Comtech EF Data Corporation

SLM-5650A TRANSEC Module

Hardware Version: 1.2; Firmware Version: 1.2.0

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: 2 Document Version: 1.0

Prepared for:

Comtech EF Data Corporation

2114 West 7th Street Tempe, Arizona 85281 United States of America

Phone: +1 (480) 333-2200

http://www.comtechefdata.com

Prepared by:

Corsec Security, Inc.
10340 Democracy Lane, Suite 201

Fairfax, Virginia 22030 United States of America

Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>

Table of Contents

ı	INT	RODUCTION						
	1.1	PURPOSE						
	1.2	REFERENCES						
	1.3	DOCUMENT ORGANIZATION	2					
2	SLM	-5650A TRANSEC MODULE						
	2.1	Overview						
	2.2	MODULE SPECIFICATION						
	2.3	MODULE INTERFACES						
	2.4	ROLES AND SERVICES						
		2.4.1 Crypto Officer Role						
		2.4.2 User Role						
		2.4.3 Unauthenticated Operator Role						
	2 5	2.4.4 Authentication Mechanism						
	2.5 2.6	PHYSICAL SECURITY						
	2.6 2.7	OPERATIONAL ENVIRONMENT CRYPTOGRAPHIC KEY MANAGEMENT						
	2.7	2.7.1 Key Generation						
		2.7.2 Key Entry and Output						
		2.7.2 Key Entry and Output						
	2.8	EMI/EMC						
	2.9	SELF -TESTS						
3	2.10	Design Assurance						
	2.11	MITIGATION OF OTHER ATTACKS						
_	656							
3		URE OPERATION						
	3.1	CRYPTO OFFICER GUIDANCE						
		3.1.2 Management						
		3.1.3 Delivery						
		3.1.4 Maintenance of the Physical Security						
	3.2	User Guidance						
4	ACR	ONYMS	21					
<u>T</u> a	able	of Figures						
		- TYPICAL DEPLOYMENT OF SATELLITE MODEMS						
		- SLM-5650A TRANSEC MODULE (TOP)						
		- SLM-5650A TRANSEC MODULE (BOTTOM)						
		- SLM-5650A TRANSEC MODULE BLOCK DIAGRAM						
		-TAMPER-EVIDENT LABEL PLACEMENT (LEFT SIDE VIEW)						
FIG	JRE 6 –	- TAMPER-EVIDENT LABEL PLACEMENT (RIGHT SIDE VIEW)	20					
<u>Li</u>	st o	f Tables						
Тар	SLE I —	Security Level Per FIPS 140-2 Section	6					
		FIPS 140-2 LOGICAL INTERFACES						
		Mapping of Crypto Officer Role's Services to CSPs and Type of Access						
		Mapping of User Role's Services to CSPs and Type of Access						
		Mapping of Unauthenticated Operator Role Services to CSPs and Type of Access						

May 9, 2011 Security Policy, Version 1.0

TABLE 6 – AUTHENTICATION MECHANISM EMPLOYED BY THE MODULE	П
TABLE 7 – FIPS-APPROVED ALGORITHM IMPLEMENTATIONS	12
TABLE 8 – LIST OF CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS	14
TABLE 9 – ACRONYMS	21

Introduction

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Comtech EF Data Corporation's SLM-5650A TRANSEC Module (Hardware Version: 1.2; Firmware Version: 1.2.0). This Security Policy describes how the SLM-5650A TRANSEC Module meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 – *Security Requirements for Cryptographic Modules*) details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the Cryptographic Module Validation Program (CMVP) website, which is maintained by National Institute of Standards and Technology (NIST) and Communication Security Establishment Canada (CSEC): http://csrc.nist.gov/groups/STM/index.html.

The SLM-5650A TRANSEC Module is referred to in this document as the cryptographic module or the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Comtech EF Data website (http://www.comtechefdata.com/) contains information on the full line of products from Comtech EF Data.
- The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact information for answers to technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Submission Summary
- Finite State Model
- · Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Comtech EF Data. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Comtech EF Data and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Comtech EF Data.

