Totemo AG

Totemo Cryptographic Module (TCM) Software Version: 2.0

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: I Document Version: 1.0

Prepared for:

Totemo AG Freihofstrasse 22 CH-8700 Küsnacht Switzerland

Phone: +41 (0)44 914 9900 Email: <u>support@totemo.com</u> <u>http://www.totemo.com</u> Prepared by:

Corsec Security, Inc. 13135 Lee Jackson Memorial Hwy., Suite 220 Fairfax, VA 22033 United States of America

> Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>

Table of Contents

L	ΙΝΤΙ	RODUCTION	3
	1.1	PURPOSE	3
	1.2	References	3
	1.3	DOCUMENT ORGANIZATION	3
2	тот	EMO CRYPTOGRAPHIC MODULE	4
	2.1	Overview	4
		2.1.1 Totemo Product Overview	.4
		2.1.2 Totemo Cryptographic Module Overview	5
	2.2	MODULE SPECIFICATION	6
		2.2.1 Physical Cryptographic Boundary	6
		2.2.2 Logical Cryptographic Boundary	7
	2.3	MODULE INTERFACES	8
	2.4	Roles and Services	9
		2.4.1 Crypto Officer Role	.9
		2.4.2 User Role	0
	2.5	Physical Security	L
	2.6	OPERATIONAL ENVIRONMENT	L
	2.7	CRYPTOGRAPHIC KEY MANAGEMENT	2
	2.8	EMC/EMI	7
	2.9	SELF-TESTS	7
		2.9.1 Power-Up Self-Tests	7
		2.9.2 Conditional Self-Tests	7
		2.9.3 Critical Functions Self-Tests	8
	2.10	MITIGATION OF OTHER ATTACKS	8
3	SEC	URE OPERATIONI	9
	3.1	CRYPTO OFFICER GUIDANCE	9
		3.1.1 Initial Setup	9
	3.2	User Guidance	9
4	ACR	ONYMS	0

Table of Figures

Figure I – Totemo Security Platform
FIGURE 2 – NSA 7110 HARDWARE APPLIANCE BLOCK DIAGRAM
FIGURE 3 – TOTEMO CRYPTOGRAPHIC MODULE LOGICAL BLOCK DIAGRAM AND CRYPTOGRAPHIC BOUNDARY.8

List of Tables

Table I – Security Level Per FIPS 140-2 Section	5
TABLE 2 – FIPS 140-2 LOGICAL INTERFACE MAPPINGS	9
TABLE 3 – CRYPTO OFFICER SERVICES	. 10
TABLE 4 – USER SERVICES	. 10
Table 5 – FIPS-Approved Algorithm Implementations	. 12
Table 6 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs	. 14
Table 7 – Acronyms	. 20

Totemo Cryptographic Module (TCM)

Introduction

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Totemo Cryptographic Module from Totemo AG. This Security Policy describes how the Totemo Cryptographic Module meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The Totemo Cryptographic Module is referred to in this document as Totemo TCM, crypto-module, or the module.

I.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Totemo website (<u>http://www.totemo.ch</u>) contains information on the full line of products from Totemo.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

I.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Totemo. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Totemo and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Totemo.

Totemo Cryptographic Module

2.1 Overview

2.1.1 Totemo Product Overview

Totemo AG is a leading provider of secure email, file transfer, and mobile messaging solutions to enterprise customers and government agencies that need to securely exchange information. Totemo develops applications that secure data transfers regardless of protocol or application; throughout entire systems and networks. Totemo's products are designed to be easy to implement, simple to administer and understand, and require minimal changes in existing network infrastructures.

At the core of each of Totemo's products is the Totemo Security Platform (TSP). The TSP is a dynamic, expandable security architecture that is based on interoperable standards which protects all data in motion, as well as data at rest. The TSP provides security features such as encryption and decryption, authentication and authorization, certificate and key management, and centralized administration. The TSP, a Java-based pluggable application, is platform-independent, highly scalable, transparent to end users, and aligned for future developments. TSP is the cryptographic key and digital certificate management component of TrustMail®, TrustDEX, and Transcoder for BlackBerry®.

Figure 1 provides a high-level overview of the TSP and the services it provides as well as sample deployment environments.

