3e Technologies International, Inc. FIPS 140-2 Non-Proprietary Security Policy Level 2 Validation

3e-523-F2 & 3e-523-3 Secure Multi-function Wireless Data Points

HW Versions 1.0, 1.1, 1.2, 2.0 FW Versions 4.4.

> Security Policy Version 6.1

> > April 2011

Copyright ©2010 by 3e Technologies International. This document may freely be reproduced and distributed in its entirety.

GLOSS	ARY OF TERMS	3
1. IN	FRODUCTION	4
1.1.	Purpose	4
1.2.	SCOPE	
1.3.	CRYPTOGRAPHIC MODULE DEFINITION	5
2. PO	RTS AND INTERFACES	6
3. RO	DLES, SERVICES, AND AUTHENTICATION	7
3.1	.1. Roles & Services	7
	.2. Authentication Mechanisms and Strength	
4. SE	CURE OPERATION AND SECURITY RULES 1	2
4.1.	SECURITY RULES	2
4.2.	PHYSICAL SECURITY TAMPER EVIDENCE 1	4
4.2	.1 3e-523-F2	4
4.2	.2 3e-523-3	5
5. SE	CURITY RELEVANT DATA ITEMS 1	.6
5.1.	CRYPTOGRAPHIC ALGORITHMS	6
5.2.	Self-tests 1	7
5.2	.1 Power-on Self-tests	7
	.2 Conditional Self-tests	
5.2	.3 Firmware Integrity Check by bootloader 1	8
5.3.	CRYPTOGRAPHIC KEYS AND SRDIS 1	8

Glossary of terms

AP	Access Point
CO	Cryptographic Officer
DHCP	Dynamic Host Configuration Protocol
IP	Internet Protocol
EAP	Extensible Authentication Protocol
FIPS	Federal Information Processing Standard
HTTPS	Secure Hyper Text Transport Protocol
LAN	Local Area Network
MAC	Medium Access Control
PRNG	Pseudo Random Number Generator
RSA	Rivest, Shamir, Adleman
SHA	Secure Hash Algorithm
SRDI	Security Relevant Data Item
SSID	Service Set Identifier
TLS	Transport Layer Security
WAN	Wide Area Network
WLAN	Wireless Local Area Network

1. Introduction

1.1. Purpose

This document describes the non-proprietary cryptographic module security policy for 3e Technologies International's wireless universal products, the *3e-523-F2 & 3e-523-3 Secure Multi-function Wireless Data Points (3e-523-F2 & 3e-523-3)* (Hardware Versions: HW V1.0, V1.1, V1.2 (3e-523-F2) and V2.0 (3e-523-3); Firmware Versions: 4.4). This document defines 3eTI's security policy and explains how the 3e-523-F2 and the 3e-523-3 meet the FIPS 140-2 security requirements. The table below lists the hardware version and the CPU version utilized by the hardware.

Hardware Version	CPU Version
V1.0	IXP 420
V 1.1	IXP 425
V1.2 (3e-523-F2)	IXP 425
V2.0 (3e-523-3)	IXP 425

In the FIPS mode of operation, the modules secure all wireless communications with Wi-Fi Protected Access 2 (WPA2). WPA2 is the approved Wi-Fi Alliance interoperable implementation of the IEEE 802.11i security standard. The modules use the following cryptographic algorithm implementations:

- AES
- AES-CCM
- Triple-DES
- SHA-1
- HMAC SHA-1
- FIPS 186 Random Number Generator
- RSA

The cryptographic module security policy consists of a specification of the security rules, under which the cryptographic module shall operate, including the security rules derived from the requirements of the standard. The Cryptographic Modules meet the overall FIPS 140-2 Level 2 requirement as detailed in the table below.

Security Requirements Section	Level
Cryptographic Module Specification	2
Module Ports and Interfaces	2
Roles, Services and Authentication	3
Finite State Model	2

Table 1: Module Security Level Specification

Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

1.2. Scope

This document covers the secure operation of the 3e-523-F2 and 3e-523-3, including the initialization, roles and responsibilities of operating the product in a secure, FIPS-compliant manner, and a description of the Security Relevant Data Items (SRDIs). The term "product" in this document is used if both the 3e-523-F2 and the 3e-523-3 apply.

