

FIPS 140-2 Security Policy for
INTEGRITY Security Services

High Assurance Embedded Cryptographic
Toolkit

Module Version 1.0.5

Document Version 1.0.5

19415 Deerfield Ave Suite #204

Lansdowne, VA 20176
USA

Tel: 206-310-6795
Fax: 978‐383‐0530

www.ghs.com

2 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

DISCLAIMER

GREEN HILLS SOFTWARE, INC., MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Green Hills Software, reserves the right to revise this publication and to make changes from time
to time in the content hereof without obligation of Green Hills Software, to notify any person of such
revision or changes.

Green Hills, the Green Hills logo, CodeBalance, GMART, GSTART, Slingshot, INTEGRITY, and
MULTI are registered trademarks of Green Hills Software, Inc. AdaMULTI, Built With INTEGRITY,
EventAnalyzer, G-Cover, GHnet, GHnetLite, Green Hills Probe, Integrate, ISIM, PathAnalyzer, Quick
Start, ResourceAnalyzer, Safety Critical Products, SuperTrace Probe, TimeMachine, TotalDeveloper,
velOSity, and μ-velOSity are trademarks of Green Hills Software, Inc. All other company, product, or
service names mentioned in this book may be trademarks or service marks of their respective owners.

Green Hills Software 3

Table of Contents

1 Introduction .. 5

1.1 Audience ... 5

1.2 Document Organization .. 5

1.3 Additional Information .. 5

1.4 ISS HA‐ECT API ... 6

2 Module Specification .. 7

2.1 The ISS HA‐ECT FIPS Object Module ... 9

2.1.1 Integrity Validation Data ... 9

2.1.2 Exclusivity of Integrity Tests .. 10

2.1.3 Run‐time Integrity Validation .. 10

2.2 Ports and Interfaces .. 11

2.3 Approved Cryptographic Algorithms .. 12

2.4 Non‐Approved Cryptographic Algorithms .. 13

2.5 Approved Mode of Operation ... 14

2.5.1 Rules of Operation .. 15

2.6 Test Environment .. 16

3 Roles, Services, and Authentication .. 17

3.1 Roles and Services ... 17

3.2 Authentication .. 17

3.3 Authorized Services ... 18

4 Operational Environment ... 21

4.1 Compatible Platforms ... 21

4.2 Software Security .. 22

4.3 Self‐Tests ... 23

4.3.1 Power‐up Self‐Tests .. 24

4.3.2 Conditional Self‐Tests ... 25

4.3.3 Critical Function Tests ... 25

4 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

4.3.4 Physical Security .. 25

4.3.5 Mitigation of Other Attacks .. 25

5 Design Assurance .. 26

5.1 Source Code Control ... 26

5.2 Application Management of Keys and Critical Security Parameters (CSPs) 26

5.2.1 Keys and Critical Security Parameters (CSPs) .. 26

5.2.2 Identifying Keys and CSPs ... 27

5.2.3 Key Generation ... 27

5.2.4 Storage of Keys and CSPs .. 27

5.2.5 Destruction of Keys and CSPs .. 28

6 Glossary ... 29

7 References .. 30

Appendix A Installation, Validation, and Initialization…….…………………………………. 29

Green Hills Software 5

Chapter 1

1 Introduction

This document is the Non-Proprietary FIPS 140-2 security policy for the Green Hills Software
INTEGRITY Security Services High Assurance Embedded Cryptographic Toolkit v1.0.4 to meet
FIPS 140-2 level 1 requirements. This Security Policy details the secure operation of the Green
Hills Software INTEGRITY Security Services High Assurance Embedded Cryptographic
Toolkit module, libect.o, as required in Federal Information Processing Standards Publication
140-2 (FIPS 140-2) as published by the National Institute of Standards and Technology (NIST)
of the United States Department of Commerce.

In this document, the Green Hills Software INTEGRITY Security Services High Assurance
Embedded Cryptographic Toolkit module is referred to as the module, or ISS HA-ECT or ISS
HA-ECT FIPS Object Module.

1.1 Audience
This document is required as a part of the FIPS 140-2 validation process. It describes the ISS
HA-ECT FIPS Object Module in relation to FIPS 140-2 requirements. The companion document
HA-ECT API Guide is a technical reference for operators using, and system administrators
installing, the ISS HA-ECT FIPS Object Module, for use in risk assessment reviews by security
auditors, and as a summary and overview for program managers.

1.2 Document Purpose
•

This Security Policy document is available in Green Hills Software ISS HA-ECT distributions.

This document outlines the functionality provided by the module and gives high level details on
the means by which the module satisfies FIPS 140-2 requirements.

1.3 Additional Information

For more information on the ISS HA-ECT please contact support-iss@ghs.com. For more
information on NIST and the cryptographic module validation program, please visit
http://csrc.nist.gov/cryptval/.

6 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

1.4 ISS HA-ECT API

The ISS HA-ECT FIPS Object Module, libect.o, is designed as a complete standalone crypto
library. Applications can use the FIPS validated cryptographic functions of libect.o by linking
the library into applications as needed and calling the appropriate ISS HA-ECT API functions
directly.

Green Hills Software 7

Chapter 2

2 Module Specification

For the purposes of FIPS 140-2 validation, the ISS HA-ECT FIPS Object Module v1.0.4 is
defined as a specific discrete unit of binary object code generated from a specific source
configuration owned and managed by Green Hills Software. The module object code is created
by Green Hills Software and placed into a library format appropriate for numerous operating
systems. Each binary version of the module is suitable for a specific CPU architecture family.
Each binary version can be reproduced on demand by Green Hills Software by using its
configuration management system (CM) which contains specific tags to track each validated
module. The module provides a cryptographic API (Application Programming Interface) to
external applications.

The term Module elsewhere in this document refers to this ISS HA-ECT FIPS Object Module.
For FIPS 140-2 purposes, the Module is classified as a multiple-chip standalone module.