Figure I – Totemo Security Platform

Secure email is provided by TrustMail, a Secure Messaging Gateway for enterprises and professionals alike. TrustMail leverages the native encryption and digital signature features that exist in most mail clients in order to allow members of an organization to encrypt messages to recipients for which they do

Totemo Cryptographic Module (TCM)

not possess a public key. TrustMail integrates with many mail servers, including Exchange, in order to provide temporary "proforma certificates" to the mail client as substitutes for these missing public keys.

TrustDEX provides a solution to secure file transfer. Like TrustMail, TrustDEX utilizes the same centralized security management features of TSP in order to allow members of an organization to exchange large quantities of data without requiring them to become experts on encryption, file transmission protocols, or discretionary access control techniques. TrustDEX allows users to use virtually any file transmission protocol to upload and download data to the server, while centrally managing access to that data as well as replication and distribution of that data using complex, yet easy-to-configure, business process workflows.

Totemo Transcoder for BlackBerry provides an additional layer of security by providing protection on not just emails, but data encryption on all traffic between a BlackBerry Enterprise Server and a BlackBerry device. It is easily integrated into existing system environments. As with the other products, the Transcoder leverages the security services and certificate management features of the TSP in order to provide the end-to-end encryption between BlackBerry Devices and BlackBerry Enterprise Server using public-key cryptography.

2.1.2 Totemo Cryptographic Module Overview

The Totemo Cryptographic Module is a Java-based cryptographic library placed at the heart of the TSP, providing encryption, decryption, key production, signature generation and verification, and other cryptographic services to the TSP. TrustMail, TrustDEX, and Transcoder for Blackberry are also written in Java, each incorporating the security features provided by the TSP, which utilizes the Java Cryptography Architecture (JCA)/Java Cryptography Extension (JCE) framework in order to implement cryptographic functionality. By coding their products in Java, Totemo aims to make them platform-agnostic.

The Totemo Cryptographic Module is a FIPS module evaluated for overall FIPS Security Level 1, as shown in Table 1.

Section	Section Title			
I	Cryptographic Module Specification	I		
2	Cryptographic Module Ports and Interfaces	I		
3	Roles, Services, and Authentication	I		
4	Finite State Model	I		
5	Physical Security	N/A		
6	Operational Environment	I		
7	Cryptographic Key Management	I		
8	EMI/EMC ¹	I		
9	Self-tests	I		
10	Design Assurance	I		
11	Mitigation of Other Attacks	N/A		

Table I – Security Level Per FIPS 140-2 Section

Totemo Cryptographic Module (TCM)

© 2012 Totemo AG

¹ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

This document may be freely reproduced and distributed whole and intact including this copyright notice.

2.2 Module Specification

The Totemo Cryptographic Module is a software module with a multi-chip standalone embodiment. The overall security level of the module is 1. The TCM is used by calling applications to provide symmetric/asymmetric cipher operation, signature generation/verification, hashing, cryptographic key generation, random number generation, and message authentication functions. The cryptographic boundary of the TCM consists of the shared Java library that is linked with the Totemo Security Platform. It is designed to execute in a Java Runtime Environment (JRE) installed on Totemo's own Operating System (Totemo Appliance OS 2.0 v0711).

The module was tested and found compliant on an Apligo NSA 7110 hardware appliance running Totemo Appliance OS² 2.0 v0711 and two Intel Xeon Quad-Core E5504 processors.

The TCM is defined as a software cryptographic module and therefore has a logical boundary in addition to a physical boundary. The physical and logical boundaries are outlined in section 2.2.1 and 2.2.2 respectively.

2.2.1 Physical Cryptographic Boundary

As a software cryptographic module, there are no physical protection mechanisms implemented. Therefore, the module must rely on the physical characteristics of the host system. The physical boundary of the cryptographic module is defined by the hard enclosure around the host appliance on which it runs. The module supports the physical interfaces of the NSA 7110. These interfaces include the integrated circuits of the system board, the CPU³, network adapters, RAM⁴, hard disk, device case, power supply, and fans. Other devices may be attached to the appliance, such as a display monitor, keyboard, mouse, printer, or storage media.

