Apple Inc.

Apple OS X CoreCrypto Module, v4.0 FIPS 140-2 Non-Proprietary Security Policy

Document Control Number
FIPS_CORECRYPTO_OSX_US_SECPOL_02.10
Version 02.10
October, 2013

Prepared for:
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
www.apple.com

Prepared by: atsec information security Corp. 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com

Table of Contents

1	INTRODUC	CTION	4
	1.2 DOCUM 1.3 EXTER 1.3.1 ACTION	dditional References	4
2			
	2.1.1 M 2.1.2 M 2.1.3 Te 2.2 Modes 2.3 Crypt	odule Validation Level odule components ested Platforms of Operation ographic Module Boundary	7 8 8
3	CRYPTOG	RAPHIC MODULE PORTS AND INTERFACES	15
4	ROLES, SI	ERVICES AND AUTHENTICATION	16
	4.1 ROLES 4.2 SERVICE	DES	16 16
5	PHYSICAL	. SECURITY	18
6	OPERATIO	NAL ENVIRONMENT	19
7	CRYPTOG	RAPHIC KEY MANAGEMENT	20
	7.2 Key/0 7.3 Key/0 7.4 Key/0 7.5 Key/0	CSP GENERATIONCSP ESTABLISHMENTCSP ENTRY AND OUTPUTCSP STORAGE	20 20 20 20
8	ELECTRO	MAGNETIC INTERFERENCE/ELECTROMAGNETIC COMPATIBILITY (EMI/EMC)	22
9	SELF-TES	TS	23
	9.1 Power		
	9.1.1 C		
	9.1.1 C 9.1.2 S	ORGANIZATION / COPYRIGHT RESOURCES / REFERENCES ONAI REFERENCE/ELECTROMAGNETIC COMPATIBILITY (EMI/EMCC). TESTS Ographic Algorithm Tests are / Firmware Integrity Tests all Function Tests LTESTS OLOGO ASSURANCE OLOGO ASSURANCE OLOGO ASSURANCE OLOGO OFFICE OLOGO OLO	24
	9.1.1 C 9.1.2 So 9.1.3 C 9.2 CONDIT	oftware / Firmware Integrity Testsritical Function Tests	24 24 24
	9.1.1 C 9.1.2 Sc 9.1.3 C 9.2 CONDIT 9.2.1 C	oftware / Firmware Integrity Tests ritical Function Tests rional Tests ontinuous Random Number Generator Test	Comparison Copyright Cop
	9.1.1 C 9.1.2 Sc 9.1.3 C 9.2 CONDIT 9.2.1 Cc 9.2.2 Pa	3 EXTERNAL RESOURCES / REFERENCES 1.3.1 Additional References	
	9.1.1 C 9.1.2 Sc 9.1.3 C 9.2 CONDIT 9.2.1 C 9.2.2 Pa 9.2.3 SI	oftware / Firmware Integrity Testsritical Function Tests	24 24 24 24 24 24
10	9.1.1 C 9.1.2 Sc 9.1.3 C 9.2 CONDI 9.2.1 C 9.2.2 Pa 9.2.3 Sl 9.2.4 C	oftware / Firmware Integrity Tests ritical Function Tests rional Tests ontinuous Random Number Generator Test air-wise Consistency Test P 800-90A Assurance Tests ritical Function Test	24 24 24 24 24 24
10	9.1.1 C 9.1.2 Sc 9.1.3 C 9.2 CONDIT 9.2.1 Cc 9.2.2 Pc 9.2.3 Sc 9.2.4 C DESIGN 10.1 CONFIC 10.2 DELIVE 10.3 DEVELO 10.4 GUIDAN 10.4.1 C	oftware / Firmware Integrity Tests ritical Function Tests rional Tests ontinuous Random Number Generator Test air-wise Consistency Test P 800-90A Assurance Tests ritical Function Test ASSURANCE GURATION MANAGEMENT RRY AND OPERATION OPMENT NCE ryptographic Officer Guidance	2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁵

11 MITIGATION OF OTHER ATTACKS	26
List of Tables	
Table 1: Module Validation Level	8
Table 2: Tested Platforms	9
Table 3: Approved Security Functions	12
Table 4: Non-Approved Functions	14
Table 5: Roles	
Table 6: Services and Roles	
Table 7: Cryptographic Algorithm Tests	24
List of Figures	
Figure 1: Logical Block Diagram	14

1 Introduction

1.1 Purpose

This document is a non-proprietary Security Policy for the Apple OS X CoreCrypto Module, v4.0. It describes the module and the FIPS 140-2 cryptographic services it provides. This document also defines the FIPS 140-2 security rules for operating the module.

This document was prepared in partial fulfillment of the FIPS 140-2 requirements for cryptographic modules and is intended for security officers, developers, system administrators, and end-users.

FIPS 140-2 details the requirements of the Governments of the U.S. and Canada for cryptographic modules, aimed at the objective of protecting sensitive but unclassified information.

