
whiteCryption Secure Key Box 4.6.0
Crypto Module

FIPS 140-2 Level 1 Security Policy

Document version: 1.2

Last updated: 2014.11.06

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 2 of 28
© 2014, Intertrust Technologies Corporation.

Copyright Notice

© 2014, whiteCryption Corporation.

© 2014, Intertrust Technologies Corporation.

This non-proprietary document may be freely reproduced and distributed whole and intact including
this Copyright Notice.

Revision History

Authors Date Version Comment

Kristaps Straupe September 4, 2012 0.5 Initial draft

Kristaps Straupe January 16, 2013 0.6 Updates according to design

Juris Olekss January 23, 2013 0.7 Formatting and spell-checking

Kristaps Straupe February 11, 2013 0.8 Various updates and clarification

Juris Olekss February 15, 2013 0.9 Formatting and spell-checking.

Added page numbers.

SKB version changed to 4.6.0.

Kristaps Straupe July 26, 2013 1.0 Final updates

Kristaps Straupe August 12, 2014 1.1 Updates per CMVP comments

Kristaps Straupe November 6, 2014 1.2 Updates per CMVP comments

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 3 of 28
© 2014, Intertrust Technologies Corporation.

Table of Contents
1 Introduction ... 4

1.1 About FIPS 140-2 ... 4

1.2 About Secure Key Box ... 4

2 Module Specification .. 5

2.1 Tested Configurations ... 6

2.2 Cryptographic Functionality and Approved Mode of Operation .. 6

3 Ports and Interfaces ... 10

4 Roles and Services .. 11

5 Operational Environment .. 14

6 Cryptographic Key Management .. 15

7 Self-Tests .. 17

8 Design Assurance .. 19

9 Mitigation of Other Attacks.. 20

Appendix A – Module Integrity .. 21

Appendix B – Source Entropy Input for the SKB Module .. 22

Appendix C – HASH_DRBG Specification .. 23

Appendix D – Service to Module API Mapping When Performing Services in Approved Mode 24

Glossary .. 27

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 4 of 28
© 2014, Intertrust Technologies Corporation.

1 Introduction

This document comprises the non-proprietary FIPS 140-2 Security Policy for the whiteCryption Secure
Key Box Crypto Module version 4.6.0.

1.1 About FIPS 140-2
FIPS 140-2 (Federal Information Processing Standards Publication 140-2 – Security Requirements for
Cryptographic Modules) details the U.S. and Canadian Government requirements for cryptographic
modules. More information about the FIPS 140-2 standard and validation program is available on the
Cryptographic Module Validation Program (CMVP) website, which is maintained by National Institute
of Standards and Technology (NIST) and Communication Security Establishment Canada (CSEC):
http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About Secure Key Box
Secure Key Box (SKB) is a C/C++ library that provides an extensive set of high-level classes and
methods for working with the most popular cryptographic algorithms.

SKB exposes a comprehensive interface that provides access to a set of cryptographic algorithms. An
application that is integrated with SKB executes the cryptographic algorithms via the SKB API.

SKB overview

Because of the library’s robust design, systems integrated with SKB can be safely deployed in
insecure environments, such as mobile devices, tablets, and desktop computers, where anyone could
have access to the program code and device memory.

In this document, whiteCryption Secure Key Box is referred to as SKB, the library, or the Module.

SKB Crypto Module
Logical Boundary

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 5 of 28
© 2014, Intertrust Technologies Corporation.

2 Module Specification

The Module is a software library providing a C-language application program interface (API) for use by
other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a
software module, multi-chip standalone module embodiment. The physical cryptographic boundary is
the general purpose computer on which the Module is installed. The logical boundary of the
cryptographic Module is the single shared object (SO). The Module performs no communications other
than with the calling application (the process that invokes the Module services).

System diagram

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 6 of 28
© 2014, Intertrust Technologies Corporation.

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks N/A

Table 1 – Security level of security requirements

The Module’s software version for this validation is 4.6.0.

2.1 Tested Configurations

Operational Environment Processor Optimizations (Target)

Android 4.2.2 Qualcomm Snapdragon S4 (ARMv7) None

Table 2 – Tested platforms

2.2 Cryptographic Functionality and Approved Mode of Operation
The Module supports FIPS 140-2 approved mode. Tables 3a and 3b list the approved and non-
approved but allowed algorithms contained within the Module.

Function Algorithm Options Cert #

Random number
generation

[SP 800-90]
DRBG

Hash_DRBG using SHA-256 at highest security
strength (256 bit) and prediction resistance not
supported

335

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 7 of 28
© 2014, Intertrust Technologies Corporation.