Figure 1 – Physical/Logical Cryptographic Boundary

Drives

Physical Cryptographic boundary

Processor RAMGraphics
Processor

I/O Controller

Network
Interface

Monitor Keyboard

Logical Cryptographic Boundary
ISS HA‐ECT FIPS Object

Module
libect.o

8 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

The physical cryptographic boundary of the Module is the enclosure of the general-purpose
computing system on which it is executing with the logical cryptographic boundary of the
Module is the ISS HA-ECT FIPS Object Module (Figure 1). The Module performs no
communications other than with the process that calls it. It makes no network or interprocess
connections and creates no files.

Two instances of the Module were tested by the FIPS 140-2 Cryptographic Module Testing
(CMT) laboratory for two specific test platforms:

 Linux RHEL 5 x86 no-asm

Dell PowerEdge SC-420 and Intel Celeron 2.53GHz

 Green Hills Software INTEGRITY v5.0.11 OS for PowerPC
 Motorola PowerPC 133MHz

The ISS HA-ECT FIPS Object Module, when generated from the identical unmodified source
code, are “Vendor Affirmed” to be FIPS 140-2 compliant when running on other supported
computer systems provided the conditions described in “Operational Environment”, are met. On
any platform, the Module is not considered FIPS 140-2 validated if the binary’s integrity is not
verified to match the known validated values listed in this Security Policy document.

The Module was designed and implemented to meet FIPS 140-2 requirements. In order to
ensure FIPS 140-2 validated behavior, after linking, loading, and initializing the ISS HA-ECT
FIPS Object Module within a runtime executable application , it is required that all rules and
procedures listed in this Security Policy be followed by the operator at all times while the
module operates in FIPS-mode.

The process of generating the runtime application from ISS HA-ECT FIPS Object Module is the
same for all platforms and is documented in the ISS HA-ECT API Guide. The Module provides
confidentiality, integrity, and message digest services. It natively supports the following
algorithms: AES-GCM, AES-ECB, AES-OFB, AES-CFB128, AES-CBC, AES-CTR, SHA-1,
SHA-256, SHA-384, SHA-512, RSA, ECDSA, HMAC-SHA-1, HMAC-SHA-256, HMAC-
SHA-384, HMAC-SHA-512, as well as a selection of non-approved algorithms.

Green Hills Software 9

2.1 The ISS HA-ECT FIPS Object Module

Since the Module is distributed as prebuilt binary code, the integrity of the Module and
executables which incorporate the Module is accomplished with a simple HMAC-SHA-1 digest
verification.

2.1.1 Integrity Validation Data

The ISS HA-ECT FIPS Object Module file is protected by a HMAC-SHA-1 digest. This digest
protects only object code belonging to the Module. The ISS HA-ECT FIPS Object Module is
built from a set of object files linked into a single relocatable object file. This monolithic object
file may be incorporated into a shared library or runtime executable application files, but in any
event must be incorporated intact and in its entirety in order to operate in a FIPS 140-2 compliant
mode.

The ISS HA-ECT FIPS Object Module’s HMAC-SHA-1 digest is documented for each
supported platform. Upon delivery, the system operator runs a Green Hills supplied utility
program, ghash, which computes and displays the HMAC-SHA-1 digests for the Module. The
operator compares these digests with the known good documented values to gain assurance that
the Module is indeed the FIPS-validated Module.

When the ISS HA-ECT FIPS Object Module is linked to the application by the operator, the
Module is relocated, causing its contents to necessarily change. The operator then runs the ghash
utility program to recompute the HMAC-SHA-1 digests, which must be stored into the final
executable. These digests are verified at run-time to match the ghash-inserted values. The
operator must provide assurance that the FIPS Object is not tampered with during the
development process.

For operators of resource constrained devices who are forced to use a subset of the FIPS 140-2
validated module are able to do so by using only a subset of object files used to create the
validated monolithic module; however, this method of usage is not considered FIPS 140-2
validated. Nevertheless, the operator can gain assurance that the objects come from the validated
Object Module by performing the same HMAC-SHA-1 digest verification described above.
Furthermore, the computation of the HMAC-SHA-1 digests inserted into the executable will still
be run-time validated when the Crypto library is initialized.

The ISS HA-ECT FIPS Object Module is carefully isolated from all other application object
code. This isolation is accomplished by collecting all of the ISS HA-ECT FIPS Object Module
code and data into reserved, specially named program sections. These two sections and their
contents are as follows:

• .ecttext: ISS HA-ECT FIPS Object Module executable code
• .ectrodata: ISS HA-ECT FIPS Object Module constant/read-only data

10 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

The ISS HA-ECT FIPS Object Module contains only the contents of these two fixed sections.
The integrity of the ISS HA-ECT FIPS Object Module file is protected by two HMAC-SHA-1
digests, one for each of these contiguous program sections. The HMAC-SHA-1 digests are
computed using the ghash utility and stored in another special read-only data section, .ecthash.
This section also contains the reference points (address range) corresponding to the hash values.
These reference points ensure that the run-time digest is computed over exactly the same
memory that is used at build-time.

2.1.2 Exclusivity of Integrity Tests

Standard object file dump utilities can be used to verify that the ISS HA-ECT FIPS Object
Module contains no other code/data other than what is found in the specially named sections.
User application code is always placed into sections (e.g. .text, .data) that are not these special
reserved sections. The operator can easily verify that the size of the special named FIPS sections
are the same in the FIPS validated re-locatable Module as in the final executable. Therefore, no
other memory is included in the HMAC_SHA1 validation.

2.1.3 Run-time Integrity Validation

When the ISS HA-ECT FIPS Object Module is initialized at run-time, the HMAC_SHA1 digests
are computed dynamically for all three sections and then compared against the constant values
stored in the .ecthash section. The HA-ECT FIPS Module self-tests can also be executed during
normal program operation. This can be useful for periodic health tests to ensure that the ISS HA-
ECT FIPS Object Module executable and read-only data (e.g. algorithm constants in tables) have
not been corrupted relative to their build-time values. Note that the writable data section
(.ectdata) can only be verified at module initialization time since the data contents are modified
at run-time.