For more information on the FIPS 140-2 standard and validation program please refer to the NIST website at http://csrc.nist.gov/cryptval.

Throughout the document "Apple OS X CoreCrypto Module, v4.0." "cryptographic module", "CoreCrypto" or "the module" are used interchangeably to refer to the Apple OS X CoreCrypto Module, v4.0.

1.2 Document Organization / Copyright

This non-proprietary Security Policy document may be reproduced and distributed only in its original entirety without any revision, ©2013 Apple Inc.

1.3 External Resources / References

The Apple website (http://www.apple.com) contains information on the full line of products from Apple Inc. For a detailed overview of the operating system OS X and its security properties refer to [OS X] and [SEC].

The Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/index.html) contains links to the FIPS 140-2 certificate and Apple, Inc. contact information.

1.3.1 Additional References

- FIPS 140-2 Federal Information Processing Standards Publication, "FIPS PUB 140-2 Security Requirements for Cryptographic Modules," Issued May-25-2001, Effective 15-Nov-2001, Location: http://csrc.nist.gov/groups/STM/cmvp/standards.html
- FIPS 180-3 Federal Information Processing Standards Publication 180-3, October 2008, Secure Hash Standard (SHS)
- FIPS 197 Federal Information Processing Standards Publication 197, November 26, 2001 Announcing the ADVANCED ENCRYPTION STANDARD (AES)
- PKCS7 RSA Laboratories, "PKCS#7 v1.5: Cryptographic Message Syntax Standard," 1993. Location: http://www.rsa.com/rsalabs/node.asp?id=2129
- PKCS3 RSA Laboratories, "PKCS#3 v1.4: Diffie-Hellman Key Agreement Standard," 1993. Location: http://www.rsa.com/rsalabs/node.asp?id=2126
- IG NIST, "Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program," June 7, 2013

Location: http://csrc.nist.gov/groups/STM/cmvp/standards.html

OS X OS X Technical Overview

Location:

https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/OS

X_Technology_Overview/About/About.html

SEC Security Overview

Location:

https://developer.apple.com/library/mac/navigation/#section=Topics&topic=Securit

У

SP800-57P1 NIST Special Publication 800-57, "Recommendation for Key Management – Part 1:

General (Revised)," July 2012

SP 800-90A NIST Special Publication 800-90, "Recommendation for Random Number

Generation Using Deterministic Random Bit Generators (Revised)," January 2012

UG User Guide

Location: https://developer.apple.com/library/mac/navigation/

1.4 Acronyms

Acronyms found in this document are defined as follows:

AES Advanced Encryption Standard

BS Block Size

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining mode of operation

CFB Cipher Feedback mode of operation

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter
CTR Counter mode of operation
DES Data Encryption Standard

DH Diffie-Hellman

DMA Direct Memory Access

DRBG Deterministic Random Bit Generator

DS Digest Size

ECB Electronic Codebook mode of operation

ECC Elliptic Curve Cryptography
EC Diffie-Hellman Diffie-Hellman based on ECC

ECDSA DSA based on ECC

E/D Encrypt/Decrypt

EMC Electromagnetic Compatibility
EMI Electromagnetic Interference

FIPS Federal Information Processing Standard

FIPS PUB FIPS Publication

GCM Galois/Counter Mode

HMAC Hash-Based Message Authentication Code

HW Hardware

KAT Known Answer Test
KEK Key Encryption Key
KEXT Kernel extension

KDF Key Derivation Function

KO 1 Triple-DES Keying Option 1: All three keys are independent

API Kernel Programming Interface

KS Key Size (Length)

MAC Message Authentication Code

NIST National Institute of Standards and Technology

OFB Output Feedback (mode of operation)

OS Operating System

PBKDF Password-based Key Derivation Function

PWCT Pair Wise Consistency Test
RNG Random Number Generator

SHS Secure Hash Standard

SW Software

Triple-DES Triple Data Encryption Standard

TLS Transport Layer Security

2 Cryptographic Module Specification

2.1 Module Description

The Apple OS X CoreCrypto Module, v4.0 is a software cryptographic module running on a multichip standalone general-purpose computing platform.

The cryptographic services provided by the module are:

- Data encryption / decryption
- Generation of hash values
- Key wrapping
- Message authentication

- Random number generation
- Key generation
- Signature generation / verification
- Key derivation

2.1.1 Module Validation Level

The module is intended to meet requirements of FIPS 140-2 security level 1 overall. The following table shows the security level for each of the eleven requirement areas of the validation.

FIPS 140-2 Security Requirement Area	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	1

Table 1: Module Validation Level

2.1.2 Module components

In the following sections the components of the Apple OS X CoreCrypto Module, v4.0 are listed in detail. There are no components excluded from the validation testing.

2.1.2.1 Software components

CoreCrypto has an API layer that provides consistent interfaces to the supported algorithms. These implementations include proprietary optimizations of algorithms that are fitted into the CoreCrypto framework.

2.1.2.2 Hardware components

AES-NI hardware acceleration is included within the cryptographic module boundary.