Function Algorithm Options Cert #

Symmetric cipher [FIPS 197] AES 128/192/256 ECB, CBC, CTR 2451, 2452,
2453, 2454,
2455, 2456,
2457, 2458,
2459, 2460,
2461, 2462,
2463, 2464,
2465, 2466,

2467

Message
authentication code

[FIPS 198]
HMAC

HMAC-SHA-1,

HMAC-SHA-256

1516,

1517

[SP 800-38B]
CMAC

CMAC 128
AES 2470, 2471

Hashing [FIPS 180-3]
SHA

SHA-1
SHA-2: SHA-256, SHA-384

2084, 2085,
2086, 2087,
2088, 2089,

2090

Digital signature and
asymmetric key
generation

[FIPS 186-3]
ECDSA

Key pair: P-224, P-256

SigGen: P-224 (SHA-256), P-256 (SHA-256

403

Key pair: P-384, P-521

SigGen: P-384 (SHA-256), P-521 (SHA-256)

404

ECDSA SigGen component: P-224 (SHA-256,
SHA-384), P-256 (SHA-256, SHA-384)

CVL 83

ECDSA SigGen component: P-384 (SHA-256,
SHA-384), P-521 (SHA-256, SHA-384)

CVL 84

[FIPS 186-3]
RSA

SigGenPKCS #1 v1.5 and SigGenPSS 2048
with SHA-256

RSASP1 PKCS #1 v1.5 SigGenComponent
2048 with SHA-256

1263

CVL 94

Key derivation [SP 800-108]
KDF

KDF in Counter Mode using CMAC AES-128 KBKDF 11

and

AES 2471

EC Diffie-Hellman
key agreement
primitive

[SP 800-56A]
(§5.7.1.2)

Ephemeral unified ECC CDH primitive on all
NIST defined P curves; P-224, P-256

CVL 79

Ephemeral unified ECC CDH primitive; P-384,
P-521

CVL 80

Table 3a – FIPS approved cryptographic functions

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 8 of 28
© 2014, Intertrust Technologies Corporation.

Function Algorithm Description

Key unwrap AES Key unwrap using AES 128, 192 or 256 (Certs. #2464 and #2465). No
CSPs are established into or exported out of the Module. This is only
used for system level key establishment, which is beyond the scope of
this module.

When used for system level key establishment, this service provides
between 128 and 256 bits of security.

RSA primitives and
operations

RSA The RSA (OAEP) 2048 decrypt operation and RSADP 2048 primitive.
No CSPs are established into or exported out of the Module. This is
only used for system level key establishment, which is beyond the
scope of this module.

When used for system level key establishment, this service provides
112 bits of security.

Table 3b – Non-FIPS approved but allowed cryptographic functions

Table 3c lists the algorithms/options that are Disallowed as of January 1, 2014 per the NIST SP 800-
131A algorithm transitions. Algorithms providing less than 112 bits of security strength are not allowed
in the FIPS Approved mode of operation for use by Federal agencies.

Function Algorithm Options Cert #

Digital signature and
asymmetric key
generation

[FIPS 186-3]
ECDSA

Key pair: P-192

SigGen: P-192 (SHA-1, 256), P-224 (SHA-1), P-
256 (SHA-1)

403

SigGen: P-384 (SHA-1), P-521 (SHA-1) 404

ECDSA SigGen component: P-192, P-224 (SHA-
1), P-256 (SHA-1)

CVL 83

ECDSA SigGen component: P-384 (SHA-1), P-
521 (SHA-1)

CVL 84

[FIPS 186-3]
RSA

SigGenPKCS #1 v1.5 and SigGenPSS 1024
(SHA-1, SHA-256)

1262

SigGenPKCS #1 v1.5 and SigGenPSS 2048
(SHA-1)

1263

RSASP1 PKCS #1 v1.5 SigGenComponent 2048
(SHA-1)

CVL 94

EC Diffie-Hellman
key agreement
primitive

[SP 800-56A]
(§5.7.1.2)

Ephemeral unified ECC CDH primitive; P-192 CVL 79

RSA primitives and
operations

RSA The RSA (OAEP) 1024 decrypt operation and
RSADP 1024 primitive. No CSPs are established
into or exported out of the Module.

N/A

Table 3c – Cryptographic Functions Disallowed (as of 1/01/2014) per NIST 800-131A Transitions

The Module does not provide full EC Diffie-Hellman key agreement scheme, only the primitive.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 9 of 28
© 2014, Intertrust Technologies Corporation.

The following non-FIPS Approved and not allowed algorithms are included in the Module:

 ECDSA Key Pair and SigGen with SHA-1 and SHA-256 using SECG, secp160r1 curve

 PKCS #1 v1.5 RSA 1024 decryption operation

 PKCS #1 v1.5 RSA 2048 decryption operation

 RSASP1 PKCS #1 v1.5 SigGenComponent non-compliant mod length 1024

These non-approved and not allowed cryptographic algorithms shall not be used while operating the
Module in the FIPS approved mode.

The Module operates in FIPS 140-2 Approved mode of operation as long as only the services using
approved and allowed algorithms are used.

When the Module library is loaded into memory an integrity check along with power-up self-tests is
performed. If any of these fail, the Module will enter a fail state and an error code will be returned
resulting in no cryptographic services available. The Module is a cryptographic engine library, which
can be used only in conjunction with additional software.

Aside from the use of the NIST-defined elliptic P curves as trusted third party domain parameters, all
other FIPS 186-3 and SP 800-56A assurances are outside the scope of the Module, and are the
responsibility of the calling process.

