Code Corporation Code Reader 2500 FIPS and Code Reader 3500 FIPS Security Policy C005582

03/04/2011

Reviewed By	Role	Signature	Date
Tim Jackson	COGE		/ /
Mark Ashby	Engineering		/ /
Kerri Humpherys	Marketing		/ /
Tony Woodard	Application Engineering		/ /
Mark Gray	VPI Engineering		/ /
Tod Cook	Quality Assurance		/ /

© 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-2080 This document can be reproduced and distributed only whole and intact, including this copyright notice.

CHANGE RECORD

Revision	Date	Author	Description of Change	
00AA		Tim Jackson	Preliminary Work	
00AC	8/5/2010	Tim Jackson	Updated inconstancies	
00AE	8/6/2010	Tim Jackson	3.2 – update wording in Non-FIPS mode	
00AF	8/8/2010	Tim Jackson	Added HRNG, fixed zeroize to unauthenticated, minor errors in logical diagrams, standardized firmware placeholder	
00AG	8/10/2010	Tim Jackson	Updated status output to include all states of FIPS mode	
00AH	8/11/2010	Tim Jackson	Updated status output to remove amber; added firmware version	
00AI	8/11/2010	Tim Jackson	Add Reboot Service	
00AJ	8/12/2010	Tim Jackson	Update inconsistencies of state names	
00AK	8/18/2010	Tim Jackson	Updated TE pix	
00AL	8/24/2010	Tim Jackson	Update part numbers, etc.	
00AM	8/24/2010	Tim Jackson	Updated registered trademarks	
00AN	9/3/2010	Tim Jackson	Updated typographical errors	
00A0	2/24/2011	InfoGard	Returned minor changes made on our behalf for approval	
01	2/24/11	Tim Jackson	Approved minor changes made on our behalf by InfoGard in response to CMVP inquiries	
01AA	3/4/2011	InfoGard	Returned changes made to Section 9.2	
02	3/4/2011	Tim Jackson	Approved changes to Section 9.2, updated fax number in footer, footer formatting change, change of Reviewers in table.	

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280

Page 2 of 32

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Contents

1		Module Overview	5
2		Security Level	. 13
3		Modes of Operation	. 14
	3.1	FIPS Approved Mode of Operation	. 14
	3.2	2 Non-FIPS Mode of Operation	. 15
	3.3	B Approved and Allowed Algorithms	. 15
4		Ports and Interfaces	. 17
5		Identification and Authentication Policy	20
	5.1	Assumption of Roles	. 20
6		Access Control Policy	.21
	6.1	Roles and Services	. 21
	6.2	2 Unauthenticated Services	. 21
	6.3	3 Specification of Service Inputs & Outputs	. 21
	6.4	Definition of Critical Security Parameters (CSPs)	. 23
	6.5	5 Definition of CSPs Modes of Access	. 23
7		Operational Environment	. 25
8		Security Rules	. 26
9		Physical Security Policy	. 27
	9.1	Physical Security Mechanisms	. 27
	9.2	2 Operator Required Actions	. 27
10)	Mitigation of Other Attacks Policy	. 29
11		Pre-Initialization Mode	. 30
12		Delivery Security	.31
13	5	References	. 32
14	Ļ	Definitions and Acronyms	. 32

Tables

Table 1 – Module Security Level Specification	13
Table 2 – FIPS Approved Algorithms Used in Current Module	15
Table 3 – FIPS Allowed Algorithms Used in Current Module	16
Table 4 – CR2500 FIPS and CR3500 FIPS Bar Code Reader Pins and FIPS 140-2 Ports and Interfaces	17
Table 5 – Roles and Required Identification and Authentication	20
Table 6 – Strengths of Authentication Mechanisms	20
Table 7 – Authenticated Services	21
Table 8 – Unauthenticated Services	21
Table 9 – Specification of Service Inputs & Outputs	21
Table 10 – Private Keys and CSPs	23
Table 11 – CSP Access Rights within Roles & Services	24
Table 12 – Inspection/Testing of Physical Security Mechanisms	27

