
Cryptographic Primitives Library

Security Policy

for FIPS 140-2 Validation
Microsoft Windows 8

Microsoft Windows Server 2012

Microsoft Windows RT

Microsoft Surface Windows RT

Microsoft Surface Windows 8 Pro

Microsoft Windows Phone 8

Cryptographic Primitives Library
(BCRYPTPRIMITIVES.DLL)
DOCUMENT INFORMATION

Version Number 1.1
Updated On July 17, 2013

© 2013 Microsoft. All Rights Reserved Page 1 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2013 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

© 2013 Microsoft. All Rights Reserved Page 2 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://creativecommons.org/licenses/by-nd-nc/1.0/

Cryptographic Primitives Library

TABLE OF CONTENTS

1 INTRODUCTION .. 6

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ... 6
1.2 BRIEF MODULE DESCRIPTION ... 6
1.3 VALIDATED PLATFORMS ... 6
1.4 CRYPTOGRAPHIC BOUNDARY ... 7

2 SECURITY POLICY .. 7

2.1 FIPS 140-2 APPROVED ALGORITHMS .. 8
2.2 NON-APPROVED ALGORITHMS .. 9
2.3 CRYPTOGRAPHIC BYPASS .. 9
2.4 MACHINE CONFIGURATIONS .. 9

3 OPERATIONAL ENVIRONMENT .. 9

4 INTEGRITY CHAIN OF TRUST .. 10

5 PORTS AND INTERFACES ... 10

5.1 EXPORT FUNCTIONS ... 10
5.2 CNG PRIMITIVE FUNCTIONS .. 11
5.3 CONTROL INPUT INTERFACE ... 12
5.4 STATUS OUTPUT INTERFACE .. 12
5.5 DATA OUTPUT INTERFACE ... 12
5.6 DATA INPUT INTERFACE .. 12

6 SPECIFICATION OF ROLES .. 13

6.1 MAINTENANCE ROLES .. 13
6.2 MULTIPLE CONCURRENT INTERACTIVE OPERATORS ... 13
6.3 OPERATOR AUTHENTICATION .. 13
6.4 SHOW STATUS SERVICES ... 13
6.5 SELF-TEST SERVICES ... 13
6.6 SERVICE INPUTS / OUTPUTS .. 13

© 2013 Microsoft. All Rights Reserved Page 3 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

7 SERVICES ... 13

7.1 ALGORITHM PROVIDERS AND PROPERTIES .. 13
7.1.1 BCRYPTOPENALGORITHMPROVIDER ... 13
7.1.2 BCRYPTCLOSEALGORITHMPROVIDER .. 14
7.1.3 BCRYPTSETPROPERTY .. 14
7.1.4 BCRYPTGETPROPERTY .. 14
7.1.5 BCRYPTFREEBUFFER .. 14
7.2 RANDOM NUMBER GENERATION .. 15
7.2.1 BCRYPTGENRANDOM .. 15
7.3 KEY AND KEY-PAIR GENERATION .. 15
7.3.1 BCRYPTGENERATESYMMETRICKEY ... 15
7.3.2 BCRYPTGENERATEKEYPAIR ... 15
7.3.3 BCRYPTFINALIZEKEYPAIR .. 16
7.3.4 BCRYPTDUPLICATEKEY ... 16
7.3.5 BCRYPTDESTROYKEY .. 16
7.4 KEY ENTRY AND OUTPUT .. 16
7.4.1 BCRYPTIMPORTKEY ... 16
7.4.2 BCRYPTIMPORTKEYPAIR ... 17
7.4.3 BCRYPTEXPORTKEY ... 18
7.5 ENCRYPTION AND DECRYPTION .. 20
7.5.1 BCRYPTENCRYPT ... 20
7.5.2 BCRYPTDECRYPT ... 21
7.6 HASHING AND MESSAGE AUTHENTICATION .. 22
7.6.1 BCRYPTCREATEHASH ... 22
7.6.2 BCRYPTHASHDATA .. 23
7.6.3 BCRYPTDUPLICATEHASH .. 23
7.6.4 BCRYPTFINISHHASH ... 23
7.6.5 BCRYPTDESTROYHASH ... 24
7.7 SIGNING AND VERIFICATION .. 24
7.7.1 BCRYPTSIGNHASH ... 24
7.7.2 BCRYPTVERIFYSIGNATURE .. 25
7.8 SECRET AGREEMENT AND KEY DERIVATION ... 26
7.8.1 BCRYPTSECRETAGREEMENT .. 26
7.8.2 BCRYPTDERIVEKEY .. 26
7.8.3 BCRYPTDESTROYSECRET ... 27
7.8.4 BCRYPTKEYDERIVATION ... 27
7.9 DEPRECATION .. 28
7.9.1 BIT STRENGTHS OF DH AND ECDH ... 28
7.9.2 SHA-1 ... 28

© 2013 Microsoft. All Rights Reserved Page 4 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

8 AUTHENTICATION ... 29

9 CRYPTOGRAPHIC KEY MANAGEMENT ... 29

9.1 ACCESS CONTROL POLICY ... 29
9.2 KEY MATERIAL ... 30
9.3 KEY GENERATION .. 30
9.4 KEY ESTABLISHMENT .. 31
9.4.1 NIST SP 800-132 PASSWORD BASED KEY DERIVATION FUNCTION (PBKDF) ... 31
9.5 KEY ENTRY AND OUTPUT .. 32
9.6 KEY STORAGE ... 32
9.7 KEY ARCHIVAL .. 32
9.8 KEY ZEROIZATION .. 32

10 SELF-TESTS .. 33

10.1 POWER-ON SELF-TESTS .. 33
10.2 CONDITIONAL SELF-TESTS ... 33

11 DESIGN ASSURANCE .. 33

12 MITIGATION OF OTHER ATTACKS .. 35

13 ADDITIONAL DETAILS .. 35

14 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 36

14.1 HOW TO VERIFY WINDOWS VERSIONS ... 36
14.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES .. 36

© 2013 Microsoft. All Rights Reserved Page 5 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

1 Introduction
The Microsoft Windows Cryptographic Primitives Library is a general purpose, software-based,
cryptographic module. The primitive provider functionality is offered through one cryptographic
module, BCRYPTPRIMITIVES.DLL, subject to FIPS-140-2 validation. Cryptographic Primitives Library
provides cryptographic services, through its documented interfaces, to Windows 8, Windows RT,
Windows Server 2012, and Windows Phone 8 components and applications running on Windows 8,
Windows RT, Windows Server 2012, and Windows Phone 8.

The cryptographic module, Cryptographic Primitives Library, encapsulates several different
cryptographic algorithms in an easy-to-use cryptographic module accessible via the Microsoft CNG
(Cryptography, Next Generation) API. It can be dynamically linked into applications by software
developers to permit the use of general-purpose FIPS 140-2 Level 1 compliant cryptography.

1.1 List of Cryptographic Module Binary Executables
BCRYPTPRIMITIVES.DLL – Version 6.2.9200 for Windows 8, Windows RT, Windows Server 2012, and
Windows Phone 8

1.2 Brief Module Description
BCRYPTPRIMITIVES.DLL is a dynamically-linked library providing cryptographic primitive services.