Note this integrity testing technique is conceptually similar to the case of firmware integrity
testing: not only is external code omitted from the digest, but also non-executing ancillary data
specific to the particular executable format. Only the actual machine code byte sequence directly
executed by the CPU and the actual data referred to in the course of execution are included in the
digest; i.e. only what really matters to the general purpose computer at runtime, pure code as
with firmware.

Green Hills Software 11

2.2 Ports and Interfaces

For the purposes of this FIPS 140-2 validation, the Module is considered to be a multiple-chip
standalone module. Although the Module is software, the physical embodiment is a general
purpose computing platform that consists of multiple components considered to be a multichip
standalone module by FIPS 140-2.

The logical cryptographic boundary for the Module is the discrete contiguous block of object
code (the ISS HA-ECT FIPS Object Module) containing the machine instructions and data
generated from the ISS HA-ECT FIPS source, as used by the calling application. The physical
cryptographic boundary contains the general purpose computing hardware of the system
executing the application. This system hardware includes the central processing unit(s), cache
and main memory (RAM), system bus, and peripherals including disk drives and other
permanent mass storage devices, network interface cards, keyboard and console and any terminal
devices.

The Module provides a logical interface via an Application Programming Interface (API). This
logical interface exposes services that applications may utilize directly or extend to add support
for new data sources or protocols. The API provides functions that may be called by the
referencing application.

The API interface provided by the Module is mapped onto the FIPS 140-2 logical interfaces:
data input, data output, control input, and status output. Each of the FIPS 140-2 logical interfaces
relates to the Module’s callable interface, as follows:

• Data input: input parameters to all API functions that accept input from Crypto-
Officer or User entities

• Data output: output parameters from all API functions that return data as
arguments or return values from Crypto-Officer or User entities

• Control input: all API function input into the module by the Crypto-Officer and
User entities

• Status output: API information returned via return/exit codes to Crypto-Officer or
User entities

The API function specifications are included in the ISS HA-ECT project documentation which
covers both FIPS-approved, and non-FIPS-approved functions.

12 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.3 Approved and Allowed Cryptographic Algorithms

The Module supports the following FIPS-approved cryptographic algorithms:

• Advanced Encryption Standard (FIPS 197)
• Secure Hashing Algorithm (SHA-1, SHA-256,384,512: FIPS 180-2)
• Rivest Shamir Adleman (RSA) digital signatures
• Keyed-Hash Message Authentication Code (HMAC: FIPS 198)
• Pseudo Random Number Generator (RNG: ANSI X9.62, FIPS 186-2)
• Elliptic Curve Digital Signature Algorithm (ECDSA FIPS 186-2)

Algorithm
Type

Algorithm

Validation
Certificate

Use

Asymmetric
keys

RSA

#878 Sign and Verify
operations

ECDSA #235 Sign and Verify
operations

Symmetric
keys

AES with modes CBC,
ECB, OFB, CFB128,
CTR, GCM- each with
128, 192, or 256-bit
keys

#1762 Encrypt/Decrypt
operations

HMAC HMAC-SHA-1
HMAC-SHA-256
HMAC-SHA-384
HMAC-SHA-512

#1033 Software Integrity
and Message
Integrity

Hashing SHA-1, SHA-256,
SHA-384, SHA-512

#1546 Hashing

RNG ANSI X9.62,
FIPS 186-2

#939 Random Number
Generations

Key
Establishment
Methods

Diffie-Hellman Non-
Approved.
Allowed in
FIPS-mode

Key Agreement
(only primitives)

Elliptic-Curve Diffie-
Hellman

Non-
Approved.
Allowed in
FIPS-mode

Key Agreement
(only primitives)

Elliptic-Curve MQV Non-
Approved.
Allowed in
FIPS-mode

Key Agreement
(only primitives)

Green Hills Software 13

 RSA Encrypt/Decrypt
(Provides between 80 to
150 bits of encryption
strength)

Non-
Approved.
Allowed in
FIPS-mode
for key
transport
only

Key Transport

2.4 Non-Approved Cryptographic Algorithms

The following Non-FIPS-Approved algorithms are included in the Module. These Non-
Approved cryptographic algorithms MUST not be used while operating the module in the FIPS-
Approved mode.

Algorithm Type Algorithm Use

Stream Cipher ARCFour Encrypt/Decrypt Operations
Symmetric Keys DES Encrypt/Decrypt Operations
Symmetric Keys Triple-DES (non-compliant) Encrypt/Decrypt Operations
Asymmetric Keys DSA (non-compliant) Sign and Verify Operations
Hashing MD5 Hashing

14 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.5 Approved Mode of Operation

A single initialization call, ect_Set_FIPS_Mode(), is required to initialize the Module for
operation in the FIPS 140-2 Approved mode, referred to herein as “FIPS mode”. When the
Module is in FIPS mode, all applicable power-up and conditional self-tests are executed by the
module. Use of the ect_Set_FIPS_Mode() function call is described in the API Guide. The
Module is not in FIPS mode until this function call is made.

Prior to this invocation, the Module is uninitialized with the internal Module state set to
ECT_STATE_NON_FIPS and internal Module error status set to ECT_ERR_UNINITIALIZED-
indicating Non-FIPS mode by default. When executed, the ect_Set_FIPS_Mode() function call
verifies the integrity of the runtime executable using HMAC_SHA-1 digests computed at build
time. If the computed HMAC_SHA-1 digests match the pre-computed stored digest, then the
power-up self-tests, consisting of the algorithm specific Sign/Verify and Known Answer tests,
are performed.

If the integrity check or any component of the power-up self-test fails, ect_Set_FIPS_Mode()
returns ECT_ERROR and the internal Module state is set to ECT_STATE_ERROR, indicating
an internal failure. When in this error state, subsequent invocation of any cryptographic function
calls will fail. Any self-test failure can only be cleared by a successful FIPS-mode invocation.
Additional information regarding the failure can be obtained from a call to
ect_Get_ErrorStatus(), documented in the HA_ECT API manual.

