Cygnus X3 Hardware Security Module (XHSM) Security Policy

KMS 6 Mailing Solutions Management Engineering Version 01.08 12/11/12

© **Copyright 2012** Pitney Bowes Inc 37 Executive Drive Danbury, CT 06810

May be reproduced only in its original entirety [without revision].

Contents

1.	Module Overview2
2.	Security Level3
3.	Modes of Operation3
4.	Ports and Interfaces5
5.	Identification and Authentication Policy6
6.	Access Control Policy7
7.	Software Update Access Control Policy9
8.	Definition of Critical Security Parameters (CSPs)10
9.	Operational Environment13
10.	Security Rules13
11.	Physical Security Policy15
12.	Mitigation of Other Attacks Policy15
13.	References15
Rev	vision History17

1. Module Overview

This document describes the security policy for the Pitney Bowes Cygnus X3 Hardware Security Module (XHSM) Cryptographic Module.

Item	Version
Hardware	P/N 1R84000 Version A
Firmware	01.00.06
Device Abstraction Layer (DAL) (includes SW Download Utility)	01.03.0074

Cryptographic systems rely on the confidentiality of private and secret keys. An HSM provides a protected environment where cryptographic operations can be performed using public, private or secret keys. The Cygnus XHSM cryptographic module is a single-chip module. The module's cryptographic boundary is defined as the package of the secure processor, the Sigma ASIC, designed by Pitney Bowes.

Figure 1 – Cygnus XHSM Cryptographic Module (Sigma ASIC Secure Processor)

2. Security Level

The Cygnus XHSM cryptographic module meets the overall requirements applicable to Level 3 security of FIPS 140-2.

Security Requirements Section	Level
Cryptographic Module Specification	3
Module Ports and Interfaces	3
Roles, Services and Authentication	3
Finite State Model	3
Physical Security	3 + EFP
Operational Environment	N/A
Cryptographic Key Management	3
EMI/EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of Other Attacks	N/A

Figure 2 - Module Security Level Specification

3. Modes of Operation

The XHSM operates in three modes

- 1. Operational Mode FIPS compliant
- 2. Manufacturing Mode (out of scope for FIPS validation)
- 3. Custom Application Mode (out of scope for FIPS validation)

The XHSM mode is determined by sending the HSMGetStatus command. Once in Operational Mode, the module is always operating in an Approved mode of operation as defined by FIPS 140-2.

The module supports the following FIPS Approved algorithms:

Algorithm	Usage
FIPS 186-3 DSA (Cert. #632)	This algorithm is used to generate key pairs, digitally sign and verify signatures according to FIPS186-3 for L=1024, N=160 & SHA-1.
FIPS 186-3 ECDSA (Cert. #286)	This algorithm is used to generate key pairs, digitally sign and verify signatures according to FIPS186-3 for P curves 192 (SHA-1) and 256 (SHA-256). Key Pair generation per FIPS 186-3 Section B.4.2.

Algorithm	Usage
SHA-1 & SHA-256 (Cert. #1733)	SHA-1 provides the hashing algorithm used as part of the digital signature process for DSA and ECDSA and in the generation of SHA-1 HMAC. SHA-256 provides the hashing algorithm used as part of the digital signature process for ECDSA and in the generation of SHA-256 HMAC.
AES CBC (Cert. #1979)	This encryption algorithm is used to encrypt and decrypt other cryptographic information for secure delivery. Key sizes supported are 128 bits and 256 bits.
AES ECB (Cert. #1979)	This encryption algorithm is used as a part of the AES Key Wrap. Key sizes supported are 128 bits and 256 bits.
Hash DRBG (Cert. #181)	SP 800-90 Hash-Based Deterministic Random Bit Generator using SHA-256.
ECCDH Primitive (CVL Cert. #20)	KAS and KDF per SP 800-56A used in establishing a session key. Supports P curve: 256 bits
HMAC (Cert. #1192)	Used to generated Message Authentication Codes
KAS (Cert. #33)	Key Agreement Protocol used to establish a session key
Triple-DES CBC (Cert. #1319)	Legacy encryption support 3DES2 and 3DES3 (EDE and EEE) keys
Triple-DES ECB (Cert. #1319)	Legacy encryption support 3DES2 and 3DES3 (EDE and EEE) keys
Triple-DES MAC (Cert. #1319, vendor affirmed)	Legacy message authentication
FIPS 186-2 RSA PKCS 1.5 (Cert. #1063)	This algorithm is used to digitally sign and verify signatures according to FIPS186-2 for 1024 bit modulus using SHA-1.
FIPS 186-2 RSA X9.31 (Cert. #1063)	This algorithm is used to generate key pairs, digitally sign and verify signatures according to FIPS186-2 for 1024 bit modulus using SHA-1.