SLM-5650A TRANSEC Module

2. I Overview

Comtech EF Data Corporation designs, develops, and markets satellite communication products for commercial and government customers internationally. The company's product lines include satellite modems, modem accessories, performance enhancement proxies, satellite network gateways, bandwidth and capacity management products, encapsulators and receivers, converters, transceivers, amplifiers, terminals, block up converters, high-speed trunking modems, and legacy products. Its products are deployed in various applications by satellite operators, cellular service providers, broadcast and satellite news gathering organizations, government agencies, educational institutions, offshore oil and gas companies, and maritime enterprises. Comtech EF Data Corporation is based in Tempe, Arizona and operates as a subsidiary of Comtech Telecommunications Corp. Comtech's satellite modem solution, called the SLM-5650, is an IP¹ satellite modem designed to provide efficient and reliable data transmission over complex satellite connections. Figure 1 below shows a satellite modem sending and receiving traffic in a typical deployment. A typical deployment requires a satellite modem to be at both the transmitting and receiving ends of the communication to perform the encryption and decryption, respectively.

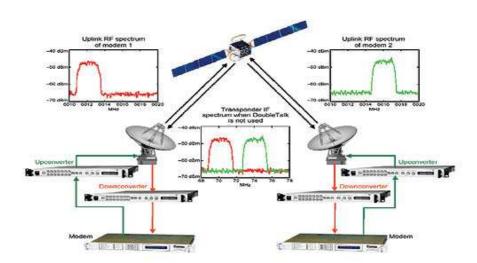


Figure I - Typical Deployment of Satellite Modems

The SLM-5650 satellite modem includes a a single FIPS card called the SLM-5650A TRANSEC Module that will perform bulk encryption of all packets for transmission over the satellite regardless of the protocol, the format of data, or existing encryption on the incoming data. The SLM-5650A TRANSEC Module uses 256-bit AES² in CBC³ mode for bulk encryption of all data requiring encryption. The module is managed using an HTTPS⁴ over TLS⁵ interface to provide a graphical user interface (GUI) for management (referred as Management & Control Console), and a command line management interface over SSH⁶.

¹ Internet Protocol

² AES – Advanced Encryption Standard

³ CBC – Cipher Block Chaining

⁴ HTTPS – Secure Hypertext Transfer Protocol

⁵ TLS – Transport Layer Security

⁶ SSH – Secure Shell

The SLM-5650A TRANSEC Module is validated at the following FIPS 140-2 Section levels:

Table I - Security Level Per FIPS 140-2 Section

Section	Section Title	Level
I	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	2
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Cryptographic Key Management	2
8	EMI/EMC ⁷	2
9	Self-tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A

2.2 Module Specification

The SLM-5650A TRANSEC Module is a hardware module with a multi-chip embedded embodiment that meets overall level 2 FIPS 140-2 requirements. Figure 2 and Figure 3 below show the top and bottom side of the multi-chip embedded cryptographic module respectively. Figure 4 below shows the block diagram of the hardware module; the blue dotted line surrounding the module components represents the cryptographic boundary.

Comtech EF Data SLM-5650A TRANSEC Module

Page **6** of 23

⁷ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

Figure 2 - SLM-5650A TRANSEC Module (Top)

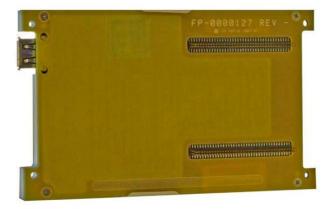


Figure 3 - SLM-5650A TRANSEC Module (Bottom)