1.3. Cryptographic Module Definition

The 3e-523-F2 and the 3e-523-3 are devices which consist of electronic hardware, embedded software and an enclosure. For purposes of FIPS 140-2, the module is considered to be a multi-chip standalone product. The modules are physically bounded by the mechanical enclosure, which is protected by tamper evident tape. The physical cryptographic boundary of either 3e-525-F2 or 3e-523-3 is defined to be the entire enclosure of the module.

The figure below shows the 3e-523-F2.

Figure 1 – 3e-523-F2

The figure below shows the 523-3.

Figure 2 – 3e-523-3

The 3e-523-3 contains the same printed circuit board as a 3e-523-F2, but the PCB is housed in a weatherproof, ruggedized enclosure. The firmware is the same between the 3e-523-F2 and the 3e-523-3.

2. Ports and Interfaces

The module provides one RJ45 Ethernet port and two RF antenna ports that connect to the same radio card inside the module.

Ethernet port is meant to be plugged into a secure IT environment. Data packets coming in and going out of RF antenna ports are encrypted by AES/AES-CCM depending on configuration.

For 523-F2

- a. Status output: Ethernet port pins and LED pins
- b. Data output: Ethernet port pins and serial port pins and RF on antenna ports
- c. Data input: Ethernet port pins and serial port pins and RF on antenna ports
- d. Control input: Ethernet port pins and RF on antenna ports

For 523-3

- a. Status output: Ethernet port and LED
- b. Data output: Ethernet port and serial port and RF on antenna ports
- c. Data input: Ethernet port and serial port and RF on antenna ports
- d. Control input: Ethernet port and RF on antenna ports

The management interface of the Cryptographic Module (CM) uses HTTPS protocol. During the HTTPS session setup, the Cryptographic Module enforces mutual authentication between the web client and CM by requesting and validating the web client's certificate. The Cryptographic Officer must configure the CM with proper root certificate and OCSP server address to facilitate this mutual authentication between the web client and the CM.

3. Roles, Services, and Authentication

The 523-F2 and 523-3 series product variants support user identity based operator authentication. There are total of three roles supported by the modules. Two of which are operator roles and the other role is device role. Any operator user can belong to one of the operator roles. The operator user authenticates to the cryptographic module by using username and password and assumes his role upon successful authentication.

The set of services available to each role is defined in this section.

3.1.1. Roles & Services

The product supports the following authorized roles for operators:

Crypto Officer Role: The Crypto officer (CO) role performs all security functions provided by the product. This role performs cryptographic initialization and management functions (e.g., module initialization, input/output of cryptographic keys and SRDIs, audit functions and user management). The Crypto officer is also responsible for managing other CO users and the Administrator users. The Crypto officer uses a secure mutually authenticated web-based HTTPS connection to configure the products and authenticates to the module using a username and password.

Administrator Role: This role performs general product configuration. No CO security functions are available to the Administrator. The Administrator can also reboot the product if deemed necessary. The Administrator uses a secure mutually authenticated web-based HTTPS connection to configure the products and authenticates to the module using a username and password.

Device Role: The purpose of the device role is to describe other devices as they interact with this Cryptographic Module, including:

- Other Access Points (connecting in Bridge mode or when the CM is in wireless client mode)
- WLAN Client

When the product is configured to operate in Access Point/Bridge mode, the other device authenticates to the CM by using:

For Wireless client device:

The client proves its possession of the 256 bit PMK by performing 802.11i defined 4-way handshake protocol or proves its possession of the same encryption key for the static AES encryption mode.

For Bridge device:

The bridge device authenticates with the CM by proving the possession of the same encryption key. The key size is 128 for AES_CCM and 128,192 or 256 bit for AES encryption configuration

When the product is configured to operate in Wireless Client mode, the other device authenticates to the CM by using:

The other device (Access Point) through 802.11i defined 4-way handshake process proves that it has the same 256 bit PMK as the client obtained through EAP-TLS authentication from the RADIUS server, or manually input into the device.