The algorithm selection in Module services is achieved by passing a specific enum value in the service
call. For enum values corresponding to approved and allowed algorithms please refer to Appendix D.

Rules of operation enforced by the cryptographic Module to implement the security requirements of
this FIPS 140-2 Level 1 Module are as follows:

 The operating system shall be restricted to a single operator mode of operation (i.e.,
concurrent operators are explicitly excluded).

 The Module shall be operated in single user/operator mode. The external application that
makes calls to the cryptographic Module is the single user of the cryptographic Module, even
when the application is serving multiple clients (IG 6.1).

 The unauthorized reading, writing, or modification of the address space of the Module is
prohibited.

 The referencing application accessing the Module runs in a separate virtual address space
with a separate copy of the executable code.

 The operating system is responsible for multi-tasking operations so that other processes
cannot access the address space of the process containing the Module.

 The operator (calling application) shall use appropriate entropy sources (entropy source
callback in the Module) for generating the seeding material for the FIPS-approved DRBG of the
Module. The entropy in the seeding material input to the Module must be at least as much as
the security strength of the Modules employed DRBG (256 bits).

 Operator (calling application) shall only use algorithms, key sizes, and elliptic curves outlined in
Tables 3a and 3b.

 Operator (calling application) shall use the zeroization services provided by the Module on
keys or service contexts no longer needed by the operator.

 The operator (calling application) shall operate the Module only through services and API calls
and parameters listed in Table 10 in Appendix D.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 10 of 28
© 2014, Intertrust Technologies Corporation.

3 Ports and Interfaces

The Module uses the same physical ports as the computer system on which it is executing.

The logical interface is a C-language API.

Logical Interface Type Description

Control input API entry point and corresponding stack parameters

Data input API entry point data input stack parameters

Status output API entry point return values and status stack parameters

Data output API entry point data output stack parameters

Table 4 – Logical interfaces

As a software module, control of the physical ports is outside of the Module scope. However, when the
Module is performing self-tests, or is in an error state, all output on the logical data output interface is
inhibited. The Module is single-threaded and in error scenarios returns only an error value (no data
output is returned).

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 11 of 28
© 2014, Intertrust Technologies Corporation.

4 Roles and Services

The roles of the Crypto Officer or User role are assumed implicitly when installing or operating the
services of the Module. The Module does not support any kind of authentication. The Module is not
allowed to be used with concurrent operators. The Module does not provide identification or
authentication mechanisms that would distinguish between the two supported roles.

The Crypto Officer role can also install, remove, or instantiate the Module.

All services implemented by the Module (and accessible to both roles) are listed below, along with a
description of service CSP access – read (R) the CSP, or write (W) the CSP.

** It is the responsibility of the module operator to ensure that algorithms, modes, and key sizes
Disallowed per the NIST SP 800-131A algorithm transitions are not used.

A
p

p
ro

ve
d

M

o
d

e

N
o

n
-

A
p

p
ro

ve
d

M

o
d

e

Service Impact of SP 800-
131A Transitions
(Disallowed Options
in RED)**

Description Input Output CSP and Access
Operation

X Instantiate N/A Instantiates the
Module engine

None Engine
instance,
Status

Seed (W, R)
DRBG state (W)

Table 5a – Crypto Officer Services and CSP access

A
p

p
ro

ve
d

M

o
d

e

N
o

n
-

A
p

p
ro

ve
d

M

o
d

e

Service Impact of SP 800-
131A Transitions
(Disallowed Options
in RED)**

Description Input Output CSP and Access
Operation

X Check Integrity N/A Checks the integrity
of the Module using
the SHA-256 digest
of the Module in
memory against the
embedded known
MAC value, sets the
Module error status
on mismatch

None Status None

X Execute Self-
Test

N/A Runs the power-up
tests of the Module
including KAT and
sign/verify where
applicable, updates
the Module error
status on failure

None Status None

X Get Error
Status

N/A Gets the error status
indicating the state
of the Module –
operational or in fail
state

None Status None

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 12 of 28
© 2014, Intertrust Technologies Corporation.

A
p

p
ro

ve
d

M

o
d

e

N
o

n
-

A
p

p
ro

ve
d

M

o
d

e

Service Impact of SP 800-
131A Transitions
(Disallowed Options
in RED)**

Description Input Output CSP and Access
Operation

X AES Encrypt/
Decrypt

N/A Encrypt/decrypt
plaintext/ciphertext

Parameters,
AES key,
plaintext/
ciphertext

Status,
ciphertext/
plaintext

AES Key (R)

 X RSA-OAEP
Decrypt

RSA key size:
1024-bit;
2048-bit (SHA-1)

Decrypt ciphertext Parameters,
RSA private
key, ciphertext

Status,
keying
material

RSA private key (R)

X RSA key size:
2048-bit (SHA-2)

X Secure
Hashing

N/A Hash data Parameters,
Data

Status,
digest

None

 X RSA Signature
Generation

RSA key size:
1024-bit;
2048-bit (SHA-1)

Signature generation
and/or Signature
primitive only (steps
3 to 6 of PKCS #1
v1.5 encoding
included)