2.1.3 Tested Platforms

The module has been tested on the following platforms with and without AES-NI:

Manufacturer	nufacturer Model Operating System		
Apple Inc.	Mac mini with i5 CPU	OS X 10.9	
Apple Inc.	iMac with i7 CPU	OS X 10.9	

Table 2: Tested Platforms

2.2 Modes of operation

The Apple OS X CoreCrypto Module, v4.0 has an Approved and non-Approved mode of operation. The Approved mode of operation is configured by default and cannot be changed. If the device boots up successfully then CoreCrypto framework has passed all self-tests and is operating in the Approved mode. Any calls to the non-Approved security functions listed in Table 4 will cause the module to assume the non-Approved mode of operation.

The module transitions back into FIPS mode immediately when invoking one of the approved ciphers as all keys and Critical Security Parameters (CSP) handled by the module are ephemeral and there are no keys and CSPs shared between any functions. A re-invocation of the self-tests or integrity tests is not required.

Even when using this FIPS 140-2 non-approved mode, the module configuration ensures that the self-tests are always performed during initialization time of the module.

The module contains multiple implementations of the same cipher as listed below. If multiple implementations of the same cipher are present, the module automatically selects which cipher is used based on internal heuristics. This includes the hardware-assisted AES implementation (AES-NI).

The Approved security functions are listed in Table 3. Column four (Val. No.) lists the validation numbers obtained from NIST for successful validation testing of the implementation of the cryptographic algorithms on the platforms as shown in Table 2 under CAVP.

Refer to http://csrc.nist.gov/groups/STM/cavp/index.html for the current standards, test requirements, and special abbreviations used in the following table.

Approved Security Functions

Cryptographic	Standards	Usage / Description	Val.	. No.	
Function			i5 CPU	i7 CPU	
Triple-DES	ANSIX9.52- 1998 FIPS 46-3 SP 800-67 SP 800-38A Appendix E	Encryption / decryption with all keys independent Block chaining modes: ECB, CBC, CFB8, CFB64, OFB, CTR with internal counter 32 bit and 64 bit word size	1534 1536	1535 1537	

Cryptographic Standards Usag		Usage / Description	Val. No.		
Function			i5 CPU	i7 CPU	
AES	FIPS 197	Generic-software implementation (non-	2524	2531	
	SP 800-38 A	optimized based on LibTomCrypt):	2540	2541	
	SP 800-38 D	Encryption / decryption			
	SP 800-38 E	Key sizes: 128 bits, 192 bits, 256 bits for block chaining modes: ECB, CBC, CFB8, CFB128, OFB, CTR with internal counter, GCM with tag lengths of 128, 120, 112, 104, 96, 64, 32			
		Key sizes: 128 bits, 256 bits for block chaining mode XTS			
		32 bit and 64 bit word size			
		Generic-software implementation (non-	2520	2528	
		optimized based on Gladman):	2534	2535	
		Encryption / decryption			
		Key sizes: 128 bits, 192 bits, 256 bits			
		Block chaining modes: CBC			
		32 bit and 64 bit word size	0540	0507	
		Optimized-software implementation:	2519	2527	
		Encryption / decryption	2532	2533	
		Key sizes: 128 bits, 192 bits, 256 bits			
		Block chaining modes: ECB, CBC, CFB8, CFB128, OFB, CTR with internal counter, GCM with tag lengths of 128, 120, 112, 104, 96, 64, 32			
		Key sizes: 128 bits, 256 bits for block chaining mode XTS			
		32 bit and 64 bit word size			
		AES-NI hardware implementation with optimized software implementation of block chaining modes:	2521 2538	2529 2539	
		Encryption / decryption			
		Key sizes: 128 bits, 192 bits, 256 bits for block chaining modes: ECB, CBC, CFB8, CFB128, OFB, CTR with internal counter, GCM with tag lengths of 128, 120, 112, 104, 96, 64, 32			
		Key sizes: 128 bits, 256 bits for block chaining mode XTS			
		32 bit and 64 bit word size			

