## FIPS 140-2 Security Policy Ultra Electronics DNE Technologies PacketAssure iQ1000

50 Barnes Park North Wallingford, CT 06492

October 9, 2014

Document Version 3.11 Firmware Version 3.2.0 Chassis V.003 PSM V.101



# **DNE TECHNOLOGIES**

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 1 of 25

## Table of Contents

| 1. Mo   | dule Specification                                   | .4  |
|---------|------------------------------------------------------|-----|
| 1.1.    | Module Description                                   | .4  |
| 1.2.    | Purpose                                              | . 7 |
| 1.3.    | Security level                                       | . 7 |
| 1.4.    | References                                           | . 7 |
| 1.5.    | Glossary                                             | . 8 |
| 2. Cry  | ptographic Module Ports and Interfaces               | . 9 |
| 3. Rol  | es, Services, and Authentication                     | . 9 |
| 3.1.    | Roles                                                | . 9 |
| Una     | uthenticated Services                                | . 9 |
| Noi     | n-Approved Mode Services                             | 10  |
| Use     | r Role Services (Approved Mode)                      | 10  |
| Cry     | pto-officer Role Services (Approved Mode)            | 12  |
| 3.2.    | Authentication Mechanisms and Strength               |     |
| 4. Fin  | te State Model                                       | 15  |
| 5. Phy  | sical Security                                       | 15  |
| 5.1.    | Enclosure                                            | 15  |
| 5.2.    | Tamper Evidence                                      | 15  |
| 5.3.    | Physical Security Rules                              | 16  |
| 5.4.    | Secure Operation Initialization Rules                | 16  |
| 6. Ope  | erational Environment                                | 18  |
| 7. Def  | inition of SRDIs Modes of Access                     | 18  |
| 7.1.    | Cryptographic Keys, CSPs, and SRDIs                  | 18  |
| 7.2.    | Access Control Policy                                | 22  |
| 8. Ele  | ctromagnetic Interface/Electromagnetic Compatibility | 23  |
| 9. Selt | Tests                                                | 23  |
| 9.1.    | Power-Up Self Tests                                  | 23  |
| 9.2.    | Conditional Self tests                               | 24  |
| 10. N   | Itigation of Other Attacks                           | 25  |

## List of Figures

| 0                                       |   |
|-----------------------------------------|---|
| Figure 1 PacketAssure iQ1000, IOM Side  | 4 |
| Figure 2 Cryptographic Boundary         | 6 |
| Figure 3 Tamper Evidence Seal Locations |   |

## List of Tables

| Table 1 Items Excluded from Cryptographic Boundary | 5 |
|----------------------------------------------------|---|
| Table 2 Security Levels                            | 7 |
| Table 3 Ports and Interfaces                       | 9 |
| Table 4 Unauthenticated Services                   |   |
| Table 5 Non-Approved Services                      |   |
| Table 6 User Roles                                 |   |
| Table 7 Crypto-officer Role                        |   |
| Table 8 Approved Cryptographic Algorithms          |   |
| Table 9 Non-Approved Cryptographic Algorithms      |   |
| Table 10 Key, CSPs and SRDIs                       |   |
| Table 11 SRDI Access                               |   |

## FIPS 140-2 Security Policy Ultra Electronics DNE Technologies PacketAssure iQ1000 Firmware Version 3.2 (Freescale PowerQUICC II Pro) Chassis V.003 PSM V.101

## 1. Module Specification

### 1.1.Module Description

The Ultra Electronics DNE Technologies PacketAssure iQ1000, see Figure 1, is a rugged, one 19" rack unit Service Delivery Management (SDM) appliance. It integrates adaptation of legacy circuit based traffic with high performance layer-2 IP switching and intelligent IP quality of service to precisely classify/manage voice, video and data services.

The PacketAssure iQ1000 provides the following features:

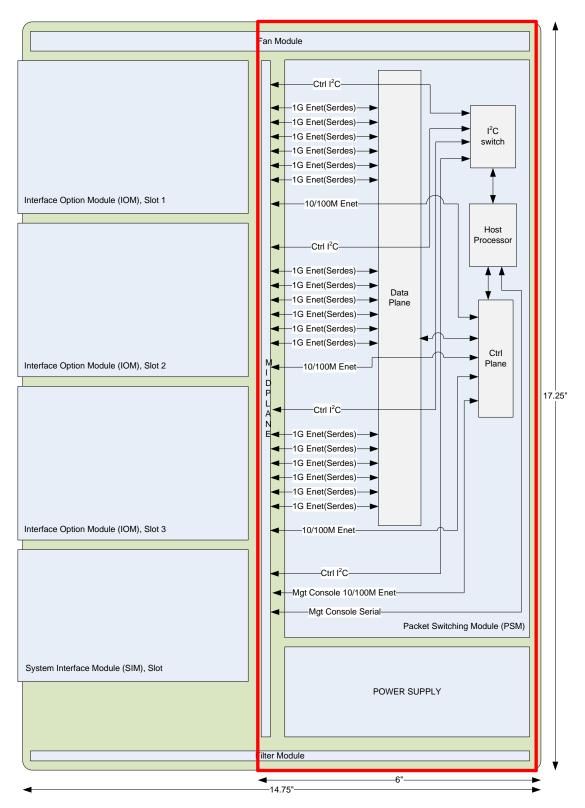
- High-performance, intelligent, traffic management assures application delivery meets service objectives.
- Robust VLAN awareness and capabilities for traffic segregation and broadcast domain control.
- Multi-layer traffic classification gives administrators consistent, end-to-end control of service priority.
- A customized web user interface that improves operator efficiency and reduces training costs.
- A full Command Line Interface (CLI).



Figure 1 PacketAssure iQ1000, IOM Side

The iQ1000 is modular, with a basic system configuration consisting of the chassis, power supply, Packet Switching Module (PSM), System Interface Module (SIM), Fan module and Filter Module. The PSM provides all packet switching, service delivery

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 4 of 25 management, configuration/status and cryptographic functions. The SIM provides Ethernet and Serial local user interfaces and a network timing input. Up to three Interface Option Modules (IOMs) complete the appliance, providing Serial, Ethernet and T1/E1 data interfaces. No Data I/O cards, including the SIM (System Interface Module) need be installed for the cryptographic module to operate. However, in order to locally manage the device, a SIM card must be installed. For remote management at least one IOM must be installed.