Figure 2 is a block diagram representing the NSA 7110 hardware appliance. The physical cryptographic boundary is defined by the red dotted line. The TCM is stored on the HDD^5 and is loaded into RAM by the OS for execution after the host system powers up. The module will reside in RAM while executing until the host system is powered off or until it is unloaded by the OS.

Totemo Cryptographic Module (TCM)

Page **6** of 22

© 2012 Totemo AG

² OS – Operating System

³ CPU – Central Processing Unit

⁴ RAM – Random Access Memory

⁵ HDD – Hard Disk Drive

Figure 2 – NSA 7110 Hardware Appliance Block Diagram⁶

2.2.2 Logical Cryptographic Boundary

Figure 3 shows a logical block diagram of the module executing in memory and its interactions with surrounding software components, as well as the module's logical cryptographic boundary. The module's services are designed to be called by the Totemo Application Software, which define the module's logical interfaces.

Totemo Cryptographic Module (TCM)

⁶ LED – Light Emitting Diode; LCD – Liquid Crystal Display; LAN – Local Area Network; USB – Universal Serial Bus

^{© 2012} Totemo AG

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Figure 3 – Totemo Cryptographic Module Logical Block Diagram and Cryptographic Boundary

2.3 Module Interfaces

The module's physical ports can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data input
- Data output
- Control input
- Status output

As a software module, the module doesn't have any physical characteristics. The module's physical and electrical characteristics, manual controls, and physical indicators are those of the host system. The mapping of the module's logical interfaces in the software to the physical interfaces of the NSA 7110 is described in Table 2 below.

Totemo Cryptographic Module (TCM)

^{© 2012} Totemo AG This document may be freely reproduced and distributed whole and intact including this copyright notice.

FIPS Interface	Physical Interface	Logical Interface
Data Input	USB ports(2), network ports(8), RJ45 console port(1), management LAN port (1)	Arguments for library functions that specify plaintext data, ciphertext, digital signatures, cryptographic keys (plaintext or encrypted), initialization vectors, and passwords that are to be input to and processed by the cryptographic module.
Data Output	Network ports(8), RJ45 console port(1), management LAN port (1)	Arguments for library functions that receive plaintext data, ciphertext data, digital signatures, cryptographic keys (plaintext or encrypted), and initialization vectors from the cryptographic module.
Control Input	USB ports(2), network ports(8), RJ45 console port(1), management LAN port (1)	Arguments for library functions that initiate and control the operation of the module, such as arguments that specify commands and control data (e.g., algorithms, algorithm modes, digest type, or module settings).
Status Output	Network ports(8), RJ45 console port(1), management LAN port (1); LED(18)	Function return codes, error codes, or output arguments that receive status information used to indicate the status of the cryptographic module.

Table 2 – FIPS 140-2 Logical Interface Mappings

2.4 Roles and Services

There are two roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto Officer role and a User role. The module does not allow multiple concurrent operators while in a FIPS-Approved mode of operation.

Please note that the keys and Critical Security Parameters (CSPs) listed in the tables in the following sections indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

2.4.1 Crypto Officer Role

The Crypto Officer role is in charge of installing and initializing the module for first use, checking the status of the module, and running self-tests on demand. Descriptions of the services available to the Crypto Officer role are provided in Table 3 below.

Totemo Cryptographic Module (TCM)

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service	Description	CSP and Type of Access
Initialize module	Performs integrity check and power-up self-tests	None
Show status	Returns the current mode of the module	None
Run self-tests on demand	Performs power-up self-tests	None
Zeroize keys	Zeroizes and de-allocates memory containing sensitive data	AES key – W AES CMAC Key –W Triple- DES key – W Triple-DES CMAC Key – W HMAC key – W RSA private/public key – W DSA private/public key – W ECDSA private/public key – W DH ⁷ public/private components – W ECMQV public/private components – W DRBG Seed – W DRBG Entropy – W DRBG C value – W DRBG V value – W

Table 3 – Crypto Officer Services

2.4.2 User Role

The User role has the ability to perform symmetric and asymmetric encryption and decryption, signature generation and verification, hashing, cryptographic key generation, random number generation, and message authentication, among other cryptographic services. Descriptions of the services available to the User role are provided in Table 4.