The module supports the following non-Approved but Allowed security functions:

AES Key Wrap	Used to encrypt symmetric and private keys loaded into the HSM.				
(Cert. #1979)	Key sizes supported are 128 bits and 256 bits. (key wrapping establishment methodology provides 128 and 256 bits encryption strength)				
Diffie Hellman	Key Agreement Protocol used to establish a session key. Key				
(using 1024 or 2048 bit keys)	agreement; key establishment methodology provides 80 or 112 bits of encryption strength				

SHA-224 is supported by the cryptographic module, but is not available for use as the module is configured for the current validation.

4. Ports and Interfaces

The Sigma ASIC is implemented as a 144-pin BGA where all power input, data input, data output, control input, and status output interfaces are supported.

Туре	Pin
Data Input	A1, B1, C12, A12
Data Output	A1, B1, D12, A12
Status Output	A1, B1, D1, E1, F2, E12, F11
Control Input	A1, B1, B11, C9, C7, D2, E3, F1, F2, F3, F4, M1, K6, M8, M12, L12, L11, H10, H9, G12, G11, F11, C11
Power	B10, A10, C10, B9, A9, D9, D8, A8, E8, A7, D7, E7, F7, E6, C5, D5, A4, C2, C3, D3, D4, E2, E4, E5, F5, F6, G6, G4, G5, H4, J4, J5, H5, L6, J6, H6, H7, J7, L8, J8, L10, M11, K11, J12, J10, J11, J9, H8, H12, H11, G10, F12, G9, G8, G7, F9, F8, B12
Disabled	A11, B8, C8, B7, C6, A6, B6, D6, A5, B5, B4, C4, B3, A3, B2, A2, G1, G2, G3, H1, H2, H3, J1, J2, J3, K1, K2, L1, M2, L2, M3, L3, K3, M4, L4, K4, M5, L5, K5, M6, M7, L7, K7, K8, L9, M9, K9, K10, M10, K12, F10, E11, E10, D11, E9, D10

Figure 3 – Interface Table

5. Identification and Authentication Policy

The module supports two roles, the Crypto-Officer (CO) and the Trusted User. All services described in Section 6 below are available to both the CO and Trusted User.

Role	Authentication Method	Authentication Type	
Crypto-Officer	Knowledge of a Shared Secret	Identity-based	
Trusted User	Knowledge of a Shared Secret	Identity-based	

Authentication Mechanism	Strength Mechanism
Shared Secret	Authentication is based on knowledge of either a 256 bit AES key (DPK), or a 256 bit HMAC shared secret (DAK). Both provide 256 bits of security. The probability of a random attempt or false acceptance occurring is then 1 in 2^256, which is less than 1 in 1,000,000.
	The module can execute at most 3,000 authentication attempts per second, based on processing limitations; therefore, the probability of success in a one minute period is 180,000 in 2^256. This is far less than one in 100,000.

Figure 4 – Roles and Authentication Type

Figure 5 – Authentication Strength

6. Access Control Policy

Each service described below is available to both the CO and Trusted User. (See also Section 7.2.)

Crypto-Officer (CO) and Trusted User Services:

- **Generate**: The Crypto Officer or Trusted User sends this block to instruct the XHSM to generate a Public/Private key pair or a Secret key. The message specifies the cryptographic algorithm and the parameters for use in the generation of the key(s).
- Load Key: The Crypto Officer or Trusted User sends this command to instruct the XHSM to load an encrypted key record for later use. The command specifies the storage type:
 - Volatile: Store in RAM, can be replaced if space is needed.
 - Sticky: Store in RAM, can NOT be replaced until it is deleted by the host.
 - Static: Store in NVM
- **Split Key**: The Crypto Officer or Trusted User sends this command to instruct the XHSM to divide a key into 2 or more parts.
- **Join Key**: The Crypto Officer or Trusted User sends this command to instruct the XHSM to assemble a key that has been previously split.
- **Export Key**: The Crypto Officer or Trusted User sends this command to have a key securely exported for storage / use in another location.
- Encrypt: The Crypto Officer or Trusted User sends this command to encrypt data.
- **Decrypt**: The Crypto Officer or Trusted User sends this command to decrypt data.
- **Firmware Update** is described in section 7.1 Firmware Update
- Load Parameters: The Crypto Officer or Trusted User sends this message to load a set of parameters into the HSM.
- **Derive Key**: The Crypto Officer or Trusted User sends this message to generate a key to be used by the host and the HSM to exchange secure information.
- **Decrypt Encrypt**: The Crypto Officer or Trusted User sends this message to allow encrypted data to be decrypted and re encrypted with another key.
- **Decrypt Compare:** The Crypto Officer or Trusted User sends this message to allow encrypted data to be decrypted and compared.
- **Sign**: The Crypto Officer or Trusted User sends this message to apply a cryptographic signature to a set of data.
- **Verify**: The Crypto Officer or Trusted User sends this message to verify a cryptographic signature on a set of data.
- **Modular Exponentiation**: The Crypto Officer or Trusted User sends this message to perform the computation: a^b mod n.
- **Set Counter**: The Crypto Officer or Trusted User sends this message to set an internal counter to a specific value.

Unauthenticated Services:

Miscellaneous functions that do not require XHSM authentication of the entity; These services are available to all roles.

- Delete Key: The Host sends this message to remove a key from the HSM.
- **Get Random Number**: The Host sends this message to get a random number from the HSM.
- Hash: The Host sends this message to generate a hash based on a set of data.
- Get Key List: Instructs the HSM to return a list of all active keys stored in the HSM.
- Update counters: Instructs the HSM to update specific internal counters
- **Get Counter Record:** Instructs the HSM to output a copy of the current values of the internal counters.
- **Get Parameters:** Instructs the HSM to retrieve parameter values from the HSM. The Host can request individual parameter IDs or all of the stored parameters in the HSM.
- **Perform Diagnostic Test:** Instructs the HSM to request that the Cygnus HSM perform one or more diagnostic tests.
- **Read Log:** Instructs the HSM to get Log Data. The number of available entries, the size of each entry, and the data contained in each entry will depend on the log that is being requested.
- **Read Mfg Data:** The Host sends this message to retrieve manufacturing specific data for the HSM.
- **GetTimeDrift:** Instructs the HSM to retrieve the drift adjustment.
- **SetTimeDrift:** Instructs the HSM to set the drift adjustment.
- **Clear Private Information:** Instructs the HSM to remove any private or secret clear text material residing in RAM.
- Add Log Entry: Instructs the HSM to add an entry to an internal log in the HSM.
- **Delete Log:** Instructs the HSM to remove all entries of an internal log in the HSM.
- Get Status: Instructs the HSM to request HSM status information.
- Get HW Status: Instructs the HSM to request the hardware specific status data of the HSM.
- **Reboot:** Instructs the HSM to reboot the PSD application.
- **Get Versions:** Instructs the HSM to get the versions of the components in the HSM
- **Reinit:** Instructs the XHSM to erase all NVM data except for HW Mfg Data and 'persistent' data (total device cycles, reinit count) and then invalidates the HSM DAL. This command zeroizes the Unique HSM Key Encryption Key and Unique HSM Key Authentication Key, which result in the loss of all other Private and Secret Keys. Used to 'clean' the HSM so it can be re-configured.

7. Firmware Update Access Control Policy

The HSM supports a secure firmware update process. The Software Download Utility within the Device Abstraction Layer is responsible for firmware updates.

7.1 Device Abstraction Layer Download

Boot loader loads DAL in chunks. Each chunk is verified with signed hash record containing ECDSA 256 signature. When SDU download is complete a hash is calculated and verified on the entire DAL firmware image.

7.2 HSM App Download and Upgrades

The DAL loads HSM app in chunks. Each chunk is verified with signed hash record containing ECDSA 256 signature. When HSM App download is complete, a hash is calculated and verified on the entire HSM Application firmware image and a signature is verified on the entire HSM Application image.