The Device Role has access to the following services:

For Device Role (WLAN client)

- > Apply Wireless Access Point Security on Data Packet
 - AES
 - 802.11i AES-CCM

For Device Role (AP)

- > Apply Wireless Bridge Encryption on Data Packet
 - AES
 - AES_CCM
- Communicate with Wireless Client
 - AES_CCM
 - AES

The following table outlines the security-relevant cryptographic functionalities that are provided by the "operator" roles (Crypto Officer and Administrator):

Categories	Features	Operator Roles											
			CryptoOfficer Administrator								tor		
		Show^{1}	Set ²	\mathbf{Add}^{3}	Delete ⁴	Zeroize ⁵	Default Reset ⁶	Show^7	Set ⁸	Add ⁹	Delete ¹⁰	Zeroize ¹¹	Default Reset
System Configuration													
Wireless Access Point													
Security	AES (128-/192-256-bit) 802.11i (AES-CCM)	X X	X X			X X	X X						X X
Wireless Bridge													
Encryption	AES_CCM (128 bit) AES (128-/192-256-bit)	X X	X X		X X	X X	X X						X X
Wireless Client													
Security	PSK EAP-TLS Private Key Private Key Password		X X X		X X X	X X X	X X X						X X X

Table 2 – Operator Role Functionalities

	Categories	Features	Operator Roles											
			CryptoOfficer Administrator											
			Show^{1}	Set ²	Add ³	Delete ⁴	Zeroize ⁵	Default Reset ⁶	\mathbf{Show}^{7}	Set ⁸	Add ⁹	Delete ¹⁰	Zeroize ¹¹	Default Reset
Monitoring / Reports														
•	System Status	Security Mode	Χ						Х					
		Current Encryption Mode	х						X					
		Bridging encryption mode	Х						X					
		Network Access Logs	Х						Х					
	stem Iministration													
•	Factory Defaults		Х	Х										
•	Reboot (perform self- test)		X	Х					Х	X				
•	Operating Mode	Select wireless operating mode among AP, bridge, AP&bridge, client modes	Х	Х				Х	Х					Х
•	Firmware Upgrade	Upgrade firmware and bootloader if bootloader is included in upgrade package.	X	X										
•	Password	Change password for Crypto Officer		Х				X						
		Change password for Administrator		X	X	X		X		X				
		Change password policy for Crypto Officer		X				X						
		Change password policy for Administrator		Х				X						
	 ² The operator ³ The operator ⁴ The operator ⁵ The operator ⁶ The operator 	an view this setting can change this setting can add a required input. can delete a particular entr can zeroize these keys. can reset this setting to its j can view this setting		ry de	efaul	t vali	ue.							

⁸ The operator can change this setting
⁹ The operator can add a required input.
¹⁰ The operator can delete a particular entry.
¹¹ The operator can zeroize these keys.

3.1.2. Authentication Mechanisms and Strength

The following table summarizes the roles and the type of authentication supported for each role:

Role	Type of Authentication	Authentication Data
Crypto Officer	ID-based	Crypto officers present unique
		usernames and passwords to
		log in to the module over
		HTTPS session. The HTTPS
		session enforces mutual
		authentication between the
		CM and the Web client
Administrator	ID-based	Crypto officers present unique
		usernames and passwords to
		log in to the module over
		HTTPS session. The HTTPS
		session enforces mutual
		authentication between the
		CM and the Web client
Device		
Wireless client	static key or 802.11i	The possession of PMK or
	authentication between	encryption key, if the PMK is
	wireless client and CM	manually entered to the CM,
	CM as Access Point	the passphrase mode is disallowed. Each wireless
		client is uniquely identified with its MAC address
		with its MAC address
AP	static key or 802.11i	
	authentication between CM	The possession of the static
	and AP (CM in wireless	key or the possession of PTK.
	client mode)	Each AP is uniquely identified
		with its MAC address
AP	static key between CM and	
	AP (CM in AP mode)	The possession of the static
	Ň,	key. Each AP is uniquely
		identified with its MAC
		address.

 Table 3 – Authentication versus Roles

The following table identifies the strength of authentication for each authentication mechanism supported:

Authentication Mechanism	Strength of Mechanism
Userid and password	Minimum 8 characters $=> 94^8 = 6.096E15$
PSK	$128 \text{ bits} => 2^{1}28 = 3.40\text{E}38$
Shared secret	$128 \text{ bits} \Rightarrow 2^{1}28 = 3.40\text{E}38$
Bridging static key	$128 \text{ bits} \Rightarrow 2^{128} = 3.40\text{E}38$

Table 4 – Strength	of Authentication
--------------------	-------------------

4. Secure Operation and Security Rules

By factory default, the device is put in FIPS mode with NO security setting, and the radio is turned off.