The iQ supports both a FIPS 140-2 approved mode of operation and a non-approved mode operation. All security functions and cryptographic algorithms are performed in Approved mode. If the iQ cannot run in the FIPS Approved mode because FIPS self-test failed, the unit faults and all operations are halted.

The iQ supports SSH, TLS, and SNMP. By IG D.8 Scenario 4, these protocols are allowed to be used in the FIPS approved mode, but are non-compliant. The module also incorporates a security log which records user authentication and other security events. These include user login (successful or unsuccessful), user logout, configuration changes and system file changes.

The iQ1000 satisfies FIPS 140-2 Level 2 requirements for multiple-chip standalone modules. Figure 2 shows a functional block diagram of the iQ1000 looking down from the top as if looking through the top cover. All cryptographic functions are contained within the PSM. The cryptographic boundary, delineated in red, consists of the chassis, the top cover, the front panel of the PSM and the mid-plane. Tamper evidence seals, described in section 5.2 indicate when the removable cover or removable PSM have been disturbed. Louvers inside the chassis allow cooling airflow through the unit and satisfy FIPS opacity requirements. The louvers prevent viewing crypto module components on the PSM through the ventilation holes and fans. On the opposite side the louvers prevent viewing PSM components when the filter is removed, as must be allowed for maintenance. All IOMs, the SIM, the fan tray and the power supply are outside the cryptographic boundary.

| Item                                   | Rationale for Exclusion |
|----------------------------------------|-------------------------|
| Power Supply                           | No security relevance   |
| Hot-swappable Fan Module               | No security relevance   |
| Hot-swappable Interface Option Modules | No security relevance   |
| Hot-swappable System Interface Module  | No security relevance   |
| Removable Filter Module                | No security relevance   |

| Table 1 | Items | <b>Excluded</b> from | n Cryptographic | Boundary |
|---------|-------|----------------------|-----------------|----------|
|---------|-------|----------------------|-----------------|----------|



#### Figure 2 Cryptographic Boundary

The module is 1.75" in height (not shown in this diagram).

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 6 of 25

### 1.2.Purpose

This Cryptographic Module Security Policy describes how the cryptographic module in the iQ1000, referred to as the "Module" in the remainder of this document, meets the requirements of FIPS140-2 Level 2; and how to operate the Module in a secure, FIPS-compliant manner. Only features and operation associated with FIPS-140 cryptographic security are presented. Complete product documentation including installation and operations manuals can be downloaded at <a href="http://www.ultra-dne.com/">http://www.ultra-dne.com/</a>.

The complete FIPS140-2 submission package consists of:

- Security Policy
- Vendor Evidence
- Finite State Model

This document is non-proprietary and may be distributed without restriction while all other documents are proprietary to Ultra Electronics DNE Technologies and only available under Non-Disclosure Agreement (NDA). For access to these documents contact Ultra Electronics DNE Technologies.

### 1.3.Security level

The module meets the overall requirements applicable to Level 2 security of FIPS 140-2.

| Security Level                      |       |  |  |  |
|-------------------------------------|-------|--|--|--|
| Security Requirements Specification | Level |  |  |  |
| Cryptographic Module Specification  | 2     |  |  |  |
| Module Ports and Interfaces         | 2     |  |  |  |
| Roles, Services, and Authentication | 3     |  |  |  |
| Finite State Model                  | 2     |  |  |  |
| Physical Security                   | 2     |  |  |  |
| Operational Environment             | N/A   |  |  |  |
| Cryptographic Key Management        | 2     |  |  |  |
| EMI/EMC                             | 2     |  |  |  |
| Self-Tests                          | 2     |  |  |  |
| Design Assurance                    | 2     |  |  |  |
| Mitigation of Other Attacks         | N/A   |  |  |  |

#### Table 2 Security Levels

### 1.4.*References*

| Title                                                                                                   | Document File Name       |
|---------------------------------------------------------------------------------------------------------|--------------------------|
| <i>OpenSSL FIPS Object Module</i><br><i>Version 1.2.3</i> , Open Source<br>Software Institute, 5/3/2011 | SecurityPolicy-1.2.3.pdf |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 7 of 25

| PacketAssure iQ1000 Product<br>Documentation <u>http://www.ultra-dne.com/</u> |  | http://www.ultra-dne.com/ |
|-------------------------------------------------------------------------------|--|---------------------------|
|-------------------------------------------------------------------------------|--|---------------------------|

## 1.5. Glossary

| Term/Acronym | Description                |  |  |
|--------------|----------------------------|--|--|
| BIST         | Built In Self Test         |  |  |
| BOM          | Bill Of Materials          |  |  |
| CLI          | Command Line Interface     |  |  |
| Enet         | Ethernet                   |  |  |
| IC           | Integrated Circuit         |  |  |
| ICD          | Interface Control Document |  |  |
| IOM          | Interface Option Module    |  |  |
| PSM          | Packet Switching Module    |  |  |
| POST         | Power On Self Test         |  |  |
| SDA          | Service Delivery Appliance |  |  |
| SerDes       | Serializer/Deserializer    |  |  |
| SIM          | System Interface Module    |  |  |

## **2.** Cryptographic Module Ports and Interfaces

Table 3 below illustrates the logical to physical mapping of interfaces contained inside the cryptographic boundary of the module. Logical mapping is accomplished using the four FIPS 140-2 defined logical interfaces.

| Logical Interfaces             | Physical Interface         | Count |
|--------------------------------|----------------------------|-------|
| Control Input Interface        | 1G Ethernet Ports (Serdes) | 18    |
| Status Output Interface        |                            |       |
| Data Input Interface           |                            |       |
| Data Output Interface          |                            |       |
| Control Input Interface        | 10/100M Ethernet           | 1     |
| Status Output Interface        | Management Port            |       |
| Data Input Interface           |                            |       |
| Data Output Interface          |                            |       |
| Control Input Interface        | Serial Management Port     | 1     |
| Status Output Interface        |                            |       |
| Status Output Interface        | Power LED                  | 1     |
| Status Output Interface        | Alarm LED                  | 1     |
| Power Interface (2 switches, 1 | Power                      | 2     |
| power cord)                    |                            |       |

#### Table 3 Ports and Interfaces

### 3. Roles, Services, and Authentication

Each user assigned to a role can be distinguished by identity and is authenticated upon initial access to the module. The module implements three separate roles, of which two are User Roles and one is the Crypto-officer Role. The Administrator (admin) of the iQ1000 takes on the Crypto-officer Role and configures and maintains the module.

