iPASOLINK MODEM AES Card Security Policy

FIPS Security Level: 1 Document Number: NWD-131165-001 Document Version: 01.01 Revision Date: Mar. 13, 2012

http://www.nec.com

Table of Contents

1	INT	RODUCTION	. 3
	1.1	PURPOSE	. 3
	1.2	REFERENCES	. 3
	1.3	DOCUMENT ORGANIZATION	. 3
2	iPA	SOLINK MODEM AES Card SECURITY POLICY	. 4
	2.1	MODULE OVERVIEW	. 4
	2.2	MODULE SPECIFICATION	. 6
	2.3	PORTS AND INTERFACES	. 8
	2.3	.1 PHYSICAL PORTS	. 8
	2.3	.2 LOGICAL INTERFACES	. 9
	2.4	SECURITY LEVELS	10
	2.5	APPROVED MODE OF OPERATION	11
	2.5	.1 APPROVED SECURITY FUNCTION	11
	2.5	.2 NON-APPROVED SECURITY FUNCTION	11
	2.6	OPERATORS AND ROLES	11
	2.7	SELF TESTS	12
	2.7	.1 POWER-UP SELF-TESTS	12
	2.8	SERVICES	13
	2.8	.1 SETTING OF KEYS AND CSPs	14
	2.9	KEYS AND CRITICAL SECURITY PARAMETERS	15
	2.9	.1 DEFINED KEYS AND CSPs	15
	2.9	.2 KEY AND CSP ACCESS	16
	2.10	ZEROIZATION	17
	2.11	PHYSICAL SECURITY AND MITIGATION OF OTHER ATTACKS	17
3	USE	ER GUIDANCE	18
	3.1	PORTS, INTERFACES AND SERVICES	18
	3.2	USER RESPONSIBILITIES	18
4	CR۱	PTO OFFICER (CO) GUIDANCE	18
	4.1	PORTS, INTERFACES AND SERVICES	18
	4.2	MODULE INSTALLATION AND STARTUP	18
	4.3	MODULE INITIALIZATION	18
5	Rev	rision History	19

1 INTRODUCTION

1.1 PURPOSE

This is a non-proprietary Cryptographic Module Security Policy for the iPASOLINK MODEM AES Card (MODEM Card) from NEC Corporation. This Security Policy describes how the MODEM Card meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module.

The following is a target cryptographic module.

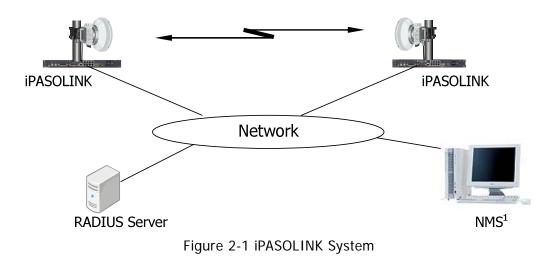
Module Name: iPASOLINK MODEM AES Card Version Number of the Module: NWA-055300-004, 5.00 Firmware Code of the Module: NWA-055300-004 Hardware Code of the Module: 5.00

1.2 REFERENCES

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. For more information, please contact NEC Corporation.

1.3 DOCUMENT ORGANIZATION

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:


- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

2 iPASOLINK MODEM AES Card SECURITY POLICY

2.1 MODULE OVERVIEW

iPASOLINK is NEC's most advanced and comprehensive optical and radio converged transport product family, providing solution for backhaul optimisation and transformation to help you achieve your business objectives such as cost efficient integration of both TDM and carrier-class Ethernet network and versatile and smooth migration from TDM to IP next generation network.

The traffic interface of iPASOLINK is a basic Drop and Insert interface card and has four (4) front access universal card slots which are connected to TDM cross connect interfaces and packet switch interfaces with interface buses. These card slots are provided for radio interface (MODEM Card) and additional interface to satisfy various D/I or interface and topology requirements.

¹NMS - Network Management System

iPASOLINK can provide the functionality of AES³ cipher transceiver of radio data as security function. The standard composition of iPASOLINK for the security function consists of MODEM Card, iPASOLINK Main Card (Main Card), Antenna and ODU.