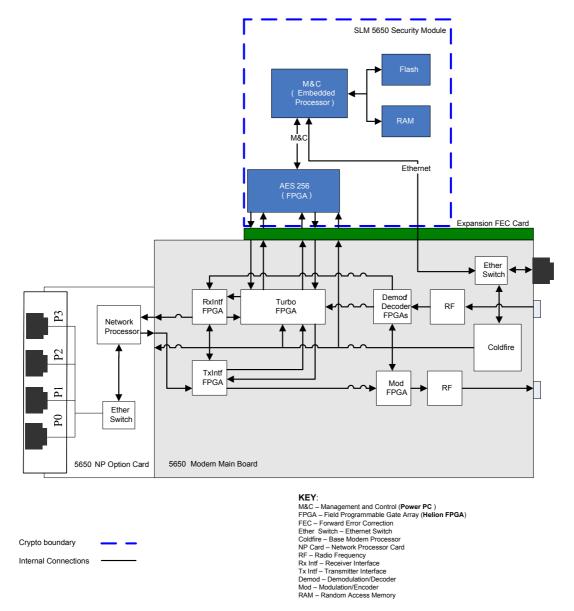


Figure 4 - SLM-5650A TRANSEC Module Block Diagram

2.3 Module Interfaces

The SLM-5650A TRANSEC Module is a multi-chip embedded cryptographic module that meets overall level 2 FIPS 140-2 requirements. Interfaces on the module can be categorized into the following FIPS 140-2 logical interfaces:

- Data Input Interface
- Data Output Interface
- Control Input interface
- Status Output Interface
- Power Interface

The module features the physical interfaces of the system depicted in Figure 4. The following is a list of the physical interfaces available for the module in the FIPS mode of operation:

- System Clock Interface
- Receiver(Rx) FPGA Interface
- Transmitter(Tx) FPGA Interface
- Encoder/Modulator Interface
- Decoder/Demodulator Interface
- Ethernet Interface
- Mailbox Interface
- Power Interface

All of these physical interfaces are separated into logical interfaces defined by FIPS 140-2, as described in the following table:

Table 2 - FIPS 140-2 Logical Interfaces

2.4 Roles and Services

Power Input

The module supports the following authorized roles: the Crypto-Officer (CO) role and the User role. The CO role is responsible for the management of the module. The User role performs the actual data protection services of encryption and decryption.

Power Interface

In addition to the authenticated roles, the module also supports an unauthenticated user role called: Unauthenticated User Role.

2.4.1 Crypto Officer Role

The CO role performs services such as initialization and installation, configuration, management, monitoring, zeroization and upgrading the cryptographic module. Descriptions of the services available to the Crypto Officer role are provided in the Table 3 below.

Table 3 - Mapping of Crypto Officer Role's Services to CSPs and Type of Access

Service	Description	CSP and Type of Access		
Initialize and install	Initialize and install the FIPS SLM-5650A TRANSEC Module	None		

Service	Description	CSP and Type of Access
Configure the FIPS SLM- 5650A TRANSEC Module	Allows the operator to configure the password, TRANSEC key and passphrase	Seed (passphrase), Seed Key (TRANSEC key), Password - Read, Write, Execute
Configure Network Parameters	Allows the operator to configure network parameters of the module	None
Configure Operator Credential Parameters	Allows the operator to configure operator credential parameters of the module	Password - Read, Write, Execute
Access the module via GUI	Access the module using TLS protocol	Authentication keys, TLS Session authentication key, TLS Session key, Key establishment key, X9.31 PRNG Seed Key, X9.31 PRNG Seed - Read, Write, Execute
Access the module via CLI	Access the module using SSH protocol	Authentication keys, SSH Session authentication key, SSH Session key, Peer public key, Key establishment key, X9.31 PRNG Seed Key, X9.31 PRNG Seed - Read, Write, Execute
Upgrade Parameters	Configure upgrade parameters of the module	ECDSA Public Key - Execute
Event Log Parameters	Check the event log parameters of the module	None
Cryptographic module status	Check the current status of the FIPS module	None
Perform Self-Tests	Performs the required self- test on the module	None
Zeroization	Zeroize all the cryptographic keys and key components	All keys and CSPs -Read, Write

2.4.2 User Role

The User role has access to encryption/decryption service in the cryptographic module over the Encoder/Modulator and Decoder/Demodulator Interface. Descriptions of the service(s) available to the User role are provided in the Table 4 below.