Table 4 – User Services

Service	Description	CSP and Type of Access
Generate random number	Returns the specified number of random bits to calling application	DRBG Seed – R,W,X DRBG 'C' Value – R,W DRBG 'V' Value – R,W DRBG Entropy – R,W,X
Generate message digest	Compute and return a message digest using SHS algorithms	None
Generate keyed hash (HMAC)	Compute and return a message authentication code	HMAC key – RX
Generate Cipher Hash (CMAC)	Compute and return a cipher message authentication code	AES CMAC Key – RXTriple- DES CMAC Key – RX

⁷ DH – Diffie-Hellman

© 2012 Totemo AG

Totemo Cryptographic Module (TCM)

Service	Description	CSP and Type of Access	
Generate symmetric key	Generate and return the specified type of symmetric key (Triple-DES or AES)	AES key – W Triple-DES Key – W	
Symmetric encryption	Encrypt plaintext using supplied key and algorithm specification (Triple-DES or AES)	AES key – RX Triple-DES key – RX	
Symmetric decryption	Decrypt ciphertext using supplied key and algorithm specification (Triple-DES or AES)	AES key – RX Triple-DES key – RX	
Generate asymmetric key pair	Generate and return the specified type of asymmetric key pair (RSA, DSA, or ECDSA)	RSA private/public key – W DSA private/public key – W ECDSA private/public key – W	
Key Agreement	Perform key agreement using DH, ECDH, and ECMQV	DH Public/Private components – WRX ECDH Public/Private components – WRX ECMQV Public/Private components – RX	
Key Wrapping	Perform key wrap with RSA public key, AES key, or Triple-DES Key	RSA public Key – RX AES Key – RX Triple-DES Key – RX	
Key Unwrapping	Perform key unwrap with RSA private key, AES key, or Triple- DES Key	RSA private Key – RX AES Key – RX Triple-DES Key – RX	
Signature Generation	Generate a signature for the supplied message using the specified key and algorithm (RSA, DSA, or ECDSA)	RSA private key – RX DSA private key – RX ECDSA private key – RX	
Signature Verification	Verify the signature on the supplied message using the specified key and algorithm (RSA, DSA, or ECDSA)	RSA public key – RX DSA public key – RX ECDSA public key – RX	

2.5 Physical Security

The Totemo Cryptographic Module (TCM) is a software module, which FIPS defines as a multi-chip standalone cryptographic module. As such, it does not include physical security mechanisms. Thus, the FIPS 140-2 requirements for physical security are not applicable.

2.6 Operational Environment

The Totemo Cryptographic Module was tested and found to be compliant with FIPS 140-2 requirements on an Intel Xeon E5504 processor. The processor executes Totemo Appliance OS 2.0 v0711 on which JRE 7.0 is executing. The TCM and Totemo software applications using the TCM will be loaded into and executed by a Java Virtual Machine (JVM) provided by the JRE.

Totemo Cryptographic Module (TCM)

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 5 below.

Algorithm	Certificate Number
AES in ECB ⁸ , CBC ⁹ , CFB-128 ¹⁰ , OFB ¹¹ , CCM ¹² , CMAC ¹³ , GCM ¹⁴ modes encrypt/decrypt with 128-, 192- and 256-bit keys	2059
Triple-DES in ECB, CBC, CFB-8, CFB-64, CMAC modes encrypt/decrypt; KO ¹⁵ I, 2	1326
RSA (FIPS 186-3) Key Generation with 2048- and 3072-bit key range	1071
RSA (PKCS #1 v1.5) Signature Generation and Verification	1071
RSA (PSS ¹⁶) Signature Generation and Verification	1071
DSA ¹⁷ (FIPS 186-3) Key Generation with 2048- and 3072-bit keys	652
DSA Signature Generation and Verification	652
ECDSA ¹⁸ Key Generation with NIST Recommended Curves: P- 224, P-256, P-384, and P-521	302
ECDSA Signature Generation and Verification	302
SHA ¹⁹ -1, SHA-224, SHA-256, SHA-384, SHA-512 hash	1800
HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC- SHA-512 keyed hash	1252
SP ²⁰ 800-90A HASH_DRBG	206

Table 5 – FIPS-Approved Algorithm Implementations

The use of SHA-1 in the FIPS-Approved mode of operation shall be limited to random number generation and signature verification.