In order to operate the product securely, each operator shall be aware of the security rules enforced by the module and shall adhere to the physical security rules and secure operation rules detailed in this section.

4.1. Security Rules

The following product security rules must be followed by the operator in order to ensure secure operation:

- 1. Every operator (Crypto Officer or Administrator) has a user-id on the product. No operator shall violate trust by sharing his/her password associated with the user-id with any other operator or entity.
- 2. The Crypto Officer shall not share any key, or SRDI used by the product with any other operator or entity.
- 3. The Crypto Officer shall not share any MAC address filtering information used by the product with any other operator or entity.
- 4. The operators shall explicitly logoff by closing all secure browser sessions established with the product.
- 5. The Crypto officer is responsible for inspecting the tamper evident seals. A compromised tape reveals message "OPENED" with visible red dots. Other signs of tamper include wrinkles, tears and marks on or around the label.
- 6. The Crypto Officer shall change the default password when configuring the product for the first time. The default password shall not be used.
- 7. The Crypto Officer shall login to make sure encryption is applied in the device.

- 8. The Crypto Officer shall login to make sure the device is in FIPS mode by logging in the Web UI and checking "Security Mode" in the page header. This header is available on every web GUI page.
- 9. The Crypto Officer shall not use an ASCII passphrase for the 802.11i PSK (Pre-Shared Key with Passphrase). Instead, the Crypto Officer must use either direct 802.11i PSK key input (Pre-Shared Key with Master Key) or EAP-TLS (802.1x) methods.
- 10. The Crypto Officer shall configure the CM to enforce mutual authentication between the Web Client and CM for remote management over HTTPs.

4.2. Physical Security Tamper Evidence

The difference between the 523-F2 and the 523-3 is that the 523-F2 is intended to be placed into a larger enclosure. The 523-3 has weatherproof enclosure and is a standalone unit. Functionally, the two modules operate identically. The material used to cover both modules is production grade and opaque within the visible spectrum.

4.2.1 3e-523-F2

The physical security provided is intended to provide FIPS 140-2 Level 2 physical security (i.e. tamper evidence). The tamper evidence tape is applied at the factory. Crypto Officer should check the integrity of the tape.

The picture below shows the physical interface side of 3e-523-F2 enclosure with tamperevident seals.

Figure 3 – 3e-523-F2 with tamper seals

4.2.2 3e-523-3

The physical security provided is intended to provide FIPS 140-2 Level 2 physical security (i.e. tamper evidence).

The figures below show the physical interface sides of 3e-523-3 enclosure with tamperevident seals.

Figure 4 – 3e-523-3 Physical Interface Side 1

Figure 5 – 3e-523-3 Physical Interface Side 2

5. Security Relevant Data Items

This section specifies the product's Security Relevant Data Items (SRDIs) as well as the product-enforced access control policy.

5.1. Cryptographic Algorithms

The product supports the following FIPS-approved cryptographic algorithms. The algorithms are listed below, along with their corresponding CAVP certificate numbers.

<u>3e Technologies International Inc. 3eTI CryptoLib (User Space Library) Algorithm</u> <u>Implementation 1.0 (RNG only)</u> RNG: #583[1, 2]

<u>3e Technologies International Inc. 3eTI OpenSSL Algorithm Implementation 0.9.7beta3</u>

Triple-DES: #783[1, 2] AES; #1022[1, 2] SHS: #976[1, 2] RSA: #490[1, 2] HMAC: #571[1, 2]

<u>3e Technologies International Inc. 3eTI CryptoLib (Kernel Module) Algorithm</u> Implementation 1.0

AES; #1021[1] SHS: #975[1] HMAC: #570[1]

<u>3e Technologies International Inc. 3eTI Kernel Accelerated Crypto Core</u> (Hardware) Algorithm Implementation 1.0

AES; #1023[2] SHS: #977[2] HMAC: #572[2]

Where [1] represents the IXP 420 CPU and [2] represents the IXP425 CPU The product also supports the following **non-Approved but FIPS allowed** cryptographic algorithms:

- RSA (key wrapping, key establishment methodology provides 80 bits of encryption strength)
- MD5 hashing in HTTPS over TLS
- AES (Cert. #1021, key wrapping)
- Non-Approved RNG

5.2. Self-tests

POST (Power on Self Test) is performed on each boot-time. On-demand self test is provided over the management interface. Crypto Officer User can command or schedule on-demand test from web GUI.