### 3.1.*Roles*

The module maintains the following three roles: admin, config and oper. The oper and config roles can be considered as user roles with the config role having read-write privileges and the oper role having read-only privileges. The admin role is equivalent to the Crypto Officer role defined in the FIPS DTR.

### Unauthenticated Services

All services require authentication with the exception of those listed in Table 4. The Table 4 services can only be performed from the Serial Management Interface.

| Service           | Input          | Output         | Description              |
|-------------------|----------------|----------------|--------------------------|
| Bootloader        | factory-reset  | Command result | Return module to its     |
| factory default   | command        |                | factory default state.   |
| Bootloader switch | switch command | Command result | Two versions of          |
| code banks        |                |                | application code can be  |
|                   |                |                | stored, one in each bank |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 9 of 25

|              |    |    | of memory. Users can<br>select which version to<br>boot from. |
|--------------|----|----|---------------------------------------------------------------|
| Power on/off | NA | NA | Power the module on or off.                                   |

#### Table 4 Unauthenticated Services

#### Non-Approved Mode Services

Non-Approved services can be performed from the Serial Management Interface, the Ethernet Management Interface, or the 1GB Ethernet Interface (Inband Management).

| Service           | Input         | Output               | Description                |
|-------------------|---------------|----------------------|----------------------------|
| Configuration and | Module        | Success or error     | Status of the iQ via       |
| status services   | configuration | messages             | SNMP (SNMP gets only)      |
| using SNMP        | input         |                      | using non-Approved key     |
|                   |               | The module           | strengths <112 bits. Any   |
|                   | Module status | information or error | use of AES or Triple-      |
|                   |               | message              | DES with these key         |
|                   |               |                      | strengths is non-          |
|                   |               |                      | Approved.                  |
| Configuration and | Module        | Success or error     | Status of the iQ via       |
| status services   | configuration | messages             | HTTPS (TLS). Uses RSA      |
| using HTTPS       | input         |                      | key wrapping with public   |
| (TLS)             |               | The module           | keys <2048 bits with key   |
|                   | Module status | information or error | strengths <112 bits. Any   |
|                   |               | message              | use of AES or Triple-      |
|                   |               |                      | DES with keys              |
|                   |               |                      | established in this manner |
|                   |               |                      | is non-Approved.           |
| Configuration and | Module        | Success or error     | Status of the iQ via SSH.  |
| status services   | configuration | messages             | Uses Diffie-Hellman with   |
| using SSH         | input         |                      | keys <2048 bits with key   |
|                   |               | The module           | strengths <112 bits. Any   |
|                   | Module status | information or error | use of AES or Triple-      |
|                   |               | message              | DES with keys              |
|                   |               |                      | established in this manner |
|                   |               |                      | is non-Approved.           |

#### Table 5 Non-Approved Services

#### User Role Services (Approved Mode)

The User Role services can be performed from the Serial Management Interface, the Ethernet Management Interface, or the 1GB Ethernet Interface (Inband Management).

| Service | Input  | Output           | Description              |
|---------|--------|------------------|--------------------------|
| Secure  | Module | Success or error | Configuration and status |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

| configuration and<br>status services<br>using SNMP                     | configuration<br>input<br>Module status           | messages<br>The module<br>information or error<br>message                     | of the iQ via SNMP<br>(SNMP gets only) using<br>Approved key strengths<br>>=112 bits. Any use of<br>AES or Triple-DES with<br>these keys is Approved.<br>Note 1                                                                                                  |
|------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secure<br>configuration and<br>status services<br>using HTTPS<br>(TLS) | Module<br>configuration<br>input<br>Module status | Success or error<br>messages<br>The module<br>information or error<br>message | Configuration and status<br>of the iQ via HTTPS<br>(TLS). Uses RSA key<br>wrapping with public<br>keys >=2048 bits with<br>>=112 bits of security<br>strength. Any use of AES<br>or Triple-DES with keys<br>established in this<br>manner is Approved.<br>Note 1 |
| Secure<br>configuration and<br>status services<br>using SSH            | Module<br>configuration<br>input<br>Module status | Success or error<br>messages<br>The module<br>information or error<br>message | Configuration and status<br>of the iQ via SSH. Uses<br>Diffie-Hellman with<br>keys >=2048 bits with<br>>=112 bits of security<br>strength. Any use of AES<br>or Triple-DES with keys<br>established in this<br>manner is Approved.<br>Note 1                     |
| Change password                                                        | Old and new passwords                             | Success or error<br>message                                                   | Users may change their own passwords only.                                                                                                                                                                                                                       |
| Configure interfaces                                                   | Interface<br>parameters                           | Success or error<br>message                                                   | Configure<br>Serial/Ethernet/TE1<br>physical interfaces.                                                                                                                                                                                                         |
| Configure                                                              | Service                                           | Success or error                                                              | Configure CES &                                                                                                                                                                                                                                                  |
| services                                                               | parameters                                        | message                                                                       | Ethernet services.                                                                                                                                                                                                                                               |
| Configure system                                                       | Timing                                            | Success or error                                                              | Configure system timing                                                                                                                                                                                                                                          |
| timing                                                                 | parameters                                        | message                                                                       | sources.                                                                                                                                                                                                                                                         |
| View iQ1000                                                            | Select the type                                   | The module                                                                    | Status functions: view                                                                                                                                                                                                                                           |
| module<br>information                                                  | information to<br>view                            | information or error<br>message                                               | status of module,<br>temperature, memory<br>status, CPU utilization<br>status; view physical<br>interfaces status, packet<br>statistics, services status;<br>review system logs.                                                                                 |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 11 of 25

#### Table 6 User Roles

Note 1 - SSH, TLS and SNMP protocols and KDFs are allowed to be used in FIPS Approved mode.