1.3 Validated Platforms
The Cryptographic Primitives Library component listed in Section 1.1 was validated using the following
machine configurations:

x86 Microsoft Windows 8 Enterprise – Dell Dimension C521 (AMD Athlon 64 X2 Dual Core)
x64 Microsoft Windows 8 Enterprise – Dell PowerEdge SC430 (Intel Pentium D without AES-NI)
x64-AES-NI Microsoft Windows 8 Enterprise – Intel Client Desktop (Intel Core i7 with AES-NI)
x64 Microsoft Windows Server 2012 – Dell PowerEdge SC430 (Intel Pentium D without AES-NI)
x64-AES-NI Microsoft Windows Server 2012 – Intel Client Desktop (Intel Core i7 with AES-NI)
ARMv7 Thumb-2 Microsoft Windows RT – NVIDIA Tegra 3 Tablet (NVIDIA Tegra 3 Quad-Core)
ARMv7 Thumb-2 Microsoft Windows RT – Qualcomm Tablet (Qualcomm Snapdragon S4)
ARMv7 Thumb-2 Microsoft Windows RT – Microsoft Surface Windows RT (NVIDIA Tegra 3 Quad-
Core)
x64-AES-NI Microsoft Windows 8 Pro – Microsoft Surface Windows 8 Pro (Intel x64 Processor
with AES-NI)
ARMv7 Thumb-2 Microsoft Windows Phone 8 – Windows Phone 8 (Qualcomm Snapdragon S4)

The Cryptographic Primitives Library component maintains FIPS 140-2 validation compliance (according
to FIPS 140-2 PUB Implementation Guidance G.5) on the following platforms:

x86 Microsoft Windows 8
x86 Microsoft Windows 8 Pro

x64 Microsoft Windows 8

© 2013 Microsoft. All Rights Reserved Page 6 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

x64 Microsoft Windows 8 Pro
x64 Microsoft Windows Server 2012 Datacenter

x64-AES-NI Microsoft Windows 8
x64-AES-NI Microsoft Windows 8 Pro
x64-AES-NI Microsoft Windows Server 2012 Datacenter

1.4 Cryptographic Boundary
The software binary that comprises the cryptographic boundary for Cryptographic Primitives Library is
BCRYPTPRIMITIVES.DLL. The Crypto boundary is also defined by the enclosure of the computer system,
on which Cryptographic Primitives Library is to be executed. The physical configuration of Cryptographic
Primitives Library, as defined in FIPS-140-2, is multi-chip standalone.

2 Security Policy
Cryptographic Primitives Library operates under several rules that encapsulate its security policy.

• Cryptographic Primitives Library is supported on Windows 8, Windows RT, Windows Server
2012, and Windows Phone 8.

• Cryptographic Primitives Library operates in FIPS mode of operation only when used with the
FIPS approved version of Windows 8, Windows RT, Windows Server 2012, and Windows Phone
8 Code Integrity (ci.dll) validated to FIPS 140-2 under Cert. #1897, respectively, operating in FIPS
mode. This is required to satisfy crypto module integrity checks (See section 4). Additionally
there is a functional dependency on CNG.SYS (Cert # 1891) operating in FIPS mode, required for
entropy input (see section on BCryptGenRandom).

• Windows 8, Windows RT, Windows Server 2012, and Windows Phone 8 are operating systems
supporting a “single user” mode where there is only one interactive user during a logon session.

• Cryptographic Primitives Library is only in its Approved mode of operation when Windows is
booted normally, meaning Debug mode is disabled and Driver Signing enforcement is enabled.

• Cryptographic Primitives Library operates in its FIPS mode of operation only when one of the
following DWORD registry values is set to 1:

o HKLM\SYSTEM\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled
o HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Configuration\SelfT

estAlgorithms
• The registry security policy settings can be observed with the regedit tool to determine whether

the module is in FIPS mode.
• All users assume either the User or Cryptographic Officer roles.
• Cryptographic Primitives Library provides no authentication of users. Roles are assumed

implicitly. The authentication provided by the Windows 8, Windows RT, Windows Server 2012,
and Windows Phone 8 operating system is not in the scope of the validation.

• All cryptographic services implemented within Cryptographic Primitives Library are available to
the User and Cryptographic Officer roles.

© 2013 Microsoft. All Rights Reserved Page 7 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

The following diagram illustrates the master components of the Cryptographic Primitives Library
module:

Figure 1 Master components of bcryptprimitives.dll module

2.1 FIPS 140-2 Approved Algorithms
Cryptographic Primitives Library implements the following FIPS-140-2 Approved algorithms:

o SHA-1, SHA-256, SHA-384, SHA-512 hash (Cert. # 1903)
o SHA-1, SHA-256, SHA-384, SHA-512 HMAC (Cert. # 1345)
o Triple-DES (2 key1 and 3 key) in ECB, CBC, CFB8 and CFB64 modes (Cert. # 1387)
o AES-128, AES-192, AES-256 in ECB, CBC, CFB8,CFB128, and CTR modes (Cert. # 2197)
o AES-128, AES-192 and AES-256 CCM (Cert. # 2216)
o AES-128, AES-192 and AES-256 GCM (Cert. # 2216)
o AES-128, AES-192, and AES-256 GMAC (Cert# 2216)
o AES-128, AES-192, and AES-256 CMAC (Cert# 2216)
o FIPS 186-3 RSA (RSASSA-PKCS1-v1_5 and RSASSA-PSS) digital signatures (Cert. # 1134)

and FIPS 186-3 RSA key-pair generation (Cert. # 1133)
o FIPS 186-2 DSA (Cert. # 687)
o FIPS 186-3 DSA (Cert. # 687)

1 Two-key Triple-DES is restricted and legacy-use according to NIST SP 800-131A. Users should start
transitioning away from this algorithm to better, stronger choices.

© 2013 Microsoft. All Rights Reserved Page 8 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

o KAS – SP800-56A (Cert# 36) Diffie-Hellman Key Agreement; key establishment
methodology provides at least 80-bits of encryption strength.

o KAS – SP800-56A (Cert# 36) EC Diffie-Hellman Key Agreement; key establishment
methodology provides between 128 and 256-bits of encryption strength

o FIPS 186-2 ECDSA with the following NIST curves: P-256, P-384, P-521 (Cert. # 341)
o FIPS 186-3 ECDSA with the following NIST curves: P-256, P-384, P-521 (Cert. # 341)
o SP800-90 AES-256 counter mode DRBG (Cert. # 258)
o SP800-90 Dual EC DRBG (Cert. # 259)
o SP 800-108 Key Derivation Function (KDF) (Cert # 3)
o SP 800-132 KDF (also known as PBKDF)(vendor-affirmed)

2.2 Non-Approved Algorithms
Cryptographic Primitives Library supports the following non-Approved algorithms allowed for use in FIPS
mode:

o AES Key Wrap (AES Cert. # 2197, key wrapping; key establishment methodology
provides between 128 and 256 bits of encryption strength)

o MD5 and HMAC MD5 (allowed in TLS and EAP-TLS)
o TLS KDF (primitives only)
o IKEv1 KDF (primitives only)

Cryptographic Primitives Library also supports the following non FIPS 140-2 approved algorithms,
though these algorithms may not be used when operating the module in a FIPS compliant manner.

o RSA encrypt/decrypt
o RC2, RC4, MD2, MD42
o DES in ECB, CBC, CFB8 and CFB64 modes
o Legacy CAPI KDF (proprietary)

2.3 Cryptographic Bypass
Cryptographic bypass is not supported by Cryptographic Primitives Library.

2.4 Machine Configurations
Cryptographic Primitives Library as tested using the machine configurations listed in Section 1.3 -
Validated Platforms.

3 Operational Environment
The operational environment for Cryptographic Primitives Library is Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 running on the hardware listed in Section 1.3 - Validated Platforms.

Because Cryptographic Primitives Library module is a DLL, each process requesting access is provided its
own instance of the module. As such, each process has full access to all information and keys within the
module. Note that no keys or other information are maintained upon detachment from the DLL, thus an

2 Applications may not use any of these non-FIPS algorithms if they need to be FIPS compliant. To
operate the module in a FIPS compliant manner, applications must only use FIPS-approved algorithms.

© 2013 Microsoft. All Rights Reserved Page 9 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

instantiation of the module will only contain keys or information that the process has placed in the
module. BCRYPTPRIMITIVES.DLL relies on the operating environment to enforce isolation between
processes.