Figures

Figure 1 – Images of the CR2500 FIPS Cryptographic Module	5
Figure 2 – Image of the CR3500 FIPS Cryptographic Module	6
Figure 3 – CR2500 and CR3500 FIPS Bar Code Reader Block Diagram	7
Figure 4 – Initialization Logical Block Diagram	8
Figure 5 – Authentication Logical Block Diagram	9
Figure 6 – Generating TEK Logical Block Diagram	10
Figure 7 – Transmitting Encrypted Data Logical Block Diagram	
Figure 8 – Zeroization Logical Block Diagram	12
Figure 9 – CR3500 FIPS CO Authenticated Status Indication	15
Figure 10 – CR3500 FIPS Un-Authenticated Status Indication	15
Figure 11 – CR3500 FIPS Reader Authenticated Indication	15
Figure 12 – 8-Pin Battery Connector Pin-Out	17
Figure 13 – 8-Pin DIN Connector Pin-Out	17
Figure 14 – Image of the Cryptographic Module showing the placement of tamper-evident seals	28

1 Module Overview

Code Corporation's Code Reader 2500 FIPS bar code reader (MFG#: 2512FIPS_01) and Code Reader 3500 FIPS bar code reader (MFG#: 3512FIPS_01) Cryptographic Module (hereafter referred to as the CR2500 FIPS module and the CR3500 FIPS module or collectively as the module) are two configurations of a Multi-Chip Standalone module used as a stand-alone PC accessory designed to connect via Bluetooth[®] to a CodeXML[®] FIPS Bluetooth[®] Modem (BTHDFIPS-M2_01) which in turn connects via USB cable to a computer. The modules allow collecting data contained in a bar code, encrypting it and transmitting it to the computer. The difference between the CR2500 FIPS module and the CR3500 FIPS module are the user interface. The CR2500 FIPS module has two buttons and two LED lights while the CR3500 FIPS module has 21 buttons, one LED light and one LCD screen. The internals of the two modules are otherwise identical and they use the same firmware.

The CR2500 FIPS and CR3500 FIPS serve as data and control interface to the CodeXML[®] FIPS Bluetooth[®] Modem. When connected via Bluetooth[®] to the modem they will pass any commands to the modem, encrypted using an AES-256 dedicated key called a Key Encryption Key (KEK).

The boundary of the modules is the outer case of the physical device.

6 red LED, 2 blue LED & 1 green LED on the camera face of the module are inside the cryptographic boundary excluded from the requirements of FIPS 140-2 because their only purpose is the targeting & illumination for the camera.

Figure 1 – Images of the CR2500 FIPS Cryptographic Module

Figure 2 – Image of the CR3500 FIPS Cryptographic Module

The configuration of hardware and firmware for this validation is:

Hardware:

CR2500: 2512FIPS, Version 01 CR3500: 3512FIPS, Version 01

Firmware: 4641

code

C005582 CR2500 FIPS and CR3500 FIPS Security Policy

Figure 3 depicts a block diagram of the CR2500 FIPS and CR3500 FIPS Bar Code Reader hardware components, with the cryptographic boundary shown in red. The major blocks of the CR2500 and CR3500 FIPS Bar Code Reader hardware are:

- Memory: RAM and EEPROM
- CPU: AMD Alchemy Au1100-400MBD
- Camera (Control Input, Data Input)
- Two LED Status Lights CR2500 (Status Output
- One LED Status Light CR3500 (Status Output)
- One LCD Status Screen CR3500 (Status Output)
- Speaker (Status Output)
- Vibration Motor (Status Output)

- 2 Buttons CR2500 (Data Input, Control Input)
- 21 Buttons CR3500 (Data Input, Control Input)
- Bluetooth[®] Interface (Data Output)
- DIN Interface (Power Interface Cabled)
- Power Interface (Power Interface Battery)
- External Camera Trigger (Control Input Battery Pin 7)
- Clock

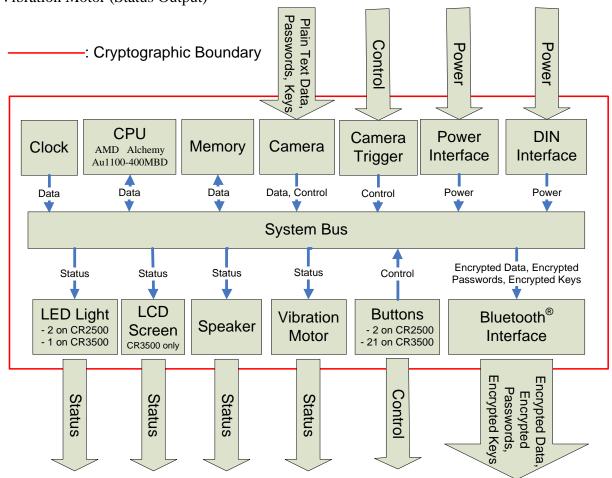


Figure 3 – CR2500 and CR3500 FIPS Bar Code Reader Block Diagram

Figure 4 depicts the logical block diagram for Initializing the CR2500 and CR3500 FIPS Bar Code Reader. This process replaces the default Cryptographic Officer Password, Reader (User) Password, and Key Encryption Key with new values chosen by the Cryptographic Officer. This command is only available to the Cryptographic Officer. The readers are the interface to the modem, so the Initialization data is output to the modem encrypted using the old KEK.

