

NSS Freebl Cryptographic Module

Version 3.12.9.1

FIPS 140-2 Non-Proprietary Security Policy

Level 1 Validation

Red Hat, Inc.

Document Version 1.3

January25, 2012

2

Table of Contents

Introduction ... 3

Platform List ... 3

Security Rules ... 4

Authentication Policy .. 6

Specification of Roles ... 6

Multiple Concurrent Operators ... 7

Module Ports and Interfaces ... 7

Physical Cryptographic Boundary .. 7

Logical Cryptographic Boundary.. 8

Logical Interfaces .. 9

Access Control Policy ... 9

Security-Relevant Information .. 9

Self-Tests ... 9

Specification of Services ... 10

Sample Cryptographic Module Initialization Code .. 12

Acknowledgments ... 13

3

Introduction

A security policy includes the precise specification of the security rules under which the cryptographic

module must operate, including rules derived from the security requirements of the FIPS PUB 140-2

standard, and the additional security rules listed below. The rules of operation of the cryptographic

module that define within which role(s), and under what circumstances (when performing which

services), an operator is allowed to maintain or disclose each security relevant data item of the

cryptographic module.

There are three major reasons for developing and following a precise cryptographic module security

policy:

 To induce the cryptographic module vendor to think carefully and precisely about who they

want to access the cryptographic module, the way different system elements can be accessed,

and which system elements to protect.

 To provide a precise specification of the cryptographic security to allow individuals and

organizations (e.g., validators) to determine whether the cryptographic module, as implemented,

does obey (satisfy) a stated security policy.

 To describe to the cryptographic module user (organization, or individual operator) the

capabilities, protections, and access rights they will have when using the cryptographic module.

The NSS Freebl cryptographic module is an open-source, general-purpose cryptographic hash library. It

is available for free under the Mozilla Public License, the GNU General Public License, and the GNU

Lesser General Public License. The NSS Freebl cryptographic module is jointly developed by Red Hat

and Sun engineers and is used in the GNU glibc library.

The NSS Freebl cryptographic module has two modes of operation: the FIPS Approved mode and non-

FIPS Approved mode. By default, the module operates in the non-FIPS Approved mode. To operate the

module in the FIPS Approved mode, an application must adhere to the security rules in the Security

Rules section, initialize the module properly with the fips_enabled flag in the Linux kernel set to true.

In addition the operating system must be configured in a single operator mode of operation by

removing all other user accounts and turning off all remote login and access services.

This module is a multi-chip standalone module, and no components in the module are excluded from

FIPS 140-2 security requirements.

Platform List

FIPS 140-2 conformance testing of the NSS Freebl cryptographic module was performed on the

following platforms listed below.

 Security Level 1
 64-bit binary on Intel Core i7 running Red Hat Enterprise Linux v6.2

 32-bit binary on Intel Core i7 running Red Hat Enterprise Linux v6.2

The NSS Freebl cryptographic module supports many other platforms. If you would like to have the

module validated on other platforms, please contact us.

4

Security Rules

The following list specifies the security rules that the NSS Freebl cryptographic module and each

product using the module shall adhere to:

1. The NSS Freebl cryptographic module shall consist of a software library compiled for each

supported platform.

2. The cryptographic module shall rely on the underlying operating system to ensure the integrity

of the cryptographic module loaded into memory. A cryptographic module user shall have

access to all the services provided by the cryptographic module.

3. Message digesting services are public only since CSPs are not accessed.

4. In the FIPS Approved mode of operation, the cryptographic module shall enforce rules specific

to FIPS 140-2 requirements.

5. In the FIPS Approved mode of operation the cryptographic module shall not allow critical

errors to compromise security. Whenever a self-test failure is encountered, the cryptographic

module shall enter an error state and the library shall need to be unloaded from memory by

terminating the application and then reloaded into memory by restarting the application and

then reinitializing the module in FIPS-Approved mode by calling NSSLOW_Init.

6. Restarting the NSS Freebl cryptographic module by calling the functions NSSLOW_Shudown

and NSSLOW_Init shall execute the same power-up self-tests as also performed when

initializing the module library for the FIPS Approved mode. This allows a user to execute these

power-up self-tests on demand as defined in Section 4.9.1 of FIPS 140-2.