If all components of the power-up self-tests are successful, ect_Set_FIPS_Mode() returns
ECT_SUCCESS, the Module state is set to ECT_STATE_FIPS_MODE, and the Module is now
considered to be in FIPS mode. When in FIPS mode, the module operators should only use the
algorithms and key sizes outlined in section ‘Approved Cryptographic Algorithms’ of this
document.

If the Module is in “FIPS mode”, and a subsequent call is made to ect_Set_FIPS_Mode(), then
ect_Set_FIPS_Mode() will not execute any self-tests; it will return
ECT_ERROR_IN_FIPS_MODE, and the Module state will remain in
ECT_STATE_FIPS_MODE.

At any time, the current Module state and Module error status can be obtained with calls to
ect_GetState() and ect_GetErrorStatus() which will return ECT_STATE_FIPS_MODE and
ECT_SUCCESS respectively, when the module is successfully placed in the FIPS-mode.
Additional information for these routines is documented in the HA_ECT API manual.

Please note: The module operators MUST follow the instructions in Appendix A for a proper
installation and initialization before the FIPS-enabling procedure can be followed. It is
important that the Crypto-Officer ensures the correct libect.o file is used before proceeding with
the FIPS-mode enabling procedure.

Green Hills Software 15

2.5.1 Rules of Operation

• The operator should not make any changes to the Module’s code while building an
application.

• Only the HMAC-SHA-1 verified libect.o should be used without any modifications for a
FIPS 140-2 compliant operation.

• The Module is initialized in the FIPS mode of operation using the ect_Set_FIPS_Mode()
function call, and have such function call return ECT_SUCCESS or 0.

• Once in FIPS mode, users should only use algorithms and key sizes outlined in section
“Approved and Allowed Cryptographic Algorithms” of this document.

• The module obtains the seeding material for both of its Approved RNGs (FIPS 186-2 and
ANSI X9.62) from the operator/user of the module or the calling application.

• Per the standards ANSI X9.62-1998 and FIPS 186-2 Appendix 3.1, users must always use a
seed key that is “b” bits long, where 160<= b <= 512 for seeding both the ANSI X9.62 RNG
and the FIPS 186-2 Appendix 3.1 RNG of the module. Note that both these RNGs of the
module use SHA-1.

• The operator/application must use appropriate entropy sources for generating the seeding
material for both the FIPS-Approved RNGs of the module. The entropy in the seeding
material input to the module must be at least as much as the entropy in the key generated by
the Approved RNG.
For example, when generating a 256-bit AES key, the entropy in the seed key provided to the
module by the user must be at least 256-bits.

• The replacement or modification of the Module by unauthorized intruders is prohibited. The
Operating System enforces authentication method(s) to prevent unauthorized access to
Module services.

• All host system components that can contain sensitive cryptographic data (main memory,
system bus, disk storage) must be located in a secure environment.

• The referencing application accessing the Module runs in a separate virtual address space
with a separate copy of the executable code.

• The unauthorized reading, writing, or modification of the address space of the Module is
prohibited.

• The writable memory areas of the Module (data and stack segments) are accessible only by a
single application so that the Module is in ”single user” mode, i.e. only the one application
has access to that instance of the Module.

• The operating system is responsible for multitasking operations so that other processes
cannot access the address space of the process containing the Module.

16 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

2.6 Test Environment

The Module was tested by the FIPS 140-2 CMT laboratory on the following computer systems:

Linux RHEL 5 x86 no-asm
Dell PowerEdge SC-420 and Intel Celeron 2.53GHz

 Green Hills Software INTEGRITY v5.0.11 OS for PowerPC
 Motorola PowerPC 133 MHz

The ISS HA-ECT FIPS binary Object Module is “Vendor Affirmed” to be FIPS 140-2 compliant
when running on other supported computer systems provided the conditions described in
“Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program”,
are met.

Green Hills Software 17

Chapter 3

3 Roles, Services, and Authentication

3.1 Roles and Services

The Module meets the FIPS 140-2 level 1 requirements for Roles and Services for User role and
Crypto-Officer role.

The User and Crypto Officer roles are implicitly assumed by the entity accessing services
implemented in the Module. The Crypto Officer role can install, initialize and remove the
Module; this role is implicitly assumed while installing the Module or initializing the FIPS-mode
on the module.

Role Authorized Services
User Role Access to all services (loading Module, calling

API’s) except installation and FIPS-mode
initialization

Crypto Officer role Module install and FIPS-mode initialization
Uninstalling or removing the Module

3.2 Authentication

As allowed by FIPS 140-2, the Module does not support user identification or authentication for
those roles. Only one role may be active at a time and the Module does not allow concurrent
operators. The Module does not provide identification or authentication mechanisms that would
distinguish between the two supported roles. These roles are implicitly assumed by the services
that are accessed, and can be differentiated by assigning module installation and configuration
services to the Crypto Officer.

18 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

3.3 Authorized Services1

The services provided by the Module are listed in the following table. All services may be
performed in User role with the exception of Module installation and Initialization services
which are the only services performed in the Crypto Officer role:

Service

Role
Critical
Security
Parameters

Algorith

m

API Functions

Access

Symmetric
Encryption/
Decryption

User Symmetric Key AES,

ect_AES_begin,
ect_AES_GCM_begin,
ect_AES_cryptOFB,
ect_AES_cryptCBC,
ect_AES_cryptCFB128,
ect_AES_cryptCTR,
ect_AES_cryptECB,
ect_AES_GCM_setIV,
ect_AES_GCM_generate_and_setIV
ect_AES_GCM_setAAD,
ect_AES_GCM_getTag,
ect_AES_GCM_verify,
ect_AES_end,