The Software Download Utility supports the following messages:

Crypto- Officer/Trusted User:

- <u>Setup Download Data:</u> The Host sends this signed record to make the Software Download Utility aware of the parameters of the software (application) to be downloaded. This message is signed by the SWAK. Receipt of this message triggers a transition to the state required to load chunk information.
- <u>Setup Download Chunk</u>: The Host sends this signed record to make the Software Download Utility aware of the parameters of the software (application) chunk to be sent in the following message. Receipt of this message triggers a transition to the state required to load the chunk. The Setup Download Chunk message is only valid if the DAL has received a valid Setup Download Data message.
- <u>Download Chunk:</u> This message contains the data referenced in the Setup Download Chunk message.

Utility Functions

The following utility functions are unauthenticated and intended to aid the host application in managing the software update process.

- <u>Reboot</u>: This function is used to invoke a reboot. It returns a 'Reboot' response message, waits until the transmit channel is idle then resets the ASIC.
- <u>Initialize:</u> This function writes 0's to the DAL Software Validity Flag, sends a response message, waits for until the transmit channel is idle and then resets the ASIC. The HSM transitions to the ROM Firmware State after completion of the reboot.
- <u>Get Status:</u> The Host device sends this message to the HSM to request the current status information.

8. Definition of Critical Security Parameters (CSPs)

There are 5 CSPs that are necessary for the HSM to function as a FIPS device. Other keys maybe loaded or generated by command from the user. These keys could include DSA, ECDSA, AES, RSA, TDES, HMAC, ECDH private / secret / public keys to meet the needs of the TU while using the HSM.

The first 5 entries in the following table describe the 5 necessary CSPs contained in the module:

Key	Key Name	Description /	Generation /	Storage	Entry / Output	Destruction
-		Usage	Agreement	_		
KEK	Unique HSM Key Encryption Key	AES256Key Encryption Key	Internally by FIPS approved DRBG	Clear text	Entry: N/A Output: N/A	Zeroized on Tamper or Reinitialize or removal of all power
КАК	Unique HSM Key Authentication Key	HMAC256Key Authentication Key	Internally by FIPS approved DRBG	Clear text	Entry: N/A Output: N/A	Zeroized on Tamper or Reinitialize or removal of all power
DAK	DAL Authentication Key	HMAC256 Key	Entered in factory environment	ciphertext	Entry: N/A Output: Encrypted	Encrypting key zeroized on Tamper or Reinitialize or removal of all power
DPK	DAL Privacy Key	AES256 Key	Entered in factory environment	ciphertext	Entry: N/A Output: Encrypted	Encrypting key zeroized on Tamper or Reinitialize or removal of all power
V	DRBG Seed	DRBG seed	Entered in factory environment	Ciphertext	Entry: N/A Output: N/A	Encrypting key zeroized on Tamper or Reinitialize or removal of all power
AK	Authentication Key	HMAC128 or HMAC256 or DSA1024 or ECDSA160 or, ECDSA192 or ECDSA256 or RSA1024 or 3DES2 or 3DES3 Key	Internally by FIPS approved DRBG	ciphertext	Entry: Encrypted Output: Encrypted	Encrypting key zeroized on Tamper or Reinitialize or removal of all power

Key	Key Name	Description / Usage	Generation / Agreement	Storage	Entry / Output	Destruction
PK	Privacy Key	AES128 or AES256 or RSA1024 or 3DES3 Key or 3DES2 Key	Internally by FIPS approved DRBG	ciphertext	Entry: Encrypted Output: Encrypted	Encrypting key zeroized on Tamper or Reinitialize or removal of all power
SS	Shared Secret	Used to derive Session Key (SK)	DH or Key Agreement	ciphertext	Entry: Encrypted Output: N/A	Encrypting key zeroized on Tamper or Reinitialize or removal of all power
SK	Session Key	DH ECDH AES128 or AES256 or 3DES3 Key or 3DES2 Key	Derived from Shared Secret	ciphertext	Entry: N/A Output: Encrypted	Encrypting key zeroized on Tamper or Reinitialize or removal of all power

Figure 6 – CSP Table

The following table describes the public keys contained in the module:

Key	Key Name	Description /	Generation /	Storage	Entry /
		Usage	Agreement		Output
SMAK	Domain Comet	ECDSA used to	Externally	Plaintext	Entry: Hard
	Authentication	validate Software			Coded in ASIC
	Sigma	Download Utility and			ROM
	Manufacturing Key	Vendor Certificate			Output: N/A
SWAK	HSM SW Download	ECDSA used to	Externally	Plaintext	Entry: Hard
	Кеу	validate firmware			coded in SDU
					Output: N/A

Figure 7 – Public Key Table

The following table describes the modes of access for each key to each role supported by the module. The modes of access are defined as:

Roles		Services	CSP Modes of Access	
8	Ę			
Х	Х	Split Key	Splits AK and PK	
Х	Х	Join Key	Joins AK and PK	
Х	Х	Generate	Generates AK and PK	
Х	Х	Export Key	Exports AK and PK	
Х	Х	Load Key	Loads AK and PK	
Х	Х	Delete Key	Used to remove AK and PK	
Х	Х	Hash	N/A	
Х	Х	Modular Exponentiation	N/A	
Х	Х	Load Parameters	N/A	
Х	Х	Reinit	Zeroizes Secret and Private key data	
Х	Х	Setup Download Data	Uses SWAK for authentication	
Х	Х	Setup Download Chunk	Uses SWAK for authentication	
Х	Х	Download Chunk	N/A	
Х	Х	Get Random Number	N/A	
Х	Х	Encrypt	Uses PK	
Х	Х	Decrypt	Uses PK	
Х	Х	Firmware Update	Uses SWAK	
Х	Х	Decrypt Compare	Uses PK	
Х	Х	Decrypt Encrypt	Uses PK	
Х	Х	Sign	Uses AK	
Х	Х	Verify	Uses AK	
Х	Х	Derive Key	Uses AK and PK	
Х	Х	Get Key List	N/A	
Х	Х	Get Parameters	N/A	
Х	Х	Get Status	N/A	
Х	Х	Get HW Status	N/A	
Х	Х	Get Versions	N/A	
Х	Х	GetTimeDrift	N/A	
Х	Х	SetTimeDrift	N/A	

Roles		Services	CSP Modes of Access
CO	₽		
Х	Х	Reboot	N/A
Х	Х	Set Counter	N/A
Х	Х	Update Counters	N/A
Х	Х	Get Counter Record	Uses AK
Х	Х	Perform Diagnostic Test	N/A
Х	Х	Read Log	N/A
Х	Х	Add Log Entry	N/A
Х	Х	Delete Log	N/A
Х	Х	Read Mfg Data	N/A
Х	Х	Clear Private Information	N/A

Figure 8 – CSP Modes of Access

9. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements for the module are not applicable because the device does not contain a modifiable operational environment.

10. Security Rules

This section documents the security rules enforced by the module to implement the security requirements of this FIPS 140-2 Level 3 module.

- The module shall not process more than one request at a time (i.e., single threaded). While processing a transaction, prior to returning a response, the module will ignore all other inputs to the module. No output is performed until the transaction is completed, and the only output is the transaction response.
- The module shall authenticate identities based on knowledge of a shared secret.
- All keys generated in the module shall have at least 80-bits of strength.
- All methods of key generation shall be at least as strong as the key being generated.
- All methods of key establishment shall be at least as strong as the key being established.
- The module shall not provide a bypass state where plaintext information is just passed through the module.
- The module shall not support a maintenance mode.
- The module shall not output any secret or private key in plaintext form.