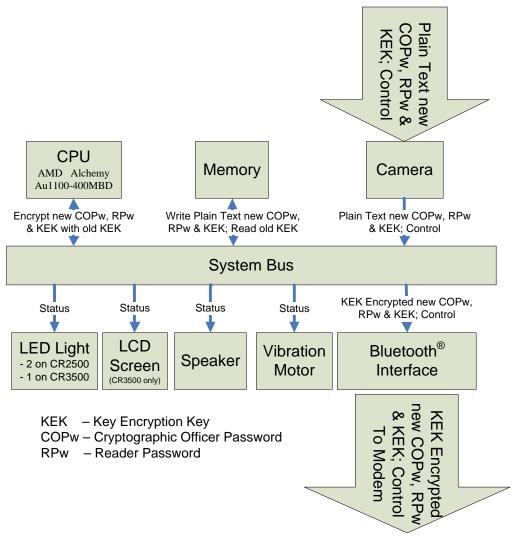


Figure 4 – Initialization Logical Block Diagram

Figure 5 depicts the logical block diagram for Authenticating to the CR2500 and CR3500 FIPS Bar Code Reader. The Authentication process compares a supplied password with a password stored in memory and allows or disallows firmware paths based on the results. The readers are the interface to the modem, so the Authentication data is output to the modem encrypted using the KEK.

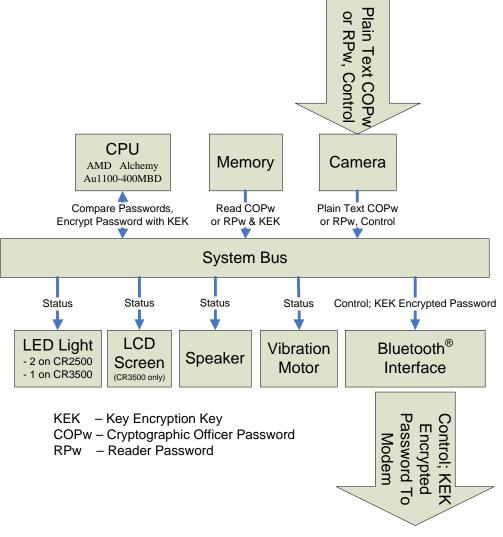


Figure 5 – Authentication Logical Block Diagram

Figure 6 depicts the logical block diagram for Generating Traffic Encryption Keys (TEK) on the CR2500 and CR3500 FIPS Bar Code Reader. A new TEK is generated for each session initiated between a CR2500 or CR3500 and the CodeXML[®] FIPS Bluetooth[®] Modem, seeded by data from the clock. This frequent changing of the TEK provides an added level of security to the Bluetooth[®] connection. The readers are the interface to the modem, so the new TEK data is output to the modem encrypted using the KEK.

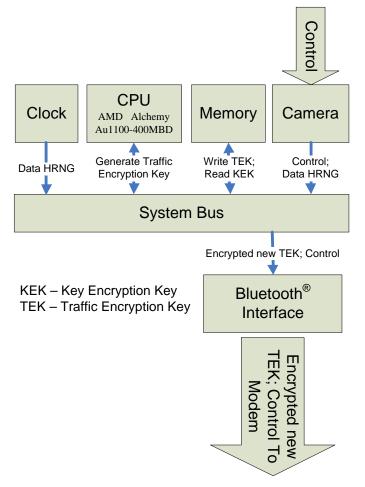


Figure 6 – Generating TEK Logical Block Diagram

Figure 7 depicts the logical block diagram for Transmitting Encrypted Data from the CR2500 and CR3500 FIPS Bar Code Reader.