#### Crypto-officer Role Services (Approved Mode)

The Crypto-Officer Role services can be performed from the Serial Management Interface, the Ethernet Management Interface, or the 1GB Ethernet Interface (Inband Management).

| Service              | Input         | Output           | Description                               |
|----------------------|---------------|------------------|-------------------------------------------|
| Factory reset of     | factory-reset | Success or error | Delete all configuration                  |
| module               | command       | message          | data and restore the                      |
|                      |               |                  | factory default settings.                 |
| System security      | Security      | Success or error | Configure security and                    |
| management           | parameters    | message          | management                                |
| using SNMP           |               |                  | preferences. Configure                    |
|                      |               |                  | SNMP trap listeners.                      |
|                      |               |                  | Uses key strengths                        |
|                      |               |                  | >=112 bits. Any use of                    |
|                      |               |                  | AES or Triple-DES with                    |
|                      |               |                  | these keys is                             |
| <u> </u>             | Q             | 0                | Approved. <sup>Note 1</sup>               |
| System security      | Security      | Success or error | Remote access to the module via HTTPS     |
| management           | parameters    | message          |                                           |
| using HTTPS<br>(TLS) |               |                  | (TLS). Configure in-<br>band and out-band |
| (1LS)                |               |                  | interfaces. Configure                     |
|                      |               |                  | IPv4 and IPv6 routes.                     |
|                      |               |                  | Uses RSA key wrapping                     |
|                      |               |                  | with public keys                          |
|                      |               |                  | >=2048 bits and $>=112$                   |
|                      |               |                  | bits of security strength.                |
|                      |               |                  | Any use of AES or                         |
|                      |               |                  | Triple-DES with keys                      |
|                      |               |                  | established in this                       |
|                      |               |                  | manner is Approved.                       |
|                      |               |                  | Note 1                                    |
| System security      | Security      | Success or error | Remote access to the                      |
| management           | parameters    | message          | module via SSH.                           |
| using SSH            |               |                  | Configure in-band and                     |
|                      |               |                  | out-band interfaces.                      |
|                      |               |                  | Configure IPv4 and                        |
|                      |               |                  | IPv6 routes. Uses                         |
|                      |               |                  | Diffie-Hellman with                       |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

Page 12 of 25

| User management                                                        | User parameters                                   | Success or error<br>message                                                   | keys >=2048 bits and<br>>=112 bits of security<br>strength. Any use of<br>AES or Triple-DES with<br>keys established in this<br>manner is Approved.<br>Note 1<br>Add/Delete/Modify<br>users. Change<br>passwords and roles for                                   |
|------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perform Self<br>Tests                                                  | Select tests                                      | Success or error<br>message                                                   | the existed users.<br>Perform SHA-256 sum<br>file integrity verification<br>test.                                                                                                                                                                                |
| Configure secure<br>server<br>Reboot module                            | Server<br>parameters<br>Reboot<br>command         | Success or error<br>message<br>Success or error<br>message                    | Configure secure server<br>used for file transfer.<br>Reboot iQ1000 module<br>to initiate the power-up<br>self test on demand.                                                                                                                                   |
| Software upgrade<br>service<br>Switch banks                            | Software<br>package<br>Switch command             | Success or error<br>message<br>Success or error<br>message                    | Perform the software<br>upgrade process.<br>Switch the flash bank.                                                                                                                                                                                               |
| Secure<br>configuration and<br>status services<br>using SNMP           | Module<br>configuration<br>input<br>Module status | Success or error<br>messages<br>The module<br>information or error<br>message | Configuration and status<br>of the iQ via SNMP<br>(SNMP gets only) using<br>Approved key strengths<br>>=112 bits. Any use of<br>AES or Triple-DES with<br>these keys is Approved.<br>Note 1                                                                      |
| Secure<br>configuration and<br>status services<br>using HTTPS<br>(TLS) | Module<br>configuration<br>input<br>Module status | Success or error<br>messages<br>The module<br>information or error<br>message | Configuration and status<br>of the iQ via HTTPS<br>(TLS). Uses RSA key<br>wrapping with public<br>keys >=2048 bits with<br>>=112 bits of security<br>strength. Any use of<br>AES or Triple-DES with<br>keys established in this<br>manner is Approved.<br>Note 1 |
| Secure<br>configuration and<br>status services<br>using SSH            | Module<br>configuration<br>input                  | Success or error<br>messages<br>The module                                    | Configuration and status<br>of the iQ via SSH. Uses<br>Diffie-Hellman with<br>keys >=2048 bits with                                                                                                                                                              |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

|                                      | Module status                             | information or error<br>message               | >=112 bits of security<br>strength. Any use of<br>AES or Triple-DES with<br>keys established in this<br>manner is Approved.<br>Note 1                                                                                                                  |
|--------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configure<br>interfaces              | Interface<br>parameters                   | Success or error<br>message                   | Configure<br>Serial/Ethernet/TE1<br>physical interfaces.                                                                                                                                                                                               |
| Configure<br>services                | Service<br>parameters                     | Success or error<br>message                   | Configure CES &<br>Ethernet services.                                                                                                                                                                                                                  |
| Configure system timing              | Timing<br>parameters                      | Success or error<br>message                   | Configure system timing sources.                                                                                                                                                                                                                       |
| Set system date<br>and time          | Date and time                             | Success or error<br>message                   | Set system date & time.                                                                                                                                                                                                                                |
| View iQ1000<br>module<br>information | Select the type<br>information to<br>view | The module<br>information or error<br>message | Status functions: view<br>status of module,<br>temperature, memory<br>status, CPU utilization<br>status; view physical<br>interfaces status,<br>routing tables, packet<br>statistics, services status;<br>view active sessions;<br>review system logs. |

#### Table 7 Crypto-officer Role

Note 1 - SSH, TLS and SNMP protocols and KDFs are allowed to be used in FIPS Approved mode.

### 3.2. Authentication Mechanisms and Strength

Access control restrictions for Data Paths, Action Paths, and CLI commands will be defined for all privilege groups. These restrictions will be implemented by command and data authorization rules defined within the AAA system. The PacketAssure iQ1000 provides two-factor authentication to secure user logins and protect against account takeover and data theft. Two-factor authentication systems overcome the issues of single secret authentication by the requirement of a second secret. Two-factor authentication uses a combination of the following items:

- Something that the user has, such as a smart card.
- Something that the user knows, such as a password.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 14 of 25 User Authentication is identity based where the identity is defined by the username and password.