Cryptographic	Standards Usage / Description		Val.	No.
Function			i5 CPU	i7 CPU
		AES-NI hardware implementation with generic software implementation (non-optimized) of block chaining modes:	2523 2536	2530 2537
		Key sizes: 128 bits, 192 bits, 256 bits for block chaining mode CBC Key sizes: 128 bits, 256 bits for block chaining mode XTS 32 bit and 64 bit word size		
RSA	ANSI X9.31	KEY(gen)	1293	1294
NOA	ANOLYS.ST	Key sizes (modulus) 1024 bits, 1536 bits, 2048 bits, 3072 bits, 4096 bits	1295	1296
		Public key exponent values: 3, 17, 65537 32 bit and 64 bit word size		
	PKCS#1	SIG(gen)	1293	1294
	v1.5	SIG(ver)	1295	1296
		Key sizes (modulus): 1024 bits, 1536 bits, 2048 bits, 3072 bits, 4096 bits		
		Hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512		
		32 bit and 64 bit word size		
SHS	FIPS 180-3	Generic-software implementation (non-	2130	2133
		optimized):	2136	2137
		SHA-1 (BYTE-only)		
		SHA-224 (BYTE-only)		
		SHA-256 (BYTE-only)		
		SHA-384 (BYTE-only)		
		SHA-512 (BYTE-only)		
		32 bit and 64 bit word size		
		Optimized-software implementation using SSE:	2132 2140	2135 2141
		SHA-1 (BYTE-only)		
		SHA-224 (BYTE-only)		
		SHA-256 (BYTE-only)		
		32 bit and 64 bit word size		
		Optimized-software implementation not	2131	2134
		using SSE:	2138	2139
		SHA-1 (BYTE-only)		
		SHA-224 (BYTE-only)		
		SHA-256 (BYTE-only)		
		32 bit and 64 bit word size		

ANSI X9.62 PKV: curves P-256, P-384 SIG(gen): curves P-256, P-384 SIG(yer): curves P-256, P-384	Cryptographic	Standards	ds Usage / Description		No.
ANSI X9.62 PKV: curves P-256, P-384 SIG(gen): curves P-256, P-384 SIG(ver): curves P-256, P-384	Function			i5 CPU	i7 CPU
SIG(gen): curves P-256, P-384 SIG(ver): curves P-256, P-384 32 bit and 64 bit word size 1555 1555 1558 1559	ECDSA	FIPS 186-2	PKG: curves P-256, P-384	432	433
SIG(ver): curves P-256, P-384 32 bit and 64 bit word size		ANSI X9.62	PKV: curves P-256, P-384	434	435
### Stand 64 bit word size ### Stand 64 bit word size ### Generic-software implementation (non-optimized):			SIG(gen): curves P-256, P-384		
HMAC			SIG(ver): curves P-256, P-384		
Optimized): KS <bs, ks="">BS</bs,>			32 bit and 64 bit word size		
KS-BS, KS=BS, KS>BS	HMAC	FIPS 198		1552	1555
HMAC-SHA-1			·	1558	1559
HMAC-SHA-224					
HMAC-SHA-256					
HMAC-SHA-384					
HMAC-SHA-512			HMAC-SHA-256		
Optimized-software implementation using 1554 1557 1563 1562 1563 1562 1563 1562 1563 1562 1563 1562 1563 1563 1562 1563 1563 1560 1563 1560 1561			HMAC-SHA-384		
SSE: KS <bs, ks="">BS HMAC-SHA-1 HMAC-SHA-224 HMAC-SHA-256 32 bit and 64 bit word size Optimized-software implementation not using SSE: KS<bs, ks="">BS HMAC-SHA-1 HMAC-SHA-1 HMAC-SHA-1 HMAC-SHA-1 HMAC-SHA-24 HMAC-SHA-256 32 bit and 64 bit word size SP 800-90A Generic-software implementation of AES 366 374 375 </bs,></bs,>			HMAC-SHA-512		
KS <bs, ks="">BS</bs,>					
HMAC-SHA-1				1302	1303
HMAC-SHA-224					
HMAC-SHA-256 32 bit and 64 bit word size Optimized-software implementation not using SSE: KS <bs, ks="">BS HMAC-SHA-1 HMAC-SHA-224 HMAC-SHA-256 32 bit and 64 bit word size SP 800-90A Generic-software implementation of AES (non-optimized) AES with 128 bit key size 32 bit and 64 bit word size Optimized-software implementation of AES: AES with 128 bit key size 370 371 375 32 bit and 64 bit word size AES-NI hardware implementation 365 368 AES with 128 bit key size 370 371 372 373 373 374 375 </bs,>					
32 bit and 64 bit word size					
Using SSE: KS <bs, ks="">BS HMAC-SHA-1 HMAC-SHA-224 HMAC-SHA-256 32 bit and 64 bit word size </bs,>					
KS <bs, ks="">BS</bs,>			Optimized-software implementation not	1553	1556
HMAC-SHA-1				1560	1561
HMAC-SHA-224			KS <bs, ks="">BS</bs,>		
HMAC-SHA-256 32 bit and 64 bit word size SP 800-90A Generic-software implementation of AES (non-optimized) 374 375			HMAC-SHA-1		
SP 800-90A Generic-software implementation of AES (non-optimized) 374 375			HMAC-SHA-224		
Counter DRBG SP 800-90A Generic-software implementation of AES (non-optimized) 366 369 AES with 128 bit key size 374 375 32 bit and 64 bit word size Optimized-software implementation of AES: AES with 128 bit key size 364 367 32 bit and 64 bit word size AES-NI hardware implementation according using HMAC with SHA-1 or SHA-2 as pseudorandom function 365 368			HMAC-SHA-256		ļ
(non-optimized) AES with 128 bit key size 32 bit and 64 bit word size Optimized-software implementation of AES: AES with 128 bit key size 32 bit and 64 bit word size AES-NI hardware implementation 365 AES with 128 bit key size 370 371 32 bit and 64 bit word size AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function			32 bit and 64 bit word size		
AES with 128 bit key size 32 bit and 64 bit word size Optimized-software implementation of AES: AES with 128 bit key size 370 371 32 bit and 64 bit word size AES-NI hardware implementation AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function	Counter DRBG	SP 800-90A	·	366	369
32 bit and 64 bit word size Optimized-software implementation of AES: 364 367 AES with 128 bit key size 370 371 32 bit and 64 bit word size AES-NI hardware implementation 365 368 AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function			1,	374	375
Optimized-software implementation of AES: 364 367 AES with 128 bit key size 370 371 32 bit and 64 bit word size AES-NI hardware implementation 365 368 AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function			<u> </u>		
AES with 128 bit key size 370 371 32 bit and 64 bit word size AES-NI hardware implementation 365 368 AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function N/A N/A					
32 bit and 64 bit word size AES-NI hardware implementation 365 368 AES with 128 bit key size 372 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function					
AES-NI hardware implementation 365 368 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function AES-NI hardware implementation 365 372 373 373			,	370	371
AES with 128 bit key size 372 373 32 bit and 64 bit word size PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function N/A N/A					
PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function N/A				365	
PBKDF SP 800-132 Password based key derivation according using HMAC with SHA-1 or SHA-2 as pseudorandom function			_	372	373
using HMAC with SHA-1 or SHA-2 as pseudorandom function			32 bit and 64 bit word size		
20 hit and C4 hit would also	PBKDF	SP 800-132	using HMAC with SHA-1 or SHA-2 as	N/A	N/A
3∠ dit and 64 dit word size			32 bit and 64 bit word size		