 Parameters,
RSA private
key, data

Status,
signature

RSA private key (R)
If generating RSA
PSS signature:
Seed (R)*
DRBG state (R, W)

X RSA key size:
2048-bit (SHA-2)

 X ECDSA
Signature
Generation

ECDSA key size:
P-192;
P-224, P-256, P-384,
P-521 (SHA-1)

Signature generation
and/or Signature
primitive only

Parameters,
ECDSA private
key, data

Status,
signature

ECDSA private key
(R)
Seed (R)*
DRBG state (R, W)

X ECDSA key size:
P-224, P-256,
P-384, P-521 (SHA-2)

X HMAC N/A Generate (or verify)
MAC using HMAC

Parameters,
HMAC key,
data/signature

Status,
MAC/
verification
result

HMAC Key (R)

X CMAC N/A Generate (or verify)
MAC using CMAC

Parameters,
AES key,
data/signature

Status,
MAC/
verification
result

AES Key (R)

X Random Byte
Generation

N/A Generate random
value which can be
used for system
level AES/HMAC
keys

Parameters Status, AES
or HMAC
key

AES Key (W) or
HMAC Key (W)
Seed (R)*
DRBG state (R, W)

 X Compute
ECDH Key
Agreement
Shared Secret

ECDH:
P-192

Elliptic Curve Diffie-
Hellman key
agreement shared
secret computation

Parameters,
ECDH private
component and
public key

Status,
shared
secret

ECDH Private
component (R)
ECDH Public key
(R)

X ECDH:
P-224, P-256,
P-384, P-521

 X Generation of
ECDSA key
pair

ECDSA key size:
P-192;
P-224, P-256,
P-384, P-521 (SHA-1)

Generate an ECDSA
key pair

Parameters Status,
ECDSA
private key
and public

ECDSA private key
(W)
ECDSA public key
(W)

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 13 of 28
© 2014, Intertrust Technologies Corporation.

A
p

p
ro

ve
d

M

o
d

e

N
o

n
-

A
p

p
ro

ve
d

M

o
d

e

Service Impact of SP 800-
131A Transitions
(Disallowed Options
in RED)**

Description Input Output CSP and Access
Operation

X ECDSA key size:
P-224, P-256,
P-384, P-521 (SHA-2)

key Seed (R)*
DRBG state (R, W)

X Key Derivation N/A SP 800-108 key
derivation function in
counter mode using
CMAC

Parameters,
AES key (KDK),
data (label,
context)

Status,
keying
material

AES KDK (R)
AES Key (W) or
HMAC Key (W)

X Key Unwrap N/A AES Key Wrap
algorithm

Parameters,
AES key (KEK),
wrapped AES
key

Status, AES
key

AES KEK (R)
AES Key (W) or
HMAC Key (W)

X Import N/A Converts an
exported key (from a
pre- formatted byte
buffer) to
appropriate Module
key type object for
use in Module
services. Key is
loaded from inside
the physical
boundary of the
GPC.

Key (byte
buffer)

Status, Key AES Key (W) or
HMAC Key (W) or
RSA private key (W)
or
ECDSA private
key(W)

X Export N/A Converts the key
from a Module key
type object to a pre-
formatted byte buffer
(within the physical
boundary of the
GPC)

Parameters,
key

Status, key
(byte buffer)

AES Key (R) or
HMAC Key (R) or
RSA private key (R)
or
ECDSA private key
(R)

X Key/service
context
zeroization

N/A Zeroizes and
deallocates the
memory containing a
symmetric key,
asymmetric private
key, DRBG state

Memory
address

Status All CSPs (W)

* only if periodic DRBG re-seed happens

Table 5b – User Services and CSP access

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 14 of 28
© 2014, Intertrust Technologies Corporation.

5 Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the Module
operates in a modifiable operational environment.

Operational testing of the Module was performed on the following environment:

 Android 4.2.2 (single-user mode)

The Module is considered to be FIPS 140-2 compliant when running on other binary compatible
operating environments/hardware provided that rules described in “Cryptographic Functionality and
Approved Mode of Operation” are met.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 15 of 28
© 2014, Intertrust Technologies Corporation.

6 Cryptographic Key Management

The Module supports the following critical security parameters in tables below. It should be noted that
the Module key paths are interpreted as being the input and output via “INT” paths as defined in IG
7.7. Therefore, key establishment mechanism is not applicable for this particular Module since all input
and output is occurring within the physical boundary of the GPC.

All CSPs used by the Module are described in this section. All access to these CSPs by Module
services are described in Table 5.

** It is the responsibility of the module operator to ensure that algorithms, modes, and key sizes
Disallowed per the NIST SP 800-131A algorithm transitions are not used.

A
p

p
ro

ve
d

 M
o

d
e

N
o

n
-A

p
p

ro
ve

d

M
o

d
e

Key Impact of SP 800-
131A Transitions
(Disallowed
Options in RED)**

Description/
Purpose

Generation Destruction

 X RSA keys 1024-bit;
2048-bit (SHA-1)

Used to create RSA
digital signatures and to
decrypt (OAEP) keys

Externally An application program
which uses the API may
destroy the key. The
key/context destruction
service zeroizes this CSP.