Password rules are as follows:

- Passwords must contain between 8 and 32 characters.
- Passwords must consist of at least 2 lower case letters, 2 upper case letters, 2 numerical digits and 2 special characters.
- New passwords MUST differ from previous password by a minimum of 4 characters.
- Only the MD5 hash of user passwords is stored in system database. When the user enters his/her password, the MD5 hash of the entered password will be calculated and compared to the stored MD5 hash. MD5 is not a FIPS approved algorithm and therefore considered no more secure than plaintext.
- During the login process no character echo will take place.

With a minimum 8 character authentication password and the required use of 2 upper/lower case characters(26), 2 numbers(10) and 2 special characters(at least 10) there is approximately a 1 in (26)(26)(26)(26)(10)(10)(10)(10)8! = (1.84 e14) possibilities of random access succeeding. The password rules are non-modifiable and to decrease the probability of correctly guessing a password within a reasonable timeframe, the module will not accept another password attempt for a minimum of ten seconds after three consecutive unsuccessful attempts. With a maximum 18 attempts to use the authentication mechanism during a one-minute period, the probability is less than 1 in 7,665,840,000,000 that a random access will succeed.

## 4. Finite State Model

The finite state model is defined in the proprietary FIPS140\_FSM document, see section 1.2 for guidance.

## 5. Physical Security

The iQ1000 incorporates a multi-chip standalone cryptographic module which is designed to meet FIPS 140-2 security level 2 requirements. These requirements are described in the following sections:

### 5.1. Enclosure

The enclosure is comprised of a metal chassis with a metal cover. The top, bottom and sides of the enclosure are opaque. Internal louvers are installed so no part of the module is visible through ventilation holes.

### 5.2. Tamper Evidence

Four holographic tamper evidence seals (TES), NovaVision Inc Ultra-Guard label, product code UG4-08, will be applied to the enclosure. The hologram image will contain an embedded "VOID OPENED" pattern. Three tamper evidence seals prevent removal

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 15 of 25 of cover screws while a fourth TES prevents removal of another cover screw and the PSM, see Figure 3.

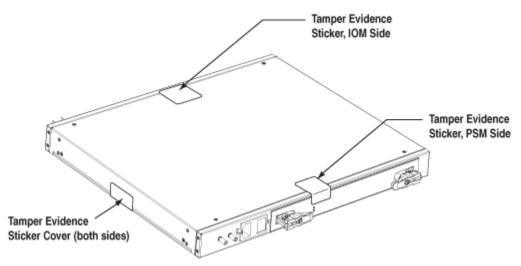



Figure 3 Tamper Evidence Seal Locations

### 5.3. Physical Security Rules

The crypto-officer of the module is required to inspect the enclosure periodically looking for:

- Tamper evidence seals that have "VOID OPENED" visible.
- Disfiguration of the cover, such as creases, indicating that someone has attempted to pry the cover open.

The crypto officer should perform a factory reset on the module if tamper evidence is detected. The factory reset procedure is described in the Administrator Guide (DNE document number 24001197) available on the DNE website <u>http://www.ultra-dne.com</u>. The crypto-officer should also replace any damaged tamper evidence seals. Prior to replacing the seals, the crypto-officer shall remove the damaged labels and clean off any remaining residue on the mounting surface using an adhesive remover. Tamper evidence seals can be obtained from Ultra Electronics DNE Technologies, DNE part number 57005924-000.

### 5.4. Secure Operation Initialization Rules

PacketAssure iQ1000 software version 3.2.0 was validated for compliance with FIPS140-2 and is the only allowable software version for FIPS-Approved operation. FIPS140 compliant self-tests execute automatically at power-up. Failure of any test puts the module in an error state and no services are provided. The module is in an approved mode when using the approved services; and in a non-approved mode when using non-approved services. Encryption strength must not be less than 112 bits when in the approved mode.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 16 of 25 The module implements several cryptographic algorithms for use in its operation. The following table identifies the FIPS approved algorithms:

| Algorithm             | Implementation Details        | Algorithm Certificate   |
|-----------------------|-------------------------------|-------------------------|
| Image A               |                               |                         |
| AES                   | AES keys 128, 192, 256 bits;  | #2191                   |
|                       | encrypt and decrypt.          |                         |
| TDES                  | Triple-DES keys 168 bits;     | #1384                   |
|                       | encrypt/decrypt.              |                         |
| DSA                   | DSA keys 1024 bits; verify.   | #685 <sup>Note 1</sup>  |
| PRNG (ANSI X9.31      | PRNG seed value is 128 bits;  | #1109                   |
| Appendix A.2.4 using  | seed key values are 128, 192, |                         |
| AES)                  | and 256 bits,                 |                         |
| RSA (X9.31,           | RSA keys 2048 to 4096 bits;   | #1130 <sup>Note 2</sup> |
| PKCS #1.5, PSS)       | sign and verify.              |                         |
| SHA-1, 224, 256, 384, | Hashing.                      | #1899                   |
| 512                   |                               |                         |
| HMAC-SHA-1, 224, 256, | HMAC key; message             | #1343                   |
| 384, 512              | integrity.                    |                         |

#### Table 8 Approved Cryptographic Algorithms

Note 1 - DSA (Cert. #685, non-compliant with the functions from the CAVP Historical DSA list): FIPS186-2: PQG(gen) MOD(1024); KEYGEN(Y) MOD(1024); SIG(gen) MOD(1024)

Note 2 - RSA (Cert. #1130, non-compliant with the functions from CAVP Historical RSA list): FIPS186-2: ALG[ANSIX9.31]:KEY(gen)(MOD:1024, 1536 PubKey Values: 3, 17, 65537) ALG[ANSIX9.31]:SIG(gen); 1024, 1536, SHS: SHA-1, SHA-256, SHA-384, SHA-512, 2048, 3072, 4096, SHS:SHA-1 ALG[RSASSA-PKCS1\_V1\_5]:SIG(gen): 1024, 1536, SHS: SHA-224, SHA-256, SHA-384, SHA-512 ALG[RSASSA-PSS]: SIG(gen);1024, 1536, SHS: SHA-224, SHA-256, SHA-384, SHA-512

The module supports the following non-Approved algorithms in the Approved mode of operation as allowed.