Table 4 - Mapping of User Role's Services to CSPs and Type of Access

Service	Description	CSP and Type of Access
Encryption/decryption Parameters	Configure encryption/decryption parameters of the module	TRANSEC key, TEKs, TDKs, TRANSEC passphrase - Write, Execute

2.4.3 Unauthenticated Operator Role

The Unauthenticated Operator role has access to the services listed in Table 5 below for which the operator is not required to assume an authorized role. None of the services listed in the table modify, disclose, or substitute cryptographic keys and Cryptographic Security Parameters (CSPs), or otherwise affect the security of the module. See Table 5 below for a list and description of the associated services.

Table 5 - Mapping of Unauthenticated Operator Role Services to CSPs and Type of Access

Service	Description	CSP and Type of Access
Change IP address and Subnet	Change the module's IP address and subnet	None
Change network default gateway	Change the module's IP network default gateway	None

2.4.4 Authentication Mechanism

Table 6 below describes the authentication method employed by the module to authenticate the Crypto-Officer and User.

Table 6 – Authentication Mechanism Employed by the Module

Role	Authentication Type	Authentication Strength
Any authenticated operator role	Password	Operators authenticate with a role and password over a TLS or SSH connection. Passwords are required to be at least 7 characters long. All printable ASCII except for <, >, ", and ~ can be used, which gives a total of 90 characters to choose from. With the possibility of repeating characters, the probability of a random attempt falsely succeeding is 1:90 ⁷ , or 1:47,829,690,000,000. This would require 478,296,900 attempts in one minute to lower the random attempt success rate to less than 1:100,000. The fastest connection supported by the module is 155 Mbps. Hence, at most 9,300,000,000 bits of data (155 × 10 ⁶ × 60 seconds, or 9.3 × 10 ⁹) can be transmitted in one minute. At that rate and assuming no overhead, a maximum of 166,071,428 attempts can be transmitted over the connection in one minute.

2.5 Physical Security

The SLM-5650A TRANSEC Module is a multi-chip embedded cryptographic module. The entire contents of each module, including all hardware, firmware, and data are protected by a metal cover on the top and all sides and a hard plastic material on the bottom of the module. The metal cover and hard plastic material are opaque and sealed using preinstalled tamper-evident labels, which prevent the cover or plastic material from being removed without signs of tampering. All components are made of production-grade materials, and all IC's⁸ in the module are coated with commercial standard passivation.

It is the Crypto-Officer's responsibility to ensure that the physical security posture of the module is maintained. The proper maintenance of physical security of the module is detailed in the "Secure Operation" section of this document.

2.6 Operational Environment

The operational environment requirements do not apply to the SLM-5650A TRANSEC Module.

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 7 below.

Table 7 - FIPS-Approved Algorithm Implementations

Approved or Allowed Security Function	Certificate Number							
Symmetric Key Algorithm								
AES – 128, 192 and 256-bit in ECB ⁹ and CBC ¹⁰ mode	1537							
AES – 256-bit in ECB and CBC mode (Helion FPGA)	1538							
Triple-DES ¹¹ – 112-bit in CBC mode	1012							
Secure Hashing Algorithm (SHA)								
SHA-I	1363							
Message Authentication Code (MAC) Fur	nction							
HMAC using SHA-I	893							
Random Number Generator (RNG)								
FIPS 186-2 Change Notice 1, Option 1	827							
ANSI X9.31 Appendix A.2.4	827							
Asymmetric Key Algorithm								
RSA PKCS#1v1.5 sign/verify – 2048 bit	746							
ECDSA verify – P-521 curve	189							

The module implements the following non-Approved algorithms:

⁹ ECB – Electronic Codebook

Comtech EF Data SLM-5650A TRANSEC Module

Page **12** of 23

⁸ ICs – Integrated Circuits

 $^{^{10}}$ CBC – Cipher-Block Chaining

¹¹ DES – Data Encryption Standard

 Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption strength)

- 2048-bit RSA¹² (key transport; key establishment methodology provides 112 bits of encryption strength)
- Message Digest 5 (MD5)

-

¹² RSA – Rivest Shamir Adleman

The module supports the keys and critical security parameters listed in Table 8 below.