7. The FIPS 140-2 cipher suite shall consist solely of Secure Hash Standard (SHA-1, SHA-256,

SHA-384, and SHA-512) (FIPS 180-2) for hashing.

Algorithm validation certificates:

Algorithm Cert# Description

SHS 1675 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

DSA 602 DSA 1024 used internally for

integrity checking

The NSS Freebl cryptographic module implements the following non-Approved algorithms,

which an operator shall not use while operating the module in a FIPS compliant manner:

 MD2 or MD5 for hashing.

8. Once the FIPS Approved mode of operation has been selected, SHA-1, SHA-256, SHA-386,

5

and SHA-512 shall be the only algorithms used to perform one-way hashes of data.

9. The NSS Freebl cryptographic module consists of the following shared library and the

associated .chk file:

 Red Hat Enterprise Linux 6.2 x86, and Red Hat Enterprise Linux 6.2 x86_64

 libfreebl3.so

 libfreebl3.chk

The installation instructions to be followed by the Crypto-Officer are:

Obtain the validated version of the module (3.12.9.1 either from Red Hat in the form of a pre-

compiled executable distribution [rpm] or from Mozilla directly

[http://developr.mozilla.org/en/NSS_3.12.9_release_notes] and install the module.

For the operational environment used during validation testing (Red hat Linux 6.2), Red Hat

Makes a pre-compiled rpm package available (nss-softoken-freebl-3.12.9.-11.el6.rpm) and one can

install this package with the command “ rpm -U nss-softoken-freebl-3.12.9-11.el6.rpm” or even

“yum update nss-softoken-freebl” if the Red Hat Enterprise Server 6.2's yum repository is

connected to the Red Hat Network. After install the library, follow the steps below.

Step 1: Ensure that the shared library and the associated .chk are installed file in a directory on

the library search path, which could be a system library directory (/usr/lib on Unix/Linux) or a

directory specified in the following environment variable:

 Linux: LD_LIBRARY_PATH

An install using rpm automatically takes care of the proper location of the install files.

Step 2: Use the chmod utility to set the file mode bits of the shared library to 0755 so that all users

can execute the library files, but only the files' owner can modify (i.e., write, replace, and delete)

the files. For example, on most Unix and Linux platforms,

$ chmod 0755 libfreebl3.so

The discretionary access control protects the binaries stored on disk from being tampered with.

An install using rpm automatically takes care of the proper permissions of the library.

Step 3: Use the chmod utility to set the file mode bits of the associated .chk file to 0644. For

example, on most Unix and Linux platforms,

$ chmod 0644 libfreebl3.chk

An install using rpm automatically takes care of the proper permissions of the library.

Step 4: The kernel fips_enabled flag must be set to '1'. The NSS Freebl cryptographic module

detects this by reading /proc/sys/crypto/fips_enabled.

To set the kernel fips_enabled flag, perform the following:

1. Install the dracut-fips package:
 # yum install dracut-fips

2. Recreate the INITRAMFS image:

http://developr.mozilla.org/en/NSS_3.12.9_release_notes

6

 # dracut -f

3. After regenerating the initramfs, the crypto officer has to append the following string to the

kernel command line by changing the setting in the boot loader, which can be done by editing the

/etc/grub.conf file on Red Hat Enterprise Linux:
 fips=1

Additionally, if /boot or /boot/efi resides on a separate partition, the kernel parameter

boot=<partition of /boot or /boot/efi> must also be supplied along with the above

mentioned “fips=1” string. The partition can be identified with the command "df /boot" or "df

/boot/efi" respectively. For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the kernel command line

in the /etc/grub.conf file should be appended with the following string:

"fips =1 boot=/dev/sda1"

5. Once the bootloader is updated, it is necessary to run dracut -f again.

Reboot to apply these settings.

After following the above steps, the module has been successful initialized in the FIPS-Approved

mode and all of the module’s APIs can be accessed by the User role. In order to start using the

module in FIPS-mode, an application must call NSSLOW_Init and ensure that it returns a non-

NULL poiinter. A NULL pointer returned by this API indicates that the module has failed one or the

power-up self-tests and entered the error-state.