Table 3: Approved Security Functions

CAVEAT: The module generates cryptographic keys whose strengths are modified by available entropy – 160-bits.

Non-Approved Security Functions:

Cryptographic Function	Usage / Description	Caveat
RSA (encrypt, decrypt)	Key wrapping RSAES-OAEP, RSAES-PKCS1-v1_5 KS: Min 1024, Max 4096 PKCS#1 v2.1	Non-Approved, but allowed: RSA (Key wrapping; key establishment methodology provides between 80 and 150 bits of encryption strength).
RSA (sign, verify)	ANSI X9.31 SIG(gen) SIG(ver) Key sizes (modulus): 1024 bits, 1536 bits, 2048 bits, 3072 bits, 4096 bits Hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	Non-compliant
	PKCS1-v1_5 SIG(gen) SIG(ver) Key sizes (modulus): 1024-4096 bits in multiple of 32 bits not listed in table 3	-
RSA (key pair generation)	ANSI X9.31 Key sizes (modulus): 1024-4096 bits in multiple of 32 bits not listed in table 3 Public key exponent values: 65537 or larger	-
Diffie-Hellman	ANSI X9.42, SP 800-56A Key agreement Key sizes: Min 1024 bits, Max 4096 bits	Non-Approved, but allowed: Diffie-Hellman (key agreement; key establishment methodology provides between 80 and 150 bits of encryption strength).
EC Diffie- Hellman	Key agreement ANSI X9.63, SP 800-56A bit length of ECC subgroup order P-256, P-384	Non-Approved, but allowed: EC Diffie-Hellman (key agreement; key establishment methodology provides 128 bits of encryption strength for P-256 and 160 bits for P-384 - the strength for P-384 is limited by the entropy of the seed source as specified in the caveat).
DES	Encryption and decryption: key size 56 bits	
CAST5	Encryption and decryption: key sizes 40 to 128 bits in 8-bit increments	

Cryptographic Function	Usage / Description	Caveat
RC4	Encryption and decryption: key size 8 to 4096 bits	
RC2	Encryption and decryption: key size 8 to 1024 bits	
MD2	Hashing	
	Digest size 128 bit	
MD4	Hashing	
	Digest size 128 bit	
MD5	Hashing	Non-Approved, but allowed:
	Digest size 128 bit	Used as part of the TLS key establishment scheme only
RIPEMD	Hashing	
	Digest size 128, 160, 256, 320 bits	
ECDSA	PKG: curves P-192, P-224, P-521	Non-compliant
	PKV: curves P-192, P-224, P-521	
	SIG(gen): curves P-192, P-224, P-521	
	SIG(ver): curves P-192, P-224, P-521	
Blowfish	Encryption and decryption	
BitGen1	proprietary mechanism for bit-generation	
BitGen2	proprietary mechanism for bit-generation	
BitGen3	proprietary mechanism for bit-generation	
OMAC (One- Key CBC MAC)	MAC generation	

Table 4: Non-Approved Functions

The encryption strengths included in Table 4 for the key establishment methods are determined in accordance with FIPS 140-2 Implementation Guidance [IG] section 7.5 and NIST Special Publication 800-57 (Part1) [SP800-57P1].