- The module shall not accept any secret or private key in plaintext form outside of manufacturing.
- There shall be no manual entry of keys into the system.
- There shall be no entry or output of split keys from the system except in KRA.
- There shall be no key archiving.
- Keys shall be either generated via an Approved method or entered into the system through FIPS Approved processes.
- Once a module has been zeroized, it must be returned to the factory for software loading and parameterizing prior to being usable by a customer.
- The module shall support the following conditional tests:
 - Pairwise consistency test for DSA key pair generation
 - Pairwise consistency test for ECDSA key pair generation
 - o Continuous RNG test for the DBRG Stuck Seed, Stuck Number
 - ECDSA Signature Verification Firmware Load Test
 - ECDSA Public Key Validation as part of SP 800-56A Key Agreement Protocol
- The module shall support power up self-tests, which can also be run as requested by the user, include:
 - Firmware Integrity Tests:
 - Digital Signature ECDSA 256
 - Sigma ASIC Power On Self-Tests (POST)
 - TDES Known Answer Test
 - DSA Verification Known Answer Test
 - ECDSA Verification Known Answer Test
 - SHA-1 Known Answer Test
 - SHA-256 Known Answer Test
 - AES Engine Known Answer Test (128, 256)
 - RSA Sign/Verify Known Answer Test
 - Critical functions tests:
 - RTC Test
 - Sigma ASIC POST
 - Bram Pattern Test
 - Cryptographic Algorithm Known Answer Tests: (DAL POST)
 - DSA Pairwise Consistency Test
 - ECDSA Pairwise consistency
 - AES Key Wrap / Unwrap Known Answer Test
 - AES Encrypt / Decrypt Known Answer Test

- HMAC SHA-1 Known Answer Test
- HMAC SHA-256 Known Answer Test
- KAS SP800-56A (C(2, 0, ECC CDH)) Known Answer Test
- HASH DRBG SP800-90 Known Answer Test
- Self-tests may be initiated by the following means:
 - Perform Diagnostic Test service
 - Physically recycling the module's power
- The status of self-tests shall be available via the Get HW Status service.

11. Physical Security Policy

The Cygnus XHSM ASIC is a single chip cryptographic module. The module is covered by a hard opaque encapsulant material. Attempts to penetrate the ASIC device packaging have a high probability of causing serious damage to the module.

Hardness testing was performed at ambient temperature, at 65°C, and at 5°C.

The module protects key material from unauthorized disclosure.

12. Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attacks outside the scope of FIPS 140-2.

13. References

The following documents are referenced by this document, are related to it, or provide background material related to it:

- Digital Signature Standard (DSA) FIPS PUB 186-2, January 27, 2000, including change notice of October 5, 2001
- Digital Signature Standard (DSA) FIPS PUB 186-3, November 2008
- Advanced Encryption Standard (AES) FIPS PUB 197, November 26, 2001
- Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001.
- Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special Publication 800-67, May 2004.
- The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198, March 06, 2002
- Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised), Special Publication 800-90, March 2007.

- AES Key Wrap Specification, November 2001
- Secure Hash Standard FIPS PUB 180-3, October 2008
- NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography – March 2007
- Security Requirements for Cryptographic Modules FIPS PUB 140-2, Change Notices December 3, 2002

14. Acronyms

AES	Advanced Encryption Standard		
DAL	Device Abstraction Layer		
DH	Diffie-Hellman		
DSA	Digital Signature Algorithm		
ECC CDH	Elliptic Curve Cryptography Cofactor Diffie-Hellman		
ECDH	Elliptic Curve Diffie-Hellman		
ECDSA	Elliptic Curve Digital Signature Algorithm		
HMAC	Hashed Message Authentication Code		
HSM	Hardware Security Module		
KAS	Key Agreement Scheme		
KRA	Key Root Authority		
RSA	Rivest Shamir Adleman		
RTC	Real Time Clock		
SDU	Software Download Utility		
SHA	Secure Hash Algorithm		
TDES	Triple-DES		

Revision History

Version	Date	Revision Description
0.1	10/15/2010	Original Document
1.00	6/15/2011	Updates from internal review
1.01	8/15/2011	
1.02	9/30/2011	Update based on Infogard comments. Update to match current messaging.
1.03	3/13/2011	Update based on Infogard comments
1.04	3/20/12	Consolidated lists of self test in section 10
1.05	3/21/12	Incorporated comments from Infogard review and Operational Test. Combined lists of approved algorithms in section 3 into one table. Removed "DecryptCompare" command, which is not supported by the DAL. Section 6: Added SetTimeDrift command to Unauthenticated Services
1.06	4/26/12	Section 7: Change HSM Administrator to Crypto Officer and clarified SW download key descriptions. Section 8: Added Session Key (SK) to figure 6 and removed SMAK from figure 8.
1.07	5/8/12	Incorporated feedback from InfoGard review.
1.08	12/11/12	Changes in response to CMVP comments Section 1: Added "P/N" to the first line of the table. Section 11: Added statement with temperatures for hardness testing.
	+	
	ļ	