4 Integrity Chain of Trust
The integrity of Cryptographic Primitives Library is checked by Code Integrity before it is loaded into
memory, based on verification of SHA-256 page hashes and an RSA signature with a 2048-bit key using
SHA-256 as the underlying hash (Cert. # 1903 for SHA-256 and Cert. # 1132 for RSA signature).

5 Ports and Interfaces

5.1 Export Functions
The Cryptographic Primitives Library module implements a set of algorithm providers for the
Cryptography Next Generation (CNG) framework in Windows. Each provider in this module represents a
single cryptographic algorithm or a set of closely related cryptographic algorithms. These algorithm
providers are invoked through the CNG algorithm primitive functions, which are sometimes collectively
referred to as the BCrypt API. For a full list of these algorithm providers, see:

 http://msdn.microsoft.com/en-us/library/aa375534.aspx.

The Cryptographic Primitives Library module exposes its cryptographic services to the operating system
through a small set of exported functions. These functions are used by the CNG framework to retrieve
references to the different algorithm providers, in order to route BCrypt API calls appropriately to
Cryptographic Primitives Library. These functions return references to implementations of cryptographic
functions that correspond directly to functions in the BCrypt API. For details, please see the CNG SDK for
Windows 8, Windows RT, Windows Server 2012, and Windows Phone 8, available at:

 http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

© 2013 Microsoft. All Rights Reserved Page 10 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/en-us/library/aa375534.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

Cryptographic Primitives Library

Figure 2 Relationships between bcryptprimitives.dll and other components – cryptographic boundary
highlighted in gold.

The following functions are exported by Cryptographic Primitives Library:

• GetAsymmetricEncryptionInterface
• GetCipherInterface
• GetHashInterface
• GetRngInterface
• GetSecretAgreementInterface
• GetSignatureInterface

5.2 CNG Primitive Functions
The following list contains the CNG functions which can be used by callers to access the cryptographic
services in Cryptographic Primitives Library.

• BCryptCloseAlgorithmProvider
• BCryptCreateHash
• BCryptDecrypt
• BCryptDeriveKey
• BCryptDestroyHash
• BCryptDestroyKey
• BCryptDestroySecret

BCryptprimitives.dll

CNG provider interface

CNG BCrypt API

Application

CNG BCrypt primitives router

Algorithm
provider

Algorithm
provider

Windows random number generator

Application layer

CNG API layer

CNG
provider
layer

Kernel space

Other
provider(s)

© 2013 Microsoft. All Rights Reserved Page 11 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

• BCryptDuplicateHash
• BCryptDuplicateKey
• BCryptEncrypt
• BCryptExportKey
• BCryptFinalizeKeyPair
• BCryptFinishHash
• BCryptFreeBuffer
• BCryptGenerateKeyPair
• BCryptGenerateSymmetricKey
• BCryptGenRandom
• BCryptGetProperty
• BCryptHashData
• BCryptImportKey
• BCryptImportKeyPair
• BCryptKeyDerivation
• BCryptOpenAlgorithmProvider
• BCryptSecretAgreement
• BCryptSetProperty
• BCryptSignHash
• BCryptVerifySignature

5.3 Control Input Interface
The Control Input Interface for Cryptographic Primitives Library consists of the CNG primitive functions
listed in Section 5.2. Options for control operations are passed as input parameters to the CNG primitive
functions.

5.4 Status Output Interface
The Status Output Interface for Cryptographic Primitives Library also consists of the CNG primitive
functions listed in Section 5.2. For each function, the status information is returned to the caller as the
return value from the function.

5.5 Data Output Interface
The Data Output Interface for Cryptographic Primitives Library also consists of the CNG primitive
functions listed in Section 5.2.

5.6 Data Input Interface
The Data Input Interface for Cryptographic Primitives Library also consists of the CNG primitive functions
listed in Section 5.2. Data and options are passed to the interface as input parameters to the CNG
primitive functions. Data Input is kept separate from Control Input by passing Data Input in separate
parameters from Control Input.

© 2013 Microsoft. All Rights Reserved Page 12 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

6 Specification of Roles
Cryptographic Primitives Library provides User and Cryptographic Officer roles (as defined in FIPS 140-2).
These roles share all the services implemented in the cryptographic module.

When an application requests the crypto module to generate keys for a user, the keys are generated,
used, and deleted as requested by applications. There are no implicit keys associated with a user. Each
user may have numerous keys, and each user’s keys are separate from other users’ keys.

6.1 Maintenance Roles
Maintenance roles are not supported.

6.2 Multiple Concurrent Interactive Operators
There is only one interactive operator in Single User Mode. When run in this configuration, multiple
concurrent interactive operators are not supported.

6.3 Operator Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are
executed.

6.4 Show Status Services
The User and Cryptographic Officer roles have the same Show Status functionality, which is, for each
function, the status information is returned to the caller as the return value from the function.

6.5 Self-Test Services
The User and Cryptographic Officer roles have the same Self-Test functionality, which is described in
Section 10 Self-Tests.

6.6 Service Inputs / Outputs
The User and Cryptographic Officer roles have service inputs and outputs as specified in Section 5 Ports
and Interfaces and Section 7 Services.

7 Services
The following list contains all services available to an operator. All services are accessible to both the
User and Crypto Officer roles.

7.1 Algorithm Providers and Properties
7.1.1 BCryptOpenAlgorithmProvider

NTSTATUS WINAPI BCryptOpenAlgorithmProvider(
BCRYPT_ALG_HANDLE *phAlgorithm,
LPCWSTR pszAlgId,
LPCWSTR pszImplementation,
ULONG dwFlags);

© 2013 Microsoft. All Rights Reserved Page 13 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the
opened algorithm provider, desired algorithm ID input, an optional specific provider name input, and
optional flags. This function loads and initializes a CNG provider for a given algorithm, and returns a
handle to the opened algorithm provider on success. See http://msdn.microsoft.com for CNG providers.
Unless the calling function specifies the name of the provider, the default provider is used. The default
provider is the first provider listed for a given algorithm. The calling function must pass the
BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC function with a hash algorithm.

7.1.2 BCryptCloseAlgorithmProvider
NTSTATUS WINAPI BCryptCloseAlgorithmProvider(

BCRYPT_ALG_HANDLE hAlgorithm,
ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider()
function.

7.1.3 BCryptSetProperty
NTSTATUS WINAPI BCryptSetProperty(

BCRYPT_HANDLE hObject,
LPCWSTR pszProperty,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object, e.g., a
cryptographic key. The CNG object is referenced by a handle, the property name is a NULL terminated
string, and the value of the property is a length-specified byte string.

7.1.4 BCryptGetProperty
NTSTATUS WINAPI BCryptGetProperty(

BCRYPT_HANDLE hObject,
LPCWSTR pszProperty,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object, e.g., a
cryptographic key. The CNG object is referenced by a handle, the property name is a NULL terminated
string, and the value of the property is a length-specified byte string.

7.1.5 BCryptFreeBuffer
VOID WINAPI BCryptFreeBuffer(

PVOID pvBuffer);

© 2013 Microsoft. All Rights Reserved Page 14 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/

Cryptographic Primitives Library

Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees
memory that was allocated by such a CNG function.

7.2 Random Number Generation
7.2.1 BCryptGenRandom

NTSTATUS WINAPI BCryptGenRandom(
BCRYPT_ALG_HANDLE hAlgorithm,
PUCHAR pbBuffer,
ULONG cbBuffer,
ULONG dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. BCRYPTPRIMITVES.DLL implements
two random number generation algorithms:

• BCRYPT_RNG_ALGORITHM. This is the AES-256 counter mode based random generator as
defined in SP800-90.

• BCRYPT_RNG_DUAL_EC_ALGORITHM. This is the dual elliptic curve based random generator as
defined in SP800-90.