Table 8 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

Кеу	Кеу Туре	Key Strength	Generation / Input	FIPS-Approved Establishment Mechanism	Output	Storage	Zeroization	Use
TRANSEC Key (TSK)	AES-CBC – 256-bit key	256-bit	Generated externally and entered into the module electronically over a TLS session.	ED/EE ¹³	Never exits the module	Stored in non-volatile memory	By Zeroize command	Used as Seed Key to generate the TRANSEC Encryption keys (TEKs) in FIPS 186-2 RNG
TRANSEC passphrase	AES – 256-bit key	256-bit	Entered into the module electronically in encrypted form	ED/EE	Never exits the module	Stored in volatile memory	By Zeroize command or power cycling the module	Seed in FIPS 186-2 RNG
TRANSEC Encryption keys (TEKs)	AES-CBC – 256-bit key	256-bit	Internally generated with FIPS 186-2 RNG	Not applicable	Never exits the module	Stored in volatile memory	By Zeroize command or power cycling the module	Encrypt the data
TRANSEC Decryption keys (TDKs)	AES-CBC – 256-bit key	256-bit	Internally generated with FIPS 186-2 RNG	Not applicable	Never exits the module	Stored in volatile memory	By Zeroize command or power cycling the module	Decrypt the data

_

¹³ ED/EE – Electronic Distribution/Electronic Entry

Key	Кеу Туре	Key Strength	Generation / Input	FIPS-Approved Establishment Mechanism	Output	Storage	Zeroization	Use
Authentication public/private key	RSA 2048-bit key	I I 2-bit	RSA key is externally generated and imported in encrypted form	ED/EE	Public key exported electronically in plaintext; private component not output	Stored in non-volatile memory	By Zeroize command	Authentication of SSH/TLS sessions
Peer public key	RSA 2048-bit key	112-bit	Imported electronically during handshake protocol	ED/EE	Never exits the module	Stored in volatile memory	None	Peer Authentication for SSH sessions
Local CA public/private key	RSA 2048-bit key	I I 2-bit	Externally generated and imported in encrypted form	ED/EE	Public key certificate exported electronically in plaintext; private component not output	Stored in non-volatile memory	By Zeroize command	Local signing of certificate and establish trusted point in peer entity
TLS Session Authentication key	HMAC SHA-I	80-bit	Internally generated	Not applicable	Never exits the module	Stored in volatile memory	Power cycle or session termination	Data authentication for TLS sessions
TLS Session key	• TDES-CBC key • AES-CBC 128-, 256-bit key	• 80-bit • 128-, 256-bit	Internally generated	Not applicable	Never exits the module	Stored in volatile memory	Power cycle or session termination	Data encryption/decrypti on for TLS sessions

Key	Кеу Туре	Key Strength	Generation / Input	FIPS-Approved Establishment Mechanism	Output	Storage	Zeroization	Use
SSH Session Authentication key	HMAC SHA-I	80-bit	Internally generated	Not applicable	Never exists the module	Stored in volatile memory	Power cycle or session termination	Data authentication for SSH sessions
SSH Session key	• TDES-CBC key • AES-CBC 128-, 192-, 256-bit key	• 80-bit • 128-, 192, 256-bit	Internally generated	Not applicable	Never exists the module	Stored in volatile memory	Power cycle or session termination	Data encryption/decrypti on for SSH sessions
Key Establishment key	Diffie-Hellman 2048-bit key, RSA 2048-bit key	I I 2-bit	Internally generated	Not applicable	Public exponent electronically in plaintext, private component not output	Stored in volatile memory	Power cycle or session termination	Key exchange/agreement for TLS and SSH sessions
Operator password	Password	See Section 2.4.4	Externally input	Not applicable	Never exits the module	Stored in non-volatile memory	By Zeroize command	Operator authentication
Firmware update ECDSA public key	ECDSA 521- bit	80-bit	Externally generated	Not applicable	Never exits the module	Stored in non-volatile memory	N/A	To Verify firmware update
X9.31 RNG Seed Key	TDES 112-bit key	I I 2-bit	Internally generated	Not applicable	Never exits the module	Stored in volatile memory	Power cycle or session termination	Generates FIPS- Approved random number
X9.31 RNG Seed	64-bits of Seed value	64-bit	Internally generated	Not applicable	Never exits the module	Stored in volatile memory	Power cycle or session termination	Generates FIPS- Approved random number

2.7.1 Key Generation

The module uses FIPS-Approved FIPS 186-2 and FIPS-Approved ANSI X9.31 Appendix A.2.4 algorithms to generate keys. The algorithms have undergone and passed independent testing.

