encryption Standard. For all implementations, keys are passed in and keys are zeroed by calling a finalize method.		
DSA	Implementation of Digital Signature Algorithm. All methods dealing with keys are static, so no keys are stored in a DSA instance.	DSA Public/Private keys	R/W/X
ECDSA signature generation with SHA- 1	Generation of ECDSA Signature with SHA-1	None	
Random AESPRNG	AESPRNG - a pseudo random number generator based on AES.	DRNG secret values	W/X
RSA Signature Generation with SHA-1	Generation of RSA Signature with SHA-1	None	

Table 4 – Non-Approved Services

The authorized services available to each role are described below.

2.3.2.1 Crypto Officer Services

Crypto Officers may execute power-up self-tests on demand. Operators assuming the Crypto Officer role have no access to any critical security parameters, including cryptographic keys.

Role	Authorized Services	
Crypto Officer	On-demand execution of power-on self-tests and	
	show status	

2.3.2.2 User Services

An operator assuming the User role can exercise all services provided by the module except for the on-demand invocation of power-up self-tests, which is reserved for Crypto Officers. Operators assuming the User role may read/write critical security parameters, including cryptographic keys, via invocation of API methods.

Role	Authorized Services	
User	Symmetric key cryptography	
	Asymmetric key cryptography	
	Hash	
Key agreement		
Random number generation		
Table 6 – User Services		

2.4 Physical Security

The module is a software module intended for use on a variety of platforms including Microsoft Windows XP, Vista, and Win7, Linux, Solaris and other UNIX variants. Since the module is a software module, it can be exempted from the physical security requirements of the FIPS 140-2 standard.

2.5 Software and Operating System Security

The Proofpoint Security Library is a software module validated for use with the Cent OS 5 operating system but will operate under Windows XP, Vista, and Win7, Linux, Solaris and other UNIX variants. The Proofpoint Security Library was tested on a Dell Latitude E6400 running Cent OS5. The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

The module consists of an .so file and an associated .so.sig signature. As explained below, a cryptographic mechanism is used within the module to ensure that the code has not been accidentally or ineptly modified from its validated configuration.

2.6 Cryptographic Key Management

The Proofpoint Security Library securely administers cryptographic keys, including ephemeral session keys. All session keys are ephemeral and are discarded immediately after use.

2.6.1 Key Generation

The module generates keys using a FIPS approved PRNG (FIPS 186-2, Appendix 3.1, using SHA-1 to construct the function G). The PRNG allows the use of an optional XSEED. The module also implements a non-approved RNG, which is not used in key generation. The module supports the generation of the following keys:

- Symmetric keys
- RSA Keys
- ECDSA Keys

2.6.2 Key Input/Output

Keys generated by the module can be exported. Keys can be generated outside of the module and passed in using crypto services.

2.6.3 Key Storage

The module does not store secret or private key material.

2.6.4 Key Zeroization

All ephemeral key data resides in internally allocated data structures that are zeroized by deletion of the object. An operator can initiate key zeroization by deleting the key object.

2.7 Cryptographic Algorithms

When operating in FIPS mode, the Proofpoint Security Library supports the following algorithms for the following purposes, key sizes, and cipher modes:

- ECDSA (Cert. #278)
 - o P-192 P-224 P-256 P-384 P-521
- Secure Hashing Algorithm (SHA1, SHA-224, SHA-256, SHA-384. SHA-512) (Cert. #1702)
- Advanced Encryption Standard (AES) FIPS 197 (Cert. #1938)
 - o Encryption/decryption
 - o 128, 192, 256 bit keys
 - ECB or CBC modes
- RNG FIPS 186-2, Appendix 3.1 (Cert. #1021)
- RSA (Cert. #1003)
 - o Key size supported 1024, 1536, 2048, 3072, 4096
 - Signature verification

In addition to the above approved cryptographic algorithms, the module also provides the following non-approved algorithms which are not allowed in FIPS mode unless noted:

- AES RNG AES based PRNG
- DSA (non-compliant)
- RC2
- Triple DES (non-compliant)

The module generates cryptographic keys whose strengths are modified by available entropy. Each of the generated keys provides a minimum of 112-bits of encryption strength.

2.8 Self-Tests

The module performs a number of startup and conditional self-tests to ensure proper operation (see Table 1 for a list of all self-tests performed by the module). If the module fails a self-test it will enter an error state and inhibit all cryptographic functions and data output. Self-tests include integrity checks over the library at load time, cryptographic algorithm known answer tests (KATs) and other critical startup tests. Additionally, a continuous random number generator tests monitors output from the module's FIPS-approved random number generator, as required by FIPS 140-2.

Test	Туре
FIPS 186-2 RNG Continuous random	Conditional Self-Test
number generator test	
AES RNG Continuous random number	Conditional Self-Test
generator test	
Pairwise consistency test for RSA	Conditional Self-Test
Pairwise consistency test for ECDSA	Conditional Self-Test
ECDSA KAT	Power-up Self-Test
RSA Sign/Verify	Power-up Self-Test
Module integrity check (using RSA	Power-up Self-Test
2048)	
SHA-1 KAT	Power-up Self-Test
SHA-224 KAT	Power-up Self-Test
SHA-256 KAT	Power-up Self-Test
SHA-384 KAT	Power-up Self-Test
SHA-512 KAT	Power-up Self-Test
Triple DES KAT	Power-up Self-Test
AES KAT	Power-up Self-Test
PRNG KAT	Power-up Self-Test

Table 7 – Sum	mary of FIPS	required self-tests
---------------	--------------	---------------------

2.9 Mitigation of other attacks

The cryptographic module is not designed to mitigate any specific attacks.

Other attacks	Mitigation mechanism	Specific limitations
None	N/A	N/A

Table 8 – Mitigation of other attacks

3 Secure Operation of the Proofpoint Security Library

The module does not require any special configuration to operate in conformance with FIPS 140- 2 requirements. FIPS 140-2 requires that only FIPS-approved algorithms be used when operating a FIPS 140-2 compliant manner. Thus, to operate the module in conformance with FIPS 140-2 requirements, only the FIPS-approved algorithms listed in section 2.7 may be used.

Note: It is the User's responsibility to understand which algorithms are FIPS-approved and which are not. NIST supports a web site (referenced in section 1.3) that lists validated implementations of NIST-approved cryptographic algorithms.

Acronym	Definition	
AES	Advanced Encryption Standard	
API	Application Programming Interface	
DSS	Digital Signature Standard	
EMC	Electromagnetic Compatibility	
EMI	Electromagnetic Interference	
FCC	Federal Communication Commission	
FIPS	Federal Information Processing Standard	
KAT	Known Answer Test	
NIST	National Institute of Standards and Technology	
OS	Operating System	
PC	Personal Computer	
SHA	Secure Hash Algorithm	
SMTP	Simple Mail Transfer Protocol	
Triple DES	Triple Data Encryption Standard	

4 Acronym List

 Table 9 – Acronym List