During the function initialization, a seed is obtained from the output of an in-kernel random number
generator. This RNG, which exists beyond the cryptographic boundary, provides the necessary entropy
for the user-level RNGs available through this function. A description of the entropy collection is
documented with the SystemPrng function in the Kernel Mode Cryptographic Primitives Library (cng.sys)
security policy.

7.3 Key and Key-Pair Generation
7.3.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE *phKey,
PUCHAR pbKeyObject,
ULONG cbKeyObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

The BCryptGenerateSymmetricKey() function generates a symmetric key object for use with a symmetric
encryption or key derivation algorithm from a supplied cbSecret bytes long key value provided in the
pbSecret memory location. The calling application must specify a handle to the algorithm provider
opened with the BCryptOpenAlgorithmProvider() function. The algorithm specified when the provider
was opened must support symmetric key encryption or key derivation.

7.3.2 BCryptGenerateKeyPair
NTSTATUS WINAPI BCryptGenerateKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

© 2013 Microsoft. All Rights Reserved Page 15 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

BCRYPT_KEY_HANDLE *phKey,
ULONG dwLength,
ULONG dwFlags);

The BCryptGenerateKeyPair() function creates a public/private key pair object without any
cryptographic keys in it. After creating such an empty key pair object using this function, call the
BCryptSetProperty() function to set its properties. The key pair can be used only after
BCryptFinalizeKeyPair() function is called.

Note: for when generating a key pair with “BCRYPT_DSA_ALGORITHM” If the key length is 1024 bits,
then a process conformant with FIPS 186-2 DSA will be used to generate the key pair and perform
subsequent DSA operations. If the key length is 2048 or 3072 bits, then a process conformant with FIPS
186-3 DSA is used to generate the key pair and perform subsequent DSA operations.

7.3.3 BCryptFinalizeKeyPair
NTSTATUS WINAPI BCryptFinalizeKeyPair(

BCRYPT_KEY_HANDLE hKey,
ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation. The key
pair cannot be used until this function has been called. After this function has been called, the
BCryptSetProperty() function can no longer be used for this key pair.

7.3.4 BCryptDuplicateKey
NTSTATUS WINAPI BCryptDuplicateKey(

BCRYPT_KEY_HANDLE hKey,
BCRYPT_KEY_HANDLE *phNewKey,
PUCHAR pbKeyObject,
ULONG cbKeyObject,
ULONG dwFlags);

The BCryptDuplicateKey() function creates a duplicate of a symmetric key object.

7.3.5 BCryptDestroyKey
NTSTATUS WINAPI BCryptDestroyKey(

BCRYPT_KEY_HANDLE hKey);
The BCryptDestroyKey() function destroys a key.

7.4 Key Entry and Output
7.4.1 BCryptImportKey

NTSTATUS WINAPI BCryptImportKey(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE hImportKey,
LPCWSTR pszBlobType,
BCRYPT_KEY_HANDLE *phKey,

© 2013 Microsoft. All Rights Reserved Page 16 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

PUCHAR pbKeyObject,
ULONG cbKeyObject,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by
calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB that is contained in the pbInput buffer. pszBlobType can be one of BCRYPT_AES_WRAP_KEY_BLOB,
BCRYPT_KEY_DATA_BLOB and BCRYPT_OPAQUE_KEY_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key that is
used in subsequent functions that require a key, such as BCryptEncrypt. This handle must be released
when it is no longer needed by passing it to the BCryptDestroyKey function.

pbKeyObject [out] is a pointer to a buffer that receives the imported key object. The cbKeyObject
parameter contains the size of this buffer. The required size of this buffer can be obtained by calling the
BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of
the key object for the specified algorithm. This memory can only be freed after the phKey key handle is
destroyed.

cbKeyObject [in] is the size, in bytes, of the pbKeyObject buffer.

pbInput [in] is the address of a buffer that contains the key BLOB to import.

The cbInput parameter contains the size of this buffer.

The pszBlobType parameter specifies the type of key BLOB this buffer contains.

cbInput [in] is the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are currently defined, so
this parameter should be zero.

7.4.2 BCryptImportKeyPair
NTSTATUS WINAPI BCryptImportKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE hImportKey,
LPCWSTR pszBlobType,
BCRYPT_KEY_HANDLE *phKey,

© 2013 Microsoft. All Rights Reserved Page 17 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/en-us/seccng/security/bcryptopenalgorithmprovider_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptencrypt_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptdestroykey_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptgetproperty_func.asp

Cryptographic Primitives Library

PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by
calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB that is contained in the pbInput buffer. This can be one of the following values:
BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_DSA_PRIVATE_BLOB,
BCRYPT_DSA_PUBLIC_BLOB, BCRYPT_DSA_PRIVATE_BLOB_V2, BCRYPT_DSA_PUBLIC_BLOB_V2,
BCRYPT_ECCPRIVATE_BLOB, BCRYPT_ECCPUBLIC_BLOB, BCRYPT_PUBLIC_KEY_BLOB,
BCRYPT_PRIVATE_KEY_BLOB, BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB,
LEGACY_DH_PUBLIC_BLOB, LEGACY_DH_PRIVATE_BLOB, LEGACY_DSA_PRIVATE_BLOB,
LEGACY_DSA_PUBLIC_BLOB, LEGACY_DSA_V2_PRIVATE_BLOB, LEGACY_RSAPRIVATE_BLOB,
LEGACY_RSAPUBLIC_BLOB.

Note:

BCRYPT_DSA_PRIVATE_BLOB and BCRYPT_DSA_PUBLIC_BLOB are used for 1024-bit DSA key lengths.

BCRYPT_DSA_PRIVATE_BLOB_V2, BCRYPT_DSA_PUBLIC_BLOB_V2 are used for 2048-bit and 3072-bit
DSA key lengths.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key. This
handle is used in subsequent functions that require a key, such as BCryptSignHash. This handle must be
released when it is no longer needed by passing it to the BCryptDestroyKey function.

pbInput [in] is the address of a buffer that contains the key BLOB to import. The cbInput parameter
contains the size of this buffer. The pszBlobType parameter specifies the type of key BLOB this buffer
contains.

cbInput [in] contains the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or the following
value: BCRYPT_NO_KEY_VALIDATION.

7.4.3 BCryptExportKey
NTSTATUS WINAPI BCryptExportKey(

BCRYPT_KEY_HANDLE hKey,

© 2013 Microsoft. All Rights Reserved Page 18 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

BCRYPT_KEY_HANDLE hExportKey,
LPCWSTR pszBlobType,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use.

hKey [in] is the handle of the key to export.

hExportKey [in, out] is not currently used and should be set to NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB to export. This can be one of the following values: BCRYPT_AES_WRAP_KEY_BLOB,
BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_DSA_PRIVATE_BLOB,
BCRYPT_DSA_PUBLIC_BLOB, BCRYPT_DSA_PRIVATE_BLOB_V2, BCRYPT_DSA_PUBLIC_BLOB_V2,
BCRYPT_ECCPRIVATE_BLOB, BCRYPT_ECCPUBLIC_BLOB, BCRYPT_KEY_DATA_BLOB,
BCRYPT_OPAQUE_KEY_BLOB, BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB,
BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB, LEGACY_DH_PRIVATE_BLOB,
LEGACY_DH_PUBLIC_BLOB, LEGACY_DSA_PRIVATE_BLOB, LEGACY_DSA_PUBLIC_BLOB,
LEGACY_DSA_V2_PRIVATE_BLOB, LEGACY_RSAPRIVATE_BLOB, LEGACY_RSAPUBLIC_BLOB.

Note:

BCRYPT_DSA_PRIVATE_BLOB and BCRYPT_DSA_PUBLIC_BLOB are used for 1024-bit DSA key lengths.