X 2048-bit (SHA-2)

 X ECDSA
private keys

P-192;
P-224, P-256, P-384,
P-521 (SHA-1)

Used to create ECDSA
digital signatures

May be generated
internally by ECDSA
key pair generation
service or generated
externally

An application program
which uses the API may
destroy the key. The key
destruction service
zeroizes this CSP. X P-224, P-256, P-384,

P-521 (SHA-2)

 X ECDH private
components

P-192 Used to derive the
shared secret during
ECDH key agreement
protocol

May be generated
internally (by underlying
ECDSA key pair
generation service) or
externally

An application program
which uses the API may
destroy the key. The
ECDH context destruction
service zeroizes this CSP.

X P-224, P-256,
P-384, P-521

X AES keys N/A Used during AES
encryption, decryption,
CMAC operations, or
as KDK/KEK for
KDF/Wrapping

May be generated
internally (by random
byte generation
service), derived/
unwrapped or
generated externally

An application program
which uses the API may
destroy the key. The
key/context destruction
service zeroizes this CSP.

X HMAC keys N/A Used during HMAC
SHA-1/256 operations

May be generated
internally (by random
byte generation
service), derived/
unwrapped or
generated externally

An application program
which uses the API may
destroy the key. The
key/context destruction
service zeroizes this CSP.

X DRBG seed N/A Used to seed the
DRBG for random
value generation

Generated internally
through supplied SEI
source

Automatically after use

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 16 of 28
© 2014, Intertrust Technologies Corporation.

A
p

p
ro

ve
d

 M
o

d
e

N
o

n
-A

p
p

ro
ve

d

M
o

d
e

Key Impact of SP 800-
131A Transitions
(Disallowed
Options in RED)**

Description/
Purpose

Generation Destruction

X DRBG 'V' and
'C' values

N/A Used in HASH_DRBG
state

Internally An application program
which uses the API may
destroy the DRBG state.
The internal DRBG state
used for key generation
services is zeroized upon
Module engine
destruction.

Table 6a – Critical Security Parameters

Module integrity data is loaded into the Module during the Module build process and otherwise cannot
be accessed.

The Module does not output intermediate key generation values.

Key Description/Purpose Generation

DH public components Used to derive the shared secret during ECDH
key agreement protocol

Internally using ECDSA key pair generation
service or externally

ECDSA public keys Public component of ECDSA key pair Internally using ECDSA key pair generation
service

Table 6b – Public keys

For all CSPs and public keys:

 Storage: RAM, associated to entities by memory location. The Module does not store any
CSPs persistently.

 Generation: The Module implements SP 800-90 compliant DRBG algorithm used by services
for creation of AES/HMAC keys, and elliptic curve as shown in Tables 6a and 6b.

 Entry and output: The cryptographic Module itself does not support key entry or key output
from its physical boundary. CSPs enter the Module’s logical boundary in plaintext as API
parameters, associated by memory location. The Module does not output CSPs other than as
explicit results of key generation services. The calling application using the Module is
responsible for ensuring that the input or output of secret and private keys is accomplished in
encrypted form.

 Destruction: Zeroization of sensitive data is performed automatically by API function calls for
temporarily stored CSPs. The calling application is responsible for keys passed in and out of
the Module as well as the employed Module service contexts which might store CSPs (such as
expanded keys). The Module provides services for destruction of keys and service contexts
which store the CSPs. The Module offers zeroization of these CSPs through API functions
SKB_FIPS_SecureData_Release – for key destruction, SKB_FIPS_Cipher_Release,
SKB_FIPS_Transform_Release, SKB_FIPS_KeyAgreement_Release – for service context
destruction as well as SKB_FIPS_Engine_Release for Module employed DRBG CSPs
destruction.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 17 of 28
© 2014, Intertrust Technologies Corporation.

7 Self-Tests

The Module performs the self-tests listed below on Module library load (in Default Entry Point) or when
self-test function is manually invoked during operation.

Algorithm Type Test Attributes

Software integrity KAT HMAC-SHA-256

AES KAT Separate encrypt and decrypt for each ECB, CBC, CTR mode
and 128, 192, 256 bit key length combination on all supported
algorithm implementations

SHS KAT SHA-1, SHA-256, and SHA-384

HMAC KAT MAC and verify with SHA-1 and SHA-256

AES CMAC KAT Sign and verify, 128 bit key length

RSA KAT Signature generation PKCS #1 v1.5 1024 and 2048 bit mod
length and SHA-256.

KAT Decrypt OAEP with 1024 and 2048 bit mod length

ECDSA PCT Signature generation P-256 and P-384 curve bit length with SHA-
256

DRBG KAT HASH_DRBG using SHA-256

ECC CDH KAT P-256 and P-384 curve bit length primitive “Z” computation KAT
(SP 800-56A §5.7.1.2)

KDF KAT KDF in counter mode (SP 800-108)

KW-AD(C) KAT Key unwrap using AES

Table 7 – Power-on self-tests (KAT = known answer test; PCT = pairwise consistency test)

When Module library is being loaded in memory by a calling application, a run-time integrity check and
all power-up self-tests listed above are performed returning a result value indicating success or failure.
The power-up self-tests may also be performed on-demand by calling SKB_FIPS_ExecuteSelfTests.
The same is true for integrity checking function SKB_FIPS_ExecuteIntegrityCheck. Interpretation of
the return value is the responsibility of the calling application. If the integrity check or any component
of the self-test fails an internal flag is set to prevent subsequent invocation of any cryptographic
function calls.