Read
Write
execute

Digital
Signature

User Asymmetric
private key

RSA,
ECDSA,

ect_RSA_init,
ect_RSA_privateKeyOperation,
ect_RSA_publicKeyOperation,
ect_RSA_setPrivateKeyContainer,
ect_RSA_setPublicKeyContainer,
ect_RSA_size,
ect_RSA_publicKeySize,
ect_RSA_privateKeySize,
ect_RSASSA_PKCS1_v1_5_sign,
ect_RSASSA_PKCS1_v1_5_verify,
ect_RSA_end,
ect_EME_PKCS1_OAEP_encode,
ect_EME_PKCS1_OAEP_decode,
ect_RSAES_PKCS1_OAEP_encrypt
ect_RSAES_PKCS1_OAEP_decrypt
ect_EMSA_PKCS1_v1_5_encode,
ect_EME_PKCS1_v1_5_encode,
ect_EME_PKCS1_v1_5_decode,
ect_RSAES_PKCS1_v1_5_encrypt,
ect_RSAES_PKCS1_v1_5_decrypt,
ect_ECC_init,
ect_ECC_size,
ect_ECC_keygen,
ect_ECDSA_sign_msg,
ect_ECDSA_verify_msg,
ect_ECDSA_sign_hash,
ect_ECDSA_verify_hash,

Read,
Write,
Execute

1 Note that only services using the algorithms listed in section “Approved Cryptographic Algorithms” are allowed
for use in the FIPS‐approved mode.

Green Hills Software 19

ect_ECC_end,
Message
Digest

User none
HMAC key

SHA-1
SHA-256
SHA-384
SHA-512
HMAC

ect_SHA1_begin,
ect_SHA1_digest,
ect_SHA1_end,
ect_SHA256_begin,
ect_SHA256_digest,
ect_SHA256_end,
ect_SHA384_begin,
ect_SHA384_digest,
ect_SHA384_end,
ect_SHA512_begin,
ect_SHA512_digest,
ect_SHA512_end,
ect_HMAC_SHA1_begin,
ect_HMAC_SHA1_process,
ect_HMAC_SHA1_end,
ect_HMAC_SHA256_begin,
ect_HMAC_SHA256_process,
ect_HMAC_SHA256_end,
ect_HMAC_SHA384_begin,
ect_HMAC_SHA384_process,
ect_HMAC_SHA384_end,
ect_HMAC_SHA512_begin,
ect_HMAC_SHA512_process,
ect_HMAC_SHA512_end,

Read,
Write,
Execute

Random
Number
Generation

User Seed key ANSI X9.62
FIPS 186-2

ect_ECDSA_rand,
ect_generate_randomBytes

Read
Write
Execute

Show Status User None N/A ect_GetState,
ect_GetErrorStatus

None

Module
Install and
Initialization

Crypto
Officer

HMAC-SHA-1
Integrity Key

N/A ect_Set_FIPS_Mode Read
Execute

Uninstalling
or removing
the module

Crypto-
Officer

None None None None

Perform
Power-up
Self-Tests

User HMAC-SHA-1
Integrity Key

N/A ect_SelfTest Read
Execute

Key
Establishment

User Asymmetric
public and
private keys

ECDH,
ECMQV,
DH
RSA

ect_ECDH_keyagreement,
ect_ECMQV_keyagreement,
ect_DH_keyagreement
ect_RSAES_PKCS1_v1_5_encrypt,
ect_RSAES_PKCS1_v1_5_decrypt,

Read
Write
Execute

Zeroization User Asymmetric and
symmetric keys

ECC
RSA
AES
HMAC

ect_ECC_destroyPublicKey,
ect_ECC_destroyPrivateKey,
ect_RSA_destroyPrivateKey,
ect_RSA_destroyPublicKey,
ect_AES_end,
ect_HMAC_SHA1_end,
ect_HMAC_SHA256_end,
ect_HMAC_SHA384_end,
ect_HMAC_SHA512_end,

Read
Zeroize

20 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

3.4 Other Non-Approved Services2
Algorithm Module’s APIs
DES,
Triple-DES,

ect_DES_begin,
ect_DES_encrypt,
ect_DES_decrypt,
ect_DES_end,
ect_DES_endpad2,

ARCFour ect_ARCFOUR_begin,
ect_ARCFOUR_process,
ect_ARCFOUR_end

DSS/DSA ect_DSA_sign,
ect_DSA_verify,
ect_DSS_init,
ect_DSS_gernerateUser,
ect_DSS_sign,
ect_DSS_verify,
ect_DSS_size,
ect_DSS_domainSize,
ect_DSS_publicKeySize,
ect_DSS_privateKeySize,
ect_DSS_createPrivateKey,
ect_DSS_createPublicKey,
ect_DSS_createDomain,
ect_DSS_validateKeys.
ect_DSS_end
ect_DSS_destroyPrivateKey,
ect_DSS_destroyPublicKey,
ect_DSS_destroyDomain,

MD5 ect_MD5_begin,
ect_MD5_digest,
ect_MD5_end

2 These services MUST not be used in the FIPS‐approved mode.

Green Hills Software 21

Chapter 4

4 Operational Environment

The ISS HA-ECT FIPS Object Module is generated from source code available for use on a wide
variety of computer hardware and operating system platforms. Applications referencing the ISS
HA-ECT FIPS Object Module run as processes under the control of the host system operating
system. Modern operating systems segregate running processes into virtual memory areas that
are logically separated from all other processes by the operating system and CPU. NOTE: in
some simple computer systems (sometimes running on microprocessors without memory
protection hardware), the ISS HA-ECT FIPS Object Module necessarily is linked together in the
same memory space as the other application code. However, the ISS HA-ECT FIPS Object
Module was primarily designed for modern computer systems that provide process protection.

The ISS HA-ECT FIPS Object Module functions completely within the process space of the
process which loads it. The Module does not communicate with any processes other than the one
that loads it, and satisfies the FIPS 140-2 requirement for a single user mode of operation.

The ISS HA-ECT FIPS Object Module was tested on specific hardware/software environments.
As stated in “Implementation Guidance for FIPS 140-2 and the Cryptographic Module
Validation Program”, the binary Module maintains FIPS 140-2 validation on other hardware and
operating systems which were not included as part of the validation testing and without retesting
the cryptographic module on the new OS(s) and/or GPC(s). However, the CMVP makes no
statement as to the correct operation of the module when executed on an OS(s) and/or GPC(s)
not listed on the validation certificate. The module validated by the CMVP and which assurance
is provided is based as caveated on the validation certificate and operated on the reference
operating systems annotated on the certificate.