BCRYPT_DSA_PRIVATE_BLOB_V2, BCRYPT_DSA_PUBLIC_BLOB_V2 are used for 2048-bit and 3072-bit
DSA key lengths.

pbOutput is the address of a buffer that receives the key BLOB. The cbOutput parameter contains the
size of this buffer. If this parameter is NULL, this function will place the required size, in bytes, in the
ULONG pointed to by the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbOutput buffer. If the pbOutput parameter is NULL, this function will place the required size, in bytes,
in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are defined for this
function.

© 2013 Microsoft. All Rights Reserved Page 19 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

7.5 Encryption and Decryption
7.5.1 BCryptEncrypt

NTSTATUS WINAPI BCryptEncrypt(
BCRYPT_KEY_HANDLE hKey,
PUCHAR pbInput,
ULONG cbInput,
VOID *pPaddingInfo,
PUCHAR pbIV,
ULONG cbIV,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptEncrypt() function encrypts a block of data of given length.

hKey [in, out] is the handle of the key to use to encrypt the data. This handle is obtained from one of the
key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or
BCryptImportKey.

pbInput [in] is the address of a buffer that contains the plaintext to be encrypted. The cbInput
parameter contains the size of the plaintext to encrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to encrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It
must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during
encryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of
this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this
function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be
obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This
will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer that will receive the ciphertext produced by this
function. The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size needed for the ciphertext and return the
size in the location pointed to by the pcbResult parameter.

© 2013 Microsoft. All Rights Reserved Page 20 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

cbOutput [in] contains the size, in bytes, of the pbOutput buffer. This parameter is ignored if the
pbOutput parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the
pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the ciphertext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the
following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the
following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

7.5.2 BCryptDecrypt
NTSTATUS WINAPI BCryptDecrypt(

BCRYPT_KEY_HANDLE hKey,
PUCHAR pbInput,
ULONG cbInput,
VOID *pPaddingInfo,
PUCHAR pbIV,
ULONG cbIV,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptDecrypt() function decrypts a block of data of given length.

hKey [in, out] is the handle of the key to use to decrypt the data. This handle is obtained from one of the
key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or
BCryptImportKey.

pbInput [in] is the address of a buffer that contains the ciphertext to be decrypted. The cbInput
parameter contains the size of the ciphertext to decrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to decrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It
must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during
decryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of
this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this
function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be

© 2013 Microsoft. All Rights Reserved Page 21 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This
will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer to receive the plaintext produced by this function.
The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size required for the plaintext and return the
size in the location pointed to by the pcbResult parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput
parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable to receive the number of bytes copied to the pbOutput
buffer. If pbOutput is NULL, this receives the size, in bytes, required for the plaintext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the
following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the
following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

7.6 Hashing and Message Authentication
7.6.1 BCryptCreateHash

NTSTATUS WINAPI BCryptCreateHash(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_HASH_HANDLE *phHash,
PUCHAR pbHashObject,
ULONG cbHashObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for
HMAC, AES GMAC and AES CMAC.

hAlgorithm [in, out] is the handle of an algorithm provider created by using the
BCryptOpenAlgorithmProvider function. The algorithm that was specified when the provider was
created must support the hash interface.

phHash [out] is a pointer to a BCRYPT_HASH_HANDLE value that receives a handle that represents the
hash object. This handle is used in subsequent hashing functions, such as the BCryptHashData function.
When you have finished using this handle, release it by passing it to the BCryptDestroyHash function.

© 2013 Microsoft. All Rights Reserved Page 22 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

pbHashObject [out] is a pointer to a buffer that receives the hash object. The cbHashObject parameter
contains the size of this buffer. The required size of this buffer can be obtained by calling the
BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of
the hash object for the specified algorithm. This memory can only be freed after the hash handle is
destroyed.

cbHashObject [in] contains the size, in bytes, of the pbHashObject buffer.

pbSecret [in, optional] is a pointer to a buffer that contains the key to use for the hash. The cbSecret
parameter contains the size of this buffer. If no key should be used with the hash, set this parameter to
NULL. This key only applies to the HMAC, AES GMAC and AES CMAC algorithms.

cbSecret [in, optional] contains the size, in bytes, of the pbSecret buffer. If no key should be used with
the hash, set this parameter to zero.

dwFlags [in] is not currently used and must be zero.

7.6.2 BCryptHashData
NTSTATUS WINAPI BCryptHashData(

BCRYPT_HASH_HANDLE hHash,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash()
function to finalize the hashing operation to get the hash result.

7.6.3 BCryptDuplicateHash
NTSTATUS WINAPI BCryptDuplicateHash(

BCRYPT_HASH_HANDLE hHash,
BCRYPT_HASH_HANDLE *phNewHash,
PUCHAR pbHashObject,
ULONG cbHashObject,
ULONG dwFlags);

The BCryptDuplicateHash()function duplicates an existing hash object. The duplicate hash object
contains all state and data that was hashed to the point of duplication.

7.6.4 BCryptFinishHash
NTSTATUS WINAPI BCryptFinishHash(

BCRYPT_HASH_HANDLE hHash,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG dwFlags);

© 2013 Microsoft. All Rights Reserved Page 23 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to
BCryptHashData() function.

7.6.5 BCryptDestroyHash
NTSTATUS WINAPI BCryptDestroyHash(

BCRYPT_HASH_HANDLE hHash);
The BCryptDestroyHash() function destroys a hash object.

7.7 Signing and Verification
7.7.1 BCryptSignHash

NTSTATUS WINAPI BCryptSignHash(
BCRYPT_KEY_HANDLE hKey,
VOID *pPaddingInfo,
PUCHAR pbInput,
ULONG cbInput,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptSignHash() function creates a signature of a hash value.

hKey [in] is the handle of the key to use to sign the hash.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and must be NULL otherwise.

pbInput [in] is a pointer to a buffer that contains the hash value to sign. The cbInput parameter contains
the size of this buffer.

cbInput [in] is the number of bytes in the pbInput buffer to sign.

pbOutput [out] is the address of a buffer to receive the signature produced by this function. The
cbOutput parameter contains the size of this buffer. If this parameter is NULL, this function will calculate
the size required for the signature and return the size in the location pointed to by the pcbResult
parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput
parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the
pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the signature.

© 2013 Microsoft. All Rights Reserved Page 24 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this parameter is not
used and should be set to zero. If the key is an asymmetric key, this can be one of the following values:
BCRYPT_PAD_PKCS1, BCRYPT_PAD_PSS.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is currently deprecated
for digital signature generation and will be disallowed after the end of 2013. SHA-1 is currently legacy-
use for digital signature verification.

7.7.2 BCryptVerifySignature
NTSTATUS WINAPI BCryptVerifySignature(

BCRYPT_KEY_HANDLE hKey,
VOID *pPaddingInfo,
PUCHAR pbHash,
ULONG cbHash,
PUCHAR pbSignature,
ULONG cbSignature,
ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash.

hKey [in] is the handle of the key to use to decrypt the signature. This must be an identical key or the
public key portion of the key pair used to sign the data with the BCryptSignHash function.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and must be NULL otherwise.

pbHash [in] is the address of a buffer that contains the hash of the data. The cbHash parameter contains
the size of this buffer.

cbHash [in] is the size, in bytes, of the pbHash buffer.

pbSignature [in] is the address of a buffer that contains the signed hash of the data. The BCryptSignHash
function is used to create the signature. The cbSignature parameter contains the size of this buffer.

cbSignature [in] is the size, in bytes, of the pbSignature buffer. The BCryptSignHash function is used to
create the signature.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is currently deprecated
for digital signature generation and will be disallowed after the end of 2013. SHA-1 is currently legacy-
use for digital signature verification.

