
NSS Cryptographic Module Freebl

Version 3.12.4
FIPS 140-2 Non-Proprietary Security Policy

Level 1 Validation

Red Hat, Inc.

Document Version 1.4

July 31 2009

Table of Contents

Introduction...3
Platform List..3
Security Rules..4
Authentication Policy..6

Specification of Roles...6
Multiple Concurrent Operators...6

Module Ports and Interfaces..7
Physical Cryptographic Boundary..7
Logical Cryptographic Boundary...8
Logical Interfaces...9

Access Control Policy...9
Security-Relevant Information..9

Self-Tests..9
Specification of Services..10

Sample Cryptographic Module Initialization Code..12
Acknowledgments...13

Introduction

A security policy includes the precise specification of the security rules under which the
cryptographic module must operate, including rules derived from the security
requirements of the FIPS PUB 140-2 standard, and the additional security rules listed
below. The rules of operation of the cryptographic module that define within which
role(s), and under what circumstances (when performing which services), an operator is
allowed to maintain or disclose each security relevant data item of the cryptographic
module.

There are three major reasons for developing and following a precise cryptographic
module security policy:

• To induce the cryptographic module vendor to think carefully and precisely about
who they want to access the cryptographic module, the way different system
elements can be accessed, and which system elements to protect.

• To provide a precise specification of the cryptographic security to allow
individuals and organizations (e.g., validators) to determine whether the
cryptographic module, as implemented, does obey (satisfy) a stated security
policy.

• To describe to the cryptographic module user (organization, or individual
operator) the capabilities, protections, and access rights they will have when
using the cryptographic module.

The NSS Freebl cryptographic module is an open-source, general-purpose cryptographic
hash library. It is available for free under the Mozilla Public License, the GNU General
Public License, and the GNU Lesser General Public License. The NSS Freebl
cryptographic module is jointly developed by Red Hat and Sun engineers and is used in
the GNU glibcrypt library.

The NSS cryptographic module has two modes of operation: the FIPS Approved mode
and non-FIPS Approved mode. By default, the module operates in the non-FIPS
Approved mode. To operate the module in the FIPS Approved mode, an application
must adhere to the security rules in the Security Rules section, initialize the module
properly with the fips_enabled flag in the Linux kernel set to true.

In addition the operating system must be configured in a single operator mode of
operation by removing all other user accounts and turning off all remote login and access
services.

This module is a multi-chip standalone module, and no components in the module are
excluded from FIPS 140-2 security requirements.

Page 3 of 13

Platform List

FIPS 140-2 conformance testing of the NSS Freebl cryptographic module was performed
on the following platforms listed below.

• Security Level 1
• 64-bit binary on IBM System x3550 running Red Hat Enterprise

Linux v5
• 32-bit binary on HP ProLiant DL145 running Red Hat

Enterprise Linux v5

The NSS Freebl cryptographic module supports many other platforms. If you would like
to have the module validated on other platforms, please contact us.

Security Rules

The following list specifies the security rules that the NSS Freebl cryptographic module
and each product using the module shall adhere to:

1. The NSS Freebl cryptographic module shall consist of software libraries
compiled for each supported platform.

2. The cryptographic module shall rely on the underlying operating system to ensure
the integrity of the cryptographic module loaded into memory. A cryptographic
module user shall have access to all the services provided by the cryptographic
module.

3. Message digesting services are public only since CSPs are not accessed.

4. In the FIPS Approved mode of operation, the cryptographic module shall enforce
rules specific to FIPS 140-2 requirements.

5. In the FIPS Approved mode of operation the cryptographic module shall not
allow critical errors to compromise security. Whenever a critical error (e.g., a
self-test failure) is encountered, the cryptographic module shall enter an error
state and the library shall need to be reinitialized to resume normal operation.
Reinitialization is accomplished by calling NSSLOW_Shutdown followed by
NSSLOW_Init.

6. Resetting and restarting the NSS Freebl cryptographic module with the
NSSLOW_Reset and NSSLOW_Init functions shall execute the same power-
up self-tests detailed above when initializing the module library for the FIPS
Approved mode. This allows a user to execute these power-up self-tests on
demand as defined in Section 4.9.1 of FIPS 140-2.

7. The FIPS 140-2 cipher suite shall consist solely of Secure Hash Standard (SHA-1,
SHA-256, SHA-384, and SHA-512) (FIPS 180-2) for hashing.

Page 4 of 13

Algorithm validation certificates:

Algorithm Cert# Description

SHS 1048 SHA-1 (BYTE-only)
SHA-256 (BYTE-only)
SHA-384 (BYTE-only)
SHA-512 (BYTE-only)

DSA 366 DSA 1024 used internally for
integrity checking

The NSS Freebl cryptographic module implements the following non-Approved
algorithms, which shall not be used in the FIPS Approved mode of operation:

• MD2 or MD5 for hashing.

