
Dell AppAssure Crypto Library
Version 1.0
Dell, Inc.

FIPS 140-2 Non-Proprietary Security Policy
Revision 1.0.2

Revision Date: March 26, 2014

© 2014 Copyright 2014 Dell
Dell grants permission to freely reproduce in entirety without revision

Table of Contents
Module Overview...3
Cryptographic Boundary..3
Modes of Operation..4
Interfaces and Ports..4
Roles and Services..4
Operational Environment...5
Physical Security..5
Cryptographic Key Management...6
Self Tests...6

Signature Verification Known-Answer Test..7
Software Integrity Test...7
Encryption and Decryption Known-Answer Tests..7

Design Assurance...7
Mitigation of Other Attacks..7

Module Overview
The Dell AppAssure Crypto Library (further designated as the Module) provides data encryption
functionality to applications. The Module is a software component designed for use as a part of
other software products to encrypt and decrypt data on general-purpose x64 PCs with Microsoft
Windows OS. The Module is not intended for direct interaction with a human operator; the word
operator stands in this document for a software product employing the Module. Keys used to
encrypt data are provided by the calling application, the Module does not have built-in encryption
keys. The module is a program code library that invokes AES CBC mode functions from Intel
Integrated Performance Primitives (IPP) library.

The Module's certification levels are shown in the table 1.

Table 1: Certification levels

Section Section Title Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services, and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Overall Level 1

Cryptographic Boundary
The cryptographic boundary contains two files: crypto.dll (DLL that implements the Module's
functionality) and crypto.rsa (digital signature used for integrity self-test). On hardware side, the
cryptographic boundary includes an x64 CPU on which the software is executed (Intel Xeon CPU
family or compatible) and RAM attached to it that stores the Module's executable code and data
used and produced by the Module.

Module's ports are library's entry points, i.e. callable functions exposed by the library. Data coming
into the boundary are cryptographic keys, data to be encrypted or decrypted and initialization
vectors. Data going out from the boundary are crypto contexts (data structures identifying
encryption keys for future use), results of encryption or decryption, as well as the Module's current
status. Data flows are straightforward: each encryption function consumes its arguments and returns
values. All data processing is performed inside the library.

Relationships between the Module, the operator (i.e. the calling application), OS and hardware are
depicted on Fig 1.

Modes of Operation
The Module supports only Approved mode.

Interfaces and Ports
Since the Module is a software component, its interfaces are defined in terms of the API functions it
provides. Data Input Interface corresponds to passing parameters to user-mode API functions. Data
output interface consists of return value of a function that creates a cryptographic context and
output parameters of encryption/decryption functions. Control Input interface is a function call
mechanism itself. Finally, Status Output Interface consists the status of the Module returned by
get_status and self_test functions and return values of encryption/decryption functions, see
table 2.

Table 2: Interface definition

FIPS 140-2 Interfaces Module Logical Interfaces

Data Input Interface Input parameters passed to user-mode API functions

Data Output Interface Return value of a function that creates a cryptographic context;
output parameters of encryption/decryption functions

Control Input Interface Function call mechanism

Status Output Interface Self-testing function;
A function that returns the state of the Module;
Return values of encryption/decryption functions;
Null or non-null value of a function creating a cryptographic context

Roles and Services
The Module implements a User role and a Crypto-Officer role (see table 3). The Module does not
support identification or authentication for these roles, an operator takes one of these two roles by
calling respective functions. The operator can take only one role at any particular moment of time;
concurrent invocation of functions meets the following rules:

Fig 1: Logical Diagram

CPU

OS

Cryptographic boundary

Keys, original data, control En(de)crypted data, status

Service calls

Control

Service calls

Control

Execution

Control

ExecutionCode & Data

Application

DLL

Intel IPP library
Digital

Signature

• While at least one user-mode function is being executed by the Module, any call to a crypto-
officer function is waiting;

• While a crypto-officer function is being executed, any call to a user-mode function is
waiting.

Table 3: Roles

Role Services

User All encryption and decryption services; get status

Crypto-Officer Run self-tests
An overview of API functions is presented in table 4. None of the functions use any cryptographic
service providers – algorithms from Intel IPP library are used.

Table 4: API overview

Name Purpose Role CSP* usage

aes256_cbc_init Initialize a cryptographic context User Read

aes256_cbc_rekey Assign a new key to an existing context User Write

aes256_cbc_encrypt Encrypt a block of data User Execute

aes256_cbc_decrypt Decrypt a block of data User Execute

aes256_cbc_close Zeroize and dispose a cryptographic context User None

get_status Get the Module's current status User None

self_test Perform self-tests and set the Module's state Crypto-officer None

(*) CSP, if any, is an AES CBC key.

Operational Environment
The module is intended to be used in Windows applications on general-purpose x64 PCs (that are
multi-chip standalone devices). There are no special requirements regarding additional components
installed on the system, specific hardware or custom settings needed to operate the Module.

The Module only works in single operator mode; it is enforced by Windows DLL infrastructure: if
multiple processes use the same DLL, each process maps it to its private address space and
therefore its interaction with the DLL cannot be influenced by other processes. In other words,
multiple operators of a DLL act as if each of them were a single operator of a separate copy of the
DLL.