4.1 Compatible Platforms
The Module is designed to run on a very wide range of hardware and software platforms as long
as the conditions in FIPS 140-2 Implementation Guidance G.5 are met. Any such computing
platform that meets the conditions listed above can be used to host a FIPS 140-2 validated
Module generated in accordance with this Security Policy. Such use will be considered “vendor-
affirmed” for platforms other than those used for FIPS 140-2 testing as specified in this Security
Policy.

22 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

If any platform specific errors occur that can only be corrected by modification of the Module
source files, then the Module will not be validated for that platform. Note also that future
releases of ISS HA-ECT may add support for additional platforms requiring new platform
specific source replacing parts of the source corresponding to the current validated Module, in
which case the modified Module will require revalidation under FIPS/NIST guidelines.

Note there is a possibility that the introduction of a new platform may be incompatible with the
design of the integrity test, preventing a valid verification. The implementation of the integrity
test is designed to fail for any such unrecognized platforms.

4.2 Software Security

Multiple integrity checks are performed in the process of generating and running an application
using the Module:

• The integrity of the binary ISS HA-ECT FIPS Object Module file is checked

before generating the runtime executable application.

When the ISS HA-ECT FIPS Object Module file has been built and validated, a set of HMAC-
SHA-1 digests for the FIPS 140-2 validated Module are documented in this Security Policy for
each validated platform. When the operator is about to incorporate the ISS HA-ECT FIPS Object
Module into the application, the ghash utility is used to compute and display the HMAC-SHA-1
digests corresponding to the Module’s code and data. These digests must match the known good
digests documented in this Security Policy in order for the module to be considered FIP 140-2
validated and the operator to proceed.

• The integrity of the FIPS Module within the application is checked at run-time.

After the application is generated by linking with the validated Module, the ghash utility is to be
used to re-compute the SHA1 digests of the ISS HA-ECT library. These digests should be
embedded within a special read-only data section in the application executable. The ISS HA-
ECT library’s FIPS initialization function, ect_Set_FIPS_Mode(), will dynamically compute the
SHA-1 digests and compare them against these build-time stored values to make sure they
match. This run-time check ensures that the ISS HA-ECT library has not been corrupted between
application build-time and system run-time.

This chain of integrity checks assures that applications using ISS HA-ECT will use FIPS 140-2
validated cryptography when built using the validated ISS HA-ECT FIPS Object Module.

Green Hills Software 23

4.3 Self-Tests

The Module performs a number of power-up and conditional self-tests to ensure proper operation
of the Module. Power-up self-tests include cryptographic algorithm known answer tests and
integrity tests. Input, output, and cryptographic functions cannot be performed while the Module
is in a self-test or error state as the module is single threaded and will not return to the calling
application until the power-up self tests are complete. If the power-up self tests fail, subsequent
calls to the module will fail and thus no further cryptographic operations are possible.

A single initialization call, ect_Set_FIPS_mode(), is required to initialize the Module for
operation in the FIPS 140-2 Approved mode. It returns 0 (ECT_SUCCESS) on success. When
the Module is in FIPS mode, all security functions and cryptographic algorithms are performed
in Approved mode. Prior to this invocation, the Module is uninitialized in the non-FIPS mode by
default.

The integrity tests called from the ect_Set_FIPS_mode() function are performed using HMAC-
SHA-1 digests calculated over the object code in the ISS HA-ECT FIPS Object Module. The
HMAC-SHA1 key, which is used only for the power-up integrity test, is a key value hard-coded
in the module's code. Since this key is used solely for the integrity test, it is not required to be
zeroized. The module also stores the integrity hashes, which get integrated into the module upon
computation during the library build process. If the computed HMAC-SHA-1 digest matches the
stored known digest, then the power-up self-tests consisting of the algorithm specific Sign/Verify
and Known Answer tests, are performed. The failure of any power-up self-test or conditional
test causes the Module to enter the ECT_STATE_ERROR state with all cryptographic operations
disabled until the Module is reinitialized with a successful ect_Set_FIPS_Mode() call. Any
function that invokes the conditional test that fails will return -1 (ECT_FAILURE). If all power-
up self-tests are successful, ect_Set_FIPS_mode() returns

Power-up tests are run automatically when the Module is initialized and do not require any
inputs or actions from the module operator. Additionally, power-up tests may be executed at any
time by calling the ect_SelfTest() API function and verifying it returns 0 (ECT_SUCCESS) to
indicate success. No FIPS-mode cryptographic functionality will be available until after
successful execution of all power-up tests. No authentication is required to perform self-tests
either automatically or upon demand.

24 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

4.3.1 Power-up Self-Tests

Known Answer Tests (KATs) are tests where a cryptographic value is calculated and compared
with a stored previously determined answer. The following power-up self-tests are implemented
by the Module:

Algorithm Power-up Self-test
AES-CBC-128 (includes implicit
encrypt/decrypt tests for AES-ECB-128)

encryption and decryption with 128-bit key

AES-CBC-192 (includes implicit
encrypt/decrypt tests for AES-ECB-192)

encryption and decryption with 192-bit key

AES-CBC-256 (includes implicit
encrypt/decrypt tests for AES-ECB-256)

encryption and decryption with 256-bit key

AES-GCM-128 authenticated encryption and decryption
with 128-bit key

AES-GCM-192 authenticated encryption and decryption
with 192-bit key

AES-GCM-256 authenticated encryption and decryption
with 256-bit key

AES-OFB-128 encryption and decryption with 128-bit key
AES-OFB-192 encryption and decryption with 192-bit key
AES-OFB-256 encryption and decryption with 256-bit key
AES-ECB-128 encryption and decryption with 128-bit key
AES-ECB-192 encryption and decryption with 192-bit key
AES-ECB-256 encryption and decryption with 256-bit key
AES-CFB-128 encryption and decryption with 128-bit key
AES-CFB-192 encryption and decryption with 192-bit key
AES-CFB-256 encryption and decryption with 256-bit key
RSA-2048
PKCS#1

sign/verify test with 2048-bit key

SHA-1 known answer test for SHA-1
SHA-256 known answer test for SHA-256
SHA-384 known answer test for SHA-384
SHA-512 known answer test for SHA-512
HMAC-SHA-1 known answer test for HMAC-SHA-1
HMAC-SHA-256 known answer test for HMAC-SHA-256
HMAC-SHA-384 known answer test for HMAC-SHA-384
HMAC-SHA-512 known answer test for HMAC-SHA-512
ANSI X9.62 RNG
FIPS 186-2 RNG

known answer test for ANSI X9.62 RNG
known answer test for FIPS 186-2 RNG

ECDSA nist256p sign/verify test with 256 bit key
ECDSA nist384p sign/verify test with 384 bit key
ECDSA nist512p sign/verify test with 512 bit key