© 2013 Microsoft. All Rights Reserved Page 25 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/en-us/seccng/security/bcryptsignhash_func.asp

Cryptographic Primitives Library

7.8 Secret Agreement and Key Derivation
7.8.1 BCryptSecretAgreement

NTSTATUS WINAPI BCryptSecretAgreement(
BCRYPT_KEY_HANDLE hPrivKey,
BCRYPT_KEY_HANDLE hPubKey,
BCRYPT_SECRET_HANDLE *phAgreedSecret,
ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public
key. This function is used with Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) algorithms.

hPrivKey [in] The handle of the private key to use to create the secret agreement value.

hPubKey [in] The handle of the public key to use to create the secret agreement value.

phSecret [out] A pointer to a BCRYPT_SECRET_HANDLE that receives a handle that represents the secret
agreement value. This handle must be released by passing it to the BCryptDestroySecret function when
it is no longer needed.

dwFlags [in] A set of flags that modify the behavior of this function. This must be zero.

7.8.2 BCryptDeriveKey
NTSTATUS WINAPI BCryptDeriveKey(

BCRYPT_SECRET_HANDLE hSharedSecret,
LPCWSTR pwszKDF,
BCryptBufferDesc *pParameterList,
PUCHAR pbDerivedKey,
ULONG cbDerivedKey,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptDeriveKey() function derives a key from a secret agreement value.

hSharedSecret [in, optional] is the secret agreement handle to create the key from. This handle is
obtained from the BCryptSecretAgreement function.

pwszKDF [in] is a pointer to a null-terminated Unicode string that contains an object identifier (OID) that
identifies the key derivation function (KDF) to use to derive the key. This can be one of the following
strings: BCRYPT_KDF_HASH (parameters in pParameterList: KDF_HASH_ALGORITHM,
KDF_SECRET_PREPEND, KDF_SECRET_APPEND), BCRYPT_KDF_HMAC (parameters in pParameterList:
KDF_HASH_ALGORITHM, KDF_HMAC_KEY, KDF_SECRET_PREPEND, KDF_SECRET_APPEND),
BCRYPT_KDF_TLS_PRF (parameters in pParameterList: KDF_TLS_PRF_LABEL, KDF_TLS_PRF_SEED),
BCRYPT_KDF_SP80056A_CONCAT (parameters in pParameterList: KDF_ALGORITHMID,
KDF_PARTYUINFO, KDF_PARTYVINFO, KDF_SUPPPUBINFO, KDF_SUPPPRIVINFO).

© 2013 Microsoft. All Rights Reserved Page 26 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

pParameterList [in, optional] is the address of a BCryptBufferDesc structure that contains the KDF
parameters. This parameter is optional and can be NULL if it is not needed.

Note: When supporting a key agreement scheme that requires a nonce, BCryptDeriveKey uses
whichever nonce is supplied by the caller in the BCryptBufferDesc. Examples of the nonce types are
found in Section 5.4 of http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-
56A_Revision1_Mar08-2007.pdf

When using a nonce, a random nonce should be used. And then if the random nonce is used, the
entropy (amount of randomness) of the nonce and the security strength of the DRBG has to be at least
one half of the minimum required bit length of the subgroup order.

For example:

for KAS FFC, entropy of nonce must be 80 bits for FA, 112 bits for FB, 128 bits for FC).

for KAS ECC, entropy of the nonce must be 128 bit for EC, 182 for ED, 256 for EF.

pbDerivedKey [out, optional] is the address of a buffer that receives the key. The cbDerivedKey
parameter contains the size of this buffer. If this parameter is NULL, this function will place the required
size, in bytes, in the ULONG pointed to by the pcbResult parameter.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,
in bytes, in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or
KDF_USE_SECRET_AS_HMAC_KEY_FLAG. The KDF_USE_SECRET_AS_HMAC_KEY_FLAG value must only
be used when pwszKDF is equal to BCRYPT_KDF_HMAC. It indicates that the secret will also be used as
the HMAC key. If this flag is used, the KDF_HMAC_KEY parameter must not be specified in
pParameterList.

7.8.3 BCryptDestroySecret
NTSTATUS WINAPI BCryptDestroySecret(

BCRYPT_SECRET_HANDLE hSecret);
The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the
BCryptSecretAgreement() function.

7.8.4 BCryptKeyDerivation
NTSTATUS WINAPI BCryptKeyDerivation(

 In BCRYPT_KEY_HANDLE hKey,
 _In_opt_ BCryptBufferDesc *pParameterList,

© 2013 Microsoft. All Rights Reserved Page 27 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Cryptographic Primitives Library

 _Out_writes_bytes_to_(cbDerivedKey, *pcbResult) PUCHAR pbDerivedKey,
 In ULONG cbDerivedKey,
 Out ULONG *pcbResult,
 In ULONG dwFlags);

The BCryptKeyDerivation() function executes a Key Derivation Function (KDF) on a key generated with
BCryptGenerateSymmetricKey() function. It differs from the BCryptDeriveKey() function in that it does
not require a secret agreement step to create a shared secret.

hKey [in] is a handle to a key created with the BCryptGenerateSymmetricKey function.

pParameterList [in] is the algorithm-specific parameter list for the selected KDF.

pbDerivedKey [out] is the address of a buffer that receives the key. The cbDerivedKey parameter
contains the size of this buffer.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,
in bytes, in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This must be zero.

7.9 Deprecation

7.9.1 Bit Strengths of DH and ECDH
Through the year 2010, implementations of DH and ECDH were allowed to have an acceptable bit
strength of at least 80 bits of security (for DH at least 1024 bits and for ECDH at least 160 bits). From
2011 through 2013, 80 bits of security strength is considered deprecated, and will be disallowed starting
January 1, 2014. On that date, only security strength of at least 112 bits will be acceptable. ECDH uses
curve sizes of at least 256 bits (that means it has at least 128 bits of security strength), so that is
acceptable. However, DH has a range of 1024 to 4096 and that will change to 2048 to 4096 after 2013.

7.9.2 SHA-1
From 2011 through 2013, SHA-1 can be used in a deprecated mode for use in digital signature
generation. On Jan. 1, 2014, SHA-1 will no longer be allowed for digital signature generation, and it will
be allowed for legacy use only for digital signature verification.

© 2013 Microsoft. All Rights Reserved Page 28 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

8 Authentication
See Section 6.3 Operator Authentication.

9 Cryptographic Key Management
The Cryptographic Primitives Library crypto module uses the following security relevant data items:

Security Relevant Data Item Description
Symmetric encryption/decryption keys Keys used for AES or TDEA encryption/decryption

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384,
and HMAC-SHA512

DSA Public Keys Keys used for the verification of DSA digital signatures
DSA Private Keys Keys used for the calculation of DSA digital signatures
ECDSA Public Keys Keys used for the verification of ECDSA digital signatures
ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures
RSA Public Keys Keys used for the verification of RSA digital signatures
RSA Private Keys Keys used for the calculation of RSA digital signatures
DH Private and Public values Private and public values used for Diffie-Hellman key

establishment.
ECDH Private and Public values Private and public values used for EC Diffie-Hellman key

establishment.
AES-CTR DRBG Seed A secret value maintained internal to the module that

provides the seed material for AES-CTR DRBG output
AES-CTR DRBG Entropy Input A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
AES-CTR DRBG V A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
AES-CTR DRBG key A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
DUAL EC DRBG Seed A secret value maintained internal to the module that

provides the seed material for DUAL EC DRBG output
DUAL EC DRBG Entropy Input A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output
DUAL EC DRBG V A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output
DUAL EC DRBG key A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output

9.1 Access Control Policy
The Cryptographic Primitives Library crypto module allows controlled access to security relevant data
items contained within it. The following table defines the access that a service has to each. The
permissions are categorized as a set of four separate permissions: read (r), write (w), execute (x), delete
(d). If no permission is listed, the service has no access to the item. The User and Cryptographic Officer
roles have the same access to keys so roles are not distinguished in the table.