The use of TDES Keying Option 2 is restricted to legacy use, for decryption only.

The cryptographic module implements the following non-Approved key-establishment algorithms, which are allowed for use in a FIPS-Approved mode of operation:

• RSA (2048- to 4096-bit keys; key wrapping; key establishment methodology provides 112 to 150²¹ bits of encryption strength)

Page **12** of 22

© 2012 Totemo AG

⁸ ECB – Electronic Codebook

⁹ CBC – Cipher Block Chaining

¹⁰ CFB – Cipher Feedback

¹¹ OFB – Output Feedback

¹² CCM – Counter with CBC-MAC

¹³ CMAC – Cipher-based Message Authentication Code

¹⁴ GCM – Galois/Counter Mode

¹⁵ KO – Keying Option

¹⁶ PSS – Probabilistic Signature Scheme

¹⁷ DSA – Digital Signature Algorithm

¹⁸ ECDSA – Elliptic Curve DSA

¹⁹ SHA – Secure Hashing Algorithm
²⁰ SP – Special Publication

Totemo Cryptographic Module (TCM)

- Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption • strength)
- ECDH²² (key agreement; key establishment methodology provides 112 bits of encryption • strength)
- $ECMQV^{23}$ (key agreement; key establishment methodology provides 112 bits of encryption • strength)
- AES (Cert# 2059, key wrapping; key establishment methodology provides 128 to 256 bits of • encryption strength)
- Triple-DES (Cert# 1326, key wrapping; key establishment methodology provides 80 or 112 bits of • encryption strength)

Totemo Cryptographic Module (TCM)

Page **13** of 22

© 2012 Totemo AG

²¹ Calculated using Equation 1 of FIPS 140-2 IG 7.5

 ²² ECDH – Elliptic Curve Diffie-Hellman
 ²³ ECMQV – Elliptic Curve Menezes-Qu-Vanstone

The module supports the critical security parameters (CSPs) listed below in Table 6. Internally generated keys and CSPs listed in Table 6 are generated with an Approved Random Number Generator.

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
AES key	AES128-, 192-, 256- bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Encryption, Decryption
AES CMAC Key	AES CMAC 128-, 192-, 256-bit key	API call parameter	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Message Authentication with AES
AES GCM IV ²⁴	Random data	Internally generated	Never	Keys are not persistently stored by the module	Unload module; API call; Remove Power	IV input to AES GCM function
Triple-DES key ²⁵	Triple-DES 192-bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Encryption, decryption
Triple-DES CMAC Key	Triple-DES CMAC 192-bit key	API call parameter	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Message Authentication with Triple-DES
HMAC key	128- to 512-bit HMAC Key	API call parameter	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Message Authentication with SHA-2 family
RSA private key	RSA 2048-, 3072-, 4096-bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature generation, decryption
RSA public key	RSA 2048-, 3072-, 4096-bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature verification, encryption
DSA private key	DSA 2048-, 3072-, 4096-bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature generation, decryption

Table 6 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

 ²⁴ The module was tested and validated with IVs in the range of 8 to 1024 bits. In the FIPS Mode of Operation, the IV length is restricted to 96 bits or greater.
 ²⁵ The module was tested and validated with TDES Keying Options 1 (3-Key) and 2 (2-Key). Use of the 2-Key option shall be restricted to legacy use, for decryption only.