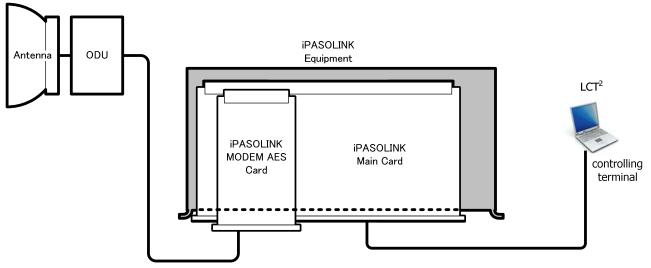


Figure 2-2 IPASOLINK Standard composition

User data is forwarded to MODEM Card through Main Card. MODEM Card processes encryption of user data and modulation of transmission signal. Encrypted data is transmitted through ODU⁴/Antenna.

To the contrary, the cipher data that ODU/Antenna received is forwarded to MODEM Card. MODEM Card processes decryption of cipher data and demodulation of transmission signal. Decrypted data is processed in Main Card as user data.

iPASOLINK Main Card is connected with LCT². An operator can control the functionality of AES cipher transceiver to MODEM Card using LCT.

A key for AES cipher is generated in Main Card. Key exchange control is implemented in the Main card. Therefore a MODEM Card doesn't generate a key.

²LCT - Local Craft Terminal

³AES - Advanced Encryption Standard

⁴ODU - Out Door Units

2.2 MODULE SPECIFICATION

The MODEM Card is a hardware module with a multi-chip embedded embodiment. The overall security level of the module is 1. The cryptographic boundary of the MODEM Card is defined by all the hardware components which are mounted on printed circuit board, including Front cover and printed circuit board. The top and front of the MODEM Card images are shown in Figure 2-3 and Figure 2-4 below.

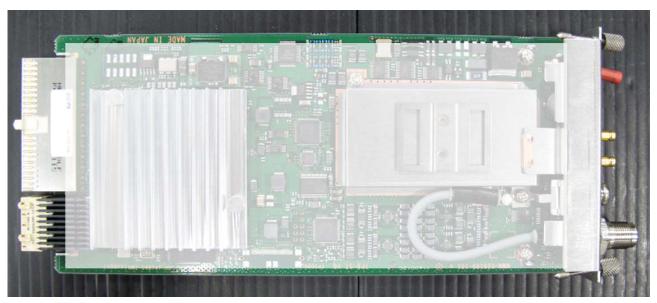


Figure 2-3 iPASOLINK MODEM AES Card Top View

Figure 2-4 iPASOLINK MODEM AES Card Front View

The Cryptographic Module consists of FPGA, Analog components, LEDs, Power control components and other components. The FPGA implements AES encryption / decryption functions, Modulator / Demodulator functions, and Control Interface. The Analog components implements Analog / digital conversion functions and Intermediate Frequency Processing.

A block diagram of The Cryptographic Module and cryptographic boundary is shown in Figure 2-5.

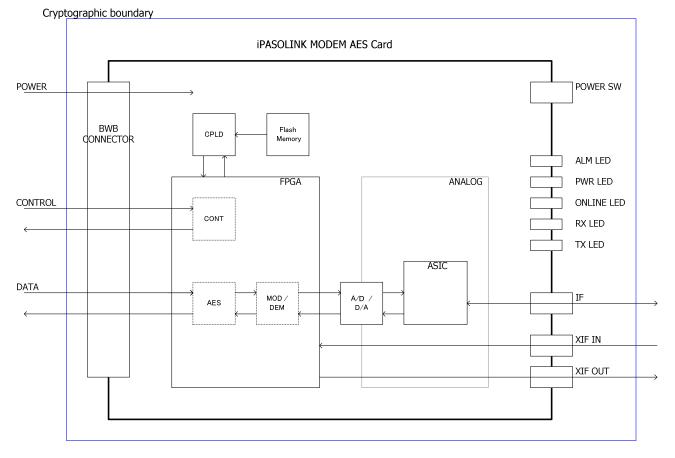


Figure 2-5 iPASOLINK MODEM AES Card Cryptographic boundary

2.3 PORTS AND INTERFACES

2.3.1 PHYSICAL PORTS

The MODEM Card FIPS140-2 Cryptographic Module implements the following physical ports:

FIPS 140-2 Physical Ports	Description			
IF ⁵ Interface Port	transmit and receive IF signal from ODU			
Power Switch	The Power switch turns the module and ODU on or off			
XIF ⁶ Input port	IF signal input port for XPIC ⁸			
XIF ⁶ Output port	IF signal output port for XPIC			
BWB ⁷ Interface Port	BWB Interface Port consists of a bidirectional data interface,			
	control data inputs, status data outputs, power input.			
ALM LED ⁹	LED provide alarm status indications for the module			
PWR LED ¹⁰	LED provide power status indications for the module			
ONLINE LED	LED provide online status indications for the module			
RX LED ¹¹	LED provide receiving parts status indications for the module			
TX LED ¹²	LED provide transmitting parts status indications for the module			

Table 2-1	FIPS	140-2	Physical	Ports
	1110	110 2	i iiysioui	1 01 13

⁵IF Interface - Intermediate Frequency Interface

⁶XIF - XPIC Interface

⁷BWB - Back Wiring Board

⁸XPIC - Cross Polarization Interference Canceller

⁹ALM LED -Alarm Light Emitting Diode

¹⁰PWR LED -Power Light Emitting Diode

¹¹RX LED - Receiver Light Emitting Diode

¹²TX LED - Transmitter Light Emitting Diode

2.3.2 LOGICAL INTERFACES

The physical ports can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

The MODEM Card FIPS140-2 Cryptographic Module implements the following logical interfaces, which map to the physical ports as indicated:

FIPS 140-2 Logical Interface	Description		
Data Input Interface	IF Interface port, XIF Input port, BWB Interface port		
Data Output Interface	IF Interface port, XIF Output port, BWB Interface port		
Control Input Interface	IF Interface port, XIF Input port, BWB Interface port,		
Control Input Interface	Power Switch		
Status Output Interface	IF Interface port, XIF Output port, BWB Interface port,		
Status Output Interface	ALM LED, PWR LED, ONLINE LED, RXLED, TXLED		
Power Interface	IF Interface port, BWB Interface port		

Table 2-2 FIPS 140-2 Logical Interface Mappings

2.4 SECURITY LEVELS

The MODEM Card FIPS140-2 Cryptographic Module meets the following security levels, as defined in FIPS140-2:

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment	N/A
7	Cryptographic Key Management	1
8	EMI/EMC ¹²	1
9	Self-tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A

Table 2-3 Security Level per FIPS 140-2 Section

¹³EMI/EMC - Electromagnetic Interference / Electromagnetic Compatibility

2.5 APPROVED MODE OF OPERATION

The mode using the AES-CTR¹³ algorithm (AES-CTR algorithm is an approved security function by FIPS140-2) is FIPS approved mode.

The following manually-operated steps before the start FIPS approved mode.

The modem settings are made automatically by power supply on.

- 1) Turn on the iPASOLINK equipment.
- 2) Turn on the MODEM Card.
- 3) Operate AES Encryption processing using LCT.

In addition the MODEM Card FIPS140-2 Cryptographic Module does not implement bypass mode.

2.5.1 APPROVED SECURITY FUNCTION

The following approved security function is used in FIPS approved mode:

Table 2-4 FIPS 140-2 Approved Security Function

Security Function	Purpose	Validation Certificate	
AES CTR	Encrypt or Decrypt the radio transmission	Advanced Encryption Standard	
	signal	Algorithm Validation No.1834	

2.5.2 NON-APPROVED SECURITY FUNCTION

The MODEM Card FIPS140-2 Cryptographic Module does not implement the non-approved security function.

2.6 **OPERATORS AND ROLES**

The MODEM Card FIPS140-2 Cryptographic Module meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing both a Crypto Officer role and a User role. As the MODEM Card is a level 1 module, role-based authentication is not supported. An operator implicitly assumes the role of either Crypto Officer or User by selecting a service associated with that role. No authentication is performed. Additionally, the module does not support a Maintenance role or any other role.

¹⁴AES-CTR - Advanced Encryption Standard Counter Mode

2.7 SELF TESTS

The MODEM Card FIPS140-2 Cryptographic Module performs power-up self-tests. In the case of any self-test failure the module enters a critical error state and issues a critical error indication on the LCT and ALM LED. In the critical error state, the module can not invoke any cryptographic functions and must be ejected from the iPASOLINK equipment. (The MODEM card is turned off by ejecting.) The MODEM card must be repaired as broken module.

2.7.1 **POWER-UP SELF-TESTS**

Power-up self-tests are performed automatically under the following conditions:

- When turn on the MODEM Card using power switch.
- When reset operation to the MODEM Card.