2.7.2 Key Entry and Output

The cryptographic module implements key entry with keys electronically imported into the module. The module does not provide a means to output private keys or CSPs from its physical boundary.

2.7.3 CSP Storage and Zeroization

All the keys and CSPs are stored in either the non-volatile or volatile memory in plaintext and can be zeroized by using the zeroization command or power cycling the cryptographic module respectively.

2.8 EMI/EMC

The SLM-5650A TRANSEC Module was tested and found to be conformant to the Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) requirements specified by Federal Communications Commission 47 Code of Federal Regulations (CFR), Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (i.e., for business use).

2.9 Self -Tests

The SLM-5650A TRANSEC Module performs the following self-tests at power-up:

- Firmware integrity test using CRC-32
- Cryptographic algorithm tests
 - o Firmware AES Known Answer Test (KAT)
 - o Helion AES KAT
 - o Triple-DES KAT
 - o SHA-1 KAT
 - o HMAC SHA-1 KAT
 - o RSA sign/verify
 - o ECDSA KAT
 - o FIPS 186-2 RNG KAT
 - o ANSI X9.31 Appendix A.2.4 RNG KAT

The SLM-5650A TRANSEC Module also performs the following conditional self-tests:

- Continuous RNG Test for the ANSI X9.31 RNG
- Continuous RNG Test for FIPS 186-2 RNG
- Firmware load test (ECDSA digital signature verification)

If the firmware integrity test fails the system will not boot up. Upon firmware integrity test failure, the module reinitializes itself by loading a redundant, backup firmware image (this is a factory-installed copy of the primary firmware image which is stored in a second firmware slot). The newly-loaded image then undergoes the firmware integrity test. If there is no backup firmware or the backup firmware is also corrupt, the module must be serviced by Comtech EF Data Corporation.

If any of the power-up self-tests or conditional self-tests fail, data transmission is disabled and the modem writes an event to an event log before entering into a critical error state. No data output or cryptographic operations are possible when the module enters the critical error state. The CO can clear this error by power-cycling the module.

2.10 Design Assurance

Comtech EF Data uses Concurrent Versions System (CVS) and Polytron Version Control System (PVCS) Professional as the configuration management system.

Concurrent Versions System (CVS) records the history of the source files. It stores all the versions of a file in a single file in a clever way that only stores the differences between versions. It also helps as a part of a group of people working on the same project by insulating everyone from each other. Every person works in his own directory, and CVS merges the work when each person is done.

PVCS follows the "locking" approach to concurrency control; it has no built-in merge operation. PVCS can be configured to allow several users to simultaneously edit files. With this configuration, subsequent editors create their own branches, ensuring that modifications create parallel histories for the same file.

Additionally, Microsoft Visual SourceSafe (VSS) version 6.0 is used to provide configuration management for the SLM-5650A TRANSEC Module's FIPS documentation. This software provides access control, versioning, and logging.

2.11 Mitigation of Other Attacks

The module does not claim to mitigate any additional attacks in an approved FIPS mode of operation.

The SLM-5650A TRANSEC Module meets Level 2 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-approved mode of operation.

3.1 Crypto Officer Guidance

The Crypto-Officer role is responsible for initializing and managing the module.

3.1.1 Installation and Configuration

The cryptographic module is designed to be embedded in an SLM-5650 satellite modem as a single FIPS card called the SLM-5650A TRANSEC Module. The cryptographic module will perform bulk encryption of all packets for transmission over the satellite regardless of the protocol, format of data, or existing encryption on the incoming data. The following steps provide rules for secure installation and configuration of the cryptographic module.