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
DSA public key	DSA 2048-, 3072-, 4096-bit key	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature verification, encryption
ECDSA private key	ECDSA Key from NIST Recommended Curves: P-224, P- 256, P-384, and P- 521	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature generation, decryption
ECDSA public key	ECDSA Key from NIST Recommended Curves: P-224, P- 256, P-384, and P- 521	API call parameter or internally generated	Output via GPC internal path	Plaintext in volatile memory	Unload module, power cycle	Signature verification, encryption
DH public	Public components of	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Establish Secure SSH session
components	DH protocol	Internally generated	internal path	memory	power cycle	
DH private	Private component	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Establish Secure SSH session
component	of DH protocol	Internally generated	internal path	memory	power cycle	
ECDH public	Public components of	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Establish Secure SSH
components	ECDH protocol	Internally generated	internal path	memory	power cycle	session
ECDH private	Private component	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Establish Secure SSH session
component	of ECDH protocol	Internally generated	internal path	memory	power cycle	
ECMQV public components	Public components of	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Key Agreement
	ECDH protocol	Internally generated	internal path	memory	power cycle	Key Establishment
ECMQV private component	Private component	API call parameter or	Output via GPC	Plaintext in volatile	Unload module,	Key Agreement
	of ECDH protocol	Internally generated	internal path	memory	power cycle	Key Establishment
DRBG Seed	880-bit random value	API call parameter or Internally generated	Never	Plaintext in volatile memory	Unload module, power cycle	Seed input to SP 800-90 Hash_DRBG
DRBG Entropy	440-bit random value	API call parameter or Internally generated	Never	Plaintext in volatile memory	Unload module, power cycle	Entropy input to SP 800-90 Hash_DRBG

Кеу	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
Hash DRBG V value	Internal hash DRBG state value	Internally generated	Never	Plaintext in volatile memory	Unload module, power cycle	Used for SP 800-90 Hash_DRBG
Hash DRBG C value	Internal hash DRBG state value	Internally generated	Never	Plaintext in volatile memory	Unload module, power cycle	Used for SP 800-90 Hash_DRBG

Totemo Cryptographic Module (TCM)

2.8 EMC/EMI

The Totemo Cryptographic Module is a software module. Therefore, the only electromagnetic interference produced is that of the host platform on which the module resides and executes. FIPS 140-2 requires that the host systems on which FIPS 140-2 testing is performed meet the Federal Communications Commission (FCC) EMI and EMC requirements for business use as defined in Subpart B, Class A of FCC 47 Code of Federal Regulations Part 15. However, all systems sold in the United States must meet these applicable FCC requirements.

2.9 Self-Tests

The Totemo Cryptographic Module performs self-tests automatically each time the host appliance is powered on and a host application loads it into memory. Conditional self tests are performed each time the module needs to generate a new random number or a new asymmetric key pair. The module's random bit generator will perform critical function tests as needed to assure its security.

Should any self-test fail, the module's data output interfaces will be inhibited. Only control input and status output commands will be allowed to execute. For errors encountered during conditional pairwise consistency checking, the module will enter a soft error state, which will clear any random bit or keying information and return to normal operation. For all other errors, the module will halt and must be reloaded into memory by either restarting the host application or rebooting the appliance.

2.9.1 Power-Up Self-Tests

The Totemo Cryptographic Module performs the following self-tests at power-up:

- Software integrity check using RSA 2048 digital signature verification with SHA-256 hash
 - Known Answer Tests (KATs)
 - o AES KAT
 - o AES-CMAC KAT
 - o Triple-DES KAT
 - Triple-DES-CMAC KAT
 - o RSA Signature Generation KAT
 - o RSA Signature Verification KAT
 - o DSA Pairwise Consistency Test
 - ECDSA Pairwise Consistency Test
 - o SHA-1 KAT
 - o SHA-224 KAT
 - o SHA-256 KAT
 - o SHA-384 KAT
 - o SHA-512 KAT
 - HMAC SHA-224 KAT
 - HMAC SHA-256 KAT
 - o HMAC SHA-384 KAT
 - o HMAC SHA-512 KAT
 - o SP 800-90A HASH_DRBG KAT

2.9.2 Conditional Self-Tests

The Totemo Cryptographic Module performs the following conditional self-tests:

- Continuous Random Number Generator Test for the SP 800-90A HASH DRBG
- Continuous Random Number Generator Test for the NDRNG entropy source
- RSA Pairwise Consistency Test for signature generation and verification
- RSA Pairwise Consistency test for wrapping and unwrapping
- DSA Pairwise Consistency test for signature generation and verification

Totemo Cryptographic Module (TCM)