The Power-up self tests consist of the following tests:

- Cryptographic algorithm tests using known answer tests of AES CTR Encrypt
- · Firmware integrity tests of FPGA configuration data

2.8 SERVICES

A relation about services to each role in this module is indicated in Table 2-5. Setting method of keys and CSPs is indicated in 2.8.1

Role	Services	Description	Security
Crypto Officer	Set AES Encrypt /	Setting the start-up and shutdown AES encryption	0
(CO)	Decrypt start-up	Setting the start-up and shutdown AES decryption	
		The start-up or shutdown trigger FIPS approved	
		mode of operation.	
	Set common key	Setting a common key for AES-CTR Encryption	0
		Setting a common key for AES-CTR Decryption	
	Set pre-shared key	Setting a pre-shared key for AES-CTR Encryption	0
		Setting a pre-shared key for AES-CTR Decryption	
	Set AES-CTR Default Counter ¹⁶ Value	Setting the Default Counter Value for AES-CTR	0
		Encryption Setting the Default Counter Value for AES-CTR	
		Decryption	
	On-demand self-test	Operate the self-test.	0
		Operating conditions are as follows:	
		Reset operation to the MODEM Card	
		Turn-on after turn-off MODEM Card	
	Zeroize CSP	Operate the zeroize CSP	0
		Operating conditions are as follows:	
		Reset operation to the MODEM Card	
User	AES-CTR Encryption	AES CTR Encrypt user data.	0
		Radio transmits the encrypted data.	
	AES-CTR Decryption	AES CTR Decrypt user data.	0
		Decrypt encrypted radio transmissions data.	
	Security status	Notify iPASOLINK Main Card of information related	0
	output	to State of the cryptographic module security.	
		Indicate the State of the cryptographic module	

Role	Services	Description	Security
		security to ALM LED.	
	Power supply	Supply power through iPASOLINK PS ¹⁶ Card to MODEM Card and ODU. Implement DC-DC converter ¹⁵ .	0

2.8.1 SETTING OF KEYS AND CSPs

All keys and CSPs (common keys, pre-shared keys and AES-CTR Default Counter Value) shown in Table 2-6 in Section 2.9.1, are generated by the Main Card which is the external device for the MODEM Card, illustrated in Figure 2-2.

When Crypto Officer executes AES Encryption function using LCT connected with iPASOLINK equipment as shown in Figure 2-2, all keys and CSPs are input to the MODEM Card in plain text through the Main Card.

All keys and CSPs are written in a volatile memory inside the MODEM Card, and used for AES cipher transceiver.

¹⁵DC-DC converter – direct current to direct current converter

¹⁶AES-CTR Default Counter - Default counter value for Advanced Encryption Standard Counter Mode

2.9 KEYS AND CRITICAL SECURITY PARAMETERS

2.9.1 DEFINED KEYS AND CSPs

The MODEM Card FIPS140-2 Cryptographic Module supports the following Keys and Critical Security Parameters (CSPs).

The MODEM Card can register each 2 kinds of key for encryption and decryption. Common key is used to cryptographic communication. Pre-shared key is used to the first key exchange.

CSP	Purpose	Input	Output	Storage	Zeroization
AES-CTR	A common key used to	Externally	N/A	Volatile	Resetting
Encrypt Key	encrypt the radio	generated		memory	MODEM
(Common Key)	transmission signal.	and input		within the	Card
				FPGA	
AES-CTR	A common key used to	Externally	N/A	Volatile	Resetting
Decrypt Key	decrypt the radio	generated		memory	MODEM
(Common Key)	transmission signal.	and input		within the	Card
				FPGA	
AES-CTR	A pre-shared key used to	Externally	N/A	Volatile	Resetting
Encrypt Key	Encrypt the radio	generated		memory	MODEM
(Pre-Shared Key)	transmission for pre-shared	and input		within the	Card
	key-exchange.			FPGA	
AES-CTR	A pre-shared key used to	Externally	N/A	Volatile	Resetting
Decrypt Key	Decrypt the radio	generated		memory	MODEM
(Pre-Shared Key)	transmission for pre-shared	and input		within the	Card
	key-exchange.			FPGA	
AES-CTR Default	AES-CTR key counter Default	Externally	N/A	Volatile	Resetting
Counter Value	Value used to AES-CTR	generated		memory	MODEM
(Including Nonce	Encryption and Decryption.	and input		within the	Card
and Initialization				FPGA	
Vector)					

Table 2-6 Keys used by iPASOLINK MODEM AES Card

2.9.2 KEY AND CSP ACCESS

The following tables define how services access Keys and CSPs. The following terminology is used:

- R : Read, the module uses the Key / CSP without modifying it.
- W : Write, the module modifies or deletes the Key / CSP.