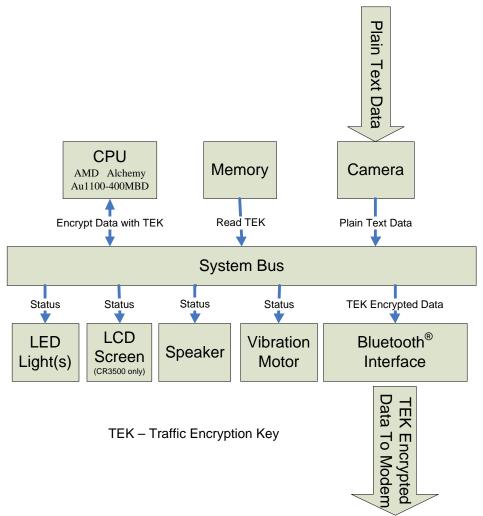


Figure 7 – Transmitting Encrypted Data Logical Block Diagram

Figure 8 depicts the logical block diagram for Zeroizing the CR2500 and CR3500 FIPS Bar Code Reader. All four CSP are reset back to defaults in this procedure – Cryptographic Officer Password, Reader (User) Password, Key Encryption Key and Traffic Encryption Key.

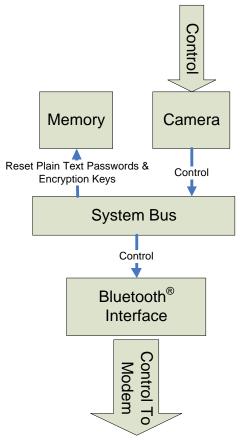


Figure 8 – Zeroization Logical Block Diagram

Module services are described in Section 6 below.

2 Security Level

The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS 140-2.

Security Requirements Section	Level
Cryptographic Module Specification	3
Module Ports and Interfaces	2
Roles, Services and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 1 – Module Security Level Specification

3 Modes of Operation

3.1 FIPS Approved Mode of Operation

The module provides a FIPS Approved mode of operation, comprising all services described in Section 6 below and a non-FIPS mode where the modules respond in the same manner as non-FIPS Code devices.

The module will enter FIPS Approved mode following successful power up self tests and initialization, provided the device has been properly initialized via the Initialization service.

While in FIPS Approved mode there are three stages indicated by the Status Output of the modules – CO Authenticated, Un-Authenticated, and Reader (User) Authenticated.

The CR2500 module indicates the three stages in the following manner:

- CO Authenticated the module will indicate this mode of operation by blinking the blue Left LED light in a 1 second on, 1 second off pattern.
- Un-Authenticated the module will indicate this mode of operation by blinking the blue Left LED light in a 2 seconds on, 1 second off pattern.
- Reader (User) Authenticated the module will indicate this mode of operation by blinking the blue Left LED light in a Morse Code 'F' pattern. The Morse Code 'F' is comprised of two short

dots, a long dash and a short dot (••••••) followed by a 3.5 second delay.

The CR3500 module indicates the three stages in the following manner:

- CO Authenticated the module will automatically indicate this mode of operation by displaying Packet Mode Icon of the letter 'FA' on the top line of the reader display as shown in Figure 9 below.
- Un-Authenticated the module will automatically indicate this mode of operation by displaying Packet Mode Icon of the letter 'FR' on the top line of the reader display as shown in Figure *10* below.
- Reader (User) Authenticated the module will automatically indicate this mode of operation by displaying Packet Mode Icon of the letter 'F' on the top line of the reader display as shown in Figure 11 below.

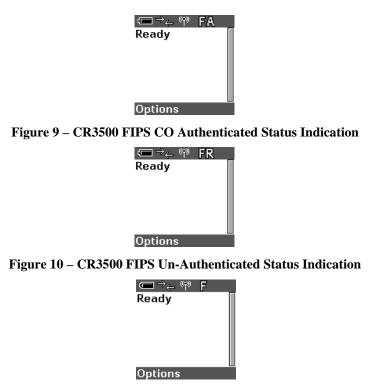


Figure 11 – CR3500 FIPS Reader (User) Authenticated Indication

3.2 Non-FIPS Mode of Operation

If the Power-on Initialization determines that the module has not been Initialized, the module does not provide access to any Cryptographic functions. In this state, the module will function as a non-FIPS Code reader would function – the modules will pass plain text data. This is the non-FIPS mode of operation for the module.

3.3 Approved and Allowed Algorithms

The cryptographic module supports the following FIPS Approved algorithms.

FIPS Approved Algorithm	CAVP Cert. #
AES: ECB; 128 and 256 bit	Cert. # 1457
AES: CTR; 256 bit; External Counter	Cert. # 1457
Block Cipher DRBG: AES; 256 bit	Cert. #55

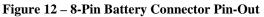
The cryptographic module supports the following non-FIPS Approved algorithms which are allowed for use in FIPS mode.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 15 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table 3 – FIPS Allowed Algorithms Used in Current Module

FIPS Allowed Algorithm

Hardware RNG: used to seed FIPS Approved DRBG


C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 16 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

4 Ports and Interfaces

The CR2500 FIPS and CR3500 FIPS bar code reader is a multi-chip standalone cryptographic module with ports and interfaces as shown below.