© 2013 Microsoft. All Rights Reserved Page 29 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

Cryptographic Primitives Library

crypto module

Service Access Policy

Sy
m

m
et

ric
 e

nc
ry

pt
io

n
an

d
de

cr
yp

tio
n

ke
ys

H
M

AC
 k

ey
s

D
SA

 P
ub

lic
 K

ey
s

D
SA

 P
riv

at
e

Ke
ys

EC
D

SA
 p

ub
lic

 k
ey

s

EC
D

SA
 P

riv
at

e
ke

ys

RS
A

Pu
bl

ic
 K

ey
s

RS
A

Pr
iv

at
e

Ke
ys

D
H

 P
ub

lic
 a

nd
 P

riv
at

e
va

lu
es

EC
D

H
 P

ub
lic

 a
nd

Pr

iv
at

e
va

lu
es

D
RB

G
 S

ee
ds

 a
nd

 C
SP

s

Cryptographic Module Power Up
and Power Down

Key Formatting w
Random Number Generation x
Data Encryption and Decryption x
Hashing xw
Acquiring a Table of Pointers to
BCryptXXX Functions

Algorithm Providers and
Properties

Key and Key-Pair Generation wd wd wd w
d

w
d

w
d

w
d

w
d

wd wd x

Key Entry and Output rw rw rw rw rw rw rw rw rw rw
Signing and Verification x x x x x x x
Secret Agreement and Key
Derivation

 x x x

9.2 Key Material
Each time an application links with Cryptographic Primitives Library, the DLL is instantiated and no keys
exist within it. The user application is responsible for importing keys into Cryptographic Primitives
Library or using Cryptographic Primitives Library’s functions to generate keys.

9.3 Key Generation
Cryptographic Primitives Library can create and use keys for the following algorithms: RSA, DSA, DH,
ECDH, ECDSA, RC2, RC4, DES, Triple-DES, AES, and HMAC. All algorithms can be used in FIPS mode,
except: DES, RC2, and RC4.

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and
BCryptGenerateKeyPair() functions. Random data generated by the BCryptGenRandom() function is
provided to BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple-DES, AES,
RSA, ECDSA, DSA, DH, and ECDH keys and key-pairs are generated following the techniques given in
section 6.2.

The module generates cryptographic keys whose strengths are modified by available entropy.

© 2013 Microsoft. All Rights Reserved Page 30 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

9.4 Key Establishment
Cryptographic Primitives Library can use FIPS approved Diffie-Hellman key agreement (DH), Elliptic Curve
Diffie-Hellman key agreement (ECDH), RSA key transport and manual methods to establish keys.
Alternatively, the module can also use Approved KDFs to derive key material from a specified secret
value or password.

Cryptographic Primitives Library can use the following FIPS approved key derivation functions (KDF) from
the common secret that is established during the execution of DH and ECDH key agreement algorithms:

• BCRYPT_KDF_SP80056A_CONCAT. This KDF supports the Concatenation KDF as specified in SP
800-56A (Section 5.8.1).

• BCRYPT_KDF_HASH. This KDF supports FIPS approved SP800-56A (Section 5.8), X9.63, and X9.42
key derivation.

• BCRYPT_KDF_HMAC. This KDF supports the IPsec IKEv1 key derivation that is non-Approved but
is an allowed legacy implementation in FIPS mode when used to establish keys for IKEv1 as per
scenario 4 of IG D.8.

• BCRYPT_KDF_TLS_PRF. This KDF supports the SSLv3.1 and TLSv1.0 key derivation that is non-
Approved but is an allowed legacy implementation in FIPS mode when used to establish keys for
SSLv3.1 or TLSv1.0 as specified in as per scenario 4 of IG D.8.

Cryptographic Primitives Library can use the following FIPS approved key derivation functions (KDF) from
a key handle created from a specified secret or password:

• BCRYPT_SP800108_CTR_HMAC_ALGORITHM. This KDF supports the counter-mode variant of
the KDF specified in SP 800-108 (Section 5.1) with HMAC as the underlying PRF.

• BCRYPT_SP80056A_CONCAT_ALGORITHM. This KDF supports the Concatenation KDF as
specified in SP 800-56A (Section 5.8.1).

• BCRYPT_PBKDF2_ALGORITHM. This KDF supports the Password Based Key Derivation Function
specified in SP 800-132 (Section 5.3).

• BCRYPT_CAPI_KDF_ALGORITHM. This KDF supports the proprietary KDF described at
http://msdn.microsoft.com/library/windows/desktop/aa379916.aspx

9.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)
There are two (2) options presented in NIST SP 800-132, pages 8 – 10, that are used to derive the Data
Proection Key (DPK) from the Master Key. With the Kernel Mode Cryptographic Primitives Library, it is
up to the caller to select the option to generate/protect the DPK. For example, DPAPI uses option
2a. Kernel Mode Cryptographic Primitives Library provides all the building blocks for the caller to select
the desired option.

The Kernel Mode Cryptographic Primitives Library supports the following HMAC hash functions as
parameters for PBKDF:

• SHA-1 HMAC
• SHA-256 HMAC
• SHA-384 HMAC

© 2013 Microsoft. All Rights Reserved Page 31 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/windows/desktop/aa379916.aspx

Cryptographic Primitives Library

• SHA-512 HMAC

Keys derived from passwords, as shown in SP 800-132, may only be used in storage applications. In
order to run in a FIPS approved manner, it is up to the user and application to pick strong passwords and
use them only for storage applications. The password/passphrase length is enforced by the caller of the
PBKDF interfaces and not the cryptographic module. In order to run in a FIPS approved manner, the
password must be chosen in accordance with the guidelines in NIST SP 800-63 Electronic Authentication
Guideline and SP 800-118 DRAFT Guide to Enterprise Password Management. The upper bound for the
probability of having the password guessed at random is to be computed following the SP 800-63 and SP
800-118 guidelines. The decision for the minimum length of a password used for key derivation is to be
based on the SP 800-63 and SP 800-118 guidelines.

9.5 Key Entry and Output
Keys can be both exported and imported out of and into Cryptographic Primitives Library via
BCryptExportKey(), BCryptImportKey(), and BCryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric
public key via BCryptSecretAgreement() and BCryptDeriveKey() functions.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,
BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BCryptExportKey() is not allowed in
FIPS mode.

9.6 Key Storage
Cryptographic Primitives Library does not provide persistent storage of keys.

9.7 Key Archival
Cryptographic Primitives Library does not directly archive cryptographic keys. The Authenticated User
may choose to export a cryptographic key (cf. “Key Entry and Output” above), but management of the
secure archival of that key is the responsibility of the user.

9.8 Key Zeroization
All keys are destroyed and their memory location zeroized when the operator calls BCryptDestroyKey()
or BCryptDestroySecret() on that key handle.

© 2013 Microsoft. All Rights Reserved Page 32 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

10 Self-Tests

10.1 Power-On Self-Tests
Cryptographic Primitives Library performs the following power-on (startup) self-tests when DllMain is
called by the operating system.

• HMAC-SHA-1 Known Answer Test
• HMAC-SHA-256 and HMAC-SHA-512 Known Answer Tests
• Triple-DES encrypt/decrypt ECB Known Answer Test
• AES-128 encrypt/decrypt ECB Known Answer Test
• AES-128 encrypt/decrypt CBC Known Answer Test
• AES-128 CMAC Known Answer Test
• AES-128 encrypt/decrypt CCM Known Answer Test
• AES-128 encrypt/decrypt GCM Known Answer Test
• SP 800-108 KDF Known Answer Test
• SP 800-132 PBKDF Known Answer Test
• DSA sign/verify test with 1024-bit key
• RSA Known Answer Test using RSA_SHA256_PKCS1 signature generation and verification
• DH secret agreement Known Answer Test with 1024-bit key
• ECDSA sign/verify test on P256 curve
• ECDH secret agreement Known Answer Test on P256 curve
• SP800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)
• SP800-90 AES-256 based counter mode random generator Known Answer Tests (instantiate,

generate and reseed)
• SP800-90 dual elliptic curve random generator Known Answer Tests (instantiate, generate and

reseed)
In all cases for any failure of a power-on (startup) self-test, Cryptographic Primitives Library DllMain fails
to return the STATUS_SUCCESS status to the operating system. The only way to recover from the failure
of a power-on (startup) self-test is to attempt to reload the Cryptographic Primitives Library, which will
rerun the self-tests, and will only succeed if the self-tests pass.