The Module has been tested in hardware and OS environments listed in table 5:

Table 5: Environments used for testing

Machine CPU AES-NI OS

Dell PowerEdge T610 Xeon On Windows 2008 R2 64-bit

Dell PowerEdge T610 Xeon Off Windows 2008 R2 64-bit

Dell PowerEdge R720 Xeon On Windows 2012 64-bit

Dell PowerEdge R720 Xeon Off Windows 2012 64-bit

Physical Security
Because of purely software nature of the Module, physical security requirements are not applicable.
Windows security mechanisms protect DLL's executable code and data in the calling process'
address space from unauthorized access.

Cryptographic Key Management
The Module does not generate, store in a persistent storage, output cryptographic keys or other
security-relevant data. Cryptographic keys are provided to user-mode encryption functions by the
calling application, and it is the caller's responsibility to store cryptographic keys securely. Given a
key, the Module creates a so called context (an internal data structure used for further encryption
and decryption operations) and returns its pointer to the caller. Windows memory management
mechanism guarantees that a Module, since it is a DLL, works in a protected address space of the
calling process that is not accessible to other processes. Furthermore, a context is presented to the
caller as an abstract pointer (void*) that hides the context's details. Before disposing a context, the
Module fills its memory location with zeros.

Table 6: Keys used in the Module

User-mode key Software integrity test key

Key Type AES CBC RSA 1024 bit public key

Generation/ Input From the calling application Generated at design time, hard-coded

Output None None

Storage None Hard-coded

Zeroization On demand None

Use Encrypt or decrypt caller's data RSA with SHA-512 signature verification
Except symmetric cryptographic keys in user-mode functions, the Module uses an asymmetric key
for integrity self-tests (see the respective section for more details). The key consisting of private and
public parts has been generated once as a part of development process. Its private part is hard-coded
in a signing tool and is not known to the Module, and the public part is hard-coded in the Module.

The summary of keys used in the Module is shown in table 6.

Approved algorithms are showh in table 7.

Table 7: Summary of cryptographic algorithms

Algorithm CAVP validation No.

AES (Rijndael) CBC 2601

RSA Signature Verification 1329

SHA-512 2185

Self Tests
The module has the following power-up self tests, which also can be called on demand:

• Signature verification (RSA + SHA-512) known-answer self-test;

• Software integrity self-test;

• AES Encryption known-answer test;

• AES Decryption known-answer test.

A sequence of all tests (in the order shown above) is performed automatically on start-up and can be
initiated at any time by the crypto-officer. If any test fails, the remaining tests in the sequence are
skipped, and the Module switches to an error state that disables all cryptographic functions (this
means, in particular, disabling the Data Output interface). The module indicates the error state with
a non-zero return value for the get_status service. In the error state, only three functions are
available: get current state, re-run self-tests and dispose a cryptographic context (that might be
created before the error occurred). While a self-test is performed, all cryptographic functions
(together with the Data Output interface) are inhibited.

The Module does not perform any operations that require conditional self-tests (in particular, there
is no public/private key pair generation and persisting data).

Signature Verification Known-Answer Test

Before checking software integrity by verifying DLL's digital signature, the signature verification
algorithm itself should be verified. For this purpose, the DLL contains a hard-coded piece of text
and its signature generated once at design time with the same private key that is used to sign
the DLL. The test uses a hard-coded public key to verify the known signature of the known text.

Software Integrity Test

The DLL file is shipped together with a file that contains its digital signature (RSA scheme with the
SHA-512, as defined in version 1.5 of the PKCS#1 standard) that is produced during build process.
After the DLL file is built, a build step invokes a signing tool that generates a signature and writes it
to a file. Software integrity test verifies contents of the DLL file against the signature (the public
part of the key is hard-coded in the DLL). This test fails if either the signature does not match or
when the signature file could not be found.

Encryption and Decryption Known-Answer Tests

The Module contains a hard-coded piece of text. Encryption test encrypts the text with a predefined
key and compares the result with a known answer that is hard-coded in the Module. Then the
encrypted text is decrypted with the same key and the result is compared to the original. Each of
these two tests fails if the actual result of encryption or decryption does not match the expected
result.

Design Assurance
The Module is designed and managed in accordance with established procedures of Dell
AppAssure. The source code and documentation is maintained in a Git repository on GitHub, with
restricted access. Each change is formally reviewed using an online review capability of GitHub,
and must be approved before commit. The Module is built on a build server when it detects source
code updates. Signing the Module is a part of build process and is performed automatically.

Mitigation of Other Attacks
The Module is not intended to mitigate attacks not addressed by the security requirements

of FIPS 140-2.

	Module Overview
	Cryptographic Boundary
	Modes of Operation
	Interfaces and Ports
	Roles and Services
	Operational Environment
	Physical Security
	Cryptographic Key Management
	Self Tests
	Signature Verification Known-Answer Test
	Software Integrity Test
	Encryption and Decryption Known-Answer Tests

	Design Assurance
	Mitigation of Other Attacks