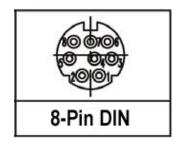


Figure 13 – 8-Pin DIN Connector Pin-Out

Table 4 – CR2500 FIPS and CR3500 FIPS Bar Code Reader Pins and FIPS 140-2 Ports and Interfaces

Pin	Module	FIPS 140-2 Designation	Name and Description
Battery Bay (BB) Pin 1	CR2500 & CR3500	Power Port	Input voltage (3.5V-5.5V)
BB Pin 2	CR2500 & CR3500	Power Port	Regulated main system voltage (3.3V)
BB Pin 3	CR2500 & CR3500	Power Port	Signal to indicate battery charge level
BB Pin 4	CR2500 & CR3500	Power Port	Signal to indicate battery charge level
BB Pin 5	CR2500 & CR3500	Power Port	Power to battery from DIN connector. Voltage (0V- 4.2V)
BB Pin 6	CR2500 & CR3500	Power Port	Signal to switch between charging the battery at a low rate (100mA) and a high rate (500mA)
BB Pin 7	CR2500 & CR3500	Control Input	Signal for an external camera trigger
BB Pin 8	CR2500 & CR3500	Power Port	Ground

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx

© 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

Page 17 of 32

8-Pin DIN Connector Pin 1 (DIN1)	CR2500 & CR3500	Power Port	VIN - Input Voltage to the voltage regulators/batter charging IC	
DIN2	CR2500 & CR3500	N/A	Data transfer via DIN cable (in or out of module) is disabled via firmware while in FIPS Mode.	
DIN3	CR2500 & CR3500	N/A	Data transfer via DIN cable (in or out of module) is disabled via firmware while in FIPS Mode.	
DIN4	CR2500 & CR3500	N/A	Data transfer via DIN cable (in or out of module) is disabled via firmware while in FIPS Mode.	
DIN5	CR2500 & CR3500	N/A	Data transfer via DIN cable (in or out of module) is disabled via firmware while in FIPS Mode.	
DIN6	CR2500 & CR3500	N/A	Data transfer via DIN cable (in or out of module) is disabled via firmware while in FIPS Mode.	
DIN7	CR2500 & CR3500	N/A	External trigger via DIN cable is disabled via firmware while in FIPS Mode.	
DIN8	CR2500 & CR3500	Power Port	Ground	
LCD Screen	CR3500	Status Output	Displays FIPS status	
LED Light	CR2500 & CR3500	Status Output	Displays FIPS status – Transmit Data/Error	
Speaker	CR2500 & CR3500	Status Output	Conveys FIPS status – Transmit Data/Error	
Camera	CR2500 & CR3500	Control Input / Data Input	Reads bar codes containing Commands and Data	
Bluetooth [®] Interface	CR2500 & CR3500	Data Output	Transmits Data to Modem, receives responses from Modem	
L SoftKey	CR3500	Data Input	Programmable Key for Data Input	
R SoftKey	CR3500	Data Input	Programmable Key for Data Input	
L Red Button	CR2500 & CR3500	Control Input	Camera Trigger	
R Red Button	CR2500 & CR3500	Control Input	Camera Trigger	
Navigation Ring (Up)	CR3500	Control Input	Navigation Key for Data Input – move cursor up	
Navigation Ring (Down)	CR3500	Control Input	Navigation Key for Data Input – move cursor down	
Navigation Ring (Left)	CR3500	Control Input	Navigation Key for Data Input – move cursor left	

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx

© 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

code

C005582 CR2500 FIPS and CR3500 FIPS Security Policy

Navigation Ring (Right)	CR3500	Control Input	Navigation Key for Data Input – move cursor right	
Enter (Blue) Button	CR3500	Control Input	Accepts Data Text Stream	
1 Key	CR3500	Data Input	Enters '1' or 'Space' into the Data Text Stream	
2 Key	CR3500	Data Input	Enters '2', 'A', 'B' or 'C' into the Data Text Stream	
3 Key	CR3500	Data Input	Enters '3', 'D', 'E' or 'F' into the Data Text Stream	
4 Key	CR3500	Data Input	Enters '4', 'G', 'H' or 'I' into the Data Text Stream	
5 Key	CR3500	Data Input	Enters '5', 'J', 'K' or 'L' into the Data Text Stream	
6 Key	CR3500	Data Input	Enters '6', 'M', 'N' or 'O' into the Data Text Stream	
7 Key	CR3500	Data Input	Enters '7', 'P', 'Q', 'R' or 'S' into the Data Text Stream	
8 Key	CR3500	Data Input	Enters '8', 'T', 'U' or 'V' into the Data Text Stream	
9 Key	CR3500	Data Input	Enters '9', 'W', 'X', 'Y' or 'Z' into the Data Text Stream	
0 Key	CR3500	Data Input	Enters '0' into the Data Text Stream	
Shift Key	CR3500	Data Input	Toggles between numeric characters, upper case text, lower case text, and symbol character input	
Clear Key	CR3500	Data Input	Clears Data Text Stream	