8. Once the FIPS Approved mode of operation has been selected, SHA-1, SHA-256,
SHA-386, and SHA-512 shall be the only algorithms used to perform one-way
hashes of data.

9. The NSS Freebl cryptographic module consists of the following shared
libraries/DLLs and the associated .chk files:

• Red Hat Enterprise Linux 5 x86, and Red Hat Enterprise Linux 5 x86_64
• libfreebl3.so
• libfreebl3.chk

The installation instructions are:
Step 1: Install the shared libraries/DLLs and the associated .chk files in a
directory on the shared library/DLL search path, which could be a system library
directory (/usr/lib on Unix/Linux) or a directory specified in the following
environment variable:

• Linux: LD_LIBRARY_PATH

Step 2: Use the chmod utility to set the file mode bits of the shared
libraries/DLLs to 0755 so that all users can execute the library files, but only the
files' owner can modify (i.e., write, replace, and delete) the files. For example, on
most Unix and Linux platforms,

 $ chmod 0755 llibfreebl3.so

The discretionary access control protects the binaries stored on disk from being
tampered with.

Step 3: Use the chmod utility to set the file mode bits of the associated .chk
files to 0644. For example, on most Unix and Linux platforms,

 $ chmod 0644 libfreebl3.chk

Page 5 of 13

Step 4: The kernel fip_enable flag must be set to '1'. The NSS Freebl
cryptographic module detects this by reading /proc/sys/crypto/fips_enabled.

(End of Security Rules)

Authentication Policy

Specification of Roles

The NSS Freebl cryptographic module supports two authorized roles for operators.

● The NSS User role provides access to all module services specified in the
'Specfication of Services' table on page 11.

● The Crypto Officer role is supported for the installation and initialization of the
module. The Crypto Officer must control the access to the module both before
and after installation. Control consists of management of physical access to the
computer executing the NSS Freebl cryptographic module code as well as
management of the security facilities provided by the operating system.

The NSS Freebl cryptographic module does not have a maintenance role. The roles are
implicitly-assumed, as the module does not implement any authentication.

Multiple Concurrent Operators

The NSS Freebl cryptographic module doesn't allow concurrent operators.

• The operating system has been restricted to a single operator mode of operation,
so concurrent operators are explicitly excluded (FIPS 140-2 Section 4.6.1).

Module Ports and Interfaces

Physical Cryptographic Boundary

Page 6 of 13

Page 7 of 13

Logical Cryptographic Boundary

Page 8 of 13

Logical Interfaces

The following four logical interfaces have been designed within the NSS Freebl
cryptographic module.

1. Data input interface: function input arguments that specify plaintext data; and
hash data that are to be input to and processed by the NSS Freebl cryptographic
module.

2. Data output interface: function output arguments that receive plaintext data; and
hash data from the NSS Freebl cryptographic module.

3. Control input interface: function calls, or input arguments that specify commands
and control data (e.g., algorithms, algorithm modes, or module settings) used to
control the operation of the NSS Freebl cryptographic module

4. Status output interface: function return codes, error codes, or output arguments
that receive status information used to indicate the status of the NSS Freebl
cryptographic module

The NSS Freebl cryptographic module uses different function arguments for input and
output to distinguish between data and control for input and data and status for output,
and to disconnect the logical paths followed by data/control entering the module and
data/status exiting the module. The NSS Freebl cryptographic module doesn't use the
same buffer for input and output. After the NSS Freebl cryptographic module is done
with an input buffer that holds security-related information, it always zeroizes the buffer
so that if the memory is later reused as an output buffer, no sensitive information may be
inadvertently leaked.

Access Control Policy

This section identifies the cryptographic keys and CSPs that the user has access to while
performing a service, and the type of access the user has to the CSPs. The NSS Freebl
cryptographic module does not access CPSs.

Security-Relevant Information

Self-Tests

In the FIPS Approved mode of operation the cryptographic module does not allow
critical errors to compromise security. Whenever a critical error (e.g., a self-test failure)
is encountered, the cryptographic module enters an error state and the library needs to be
reinitialized to resume normal operation. Reinitialization is accomplished by calling
NSSLOW_Shutdown followed by NSSLOW_Init.