(End of Security Rules)

Authentication Policy

Specification of Roles

The NSS Freebl cryptographic module supports two authorized roles for operators.

 The NSS User role provides access to all module services specified in the 'Specfication of

Services' table on page 11.

 The Crypto Officer role is supported for installing, uninstalling, and controlling access to the

module. The Crypto Officer must control the access to the module both before and after

installation. Control consists of management of physical access to the computer executing the

NSS Freebl cryptographic module code as well as management of the security facilities

provided by the operating system.

7

The NSS Freebl cryptographic module does not have a maintenance role. The roles are implicitly-

assumed depending on the module service being executed, as the module does not implement any

operator authentication.

Multiple Concurrent Operators

The NSS Freebl cryptographic module doesn't allow concurrent operators.

 The operating system has been restricted to a single operator mode of operation, so concurrent

operators are explicitly excluded (FIPS 140-2 Section 4.6.1).

Module Ports and Interfaces

Physical Cryptographic Boundary

8

Logical Cryptographic Boundary

9

Logical Interfaces

The module’s interfaces consist of only the APIs declared in the NSSLOW / NSSLOWHASH interface

(i.e. nsslowhash.h). The following four logical interfaces have been designed within the NSS Freebl

cryptographic module.

1. Data input interface: function input arguments that specify plaintext data; and hash data that are

to be input to and processed by the NSS Freebl cryptographic module.

2. Data output interface: function output arguments that receive plaintext data; and hash data from

the NSS Freebl cryptographic module.

3. Control input interface: function calls, or input arguments that specify commands and control

data (e.g., algorithms, algorithm modes, or module settings) used to control the operation of the NSS

Freebl cryptographic module

4. Status output interface: function return codes, error codes, or output arguments that receive

status information used to indicate the status of the NSS Freebl cryptographic module

The NSS Freebl cryptographic module uses different function arguments for input and output to

distinguish between data and control for input and data and status for output, and to disconnect the

logical paths followed by data/control entering the module and data/status exiting the module. The NSS

Freebl cryptographic module doesn't use the same buffer for input and output. After the NSS Freebl

cryptographic module is done with an input buffer that holds security-related information, it always

zeroizes the buffer so that if the memory is later reused as an output buffer, no sensitive information

may be inadvertently leaked.

Access Control Policy

This section identifies the cryptographic keys and CSPs that the user has access to while performing a

service, and the type of access the user has to the CSPs. The NSS Freebl cryptographic module

contains only one CSP, which is the DSA public key. This is the 1024-bit integrity verification key that

the module uses to verify its integrity only during the power-up self-tests. None of the module’s

services allow access to this CSP to any operator.

Security-Relevant Information

Self-Tests

While in FIPS-Approved mode, the module’s initialization API : NSSLOW_Init causes the execution

of the module’s power-up self-tests. Upon successfully completing the power-up self-tests,

NSSLOW_Init returns a non-NULL init context required by NSSLOW_Shutdown and

NSSLOWHASH_NewContext.

Upon initialization of the cryptographic module library for the FIPS Approved mode of operation, the

following power-up self-tests are performed by the module:

a) SHA-1 hash KAT,

b) SHA-256 hash KAT,

10

c) SHA-384 hash KAT,

d) SHA-512 hash KAT,

e) DSA signature verification integrity check

Restarting the NSS Freebl cryptographic module with the NSSLOW_Shutdown and NSSLOW_Init

functions will cause the module to execute its power-up self-tests. This allows a user to execute these

power-up self-tests on demand as defined in Section 4.9.1 of FIPS 140-2.

On success NSSLOW_Init will return an init context required by NSSLOW_Shutdown and

NSSLOWHASH_NewContext. On failure NSSLOW_Init will return NULL.

 In the FIPS Approved mode of operation the cryptographic, the module does not allow critical errors to

compromise security. Whenever a critical error (e.g., a self-test failure) is encountered, the

cryptographic module returns a NULL pointer in response to the intialization API (NSSLOW_Init)

and prohibits all cryptographic services. Any subsequent attempt to create a new SHA context using

NSSLOWHASH_NewContext while in the error state will fail and the module will return NULL.