| Algorithm              | Algorithm Type                      | Utilization                                                                                                                                              |
|------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                     |                                                                                                                                                          |
| AES                    | AES 128, 192, 256 bit               | Key wrapping Note 2                                                                                                                                      |
| Diffie-Hellman         | Key establishment                   | Key establishment<br>methodology supports<br>2048 to 4096 bit keys,<br>providing between 112<br>and 150 bits of<br>encryption strength <sup>Note 1</sup> |
| RSA<br>encrypt/decrypt | Key establishment / Key<br>wrapping | RSA (key wrapping; key<br>Establishment<br>methodology supports<br>2048 to 4096 bit keys<br>providing 112 – 150 bits                                     |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

Page 17 of 25

|             |                                              | of encryption strength. <sup>Note</sup>         |
|-------------|----------------------------------------------|-------------------------------------------------|
| HMAC SHA-1  | HMAC                                         | SNMPv3 USM authentication key <sup>Note 2</sup> |
| SHA-1       | Hash                                         | SSH Key Derivation<br>Function Note 2           |
| SHA-1 / MD5 | Hash                                         | TLS (PRF) Key<br>Derivation Function            |
| SHA-1       | Hash                                         | SNMP Key Derivation<br>Function Note 2          |
| NDRNG       | Non-Deterministic Random<br>Number Generator | Part of PRNG seed                               |

#### Table 9 Non-Approved Cryptographic Algorithms

Note 1 – Non-compliant when encryption strength is less than 112 bits.

Note 2 – These are approved algorithms but their specific use specified here is non-approved.

SSH, TLS and SNMP protocols and KDFs are allowed to be used in FIPS Approved mode.

In addition the following algorithms are used in non-Approved mode when using non-Approved key strengths <112 bits: AES, Triple-DES

## 6. Operational Environment

Since the iQ1000 does not allow operators to load or modify software or firmware that was not included as part of the validation of the module, it is considered "non-modifiable" and is therefore not subject to the requirements of the Operational Environment component of the FIPS specification.

## 7. Definition of SRDIs Modes of Access

This section specifies the module's Security Relevant Data Items as well as the access control policy enforced by the module.

### 7.1. Cryptographic Keys, CSPs, and SRDIs

While operating in a FIPS-compliant manner, the module contains the following security relevant data items. Unless otherwise noted, All keys are generated using FIPS approved algorithms, using a FIPS approved RNG.

| ID                | Algorithm | Size | Description | Origin | Storage | Zeroization<br>Method |
|-------------------|-----------|------|-------------|--------|---------|-----------------------|
| General Keys/CSPs |           |      |             |        |         |                       |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 18 of 25

| User<br>Password                          | Password                                      | Variable<br>(8-32<br>character<br>s)  | Used to authenticate local users                                                           | The user sets their<br>password on first<br>login                                          | NVRAM<br>(plaintext)        | Zeroized by<br>overwriting<br>with new<br>password                              |
|-------------------------------------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|
| External<br>Secure<br>Server<br>Password  | Password                                      | Variable<br>(0-128<br>character<br>s) | Used to authenticate<br>users on remote<br>SFTP server                                     | The crypto officer<br>sets the password<br>of a remote server                              | NVRAM<br>(AES 128-<br>bits) | Zeroized by<br>overwriting<br>with new<br>password OR<br>deleting the<br>server |
| Security<br>Log Pass<br>Phrase            | Password                                      | Variable<br>(1-128<br>character<br>s) | Used to encrypt the<br>security log file,<br>which is only<br>claimed to be<br>obfuscated. | The crypto officer<br>sets the pass<br>phrase                                              | NVRAM<br>(AES 128-<br>bits) | Zeroized by<br>overwriting<br>with new<br>pass phrase                           |
| RNG Seed                                  | ANSI<br>X9.31<br>Appendix<br>2.4 using<br>AES | 16 bytes                              | This is the seed for<br>ANSI X9.31 RNG                                                     | This key is<br>NDRNG based<br>and created during<br>RNG initialization<br>at power on.     | DRAM<br>(plaintext)         | Zeroized by<br>power<br>cycling the<br>device                                   |
| RNG Seed<br>Key                           | ANSI<br>X9.31<br>Appendix<br>2.4 using<br>AES | 32 bytes                              | This is the seed key<br>for ANSI X9.31<br>RNG                                              | This key is<br>NDRNG based<br>and created during<br>RNG initialization<br>at power on.     | DRAM<br>(plaintext)         | Zeroized by<br>power<br>cycling the<br>device                                   |
| Diffie-<br>Hellman<br>public<br>exponent  | DH                                            | 2048-<br>4096 bits                    | The public exponent<br>used in Diffie-<br>Hellman (DH)<br>exchange                         | This key is Created<br>using the<br>OpenSSL library<br>during key<br>establishment.        | DRAM<br>(plaintext)         | Automaticall<br>y after shared<br>secret<br>generated                           |
| Diffie-<br>Hellman<br>private<br>exponent | DH                                            | 2048-<br>4096 bits                    | The private<br>exponent used in<br>Diffie-Hellman<br>(DH) exchange                         | This key is Created<br>using the<br>OpenSSL library<br>during key<br>establishment.        | DRAM<br>(plaintext)         | Automaticall<br>y after shared<br>secret<br>generated                           |
| Diffie-<br>Hellman<br>Shared<br>Secret    | DH                                            | 2048-<br>4096 bits                    | This is the shared<br>secret agreed upon<br>as part of DH<br>exchange                      | This key is Created<br>using the<br>OpenSSL library<br>during key<br>establishment.        | DRAM<br>(plaintext)         | Zeroized<br>upon deletion                                                       |
| Database                                  | •                                             | •                                     | •                                                                                          | •                                                                                          |                             |                                                                                 |
| AES Key                                   | AES CFB                                       | 128-bits                              | This is the AES key<br>and IV used to<br>encrypt/decrypt<br>CSPs in the database           | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system | NVRAM<br>(plaintext)        | # factory-<br>reset                                                             |
| Software Up                               | grade                                         |                                       |                                                                                            |                                                                                            |                             |                                                                                 |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 19 of 25