2.3 Cryptographic Module Boundary

The physical boundary of the module is the physical boundary of the OS X device that contains the module. Consequently, the embodiment of the module is a multi-chip standalone cryptographic module.

The logical module boundary is depicted in the logical block diagram given in Figure 1.

Device Physical Boundary

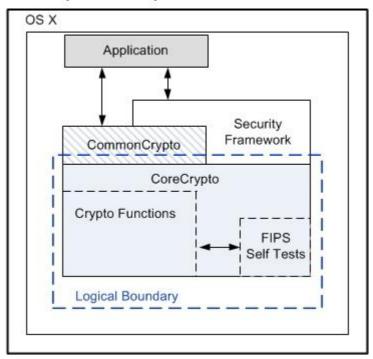


Figure 1: Logical Block Diagram

2.4 Module Usage Considerations

A user of the module must consider the following requirements and restrictions when using the module:

- When using AES-GCM, the caller must use the module's DRBG to generate at least 96 bits of random data that is used for the IV of AES-GCM. The caller is permitted to add additional deterministic data to that IV value in accordance with SP800-38D section 8.2.2. Users should consult SP 800-38D, especially section 8, for all of the details and requirements of using AES-GCM mode.
- When using AES, the caller must obtain a reference to the cipher implementation via the functions of ccaes_[cbc|ecb|...]_[encrypt|decrypt]_mode.
- When using SHA, the caller must obtain a reference to the cipher implementation via the functions ccsha[1|224|256|384|512]_di.

3 Cryptographic Module Ports and Interfaces

The underlying logical interfaces of the module are the C language Application Programming Interfaces (APIs). In detail these interfaces are the following:

- Data input and data output are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers. Hereafter, APIs and callable services will be referred to as "API."
- Control inputs which control the mode of the module are provided through dedicated parameters, as well as /var/db/FIPS/fips_data holding the HMAC check file.
- Status output is provided in return codes and through messages. Documentation for each API lists possible return codes. A complete list of all return codes returned by the C language APIs within the module is provided in the header files and the API documentation. Messages are documented also in the API documentation.

The module is optimized for library use within the OS X user space and does not contain any terminating assertions or exceptions. It is implemented as an OS X dynamically loadable library. The dynamically loadable library is loaded into the OS X application and its cryptographic functions are made available. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling OS X application must examine the return code and act accordingly. There are two notable exceptions: (i) ECDSA and RSA do not return a key if the pair-wise consistency test fails; (ii) the DRBG algorithm loops a few iterations internally if the continuous test fails, eventually recovering from the error or causing a shutdown if the problem persists.

The function executing FIPS 140-2 module self-tests does not return an error code but causes the system to crash if any self-test fails – see Section 9.

The module communicates any error status synchronously through the use of its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-2 appropriate manner.

Caller-induced or internal errors do not reveal any sensitive material to callers.

Cryptographic bypass capability is not supported by the module.

4 Roles, Services and Authentication

This section defines the roles, services and authentication mechanisms and methods with respect to the applicable FIPS 140-2 requirements.

4.1 Roles

The module supports a single instance of the two authorized roles: the Crypto Officer and the User. No support is provided for multiple concurrent operators or a Maintenance operator.

Role	General Responsibilities and Services (details see below)		
User	Utilization of services of the module listed in section 2.1 and 4.2.		
Crypto Officer (CO)	Utilization of services of the module listed in section 2.1 and 4.2.		

Table 5: Roles

4.2 Services

The module provides services to authorized operators of either the User or Crypto Officer roles according to the applicable FIPS 140-2 security requirements.

Table 6 contains the cryptographic functions employed by the module in the Approved mode. For each available service it lists, the associated role, the Critical Security Parameters (CSPs) and cryptographic keys involved, and the type(s) of access to the CSPs and cryptographic keys.

CSPs contain security-related information (for example, secret and private cryptographic keys) whose disclosure or modification can compromise the main security objective of the module, namely the protection of sensitive information.

The access types are denoted as follows:

- 'R': the item is read or referenced by the service
- 'W': the item is written or updated by the service
- 'Z': the persistent item is zeroized by the service

Service		es	CSPs & crypto	Access
	U S E R	CO	keys	Type
Triple-DES encryption and decryption	Χ	Χ	secret key	R
AES encryption and decryption	Χ	Χ	secret key	R
Secure Hash Generation	Χ	Χ	none	N/A
HMAC generation	Χ	Χ	secret HMAC key	R
RSA signature generation and verification	Х	Х	RSA key pair	R W
ECDSA signature generation and verification	Х	Х	ECDSA key pair	R W
Random number generation	Х	X	Entropy input string, Seed, V and K	R W Z