10.2 Conditional Self-Tests
Cryptographic Primitives Library performs pair-wise consistency checks upon each invocation of RSA,
ECDH, DSA, and ECDSA key-pair generation and import as defined in FIPS 140-2. SP 800-56A conditional
self-tests are also performed. A continuous RNG test (CRNGT) is used for the random number generators
and the Deterministic Random Bit Generator (DRBG) of this cryptographic module. There is also a
CRNGT for the entropy source of the DRBGs. A pair-wise consistency test is done for Diffie-Hellman.

11 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the
overall Windows 8, Windows RT, and Windows Server 2012 operating system secure installation,
configuration, and startup procedures. After the operating system has been installed, it must be
configured by enabling the "System cryptography: Use FIPS compliant algorithms for encryption,

© 2013 Microsoft. All Rights Reserved Page 33 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library

hashing, and signing" policy setting followed by restarting the system. This procedure is all the crypto
officer and user behavior necessary for the secure operation of this cryptographic module.

Windows Phone 8 does not use the same installation, configuration, and startup procedures as the
Windows operating system on a computer, but rather, is securely installed and configured by the
cellular telephone carrier.

The procedures required for maintaining security while distributing and delivering versions of a
cryptographic module to authorized operators are:

1. The secure distribution method is via the physical medium for product installation delivered by
Microsoft Corporation, which is a DVD in the case of Windows 8 and Windows Server 2012. In
the case of Windows RT, Surface Windows RT, Surface Windows 8 Pro, and Windows Phone 8,
the cryptographic module is already installed at the factory and is only distributed with the
hardware.

2. An inspection of authenticity of the physical medium can be made by following the guidance at
this Microsoft web site: http://www.microsoft.com/en-us/howtotell/default.aspx

3. The installed version of Windows 8, Windows RT, and Windows Server 2012 must be verified to
match the version that was validated. See Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows
Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the
metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL
ensures that the client is communicating with the real server and so prevents a spoof server from
sending the client harmful requests. The version and digital signature of new cryptographic module
releases must be verified to match the version that was validated. See Appendix A for details on how to
do this.

© 2013 Microsoft. All Rights Reserved Page 34 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://www.microsoft.com/en-us/howtotell/default.aspx

Cryptographic Primitives Library

12 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Algorithm Protected
Against

Mitigation Comments

SHA1 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

SHA2 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

3DES Timing
Analysis
Attack

Constant Time Implementation

AES Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

Protected Against Cache
attacks only when used with
AES NI

13 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

http://windows.microsoft.com

For more information about FIPS 140 evaluations of Microsoft products, please see:

http://technet.microsoft.com/en-us/library/cc750357.aspx

© 2013 Microsoft. All Rights Reserved Page 35 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://windows.microsoft.com/
http://technet.microsoft.com/en-us/library/cc750357.aspx

Cryptographic Primitives Library

14 Appendix A – How to Verify Windows Versions and Digital Signatures

14.1 How to Verify Windows Versions
The installed version of Windows 8, Windows RT, and Windows Server 2012 must be verified to match
the version that was validated using one of the following methods:

1. The ver command
a. From Start, open the Search charm.
b. In the search field type "cmd" and press the Enter key.
c. The command window will open with a "C:\>" prompt.
d. At the prompt, type "ver" and press the Enter key.
e. You should see the answer "Microsoft Windows [Version 6.2.9200]".

2. The systeminfo command
a. From Start, open the Search charm.
b. In the search field type "cmd" and press the Enter key.
c. The command window will open with a "C:\>" prompt.
d. At the prompt, type "systeminfo" and press the Enter key.
e. Wait for the information to be loaded by the tool.
f. Near the top of the output, you should see:

OS Name: Microsoft Windows 8 Enterprise
OS Version: 6.2.9200 N/A Build 9200
OS Manufacturer: Microsoft Corporation

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

14.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital
signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: x.x.xxxx.xxxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true then the digital signature has been verified.

© 2013 Microsoft. All Rights Reserved Page 36 of 36
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

	1 Introduction
	1.1 List of Cryptographic Module Binary Executables
	1.2 Brief Module Description
	1.3 Validated Platforms
	1.4 Cryptographic Boundary

	2 Security Policy
	2.1 FIPS 140-2 Approved Algorithms
	2.2 Non-Approved Algorithms
	2.3 Cryptographic Bypass
	2.4 Machine Configurations

	3 Operational Environment
	4 Integrity Chain of Trust
	5 Ports and Interfaces
	5.1 Export Functions
	5.2 CNG Primitive Functions
	5.3 Control Input Interface
	5.4 Status Output Interface
	5.5 Data Output Interface
	5.6 Data Input Interface

	6 Specification of Roles
	6.1 Maintenance Roles
	6.2 Multiple Concurrent Interactive Operators
	6.3 Operator Authentication
	6.4 Show Status Services
	6.5 Self-Test Services
	6.6 Service Inputs / Outputs

	7 Services
	7.1 Algorithm Providers and Properties
	7.1.1 BCryptOpenAlgorithmProvider
	7.1.2 BCryptCloseAlgorithmProvider
	7.1.3 BCryptSetProperty
	7.1.4 BCryptGetProperty
	7.1.5 BCryptFreeBuffer

	7.2 Random Number Generation
	7.2.1 BCryptGenRandom

	7.3 Key and Key-Pair Generation
	7.3.1 BCryptGenerateSymmetricKey
	7.3.2 BCryptGenerateKeyPair
	7.3.3 BCryptFinalizeKeyPair
	7.3.4 BCryptDuplicateKey
	7.3.5 BCryptDestroyKey

	7.4 Key Entry and Output
	7.4.1 BCryptImportKey
	7.4.2 BCryptImportKeyPair
	7.4.3 BCryptExportKey

	7.5 Encryption and Decryption
	7.5.1 BCryptEncrypt
	7.5.2 BCryptDecrypt

	7.6 Hashing and Message Authentication
	7.6.1 BCryptCreateHash
	7.6.2 BCryptHashData
	7.6.3 BCryptDuplicateHash
	7.6.4 BCryptFinishHash
	7.6.5 BCryptDestroyHash

	7.7 Signing and Verification
	7.7.1 BCryptSignHash
	7.7.2 BCryptVerifySignature

	7.8 Secret Agreement and Key Derivation
	7.8.1 BCryptSecretAgreement
	7.8.2 BCryptDeriveKey
	7.8.3 BCryptDestroySecret
	7.8.4 BCryptKeyDerivation

	7.9 Deprecation
	7.9.1 Bit Strengths of DH and ECDH
	7.9.2 SHA-1

	8 Authentication
	9 Cryptographic Key Management
	9.1 Access Control Policy
	9.2 Key Material
	9.3 Key Generation
	9.4 Key Establishment
	9.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)

	9.5 Key Entry and Output
	9.6 Key Storage
	9.7 Key Archival
	9.8 Key Zeroization

	10 Self-Tests
	10.1 Power-On Self-Tests
	10.2 Conditional Self-Tests

	11 Design Assurance
	12 Mitigation of Other Attacks
	13 Additional Details
	14 Appendix A – How to Verify Windows Versions and Digital Signatures
	14.1 How to Verify Windows Versions
	14.2 How to Verify Windows Digital Signatures