Installation:

- Turn off modem power
- Put on Electrostatic Discharge (ESD) protection
- Remove top cover of SLM-5650
- Install Forward Error Correction (FEC) board
- Install FIPS Module SLM-5650A TRANSEC Module card
- Close SLM-5650
- Turn on modem power

Configuration:

- Configure IP Address
- Log into the web as Crypto Officer for first time access
- Enter Initial/Configure Encryption Key
- Enter Initial/Configure Passphrase

3.1.2 Management

The module can run only in the FIPS-Approved mode of operation. The Crypto-Officer is able to monitor and configure the module via the web GUI (HTTPS over TLS) and SSH.

3.1.3 Delivery

The Crypto-Officer can receive the module from the vendor via trusted delivery couriers including UPS, FedEx, and DHL. Upon receipt of the module, the Crypto-Officer should check the package for any irregular tears or openings. If the Crypto-Officer suspects any tampering, he/she should immediately contact Comtech EF Data Corporation.

3.1.4 Maintenance of the Physical Security

The module employs tamper-evident labels to ensure that no one can tamper with the components of the module without leaving some form of evidence. These labels are installed by Comtech EF Data prior to delivery; however, it is the Crypto-Officer's responsibility to ensure that the physical security posture of the module is maintained. To accomplish this, the CO has the following responsibilities:

• The CO must visually inspect the module for the secure placement of tamper-evident labels. The tamper-evident labels ensure that no one can tamper with the components of the module without

leaving some form of evidence. The module requires two labels to be placed on it to meet FIPS requirements. Figure 5 and Figure 6 show the required label placement.

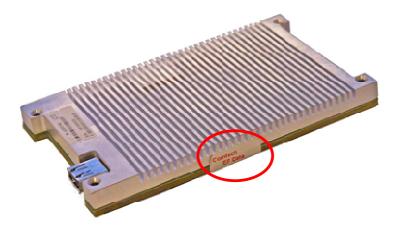


Figure 5 - Tamper-Evident Label Placement (Left Side View)

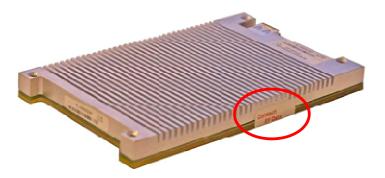


Figure 6 - Tamper-Evident Label Placement (Right Side View)

• The CO must visually inspect the module periodically for signs of tampering (including labels that have been voided, peeled off, or damaged in any way). If signs of tampering are noticed, the CO should remove the module from service and contact Comtech EF Data Corporation.

3.2 User Guidance

The User role uses 256-bit AES in CBC mode for bulk encryption of all data requiring encryption.

May 9, 2011 Security Policy, Version 1.0

Acronyms

This section defines the acronyms used throughout the Security Policy.

Table 9 - Acronyms

Acronym	Definition
AES	Advanced Encryption Standard
CA	Certificate Authority
СВС	Cipher Block Chaining
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
СО	Crypto Officer
CSEC	Communications Security Establishment Canada
CSP	Critical Security Parameter
CVS	Concurrent Versions System
DES	Data Encryption Standard
ECB	Electronic Code Book
ECDSA	Elliptic Curve Digital Signature Standard
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
FPGA	Field-Programmable Gate Array
GUI	Graphical User Interface
HMAC	Hash-based Message Authentication Code
ICs	Integrated Circuits
KAT	Known Answer Test
MAC	Message Authentication Code
NIST	National Institute of Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
PVCS	Polytron Version Control System
RSA	Rivest Shamir Adleman
SSH	Secure Shell
SSL	Secure Socket Layer
SVN	Subversion
TDKS	Transmission Decryption Keys
TEKs	Transmission Encryption Keys

May 9, 2011 Security Policy, Version 1.0

Acronym	Definition
TLS	Transport Layer Security
TRANSEC	Transmission Security Key
TSK	TRANSEC Key
VSS	Visual Source Safe

10340 Democracy Lane, Suite 201 Fairfax, Virginia 22030 United States of America

> Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>