Services	AES ENC Key ¹⁷ (common key)	AES ENC Key (Pre-Shared Key)	AES DEC Key ¹⁸ (common key)	AES DEC Key (Pre-Shared Key)	AES-CTR Default Counter
Set AES Encrypt / Decrypt	W	W	W	W	W
start-up					
Set common key	W	-	W	-	-
Set pre-shared key	-	W	-	W	-
Set AES-CTR Default Counter	-	-	-	-	W
Value					
On-demand self-test	-	-	-	-	R
Zeroize CSP	W	W	W	W	W

Table 2-7 Key and CSP Access (CO)

Table 2-8 Key and CSP Access (User)

Services	AES ENC Key (common key)	AES ENC Key (Pre-Shared Key)	AES DEC Key (common key)	AES DEC Key (Pre-Shared Key)	AES-CTR Default Counter
AES-CTR Encryption	R	R	-	-	R
AES-CTR Decryption	-	-	R	R	R
Security status output	-	-	-	-	-
Power supply	-	-	-	-	-

*Extracted the Security-related items Section2.8.

¹⁷AES ENC Key - Encryption Key for Advanced Encryption Standard Encryption Key

¹⁸AES DEC Key - Decryption Key for Advanced Decryption Standard Encryption Key

2.10 ZEROIZATION

All CSPs are themselves stored in internal volatile memory of the FPGA. All CSPs are zeroized by resetting MODEM Card. Please refer to section-2.9.1 type of CSPs.

In addition, CSPs are stored in volatile memory. Therefore, All CSPs cleared by turn-off MODEM Card though it is not a Zeroization.

2.11 PHYSICAL SECURITY AND MITIGATION OF OTHER ATTACKS

The MODEM Card FIPS140-2 Cryptographic Module is a multi-chip Embedded Cryptographic Module which utilizes production-grade components with standard passivation techniques. Because all CSPs cleared when turned off MODEM Card, the MODEM Card will not be intercepted the CSPs information by contacting the physical terminal. Because of MODEM Card is inserted into chassis of iPASOLINK equipment when turned on, the MODEM Card will not be intercepted the CSPs information by contacting the physical terminal. The module is not designed to mitigate any other specific attacks.

3 USER GUIDANCE

3.1 PORTS, INTERFACES AND SERVICES

The MODEM Card FIPS140-2 Cryptographic Module makes available to the User:

- Physical Ports as described in section-2.3.1
- Logical Interfaces as described in section -2.3.2
- · Services associated with the User role as described in section -2.8

3.2 USER RESPONSIBILITIES

To ensure the module operate in the approved FIPS mode of operation the User must only invoke Services using the approved algorithms listed in section-2.5.

4 CRYPTO OFFICER (CO) GUIDANCE

4.1 PORTS, INTERFACES AND SERVICES

The MODEM Card FIPS140-2 Cryptographic Module makes available to the CO:

- Physical Ports as described in section-2.3.1
- Logical Interfaces as described in section-2.3.2
- services associated with the CO role as described in section-2.8
- security parameters described in section-2.9.1

4.2 MODULE INSTALLATION AND STARTUP

To ensure the module operates in the approved FIPS mode of operation the User must only invoke Host Services using the approved algorithms listed in section-2.5.

An operator has to install the MODEM Card into the iPASOLINK equipment to initiate module startup. Therefore, operator must check the appropriate guidelines for ESD.

Any operator actions required by the iPASOLINK equipment to initiate module startup are beyond the scope of this document.

4.3 MODULE INITIALIZATION

The MODEM Card is initialized with the following method.

- Resetting the MODEM Card
- Ejecting the MODEM Card from the iPASOLINK equipment
- Switching off the MODEM Card

5 Revision History

Date	Revision	Description
Nov. 11, 2011	01.00	Initial release.
Mar. 2, 2012	01.01	Added the name and the hardware version of the target module to section 1.1. Added "Setting of Keys and CSPs" to section 2.8.1.

Empowered by Innovation