5.2.1 Power-on Self-tests

OpenSSL Power-on Self Tests

AES ECB - encrypt/decrypt KAT Triple-DES CBC – encrypt/decrypt KAT RSA KAT SHA-1 KAT HMAC-SHA-1 KAT

Crypto-1.0 User Library Power-on Self Tests

FIPS 186-2 (Appendix 3.1, 3.3) RNG KAT

Kernel Crypto Module Power-on Self Tests

AES ECB - encrypt/decrypt KAT AES CCM KAT SHA-1 KAT HMAC-SHA-1 KAT

Kernel Crypto Coprocessor Power-on Self Tests (Hardware)

AES ECB – encrypt/decrypt KAT AES CCM KAT SHA-1 KAT HMAC SHA-1 KAT

Software Integrity Power-on Self Tests SHA-1 Integrity Test for firmware SHA-1 Integrity Test for bootloader

If any of the Power-on Self-tests fail, the system halts. The operator can attempt to power cycle the module to clear the error condition. Once the error condition has been cleared, the Crypto Officer or Administrator can view the logs to determine the type of failure.

5.2.2 Conditional Self-tests

Whenever a firmware package is uploaded through HTTPS over TLS secure channel, the package integrity check is performed before the firmware can be updated.

The firmware package is wrapped in 3eTI proprietary format and HMAC-SHA1 hashed for integrity check.

Whenever a random number is generated (both FIPS 186-2 Approved and non-Approved), a Continuous Random Number Generator test is performed to ensure the random number is not repeating.

5.2.3 Firmware Integrity Check by bootloader

After device is powered on, the first thing done by bootloader is to check firmware integrity. If the integrity fails, firmware won't boot. Firmware integrity is also performed at POST (Power On Self Test) during firmware boot up. The bootloader integrity is done at POST, too.

5.3. Cryptographic Keys and SRDIs

The module contains the following security relevant data items:

Non-Protocol Keys/CSPs											
Key/CSP	Туре	Generation/ Input	Output	Storage	Zeroization	Use					
Operator passwords	ASCII string	Input encrypted (using TLS session key)	Not output	Hash value in flash (PKCS#5)	Zeroized when reset to factory settings.	Used to authenticate CO and Admin role operators					
Configuration file passphrase	HMAC key (ASCII string)	Input encrypted (using TLS session key) by Crypto Officer	Not output	Plaintext in RAM.	Zeroized when a configuration file is uploaded after it is used.	Used for downloaded configuration file message authentication					
Firmware load key	HMAC key (ASCII string)	Embedded in firmware at compile time. Firmware upgrade is through encrypted (using TLS session key)	Not output	Plaintext in flash	Zeroized when firmware is upgraded.	Used for firmware load message authentication					
SNMP packet authentication keys, username	HMAC key (ASCII string)	Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when reset to factory settings.	Use for SNMP message authentication					
	1 	1 	RNG Keys/CS	Ps		· 					
Key/CSP	Key/CSP Type Generation/ Output Storage Zeroization Use										