The Module also implements the following conditional tests:

Algorithm Test

ECDSA key
generation

Pairwise consistency test on each generation of a key pair (sign with private part, verify
with public part)

DRBG Health tests as required by [SP800-90] Section 11 (refer to Appendix C for more
information)

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 18 of 28
© 2014, Intertrust Technologies Corporation.

Algorithm Test

DRBG DRBG FIPS 140-2 continuous test for stuck fault

Table 8 – Conditional tests

If the pairwise consistency test fails, the Module enters a fail state to prevent subsequent invocation of
any cryptographic function calls.

In case a health test failure occurs in the Module engine's internal DRBG used by the key generation
service and other services the Module will enter a fail state and deny any further operation.

Once the Module is in a fail state, a successful reloading of the Module's library is required to continue
operation.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 19 of 28
© 2014, Intertrust Technologies Corporation.

8 Design Assurance

Subversion (SVN), Jenkins, and whiteCryption proprietary extensive SKB test suite and release scripts
are used to provide testing and configuration management for the Module and related documentation.
These solutions provide access control, versioning, testing, and logging.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 20 of 28
© 2014, Intertrust Technologies Corporation.

9 Mitigation of Other Attacks

The Module does not claim any attack mitigation beyond FIPS 140-2 Level 1 requirements.

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 21 of 28
© 2014, Intertrust Technologies Corporation.

Appendix A – Module Integrity

The Secure Key Box shared library file is protected by a HMAC-SHA-256 MAC. The MAC value is pre-
calculated and embedded in the delivered Module object. This value is calculated on the code (.text)
and constant/read-only data (.rdata) sections. The value is stored in a specifically marked place in the
constant data section of the Module. This place is not included in the message input for the digest
algorithm, thus it does not influence the digest value. At run-time, the integrity validation check is
executed once the Module library is being loaded into memory. The integrity check performs HMAC-
SHA-256 on .text and .rdata sections of the Module in volatile memory and compares it to the
embedded value. If the integrity check fails, further operations of services in the Module are denied.
This check can also be initiated at any time during the operation of the Module by calling the integrity
checking API method directly. By doing so, the Operator of the Module can reassure from time to time
that the Module in memory has not been altered.

To assure the authenticity of the distributed module, compute and compare SHA-256 digest of the
Modules file (libSkbFips.so) against this provided value:

 AD8D2A5B1A8A3E188FC5B49D541C8292EC489586B8C4D5854D25D1EFB09F6C12

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 22 of 28
© 2014, Intertrust Technologies Corporation.

Appendix B – Source Entropy Input for the SKB Module

As the Module implements various algorithms that use underlying DRBG mechanism, a SEI has to be
made available for the Module operation. The Module has a callback function for SEI that needs to be
initialized before operation. The callback function's signature is as follows:

SKB_Result ApplicationEntropySource(SKB_Byte* buffer, SKB_Size count)

The first parameter is a byte buffer in which to store the entropy input. The second argument is the
byte count of the requested entropy input.

The return value specifies if the callback was successful and shall return SKB_SUCCESS in case of
normal operation. If an error is encountered, for instance the entropy of 256 bits cannot be achieved,
the return value shall be SKB_FAILURE. The Module will enter error state if the callback is
unsuccessful.

The entropy source callback will be used only for instantiating and re-seeding the Module's internal
SHA-256 HASH_DRBG.

The SKB API call to set the callback function is as follows:

SKB_FIPS_SetEntropySource(ApplicationEntropySource)

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 23 of 28
© 2014, Intertrust Technologies Corporation.

Appendix C – HASH_DRBG Specification

The Module implements SHA-256 hash DRBG compliant to SP800-90A publication. The DRBG
supports only maximum 256 bit security strength and has no prediction resistance capability. The
source of entropy input for the DRBG is completely under application control and the callback for
entropy source has to be set beforehand to make the operation of DRBG possible (see Appendix B).

DRBG Health Testing

Implementation health testing is performed for the following DRBG functions:

 instantiate

 re-seed

 generate

Health testing checks if the expected error codes are returned in response to invalid parameters or
context, and verifies that the DRBG KATs pass. Health testing is done before the actual function is
performed. If any health check fails, the given DRBG context (on which the call to DRBG service was
made) is placed in an error state and no further operations can be performed on that DRBG instance
until it has been re-instantiated.