Service		les	CSPs & crypto	Access
	U S E R	CO	keys	Туре
PBKDF Password-based key derivation	X	X	secret key, password	R W Z
AES key import	Χ	Χ	secret key	R
Triple-DES key import	Χ	Χ	secret key	R
HMAC key import	Χ	Χ	HMAC key	R
RSA (key pair generation)	Х	Х	Asymmetric key pair	R W
Diffie-Hellman Key agreement	X	X	Asymmetric keys (RSA/ECDSA key) and secret session key (AES/Triple-DES key)	RW
EC Diffie-Hellman Key agreement	X	X	Asymmetric keys (RSA/ECDSA key) and secret session key (AES/Triple-DES key)	RW
Release all resources of symmetric crypto function context	Х	Х	AES/Triple-DES key	Z
Release all resources of hash context	Х	Х	HMAC key	Z
Release of all resources of Diffie- Hellman context for Diffie-Hellman and EC Diffie-Hellman	X	X	Asymmetric keys (RSA/ECDSA) and secret session key (AES/Triple-DES)	Z
Release of all resources of asymmetric crypto function context	Х	Х	RSA/ECDSA keys	Z
Self-test	X	X	Software integrity key (Public RSA key)	R
Show Status	X	Χ	None	N/A

Table 6: Services and Roles

4.3 Operator authentication

Within the constraints of FIPS 140-2 level 1, the module does not implement an authentication mechanism for operator authentication. The assumption of a role is implicit in the action taken.

The module relies upon the operating system for any operator authentication.

5 Physical Security

The Apple OS X CoreCrypto Module, v4.0 is intended to operate on a multi-chip standalone platform. The device is comprised of production grade components and a production grade enclosure.

6 Operational Environment

The following sections describe the operational environment of the Apple OS X CoreCrypto Module, v4.0.

6.1 Applicability

The Apple OS X CoreCrypto Module, v4.0 operates in a modifiable operational environment per FIPS 140-2 level 1 specifications. It is part of OS X 10.9, a commercially available general-purpose operating system executing on the hardware specified in section 2.1.3.

6.2 Policy

The operating system is restricted to a single operator (i.e. concurrent operators are explicitly excluded).

When the operating system loads the module into memory, it invokes the FIPS Self-Test functionality, which in turn runs the mandatory FIPS 140-2 tests.

7 Cryptographic Key Management

The following section defines the key management features available through the Apple OS X CoreCrypto Module, v4.0.

7.1 Random Number Generation

A FIPS 140-2 approved deterministic random bit generator based on a block cipher as specified in NIST SP 800-90A is used. It is a CTR_DRBG using AES-128 in counter mode. The deterministic random bit generator is seeded by /dev/random. The /dev/random generator is a true random number generator that obtains entropy from interrupts generated by the devices and sensors attached to the system and maintains an entropy pool. The TRNG feeds entropy from the pool into the DRBG on demand. The TRNG provides 160-bits of entropy.

7.2 Key / CSP Generation

The following approved key generation methods are used by the module:

- The Approved RNG specified in section 7.1 is used to generate cryptographic secret keys for symmetric key algorithms (AES, Triple-DES) and Message authentication (HMAC).
- The module provides PBKDF-based key generation services in the Approved mode
- The Approved DRBG specified in section 7.1 is used to generate asymmetric key pairs for the ECDSA and RSA algorithm.

The module does not output any information or intermediate results during the key generation process. The RNG itself is single-threaded.

The cryptographic strength of the 192 and 256 bit AES keys as well as the ECDSA keys for the curve P-384, as modified by the available entropy, is limited to 160-bits.

7.3 Key / CSP Establishment

The module provides Diffie-Hellman- and EC Diffie-Hellman-based key establishment services.

The module provides key establishment services in the Approved mode through the PBKDFv2 algorithm. The PBKDFv2 function is provided as a service and returns the key derived from the provided password to the caller. The caller shall observe all requirements and should consider all recommendations specified in SP800-132 with respect to the strength of the generated key, including the quality of the password, the quality of the salt as well as the number of iterations. The implementation of the PBKDFv2 function requires the user to provide this information.

7.4 Key / CSP Entry and Output

All keys are imported from, or output to, the invoking application running on the same device. All keys entered into the module are electronically entered in plain text form. Keys are output from the module in plain text form if required by the calling application. The same holds for the CSPs.

7.5 Key / CSP Storage

The Apple OS X CoreCrypto Module, v4.0 considers all keys in memory to be ephemeral. They are received for use or generated by the module only at the command of the calling application. The same holds for CSPs.

The module protects all keys, secret or private, and CSPs through the memory protection mechanisms provided by the operating system. No process can read the memory of another process.

7.6 Key / CSP Zeroization

Keys and CSPs are zerorized when the appropriate context object is destroyed or when the system is powered down.

8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The EMI/EMC properties of the Apple OS X CoreCrypto Module, v4.0 are not meaningful for the software library. The devices containing the software components of the module have their own overall EMI/EMC rating. The validation test environments have FCC, part 15, Class B rating.

9 Self-Tests

FIPS 140-2 requires that the module perform self-tests to ensure the integrity of the module and the correctness of the cryptographic functionality at start up. In addition, the DRBG requires continuous verification. The FIPS Self-Tests application runs all required module self-tests. This application is invoked by the OS X boot process upon device startup.