5 Identification and Authentication Policy

5.1 Assumption of Roles

The module supports two distinct operator roles, Reader (User) and Cryptographic Officer (CO). The cryptographic module enforces the separation of roles using re-authentication when changing roles. The Reader role is not allowed to change passwords on the device and the CO role is not allowed to send encrypted data.

Authentication is based on fixed-length, eight-character passwords using any character value in the range 0x20 - 0xFF.

The module provides neither a maintenance role or bypass capability.

Role	Description	Authentication Type	Authentication Data
CRYPTOGRAPHIC OFFICER	This role has access to initialize and zeroize the module. The CO is not allowed to transmit data.	Role-based operator authentication	Password is fixed at eight characters from the set 0x20 through 0xFF. Password must be scanned from a Data Matrix (ECC) barcode via the camera. No manual entry of Password is allowed.
READER (USER)	This role has access to data transmission and zeroize services. The Reader is not allowed to initialize.	Role-based operator authentication	Password is fixed at eight characters from the set 0x20 through 0xFF. Password must be scanned from a Data Matrix (ECC) barcode via the camera. No manual entry of Password is allowed.

Table 5 – Roles and Required Identification and Authentication

Table 6 – Strengths of Authentication Mechanisms

Authentication Mechanism	Strength of Mechanism
Passwords (Fixed-length, eight characters; 0x20-0xFF Extended ASCII character set)	The probability that a random attempt will succeed or a false acceptance will occur is a minimum of $1/2^{3*225}$ or $1/2^{675}$ or $1/1.5676426594103495798233121284485x10^{203}$ which is less than $1/1,000,000$. The probability of successfully authenticating to the module within one minute through random attempts is a minimum of $1/2^{(3*225)-12.55}$ or $1/2^{662.45}$ or $1/2$ $2.61409055292975750304018840341x10^{199}$ which is less than $1/100,000$. The calculations are based on eight character (2 ³) passwords built from a 225 character set. Code readers can read 6000 (or ~ $2^{12.55}$) bar codes per minute under ideal conditions.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 20 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

6 Access Control Policy

6.1 Roles and Services

Service	СО	Reader	Description
Authenticate	Х	X	Ensures the operator assuming role is authorized and limits the services available to a role.
Initialize	Х		Sets Cryptographic Officer Password, Reader Password, and Key Encryption Key.
Generate TEK		X	Generate a Traffic Encryption Key to encrypt data sent from reader module to modem module.
Transmit Encrypted Data		X	Transfer data from the Reader to the Modem using the Traffic Encryption Key.
Reboot	Х	X	Deletes CSPs and reboots module

6.2 Unauthenticated Services

The cryptographic module supports the following unauthenticated services:

Table 8 – Unauthenticated Services

Service	Description
Self Test	Re-runs Power-On Self Test
Zeroize	Clears Encryption Keys and Passwords. Requires the Initialize Command to be run to return to FIPS functionality.

6.3 Specification of Service Inputs & Outputs

Table 9 – Specification of Service Inputs & Outputs

Service	Control Input	Data Input	Data Output	Status Output
Self-Test	N/A	N/A	N/A	On FAIL - CR2500 & CR3500: AES/DRBG - LED Light flashes red .5 sec on, .5 sec off; Speaker/Vibration Motor CRC – Three Beeps
				On Success – CR2500: LED Light flashes blue 2 second on, 1 second off.