Table 5 - SRDIs

		Input				
FIPS 186-2 PRNG Seed Key	20-byte value	RNG Seed	Not output	Plaintext in RAM	Zeroized every time a new random number is generated using the FIPS PRNG after it is used.	Used to initialize FIPS PRNG
RNG Seed	20-byte value	512 bytes from system interrupt numbers hashed by HMAC-SHA1		Plaintext in RAM	Zeroized every time a new random number is generated using the FIPS PRNG after it is used.	Used as seed for Non- approved RNG which provides the seed key for the FIPS 186- 2 PRNG.
		3eTI St	tatic Protocol K	leys/CSPs	useu	
Key/CSP	Туре	Generation/	Output	Storage	Zeroization	Use
AP / Client Static key	AES ECB (e/d; 128,192,256)	Input Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when encryption mode is changed or at factory default reset time	Used to encrypt unicast, and broadcast/ multitcast traffic in support of static mode
	IEEE 80	2.11i Protocol K	eys/CSPs (Com	mon to PSK and E	AP-TLS)	
Key/CSP	Туре	Generation/ Input	Output	Storage	Zeroization	Use
PMK	802.11i Pair- wise Master Key	Typed in directly as a Hex string. Input encrypted using the TLS session key. If 802.11i EAP-TLS, then not input, instead derived (TLS master secret resulting from successful User EAP- TLS authentication)	Not output	For 802.11i PSK mode, it's store in encrypted mode in flash For both 802.11i PSK and EAP-TLS, plaintext in RAM	Zeroized when authentication mode is changed If 802.11i PSK, zeroized when reset to factory settings.	802.11i PMK
РТК	AES (key derivation; 256)	Not input (derived from PMK)	Not output	Plaintext in RAM	When 802.11i session ends.	802.11i PTK
KCK	HMAC key (128 bits from PTK)	Not input (derived from PTK)	Not output	Plaintext in RAM	When 802.11i session ends.	802.11i KCK

KEK	AES ECB(e/d; 128)	Not input (derived from PTK)	Not output	Plaintext in RAM	When 802.11i session ends.	802.11i KEK
ТК	AES CCM (e/d; 128)	Not input (derived from PTK)	Not output	Plaintext in RAM	When 802.11i session ends.	802.11i TK
TK (copy in driver)	AES CCM (e/d; 128)	Not input (derived from PTK)	Not output	Plaintext in RAM	When 802.11i session ends.	802.11i TK
GMK	AES (key derivation; 256)	Not input (RNG)	Not output	Plaintext in RAM	Zeroized when authentication mode is changed When re-key period expires	802.11i GMK
GTK	AES CCM (e/d; 128)	Not input (derived from GMK)	Output encrypted (using KEK)	Plaintext in RAM	Zeroized when authentication mode is chagned When re-key	802.11i GTK
		3eTI Se	ecurity Server K	evs/CSPs	period expires	
	<u> </u>				<u> </u>	
Key/CSP	Туре	Generation/ Input	Output	Storage	Zeroization	Use
Security Server password	HMAC key (ASCII string)	Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when authentication mode changes Zeroied when reset to factory default	Authenticate module to Security Server in support of 802.11i EAP- TLS authentication
Backend password	HMAC key (ASCII string)	Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when authentication mode changes Zeroied when reset to factory default	Authenticate messages between module and security server in support of 802.11i EAP- TLS
AES Key Wrap key	AES ECB key (d;128)	Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when authentication mode changes Zeroied when reset to factory default	Decrypt TLS master secret returned to module by Security Server after successful User authentication in support of 802.11i EAP-

Key/CSP	Туре	Generation/ Input	Output	Storage	Zeroization	Use	
Bridging static key	AES ECB (e/d; 128,192,256)	Input encrypted (using TLS session key)	Not output	Ciphertext in flash	Zeroized when bridge encryption mode is changed	Used to encrypt bridged traffic between two modules	
RFC 2818 HTTPS Keys/CSPs							
Key/CSP	Туре	Generation/ Input	Output	Storage	Zeroization	Use	
RSA private key	RSA (1024) (key wrapping; key establishment methodology provides 80- bits of encryption strength)	Not input (installed at factory)	Not output	Plaintext in flash	Zeroized when firmware is upgraded.	Used to support CO and Admin HTTPS interfaces.	
TLS session key for encryption	Triple-DES (192)	Not input, derived using TLS protocol	Not output	Plaintext in RAM	Zeroized when a page of the web GUI is served after it is used.	Used to protect HTTPS session.	

The following table lists cryptographic keys and key material that are unique to the product when it is operating in wireless Client mode:

Table 6 – SRDIs in Client Mode

Туре	ID	Storage Location	Form	Zeroization
Certificate Authority (CA) public key certificate	"CA public key"	FLASH	Plaintext (inaccessible)	Zeroized when a new certificate is uploaded
Client public key certificate	Wpaclt.der	FLASH	Plaintext	Zeroized when a new certificate is uploaded
Client private key RSA 1024	Wpaclt.pem	FLASH	Plaintext	Zeroized when a new certificate is uploaded