| Package<br>Public Key                              | RSA               | 2048-bits                                    | This key is the<br>public product key<br>used to verify<br>software packages | This key is<br>installed with the<br>system software                                       | NVRAM<br>(plaintext) | This is not<br>zeroized                                                           |
|----------------------------------------------------|-------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|
| Package<br>Pass Phrase                             | Password          | Fixed (11<br>character<br>s)                 | This password is<br>used to decrypt<br>software packages                     | This phrase is<br>installed with the<br>system software                                    | NVRAM<br>(plaintext) | This is not zeroized                                                              |
| SNMPv3 <sup>Note 2</sup>                           | 2                 |                                              |                                                                              |                                                                                            |                      |                                                                                   |
| Trap<br>Listener<br>Password <sup>Not</sup><br>e 1 | Password          | Variable<br>(8-32<br>character<br>s)         | Used to authenticate<br>and encrypt<br>SNMPv3 traps                          | This key is created<br>when the crypto<br>officer creates trap<br>listeners                | NVRAM<br>(plaintext) | Zeroized by<br>overwriting<br>with new<br>password or<br>deleting the<br>listener |
| Authenticati<br>on Key                             | HMAC-<br>SHA-1    | 16 bytes                                     | This is the SNMPv3<br>USM authentication<br>key                              | This key is<br>automatically<br>created when a<br>user or v3 trap<br>listener is created   | NVRAM<br>(plaintext) | Zeroized by<br>overwriting<br>with new<br>password or<br>deleting the<br>user     |
| Privacy<br>Key                                     | AES               | 16 bytes                                     | This is the SNMPv3<br>USM encryption key                                     | This key is<br>automatically<br>created when a<br>user or v3 trap<br>listener is created   | NVRAM<br>(plaintext) | Zeroized by<br>overwriting<br>with new<br>password or<br>deleting the<br>user     |
| SSH <sup>Note 2</sup>                              | •                 |                                              |                                                                              |                                                                                            |                      |                                                                                   |
| SSH RSA<br>public key                              | RSA               | 2048-bits                                    | This is the SSH<br>RSA host key                                              | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system | NVRAM<br>(plaintext) | # factory-<br>reset                                                               |
| SSH RSA<br>private key                             | RSA               | 2048-bits                                    | This is the SSH<br>RSA host key                                              | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system | NVRAM<br>(plaintext) | # factory-<br>reset                                                               |
| SSH session<br>key                                 | Triple-DES<br>AES | 168 bits<br>128-bits<br>192-bits<br>256-bits | This is the SSH<br>session symmetric<br>key                                  | This key is<br>automatically<br>created during<br>session creation                         | DRAM<br>(plaintext)  | Zeroized<br>when SSH<br>session is<br>terminated                                  |
| SSH session<br>authenticati<br>on key              | HMAC<br>SHA-1     | 96-bits or<br>160-bits                       | This is the SSH<br>session<br>authentication key                             | This key is<br>automatically<br>created during<br>session creation                         | DRAM<br>(plaintext)  | Zeroized<br>when SSH<br>session is<br>terminated                                  |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 20 of 25

| SSH<br>authenticati<br>on keys | RSA,             | 2048 bits,<br>4096 bits | Allowed SSH public keys                                                                                                                                                                                                 | The crypto officer<br>adds/removes<br>entries                                                                                                                                          | NVRAM<br>(plaintext) | # factory-<br>reset                              |  |  |
|--------------------------------|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|--|--|
| TLS <sup>2</sup>               |                  |                         | •                                                                                                                                                                                                                       | •                                                                                                                                                                                      |                      |                                                  |  |  |
| TLS CA<br>public key           | RSA              | 2048-bits               | The internal CA<br>certificate used to<br>self-sign the<br>generated TLS<br>server certificate                                                                                                                          | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system                                                                                             | NVRAM<br>(plaintext) | # factory-<br>reset                              |  |  |
| TLS CA<br>private key          | RSA              | 2048-bits               | The CA certificate<br>private key                                                                                                                                                                                       | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system                                                                                             | NVRAM<br>(plaintext) | # factory-<br>reset                              |  |  |
| TLS Server<br>public key       | RSA              | 2048-bits               | Identity certificate<br>for module itself and<br>also used in TLS<br>negotiations. This<br>certificate is self-<br>signed on a default<br>system, but can later<br>be replaced by a<br>signed CSR by an<br>external CA. | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system<br>OR loaded by the<br>Crypto Officer as a<br>part of server<br>certificate<br>installation | NVRAM<br>(PEM)       | # factory-<br>reset                              |  |  |
| TLS Server<br>private key      | RSA              | 2048-bits               | The TLS Server<br>private key                                                                                                                                                                                           | This key is<br>automatically<br>created during<br>startup of a factory<br>defaulted system<br>OR as a part of<br>Certificate Signing<br>Request                                        | NVRAM<br>(PEM)       | # factory-<br>reset                              |  |  |
| TLS<br>premaster<br>secret     | Shared<br>Secret | 384-bits                | Shared secret<br>created using<br>asymmetric<br>cryptography from<br>which new HTTPS<br>session keys can be<br>created                                                                                                  | This key is<br>automatically<br>created during<br>session creation                                                                                                                     | DRAM<br>(plaintext)  | Zeroized<br>when TLS<br>session is<br>terminated |  |  |
| TLS Master<br>Secret           | Shared<br>Secret | 384-bits                | Shared secret<br>created using<br>asymmetric<br>cryptography from<br>which new HTTPS<br>session keys can be<br>created                                                                                                  | This key is<br>automatically<br>created during<br>session creation                                                                                                                     | DRAM<br>(plaintext   | Zeroized<br>when TLS<br>session is<br>terminated |  |  |

Non-proprietary security policy. This document may be freely distributed in its entirety without modification. Page 21 of 25

| TLS session<br>key              | Triple-DES<br>AES | 168 bits<br>128-bits<br>192-bits<br>256-bits | This is the TLS<br>session key                                               | This key is<br>automatically<br>created during<br>session creation                                                                     | DRAM<br>(plaintext) | Zeroized<br>when TLS<br>session is<br>terminated |  |
|---------------------------------|-------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|--|
| X.509 Trust<br>Points           | RSA               | 2048-bits                                    | Manually loaded<br>X.509 certificates<br>used in path<br>validation          | Trust points are<br>installed/removed<br>by the crypto-<br>officer. Used by<br>two-factor<br>authentication.                           | NVRAM<br>(DER)      | # factory-<br>reset                              |  |
| X.509<br>CRLs                   | SHA-256,<br>RSA   | 2048-bits                                    | Digitally signed<br>CRLs used in x.509<br>path validation                    | CRLs are<br>installed/removed<br>by the crypto-<br>officer. Used by<br>two-factor<br>authentication.                                   | NVRAM<br>(DER)      | # factory-<br>reset                              |  |
| X.509<br>Cached<br>Certificates | RSA               | 2048-bits                                    | Automatically<br>downloaded X.509<br>certificates used in<br>path validation | Certificates are<br>cached<br>automatically via<br>HTTP or LDAP<br>from external<br>servers as client<br>certificates are<br>validated | DRAM<br>(PEM)       | # factory-<br>reset                              |  |
| X.509<br>Cached<br>CRLs         | SHA-256,<br>RSA   | 2048-bits                                    | Digitally signed<br>CRLs used in x.509<br>path validation                    | CRLs are cached<br>automatically via<br>HTTP or LDAP<br>from external<br>servers as client<br>certificates are<br>validated            | DRAM<br>(DER)       | # factory-<br>reset                              |  |