				On Success – CR3500: LED Screen displays 'FR' on the top right of the information bar.
Initialize	Left or Right Red Button press to activate camera	Initialize command, two eight character passwords and a 256 bit Key Encryption Key decoded from a Data Matrix bar code	Plain text control and KEK Encrypted Passwords and KEK encrypted new KEK via Bluetooth [®] Wireless to Modem	CR2500: LED Light flashes blue 1 second on, 1 second off. CR3500: LCD Screen displays 'FA' on the top right of the information bar.
Generate TEK	Authenticate Reader Role; paired with a Modem module	Authenticate command and eight character Reader password decoded from a Data Matrix bar code	Plain text control and KEK Encrypted TEK via Bluetooth [®] Wireless to Modem	CR2500: LED Light flashes Morse Code 'F' (••-•). CR3500: LCD Screen displays 'F' on the top right of the information bar.
Authenticate	Authenticate Left or Right Red Button press to activate camera	Authenticate command and one eight character passwords decoded from a Data Matrix bar code	Plain text control and KEK Encrypted CO or Reader password via Bluetooth [®] Wireless to	CR2500: Authenticate CO - LED Light flashes blue 1 second on, 1 second off. Authenticate READER - LED Light flashes Morse Code 'F' ().
	Modem		Modem	CR3500: Authenticate CO - LCD Screen displays 'FA' on the top right of the information bar. Authenticate READER - LCD Screen displays 'F' on the top right of the information bar.
Zeroize	Left or Right Red Button press to activate camera	Zeroize command decoded from a Data Matrix bar code	Plain text control via Bluetooth [®] Wireless to Modem	CR2500: LED Light no longer flashes Morse Code 'F' (•••••). CR3500: LED Screen no longer displays 'F'.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx

© 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

Transmit Encrypted Data	Left or Right Red Button press to activate camera	Clear-text data decoded from a bar code or OCR	TEK Encrypted Data via Bluetooth [®] Wireless to Modem	CR2500: LED Light flashes Morse Code 'F' (•••••). CR3500: LCD Screen displays 'F' on the top right of the information bar.
Reboot	Commands to change the communication mode of the reader	Clear-text data from camera	Plain text control via Bluetooth [®] Wireless to Modem	CR2500: LED Light no longer flashes Morse Code 'F' (•••••). CR3500: LCD Screen no longer displays 'F'.

6.4 Definition of Critical Security Parameters (CSPs)

The module contains the following CSPs:

Table 10 – Private	Keys and CSPs
--------------------	---------------

Key Name	Туре	Description
Key Encryption Key	AES-256: ECB	Key used to encrypt session-based Traffic Encryption Key as well as other CSPs sent to modem. Set in Initialization procedure.
DRBG Seed	Hardware RNG output	Hardware RNG seed; Generated and used, never stored.
Traffic Encryption Key	AES-256: CTR	Key used to encrypt data sent from Reader to Modem. This key is re-generated for each session to provide a higher level of confidentiality.
Reader Password	Eight characters; 0x20- 0xFF character set	Password used to authenticate the Reader (User) role
Cryptographic Officer Password	Eight characters; 0x20- 0xFF character set	Password used to authenticate the Cryptographic Officer role

6.5 Definition of CSPs Modes of Access

Table 13 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as:

- $\underline{\mathbf{G}} = \underline{\mathbf{G}} \underline{\mathbf{G}}$
- $\mathbf{R} = \text{Read}$: The module reads the CSP. The read access is typically performed before the module uses the CSP.
- $\underline{W = Write}$: The module writes the CSP. The write access is typically performed after a CSP is imported into the module, or the module generates a CSP, or the module overwrites an existing CSP.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 23 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table 11 – CSP Acc	ess Rights within	Roles & Services

Role	Authorized Service	Mode	Cryptographic Key or CSP
СО	Authenticate	R	Cryptographic Officer Password
		R	Key Encryption Key
	Initialize	W	New Key Encryption Key
		W	Reader Password
		W	Cryptographic Officer Password
		R	Existing Key Encryption Key
Reader (User)	Authenticate	R	Reader Password
		R	Key Encryption Key
	Transmit Encrypted Data	R	Traffic Encryption Key
	Generate TEK	G	Traffic Encryption Key
		W	Traffic Encryption Key
Un-Authenticated	Zeroize	Z	Key Encryption Key
or Any Role		Z	Traffic Encryption Key
		Z	Reader Password
		Ζ	CO Password
	Self-Test	N/A	N/A
	Reboot	Z	Traffic Encryption Key

7 Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the CR2500 FIPS and CR3500 FIPS bar code readers do not contain a modifiable operational environment.

code

8 Security Rules

The CR2500 FIPS and CR3500 FIPS bar code reader design corresponds to the CR2500 FIPS and CR3500 FIPS bar code reader security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 2 module.