The execution of an independent application for invoking the self-tests in the libcorecrypto.dylib makes use of features of the OS X architecture: the module, implemented in libcorecrypto.dylib, is linked by libcommoncrypto.dylib which is linked by libSystem.dylib. The libSystem.dylib is a library that must be loaded into every application for operation. The operating system ensures that there is a strict CSP separation between the instances used by each application.

All self-tests performed by the module are listed and described in this section.

9.1 Power-Up Tests

The following tests are performed each time the Apple OS X CoreCrypto Module, v4.0 starts and must be completed successfully for the module to operate in the FIPS approved mode. If any of the following tests fails the device fails to boot. To invoke the self-tests on demand, the user may reboot the system.

9.1.1 Cryptographic Algorithm Tests

Algorithm	Modes	Test	
Triple-DES	CBC	KAT (Known Answer Test)	
		Separate encryption / decryption operations are performed	
AES implementations selected by the CBC, ECB, GCM		KAT	
module for the corresponding environment	XTS	Separate encryption / decryption operations are performed	
AES-128, AES-192, AES-256			
DRBG	N/A	KAT	
SHA implementations selected by the module for the corresponding environment	N/A	KAT	
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512			
HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512	N/A	KAT	
RSA	SIG(ver), SIG(gen)	KAT, pair-wise consistency	
	Encrypt/decrypt	checks	
		Separate encryption / decryption operations are performed	
ECDSA	SIG(ver), SIG(gen)	pair-wise consistency checks	

Table 7: Cryptographic Algorithm Tests

9.1.2 Software / Firmware Integrity Tests

A software integrity test is performed on the runtime image of the Apple OS X CoreCrypto Module, v4.0. The CoreCrypto's HMAC-SHA256 is used as an approved algorithm for the integrity test. If the test fails, then the device powers itself off.

9.1.3 Critical Function Tests

No other critical function test is performed on power up.

9.2 Conditional Tests

The following sections describe the conditional tests supported by the Apple OS X CoreCrypto Module. v4.0.

9.2.1 Continuous Random Number Generator Test

The Apple OS X CoreCrypto Module, v4.0 performs a continuous random number generator test, whenever CTR_DRBG is invoked.

In addition, the seed source implemented in the operating system kernel also performs a continuous self test.

9.2.2 Pair-wise Consistency Test

The Apple OS X CoreCrypto Module, v4.0 does generate asymmetric keys and performs all required pair-wise consistency tests, the signature generation and verification tests, with the newly generated key pairs.

9.2.3 SP 800-90A Assurance Tests

The Apple OS X CoreCrypto Kernel Module performs a subset of the assurance tests as specified in section 11 of SP 800-90A, in particular it complies with the mandatory documentation requirements and performs know-answer tests and prediction resistance.

9.2.4 Critical Function Test

No other critical function test is performed conditionally.

10 Design Assurance

10.1 Configuration Management

Apple manages and records source code and associated documentation files by using the revision control system called "Git."

The Apple module hardware data, which includes descriptions, parts data, part types, bills of materials, manufacturers, changes, history, and documentation are managed and recorded. Additionally, configuration management is provided for the module's FIPS documentation.

The following naming/numbering convention for documentation is applied.

<evaluation>_<module>_<os>_<doc name>_<doc version (##.##)>

Example: FIPS_CORECRYPTO_OSX_US_SECPOL_01.01

Document management utilities provide access control, versioning, and logging. Access to the Git repository (source tree) is granted or denied by the server administrator in accordance with company and team policy.

10.2 Delivery and Operation

The CoreCrypto is built into OS X. For additional assurance, it is digitally signed.

10.3 Development

The Apple crypto module (like any other Apple software) undergoes frequent builds utilizing a "train" philosophy. Source code is submitted to the Build and Integration group (B & I). B & I builds, integrates and does basic sanity checking on the operating systems and apps that they produce. Copies of older versions are archived offsite in underground granite vaults.

10.4 Guidance

The following guidance items are to be used for assistance in maintaining the module's validated status while in use.

10.4.1 Cryptographic Officer Guidance

The Approved mode of operation is configured in the system by default and cannot be changed. If the device boots up successfully then CoreCrypto has passed all self-tests and is operating in the Approved mode.

10.4.2 User Guidance

As above, the Approved mode of operation is configured in the system by default and cannot be changed. If the device boots up successfully then CoreCrypto has passed all self-tests and is operating in the Approved mode.

11 Mitigation of Other Attacks

The module protects against the utilization of known Triple-DES weak keys. The following keys are not permitted:

```
{0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
\{0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E\}
\{0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1\}
\{0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE\},
\{0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01\},
\{0x1F.0xE0.0x1F.0xE0.0x0E.0xF1.0x0E.0xF1\}.
\{0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E\},
\{0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1\},
\{0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01\},
\{0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE\},
{0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
\{0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E\},
\{0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01\},
\{0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE\},
\{0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1\}
```