#### Table 10 Key, CSPs and SRDIs

Note 1 - The Trap Listener password must be at least 8 characters to comply with FIPS. Note 2 - SSH, TLS and SNMP protocols and KDFs are allowed to be used in FIPS Approved mode, but are non-compliant.

### 7.2. Access Control Policy

The terminal allows controlled access to the SRDIs contained within it. The following table defines the access that an operator or application has to each SRDI while operating the module in a given role performing a specific service (command). The permissions are categorized as a set of four separate permissions: read, write, execute, delete. If no permission is listed, then an operator outside the module has no access to the SRDI.

| Module<br>SRDI/Role/Service Access Policy | Security Relevant Data Item | User Password | Secure Server Password | Security Log Pass Phrase | RNG Seed, RNG Seed Key | DH private exponent, DH Shared | Database AES Key | Package Public Key, Package Pass | Trap Listener Password | SNMPv3 Auth Key, Priv Key | SSH RSA private key, DSA private | SSH session key, session auth key | TLS CA public key, private key | TLS Server public key, private key | TLS premaster secret, session key |
|-------------------------------------------|-----------------------------|---------------|------------------------|--------------------------|------------------------|--------------------------------|------------------|----------------------------------|------------------------|---------------------------|----------------------------------|-----------------------------------|--------------------------------|------------------------------------|-----------------------------------|
| Role/Service                              |                             |               |                        |                          |                        |                                |                  |                                  |                        |                           |                                  |                                   |                                |                                    |                                   |
| Unauthenticated Services                  |                             |               |                        |                          |                        |                                |                  |                                  |                        |                           |                                  |                                   |                                |                                    |                                   |
| Bootloader factory default                |                             | d             | d                      | d                        | d                      | d                              | d                |                                  | d                      | d                         | d                                | d                                 | d                              | d                                  | d                                 |
| Bootloader switch code banks              |                             |               |                        |                          |                        |                                |                  |                                  |                        |                           |                                  |                                   |                                |                                    |                                   |
| Power on/off                              |                             |               |                        |                          | d                      | d                              |                  |                                  |                        |                           |                                  | d                                 |                                |                                    | d                                 |
| User role                                 |                             |               |                        |                          |                        |                                |                  |                                  |                        |                           |                                  |                                   |                                |                                    |                                   |
| Oper Role                                 |                             | W<br>X        |                        |                          | Х                      | х                              |                  |                                  |                        | W                         | х                                | Х                                 |                                | X                                  | Х                                 |
| Config Role                               |                             | W<br>X        | X                      |                          | X                      | X                              |                  |                                  |                        | W                         | X                                | X                                 |                                | X                                  | х                                 |
| Crypto-officer Role                       |                             |               |                        |                          |                        |                                |                  |                                  |                        |                           |                                  |                                   |                                |                                    |                                   |
| Admin Role                                |                             | w<br>x<br>d   | w<br>x<br>d            | W<br>X                   | X                      | X                              | x<br>d           | X                                | w<br>x<br>d            | w<br>x<br>d               | x<br>d                           | X                                 | d                              | X                                  | x                                 |

Table 11 SRDI Access

## 8. Electromagnetic Interface/Electromagnetic Compatibility

The iQ1000 conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (i.e., for business use).

## 9. Self Tests

The module contains the following power up self tests. All of the tests shown in section 9.1 execute at power-up without user input. Failure of any power-up self-test is a system fault and therefore will transition the module into the error state as defined by the FSM.

### 9.1. Power-Up Self Tests

- 1. Cryptographic algorithm test
  - **OpenSSL** provides:
    - AES KAT encrypt

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

Page 23 of 25

- AES KAT decrypt
- Triple-DES KAT encrypt
- Triple-DES KAT decrypt
- DSA pair-wise consistency test (sign/verify)
- RSA KAT sign
- RSA KAT verify
- PRNG KAT
- HMAC-SHA-1 KAT
- HMAC-SHA-224 KAT
- HMAC-SHA-256 KAT
- HMAC-SHA-384 KAT
- HMAC-SHA-512 KAT
- OpenSSL internal integrity HMAC-SHA-1

sshd provides:

- AES-CTR KAT
- 2. Software/firmware integrity test

#### File Integrity Test:

- SHA-256 checksum verification of individual security relevant files.
- 3. Critical functions test-
  - N/A

### 9.2. Conditional Self tests

The module contains the following conditional self tests.

- 1. Pair-wise consistency test (for public and private keys) OpenSSL provides:
  - RSA pair-wise consistency
- 2. Software/firmware load test

#### Software Package Test:

- Signed by RSA 2048 bit private key
- Symmetrically Encrypted with AES-256
- SHA-256 digest

During software download the package is checked against the SHA-256 digest which is also downloaded to the target system. This only serves to confirm uncorrupted download of the package. The package is then unencrypted using symmetrical AES-256 and the password which is already stored on the target. The decrypted package consists of a tarball and the signed SHA-256 of the tarball. The private key used in the signature is of type RSA-2048. If the signed hash cannot be validated (using the locally stored public key), the package will not be installed and the upgrade fails. The status of each step of the upgrade process is displayed on the GUI-interface and is also appended to the system log.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.

Page 24 of 25

- 3. Manual key entry test
  - N/A
- 4. Continuous random number generator test OpenSSL provides:
  - PRNG continuous test
  - Per Implementation Guide section 9.8, continuous test of the NDRNG is not required because its output is only used once after module power-on and not used again until the module is power cycled off.
- 5. Bypass test
  - N/A

### 10. Mitigation of Other Attacks

• N/A