In order to recover from an error state caused by a self-test failure condition, the module needs to be

unloaded from the memory by terminating the application and then reloaded into memory by restarting

the application, which should again initialize the module using NSSLOW_Init. This procedure will

cause the module to be reinitialized in the FIPS-Approved mode and repeat all its power-up self-tests.

To ensure that the module is operating in the FIPS-Approved mode, it should be verified that

/proc/sys/crypto/fips_enabled contains the value “1”. If not, please follow the instructions in the

Security Rules to appropriately initialize the module in the FIPS-Approved mode.

Specification of Services

Cryptographic module consists solely of public services which require no user authentication.

11

Service
Category

Role Function Name Description Cryptographic

Keys and CSPs

Accessed

Access

type,

RWZ

General
purpose

User NSSLOW_Init Initializes the module
library, checks for the
FIPS Approved mode
of operation. This
function provides the
power-up self-test
service and the Show
Status service.

Integrity
Verification
DSA public key

R

User NSSLOW_Shutdown finalizes (shuts down)
the module library

none -

Message
digesting

User NSSLOWHASH_NewCo
ntext

Create a hashing
context to be used by
NSSLOWHASH_Begi
n,
NSSLOWHASH_Upd
ate,

NSSLOWHASH_End,
NSSLOWHASH_Dest
roy, and
NSSLOWHASH_Len
gth

none

User NSSLOWHASH_Begin initializes a message-
digesting operation

none -

User NSSLOWHASH_Update continues a multiple-
part digesting
operation

none -

User NSSLOWHASH_End finishes a multiple-
part digesting
operation and return
result

none -

User NSSLOWHASH_Destroy Frees a hashing
context created byt
NSSLOWHASH_New
Context

none -

User NSSLOWHASH_Length Returns the length of
the selected hash

none -

12

Sample Cryptographic Module Initialization Code

#include <stdio.h>

#include <nspr4/prtypes.h>

#include <nss3/hasht.h>

#include "nsslowhash.h"

 /* SHA-256 Known Digest Message (256-bits). */

 static const unsigned char sha256_known_digest[] = {

 0x38,0xa9,0xc1,0xf0,0x35,0xf6,0x5d,0x61,

 0x11,0xd4,0x0b,0xdc,0xce,0x35,0x14,0x8d,

 0xf2,0xdd,0xaf,0xaf,0xcf,0xb7,0x87,0xe9,

 0x96,0xa5,0xd2,0x83,0x62,0x46,0x56,0x79};

/* Known Hash Message (512-bits). Used for all hashes (incl. SHA-N [N>1]). */

static const unsigned char known_hash_message[] = {

 "The test message for the MD2, MD5, and SHA-1 hashing algorithms." };

main(int argc, char **argv)

{

 NSSLOWInitContext *initCtx;

 NSSLOWHASHContext *ctx;

 unsigned char results_buf[64];

 int len;

 initCtx = NSSLOW_Init();

 if (initCtx == NULL) {

 printf("Couldn't init hash\n");

 return 1;

 }

 ctx = NSSLOWHASH_NewContext(initCtx, HASH_AlgSHA256);

 if (ctx == NULL) {

 printf("Couldn't get hash context\n");

 return 1;

 }

 NSSLOWHASH_Begin(ctx);

 NSSLOWHASH_Update(ctx, known_hash_message, 64);

 NSSLOWHASH_End(ctx, results_buf, &len, sizeof(results_buf));

 NSSLOWHASH_Destroy(ctx);

 NSSLOW_Shutdown(initCtx);

 if (len != sizeof(sha256_known_digest)) {

 printf("Hash result lengths do not match (%d != %d)\n",

 len, sizeof(sha256_known_digest));

 return 2;

 }

 if (memcmp(sha256_known_digest, results_buf, len) != 0) {

 printf("Hash result not match\n");

 return 3;

 }

 printf(" hash completed and OK \n");

 return 0;

}

13

Acknowledgments

Matthew Harmsen, John Hines, Ian McGreer, and Bishakha Banerjee, Wan-Teh Chang, Glen Beasley

and Neil Williams wrote previous versions of this document. Julien Pierre and Steve Parkinson's review

comments improved the presentation and accuracy of the information. Elio Maldonado updated this

version. The current version was written by Robert Relyea.