- 1. The cryptographic module shall provide role-based authentication.
- 2. The cryptographic module shall provide two distinct operator roles. These are the Reader (User) role, and the Cryptographic Officer role.
- 3. The cryptographic module shall clear previous authentications on power cycle
- 4. The cryptographic module shall clear Traffic Encryption Keys on power cycle by overwriting with zeroes.
- 5. When the module has not been placed in a valid role, the operator shall not have access to any cryptographic services.
- 6. The cryptographic module shall perform the following tests
 - 6.1. Power up Self-Tests
 - 6.1.1. Critical function tests: Board initialization tests
 - 6.1.2. Cryptographic algorithm tests
 - 6.1.2.1. SP800-90 DRBG Known Answer Test
 - 6.1.2.2. AES Encrypt and Decrypt Known Answer Test
 - 6.1.3. Firmware Integrity Test CRC16 check of firmware on load (power on)
 - 6.2. Conditional Self-Test Continuous Random Number Generator (RNG) test performed on DRBG and Hardware RNG
- 7. The operator shall be capable of commanding the module to perform the power-up self-test by cycling the power of the module by removing and replacing the battery.
- 8. Power-up self tests do not require any operator action.
- 9. Data output shall be inhibited during key generation, self-tests, zeroization, and error states.
- 10. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 11. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 12. The module does not support concurrent operators.
- 13. The module does not support a maintenance interface or role.
- 14. The module does not support manual key entry.
- 15. The module only accepts commands, passwords and keys from Data Matrix bar codes via the camera interface. Data Matrix bar codes contain Error Correction Codes (ECC) to ensure integrity of data. Manual entry of CSPs via the keyboard is not allowed.
- 16. The module does not have any external input/output devices used for entry/output of data.
- 17. The module does not output intermediate key values.
- 18. The module does not support the update of the firmware.

9 Physical Security Policy

9.1 Physical Security Mechanisms

The multi-chip standalone CR2500 FIPS and CR3500 FIPS cryptographic modules are comprised of production-grade components and encased in a production-grade opaque enclosure. Four shell screws on each module are covered with blue tamper evident compound. The tamper evident compound is applied to the modules by Code Corporation in manufacturing before distribution to the end user.

9.2 Operator Required Actions

Examine the tamper evident seals monthly.

Physical Security Mechanisms	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Tamper Evident Seals	1 month	There are four tamper-evident seals on each module. Four (of six) of the screw holes in the bottom of the case will be filled with blue tamper evident compound (see Figure 14, below). The compound dries into a hard, brittle substance. Inspect the screw holes for any signs of scratching or broken compound. If any tampering is suspected, return the module to Code Corporation for testing and replacement of the tamper evident compound. Additionally, inspect the enclosure for visible signs of tampering (e.g., attempts to remove keypads or cracks in the LCD assembly).

Table 12 – Inspection/Testing of Physical Security Mechanisms

Figure 14 – Image showing the placement of tamper-evident seals (same for CR2500 FIPS and CR3500 FIPS)

10 Mitigation of Other Attacks Policy

The module has not been designed to mitigate attacks that are outside of the scope of FIPS 140-2.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 29 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

11 Pre-Initialization Mode

The module employs a Pre-Initialization mode that employs default values for the Cryptographic Officer role password, the Reader (User) role password and the Key Encryption Key. The only service that is available in pre-initialization mode is Authentication of the CO role. Once Authenticated the CO is required to Initialize the module before the Reader (User) role can be Authenticated.

The module returns to the Pre-Initialization state after it receives the Zeroization command. The passwords and KEK are returned to default and the TEK is overwritten with zeroes.

12 Delivery Security

The modules will be packed by Code Corporation representatives, sealed with packing tape, and then delivered via common carrier using a tracking code to the end user or their delegate. If the package is damaged in shipping, inspect the Tamper Evident seals to determine if the modules have been compromised.

C005582_02 CR2500 FIPS and CR3500 FIPS Security Policy.docx Page 31 of 32 © 2011 The Code Corporation • 14870 S. Pony Express Road, Suite 200, Bluffdale, UT 84065 • (801) 495-2200 • FAX (801) 495-0280 This document can be reproduced and distributed only whole and intact, including this copyright notice.

13 References

[FIPS 140-2] FIPS Publication 140-2 Security Requirements for Cryptographic Modules

[FIPS 197] FIPS Publication 197 ADVANCED ENCRYPTION STANDARD (AES)

[DRBG] NIST SP 800-90 Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised)

14 Definitions and Acronyms

KEK – Key Encryption Key; Encrypts passwords and keys exchanged between Reader and Modem

TEK - Traffic Encryption Key; Encrypts data exchanged between Reader and Modem