The instantiate function health test is initiated on each instantiation and performs the following checks:

 Instantiate with invalid parameters (null context, already instantiated context, context is in error
state, invalid nonce/personalization string)

 Instantiate with entropy source failure (when entropy source does not return SKB_SUCCESS
because of insufficient entropy)

 Instantiate KAT test variants of nonce/personalization string passed/omitted

The re-seed function health test is initiated on each re-seeding (whether explicit or within the
automatic re-seed inside the generate function) and performs the following checks:

 Re-seed with invalid parameters (null context, uninstantiated context, context in error state)

 Re-seed with entropy source failure (when entropy source does not return SKB_SUCCESS
because of insufficient entropy)

 Instantiate then re-seed KAT test

The generate function health test is initiated on the first run of generate for given DRBG context and
on each subsequent 224 generation. The check interval can be adjusted via a function call. The health
checks performed in the generate function are as follows:

 Generate with invalid parameters (null context, non-instantiated context, context in error state,
null buffer for output requested bytes, requested byte count too large)

 Instantiate then generate KAT test

 Instantiate then generate with triggered re-seed KAT test

 Instantiate then generate, and then again generate a stuck fault test

The uninstantiate function health test is performed whenever the other DRBG health tests execute.
The uninstantiate function's health test checks include:

 Uninstantiate with invalid (null) context

 Check that the CSPs (V and C) have been zeroized after the uninstantiate call

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 24 of 28
© 2014, Intertrust Technologies Corporation.

Appendix D – Service to Module API Mapping When
Performing Services in Approved Mode

The following table maps the Module services to actual Module API functions and enumeration values
used to select the algorithms. When operating the Module in FIPS approved mode, the Module user
shall use only the functions and enumerations found in this table.

Service API Function API Enumeration Value

Initialize SKB_FIPS_GetInstance

Check
integrity

SKB_FIPS_ExecuteIntegrityCheck

Execute self-
tests

SKB_FIPS_ExecuteSelfTests

Get error
status

SKB_FIPS_GetErrorStatus

AES encrypt/
decrypt

SKB_FIPS_Engine_CreateCipher

SKB_FIPS_Cipher_ProcessBuffer

SKB_CIPHER_ALGORITHM_AES_128_ECB

SKB_CIPHER_ALGORITHM_AES_192_ECB

SKB_CIPHER_ALGORITHM_AES_256_ECB

SKB_CIPHER_ALGORITHM_AES_128_CBC

SKB_CIPHER_ALGORITHM_AES_192_CBC

SKB_CIPHER_ALGORITHM_AES_256_CBC

SKB_CIPHER_ALGORITHM_AES_128_CTR

SKB_CIPHER_ALGORITHM_AES_192_CTR

SKB_CIPHER_ALGORITHM_AES_256_CTR

SKB_CIPHER_DIRECTION_ENCRYPT

SKB_CIPHER_DIRECTION_DECRYPT

SKB_DERIVATION_ALGORITHM_CIPHER

SKB_DATA_FORMAT_RAW

SKB_DATA_TYPE_BYTES

SKB_FIPS_Engine_CreateDataFromWrapped

SKB_FIPS_SecureData_Wrap

SKB_FIPS_Engine_WrapDataFromPlain

SKB_FIPS_SecureData_Derive

RSA-OAEP
Decrypt**

SKB_FIPS_Engine_CreateCipher

SKB_FIPS_Cipher_ProcessBuffer

SKB_CIPHER_ALGORITHM_RSA_OAEP

SKB_CIPHER_ALGORITHM_RSA

SKB_CIPHER_DIRECTION_DECRYPT

SKB_DATA_FORMAT_RAW

SKB_DATA_TYPE_BYTES

SKB_Engine_CreateDataFromWrapped

Secure
hashing

SKB_FIPS_Engine_CreateTransform

SKB_FIPS_Transform_AddSecureData

SKB_FIPS_Transform_AddBytes

SKB_FIPS_Transform_GetOutput

SKB_DIGEST_ALGORITHM_SHA1

SKB_DIGEST_ALGORITHM_SHA256

SKB_TRANSFORM_TYPE_DIGEST

SKB_FIPS_SecureData_Derive SKB_DERIVATION_ALGORITHM_SHA_384

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 25 of 28
© 2014, Intertrust Technologies Corporation.

Service API Function API Enumeration Value

RSA
signature
generation**

SKB_FIPS_Engine_CreateTransform

SKB_FIPS_Transform_AddSecureData

SKB_FIPS_Transform_AddBytes

SKB_FIPS_Transform_GetOutput

SKB_SIGNATURE_ALGORITHM_RSA (only on modulus
size 2048)