Green Hills Software 25

4.3.2 Conditional Self-Tests

Algorithm Conditional Test
RSA Pair-wise consistency sign/verify test
ECDSA Pair-wise consistency sign/verify test
ANSI X9.62 RNG
FIPS 186-2 RNG

Continuous RNG test per FIPS 140-2 section 4.9.2

4.3.2.1 Sign/Verify Test
A sign/verify test is performed when RSA key pairs or ECDSA key pairs are generated by
signing data with a private key and verifying that signature using the associated public key.

4.3.2.2 Software/Firmware Load Test
Not applicable; the Module does not allow the loading of any external software or firmware.

4.3.2.3 Manual Key Entry Test
Not applicable; keys are not manually entered into the Module.

4.3.2.4 Bypass Test
Not applicable; the Module does not implement a bypass capability.

4.3.3 Critical Function Tests
The Module does not implement any critical function tests.

4.3.4 Physical Security
The Module does not claim to enforce any physical security as it is implemented entirely in
software.

4.3.5 Mitigation of Other Attacks
The Module does not mitigate against any specific attacks.

26 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Chapter 5

5 Design Assurance

The Module is managed in accordance with the established configuration management and
source version control procedures of the Green Hills Software end user products group. These
plans and procedures form part of a comprehensive quality management and improvement
system used for all of Green Hills Software’s critical products, including operating systems and
compilers.

In addition, the ISS HA-ECT Toolkit Module is managed with additional mechanisms to assure
the integrity of binary code as delivered and used to create applications.

5.1 Source Code Control

Software development functions for ISS HA-ECT software (configuration management, version
control, change control, software defect tracking) are managed by the ISS group. The source
code revisions are maintained in an SVN repository within Green Hills Software’s private
development team. Individually packaged revisions can be released periodically in electronic
archive or portable media form. The integrity of the Module is based on HMAC-SHA-1.

5.2 Application Management of Keys and Critical Security
Parameters (CSPs)

5.2.1 Keys and Critical Security Parameters (CSPs)
A Key and Critical Security Parameter (CSP) is information, such as symmetric keys,
asymmetric private keys, etc., that must be protected from unauthorized access. Since the
Module is accessed via an API from a referencing application, the Module does not manage
Keys and CSPs.
The application designer and the end operator share a responsibility to ensure that Keys and
CSPs are always protected from unauthorized access. This protection will generally make use of
the security features of the host hardware and software which is outside of the cryptographic
boundary defined for this Module.

Green Hills Software 27

5.2.2 Identifying Keys and CSPs

All Keys and CSPs must be created, stored, and destroyed in an approved manner as described
by the FIPS PUB 140-2, Security Requirements for Cryptographic Modules. Keys and CSPs are
those items of information which must be protected from disclosure, such as symmetric keys,
asymmetric private keys, etc. Note that the application designer and operator/system
administrator/Crypto Officer share a responsibility for protection of Keys and CSPs; the former
to include appropriate technical protections and the latter to install and configure the application
correctly. Technical protections include checks to require that files storing Keys and CSPs have
appropriate permissions (not group writable or world readable, for example). Administrative
protections include installation of the runtime software (executables and configuration files) in
protected locations. End users have a responsibility to refrain from comprising CSPs (as by
sending a password in clear text or copying an encryption key to an unprotected location).

The module includes the following keys and CSPs:

• AES Keys
• Triple-DES Keys
• ANSI X9.62 RNG Seed Key
• FIPS 186-2 RNG Seed Key
• RSA Private Key
• ECDSA Private Key
• HMAC-SHA Key
• Diffie-Hellman Private Key
• Elliptic-Curve Diffie-Hellman Private Key
• ECMQV Private Keys (Both static and ephemeral)
• HMAC-SHA-1 Software Integrity Key

5.2.3 Key Generation

The Module API provides cryptographic functions used for asymmetric key generation for RSA,
DSA, ECDSA and for generation of public and private parameters for DH, ECDH and ECMQV.
For example, a call to the ect_RSA_keyGenerate() API function would be used to generate RSA
keys. The control input that drives the invocation of the Module API functions comes from the
calling application.

5.2.4 Storage of Keys and CSPs

The Module only stores the HMAC-SHA-1 key used for the integrity self-test within its binary
file. If this key value is modified, the HMAC-SHA-1 value of the module’s binary libect.o before
linking with the application, will be different than the values published in this Security Policy,
Appendix A, and will not be considered FIPS-compliant. The Module does not store any other

28 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Keys or CSPs in persistent media; while the Module is initialized, all Keys and CSPs reside
temporarily in RAM and are destroyed at the end of the session.

5.2.5 Destruction of Keys and CSPs

When no longer needed, Keys and CSPs contained within the application must be deleted by
overwriting in a way that will make them unrecoverable (zeroized). The HA-ECT accomplishes
this by the user calling algorithm **_end() API’s or when power is removed from the hardware.
For asymmertric keys only, ect_*_destroy*Keys*() make keys unrecoverable by zeroization.