© 2012 Totemo AG

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Page **17** of 22

• ECDSA Pairwise Consistency test for signature generation and verification

2.9.3 Critical Functions Self-Tests

The Totemo Cryptographic Module implements the SP 800-90A HASH_DRBG as its random number generator. This DRBG employs two critical functions which must also be tested on a regular basis to ensure the security of the SP 800-90A DRBG. Therefore, the following critical function tests are also implemented by the crypto module:

- o DRBG Instantiate Critical Function Test
- o DRBG Reseed Critical Function Test
- o DRBG Generate Critical Function Test
- o DRBG Uninstantiate Critical Function Test

2.10 Mitigation of Other Attacks

This section is not applicable. The modules do not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

Totemo Cryptographic Module (TCM)

The Totemo Cryptographic Module meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-Approved mode of operation.

3.1 Crypto Officer Guidance

FIPS 140-2 mandates that a software cryptographic module at Security Level 1 be restricted to a single operator mode of operation. The operating system segregates user processes into separate process spaces. Each process space is an independent virtual memory area that is logically separated from all other processes by the operating system software and hardware. The module functions entirely within the process space of the process that invokes it, and thus satisfies the FIPS 140-2 requirement for a single user mode of operation.

3.1.1 Initial Setup

The Totemo Cryptographic Module is one of many components of the Totemo Security Platform, which is delivered as part of a Totemo host application. The Crypto Officer shall follow the installation procedures of the host software application to ensure proper installation and operation of the TCM. Detailed documentation on installing, uninstalling, configuring, managing and upgrading the host application is provided as part of the product documentation set.

To place the Totemo Cryptographic Module into a FIPS-Approved mode of operation the JRE system property "tsp.tcm.fipsMode" shall be set to "FIPS". This can be done via the CLI²⁶ (use Java startup option -Dtsp.tcm.fipsMode=FIPS), by modifying the JRE system property file directly, or programmatically using the Java API for setting system properties.

3.2 User Guidance

The Totemo Cryptographic Module is designed for use by the Totemo Security Platform. The TCM does not have the ability to input or output CSPs beyond its physical boundary, nor does it persistently store CSPs within its logical boundary. However, the module may store CSPs within the physical boundary of the host system on which it runs. Operators are responsible for providing persistent storage of the cryptographic keys and CSPs, and to ensure that keys are transmitted outside the physical cryptographic boundary in the appropriate manner.

Totemo Cryptographic Module (TCM)

²⁶ CLI – Command Line Interface

This section describes the acronyms.

Acronym	Definition
AES	Advanced Encryption System
СВС	Cipher Block Chaining
CFB	Cipher Feedback
CLI	Command Line Interface
СМУР	Cryptographic Module Validation Program
CPU	Central Processing Unit
CSEC	Communications Security Establishment Canada
CSP	Critical Security Parameter
DES	Data Encryption Standard
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECDH	Elliptic Curve Diffie-Hellman
ECMQV	Elliptic Curve Menezes–Qu–Vanstone
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
GPC	General Purpose Computer
GUI	Graphical User Interface
HDD	Hard Disk Drive
HMAC	(Keyed) Hash Message Authentication Code
JCA	Java Cryptography Architecture
JCE	Java Cryptography Environment
JRE	Java Runtime Environment
JVM	Java Virtual Machine
КАТ	Known Answer Test
LAN	Local Area Network
LCD	Liquid Crystal Display
LED	Light Emitting Diode
MQV	Menezes–Qu–Vanstone

Table 7 – Acronyms

Totemo Cryptographic Module (TCM)

Page **20** of 22

Acronym	Definition
NIST	National Institute of Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
OFB	Output Feedback
OS	Operating System
PKCS	Public Key Cryptography Standard
PSS	Probabilistic Signature Scheme
RAM	Random Access Memory
RSA	Rivest Shamir and Adleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SP	Special Publication
тсм	Totemo Cryptography Module
TSP	Totemo Security Platform
USB	Universal Serial Bus

Totemo Cryptographic Module (TCM)

Page **21** of 22

 $\hfill \ensuremath{\textcircled{}^\circ}$ 2012 Totemo AG This document may be freely reproduced and distributed whole and intact including this copyright notice.

Prepared by: **Corsec Security, Inc.**

13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, VA 22033 United States of America

> Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>