Page 9 of 13

Upon initialization of the cryptographic module library for the FIPS Approved mode of
operation, the following power-up self-tests shall be performed:

a) SHA-1 hash,
b) SHA-256 hash,
c) SHA-384 hash,
d) SHA-512 hash,
e) DSA signature verification integrity check

Resetting and restarting the NSS cryptographic module with the NSSLOW_Reset and
NSSLOW_Init functions shall execute the same power-up self-tests detailed above
when initializing the module library for the FIPS Approved mode. This allows a user to
execute these power-up self-tests on demand as defined in Section 4.9.1 of FIPS 140-2.

On success NSSLOW_Init will return an init context required by NSSLOW_Reset,
NSSLOW_Shutdown and NSSLOWHASH_CreateContext. On failure NSSLOW_Init
will return NULL.

Specification of Services

Cryptographic module consists solely of public services which require no user
authentication.

Page 10 of 13

Service
Category

Role Function Name Description Cryptograp
hic Keys
and CSPs
Accessed

Acc
ess
type

,
RWZ

General
purpose

User NSSLOW_Init initializes the module
library, checks for the
FIPS Approved mode
of operation. This
function provides the
power-up self-test
service and the Show
Status service.

none -

User NSSLOW_Shutdown finalizes (shuts down)
the module library

none Z

User NSSLOW_Reset resets the power on
self-test flag

none -

Message
digesting

User NSSLOWHASH_NewCon
text

Create a hashing
context to be used by
NSSLOWHASH_Begi
n,
NSSLOWHASH_Upd
ate,
NSSLOWHASH_Dest
roy, and
NSSLOWHASH_Len
gth

none

User NSSLOWHASH_Begin initializes a message-
digesting operation

none -

User NSSLOWHASH_Update continues a multiple-
part digesting
operation

none -

User NSSLOWHASH_Destroy finishes a multiple-
part digesting
operation

none -

User NSSLOWHASH_Length Returns the length of
the selected hash

none -

Page 11 of 13

Sample Cryptographic Module Initialization Code

#include <stdio.h>
#include <nspr4/prtypes.h>
#include <nss3/hasht.h>
#include "nsslowhash.h"

 /* SHA-256 Known Digest Message (256-bits). */
 static const unsigned char sha256_known_digest[] = {
 0x38,0xa9,0xc1,0xf0,0x35,0xf6,0x5d,0x61,
 0x11,0xd4,0x0b,0xdc,0xce,0x35,0x14,0x8d,
 0xf2,0xdd,0xaf,0xaf,0xcf,0xb7,0x87,0xe9,
 0x96,0xa5,0xd2,0x83,0x62,0x46,0x56,0x79};

/* Known Hash Message (512-bits). Used for all hashes (incl. SHA-N
[N>1]). */
static const unsigned char known_hash_message[] = {
 "The test message for the MD2, MD5, and SHA-1 hashing algorithms." };

main(int argc, char **argv)
{
 NSSLOWInitContext *initCtx;
 NSSLOWHASHContext *ctx;
 unsigned char results_buf[64];
 int len;

 initCtx = NSSLOW_Init();
 if (initCtx == NULL) {
 printf("Couldn't init hash\n");
 return 1;
 }
 ctx = NSSLOWHASH_NewContext(initCtx, HASH_AlgSHA256);
 if (ctx == NULL) {
 printf("Couldn't get hash context\n");
 return 1;
 }
 NSSLOWHASH_Begin(ctx);
 NSSLOWHASH_Update(ctx, known_hash_message, 64);
 NSSLOWHASH_End(ctx, results_buf, &len, sizeof(results_buf));
 NSSLOWHASH_Destroy(ctx);
 NSSLOW_Shutdown(initCtx);

 if (len != sizeof(sha256_known_digest)) {
 printf("Hash result lengths do not match (%d != %d)\n",
 len, sizeof(sha256_known_digest));
 return 2;
 }
 if (memcmp(sha256_known_digest, results_buf, len) != 0) {

Page 12 of 13

 printf("Hash result not match\n");
 return 3;
 }
 printf(" hash completed and OK \n");

 return 0;
}

Acknowledgments

Matthew Harmsen, John Hines, Ian McGreer, and Bishakha Banerjee, Wan-Teh Chang,
Glen Beasley and Neil Williams wrote previous versions of this document. Julien Pierre
and Steve Parkinson's review comments improved the presentation and accuracy of the
information. Elio Maldonado updated this version. The current version was written by
Robert Relyea.

Page 13 of 13

	Introduction
	Platform List
	Security Rules
	Authentication Policy
	Specification of Roles
	Multiple Concurrent Operators

	Module Ports and Interfaces
	Physical Cryptographic Boundary
	Logical Cryptographic Boundary
	Logical Interfaces

	Access Control Policy
	Security-Relevant Information
	Self-Tests
	Specification of Services

	Sample Cryptographic Module Initialization Code
	Acknowledgments