Green Hills Software 29

Chapter 6

6 Glossary

Term Description
AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
CFB Cipher Feedback
CMT Cryptographic Module Testing
CMVP Cryptographic Module Validation Program
CO Crypto Officer
CSP Critical Security Parameter
CTR Counter
DH Diffie-Hellman
ECB Electronic Codebook
FIPS Federal Information Processing Standard
FSM Finite State Machine
GCM Galois Counter Mode
HA-ECT High Assurance Embedded Crypto Toolkit (ISS Crypto library)
IV Initialization Vector
KAT Known Answer Test
NIST National Institute of Standards and Technology (USA)
OFB Output Feedback
OS Operating System
RSA Rivest, Shamir and Adleman
SHA-1
SHA-256
SHA-384
SHA-512

Secure Hash Algorithm (FIPS 180-3

HMAC
-SHA-1
-SHA-256
-SHA-385
-SHA-512

Keyed-Hash Message Authentication Code (FIPS 198-1)

30 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

Chapter 7

7 References

• FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 2001,
National Institute of Standards and Technology

• FIPS PUB 197, Advanced Encryption Standard (AES), 26 November 2001,
National Institute of Standards and Technology

• FIPS 186-3, The Digital Signature Standard, June 2009, National Institute of
Standards and Technology

• The Advanced Encryption Standard Algorithm Validation Suite (AESAVS) , 15
November 2002, National Institute of Standards and Technology

• Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module
Validation Program, Initial Release: March 28, 2003, Last Update: December 23,
2010, National Institute of Standards and Technology

• FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008,
National Institute of Standards and Technology

• FIPS 180-3, Secure Hash Standard (SHS), October 2008, National Institute of
Standards and Technology

• Derived Test Requirements for FIPS PUB 140-2, Security Requirements for
Cryptographic Modules, January 04, 20011 (draft), National Institute of Standards
and Technology

• Green Hills Software ISS HA-ECT API Guide

Green Hills Software 31

Appendix A – Installation, Validation and
Initialization
These instructions assume the following:

• The reader has the basic knowledge of how to unpack the Module’s binary
distribution.

• Target environment is as specified in section 2 of this policy
• The reader has loaded version 5.0.6 of Green Hills Software MULTI development

environment for PowerPC or Linux Native (depending on target requirement),
and version 5.0.11 of Green Hills Software INTEGRITY operating system for
PowerPC in order to execute the instructions below.

• The reader has experience using Green Hills Software Tools and the INTEGRITY
Operating system.

A.1 Module Validation

The Green Hills Software, ISS ISS HA-ECT FIPS Object Module v1.0.4 consists of the FIPS
Object Module (the libect.o contiguous unit of binary object code) generated from the specific
source files found in the specific Green Hills distribution, ISS_HA_ECT.tar.gz. The set of files
specified in this tar file constitutes the complete set of source files of this module. There shall be
no additions, deletions, or alterations of this set as used during module build.

The Green Hills Software build environment for the two tested platforms consists of MULTI
5.0.6 for Linux Native and PowerPC. Green Hills Software’s INTEGRITY 5.0.11 was the
targeted PowerPC Operating system.

After receiving the libect.o library from Green Hills Software, generate and print the HMAC-
SHA-1 digests for the installed Module using the Green Hills ghash utility (provided as part of
the Module distribution). The following command can be used to display the digests of the
Module:

ghash –p libect.o

The Crypto Officer should compare these digests with the below published values for your
applicable platform to confirm that the Module is authentic and unmodified.

Linux Native HMAC-SHA-1 digests:

.ectrodata 570F319B4D3FB1F6909D5D7253A6C1C593528D83

.ecttext 1CF481B2777E51D393ABA767D245BA3A708A928B

32 FIPS 140-2 Security Policy for ISS High Assurance Embedded Crypto Toolkit (HA-ECT)

INTEGRITY OS HMAC-SHA-1 digests:

.ectrodata A9D10F48CFAA26A1FD8FD71EA2ECC25CABD03D72

.ecttext A4EB2799A3BE9A0C88929D0DFAF22B95476A9F49

A.2 Installing and Protecting the ISS HA-ECT FIPS Object Module

The Module should be installed within the operator’s configuration management system by the
Crypto officer such that it is protected from unauthorized modification. In particular, operators
using the object Module to build an application should only have read access to the object
Module.

A.3 Linking the Runtime Executable Application

Once the Crypto Officer has confirmed the digests match, ensuring the correct/valid crypto
library is being used, the library can be linked into the application by adding libect.o to each
corresponding program “.gpj” file. An include path pointing to the crypto toolkit “include”
directory should also be added to the program “.gpj” providing application access to crypto
routines.

After the user application has been compiled, and the Module has been linked with the
application, the ghash utility must be executed (prior to integration for INTEGRITY targets) to
compute and embed the application-specific HMAC-SHA-1 digests that protects the Module’s
integrity. The following command is used:

ghash <application_name>

The application is now considered Module-enabled.

The Crypto officer should install the Module-enabled application in a location protected by the
host operating system security features. These protections should allow write access only to
Crypto Officers and read access only to authorized users. Note that applications code interfacing
with the ISS HA-ECT FIPS Object Module are outside of the cryptographic boundary, although
the entire application must be write-protected since the Module is now linked with the
application.

Failure to embed the digest in the executable object will prevent initialization of FIPS mode. At
runtime, the ect_Set_FIPS_Mode() function compares the HMAC-SHA-1 digests from the
module’s binary with the digests generated from the Module-enabled application. These digests

Green Hills Software 33

are the final link in the chain of validation from the original Module binary to the runtime
executable application file.

A.4 FIPS Mode Initialization

Somewhere very early in the execution of the application, FIPS mode must be enabled. This
should be done by invocation of the ect_Set_FIPS_Mode() function call as in this example:

if (ect_Set_FIPS_Mode() != ECT_SUCCESS) ||

 (ect_Set_FIPS_Mode() != ECT_ERROR_IN_FIPS_MODE)

 fprintf(stderr,”***FIPS SELF TEST FAILURE***\n”);

else

 fprintf(stderr,"*** IN FIPS MODE ***\n");

Note that it is permitted to _not_ enable FIPS mode, in which case, the ISS HA-ECT FIPS
Object Module used in conjunction with the ISS HA-ECT API shall function in a non-FIPS 140-
2-validated mode.