SKB_SIGNATURE_ALGORITHM_RSA_SHA1

SKB_SIGNATURE_ALGORITHM_RSA_SHA256

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA1_EX

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256

SKB_SIGNATURE_ALGORITHM_RSA_PSS_SHA256_EX

SKB_TRANSFORM_TYPE_SIGN

ECDSA
signature
generation**

SKB_FIPS_Engine_CreateTransform

SKB_FIPS_Transform_AddSecureData

SKB_FIPS_Transform_AddBytes

SKB_FIPS_Transform_GetOutput

SKB_SIGNATURE_ALGORITHM_ECDSA

SKB_SIGNATURE_ALGORITHM_ECDSA_SHA1

SKB_SIGNATURE_ALGORITHM_ECDSA_SHA256

SKB_TRANSFORM_TYPE_SIGN

SKB_ECC_CURVE_NIST_192

SKB_ECC_CURVE_NIST_224

SKB_ECC_CURVE_NIST_256

SKB_ECC_CURVE_NIST_384

SKB_ECC_CURVE_NIST_521

HMAC SKB_FIPS_Engine_CreateTransform

SKB_FIPS_Transform_AddSecureData

SKB_FIPS_Transform_AddBytes

SKB_FIPS_Transform_GetOutput

SKB_SIGNATURE_ALGORITHM_HMAC_SHA1

SKB_SIGNATURE_ALGORITHM_HMAC_SHA256

SKB_TRANSFORM_TYPE_SIGN

SKB_TRANSFORM_TYPE_VERIFY

CMAC SKB_FIPS_Engine_CreateTransform

SKB_FIPS_Transform_AddSecureData

SKB_FIPS_Transform_AddBytes

SKB_FIPS_Transform_GetOutput

SKB_SIGNATURE_ALGORITHM_AES_128_CMAC

SKB_TRANSFORM_TYPE_SIGN

SKB_TRANSFORM_TYPE_VERIFY

Random byte
generation

SKB_FIPS_Engine_GenerateSecureData

SKB_DATA_TYPE_BYTES

Compute
ECDH key
agreement
shared
secret**

SKB_FIPS_Engine_CreateKeyAgreement

SKB_FIPS_KeyAgreement_GetPublicKey

SKB_FIPS_KeyAgreement_ComputeSecret

SKB_KEY_AGREEMENT_ALGORITHM_ECDH

SKB_DATA_FORMAT_ECC_BINARY

SKB_ECC_CURVE_NIST_192

SKB_ECC_CURVE_NIST_224

SKB_ECC_CURVE_NIST_256

SKB_ECC_CURVE_NIST_384

SKB_ECC_CURVE_NIST_521

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 26 of 28
© 2014, Intertrust Technologies Corporation.

Service API Function API Enumeration Value

Generation of
ECDSA key
pair**

SKB_FIPS_Engine_GenerateSecureData

SKB_FIPS_SecureData_GetPublicKey

SKB_DATA_TYPE_ECC_PRIVATE_KEY

SKB_DATA_FORMAT_ECC_BINARY

SKB_ECC_CURVE_NIST_192

SKB_ECC_CURVE_NIST_224

SKB_ECC_CURVE_NIST_256

SKB_ECC_CURVE_NIST_384

SKB_ECC_CURVE_NIST_521

Key
derivation

SKB_FIPS_SecureData_Derive SKB_DERIVATION_ALGORITHM_NIST_800_108_COUN
TER_CMAC_AES128

Key unwrap SKB_FIPS_Engine_CreateDataFromWrapped SKB_CIPHER_ALGORITHM_NIST_AES

SKB_DATA_TYPE_BYTES

SKB_DATA_FORMAT_RAW

Import SKB_FIPS_Engine_CreateDataFromExported

Export SKB_FIPS_SecureData_Export

SKB_EXPORT_TARGET_CROSS_ENGINE

SKB_EXPORT_TARGET_PERSISTENT

Key/service
context
zeroization

SKB_FIPS_Engine_Release

SKB_FIPS_SecureData_Release

SKB_FIPS_Transform_Release

SKB_FIPS_Cipher_Release

SKB_FIPS_KeyAgreement_Release

** Services impacted by the NIST SP 800-131A algorithm transitions. It is the responsibility of the module operator to ensure
that algorithms, modes, and key sizes Disallowed per NIST SP 800-131A are not used.

Table 10 – Module services to API mapping in approved mode of operation

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 27 of 28
© 2014, Intertrust Technologies Corporation.

Glossary

Term Description

AES Advanced Encryption Standard

API Application programming interface

CBC Cipher block chaining

CMAC Cipher-Based Message Authentication Code (SP 800-38B)

CO Crypto officer

CPU Central processing unit

CSP Critical security parameter

CTR Counter

DRBG Deterministic random bit generator

EC Elliptic curve

ECB Electronic codebook

ECC CDH Elliptic curve cryptography cofactor Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm (FIPS 186-3)

FIPS Federal Information Processing Standard

GPC General purpose computer

HMAC-SHA-1

HMAC-SHA-256

Keyed-Hash Message Authentication Code (FIPS 198-1)

IV Initialization vector

KAT Known answer test

KDF Key derivation function

MAC Message authentication code

NIST National Institute of Standards and Technology (USA)

OAEP Optimal asymmetric encryption padding

OS Operating system

PCT Pair-wise consistency test

Crypto Module Security Policy

© 2014, whiteCryption Corporation. Page 28 of 28
© 2014, Intertrust Technologies Corporation.

Term Description

PKCS Public-Key Cryptography Standard

RSA Rivest, Shamir and Adleman algorithm (FIPS 186-3)

SECG Standards for Efficient Cryptography Group

SEI Source entropy input

SHA-1, SHA-256,
SHA-384

Secure Hash Algorithm (FIPS 180-3)

SHS Secure Hashing Standard

SKB Secure Key Box by whiteCryption

Table 9 – Glossary

