

Hydra PC Locksmith Security Policy

Revision Document No. 1.1

December 17, 2009

SPYRUS, Inc. info@spyrus.com> <http://www.spyrus.com>

SPYRUS Document No. 550-074001-01 Copyright © 2009 SPYRUS, Inc. All rights reserved.

(||) ()

KD

Copyright © 2009 SPYRUS, Inc. All rights reserved. SPYRUS Document No. 550-074001-02

This document is provided only for informational purposes and is accurate as of the date of publication. This document may be copied subject to the following conditions:

- All text must be copied without modification and all pages must be included.
- All copies must contain the SPYRUS copyright notices and any other notices provided herein.

Trademarks

SPYRUS, the SPYRUS logos, Hydra Privacy Card, Hydra PC and Hydra PC Locksmith are either registered trademarks or trademarks of SPYRUS, Inc. in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Contents

1	INT	RODUCTION1	
	1.1 1.2 1.3 1.4	Hydra PC Locksmith Overview1Hydra PC Locksmith Implementation2Hydra PC Locksmith Cryptographic Boundary2Approved Mode of Operations2	
2	FIP	S 140-2 SECURITY LEVELS	
3	SEC	CURITY RULES	
	3.1 3.2 3.3	FIPS 140-2 Imposed Security Rules4SPRYUS Imposed Security Rules7Identification and Authentication Policy8	
4	Hy	DRA PC LOCKSMITH ROLES AND SERVICES	
	4.1 4.2	Roles 8 Services 9	
5	IDE	NTIFICATION AND AUTHENTICATION12	
	5.1 5.2 5.3 5.4	Initialization Overview12Operator Authentication12Generation of Random Numbers12Strength of Authentication12	
6	Aco	CESS CONTROL 14	
	6.1 6.2 6.3	Critical Security Parameters (CSPs) and Public Keys	
7	SEL	F-TESTS	
8	MI	TIGATION OF OTHER ATTACKS17	
9	A CRONYMS 18		
R	EFERE	NCES	

1 Introduction

This Security Policy specifies the security rules under which the Hydra PC Locksmith operates. Included in these rules are those derived from the security requirements of FIPS 140-2 and additionally, those imposed by SPYRUS, Inc. These rules, in total, define the interrelationship between:

- 1. Operators,
- 2. Services, and
- 3. Critical Security Parameters (CSPs).

Figure 1 Hydra PC Locksmith (Topside)

1.1 Hydra PC Locksmith Overview

The Hydra PC Locksmith enables security critical capabilities such as operator authentication and secure storage in rugged, tamper-evident hardware. The Hydra PC Locksmith communicates with a host computer via the USB interface. The Hydra PC Locksmith is the strongest encryption solution commercially available. Hydra PC Locksmith protects data for government, large enterprises, small organizations, and home users. Key features:

- Encryption technology uses Suite B algorithms approved by the U.S. government for protecting both Unclassified and Classified data
- Encrypted file storage on non-removable flash card

• Strong protection against intruder attacks

Access protection is as important as encryption strength. Data encrypted with Hydra PC Locksmith cannot be decrypted until the authorized user gains access to the device.

1.2 Hydra PC Locksmith Implementation

The Hydra PC Locksmith is implemented as a multi-chip standalone module as defined by FIPS 140-2. The FIPS 140-2 module identification data for the Hydra PC Locksmith is shown in the table below:

Part Number	FW Version	HW Version
880074001F	03.00.04	02.00.01

Table 1-1 Hydra PC Locksmith

The Hydra PC Locksmith is available with a USB interface compliant to the <u>Universal Serial Bus Specification</u>, Revision 2.0, dated 23 September 1998. All Interfaces have been tested for compliance with FIPS 140-2.

1.3 Hydra PC Locksmith Cryptographic Boundary

The Cryptographic Boundary is defined to be the outer perimeter of the hard, opaque, epoxy potting. Please see Figure 1.

No hardware, firmware, or software components that comprise the Hydra PC Locksmith are excluded from the requirements of FIPS 140-2.

1.4 Approved Mode of Operations

The Hydra PC Locksmith operates only in a FIPS Approved mode. The indicator that shows the operator that the module is in the Approved mode is the "GetCapabilities" command, which shows the module's firmware and hardware versions as well as the product indicator.

The Hydra PC Locksmith supports the FIPS 140-2 approved algorithms in Table 1-2 below and the following allowed algorithm:

• EC-Diffie-Hellman (ECDH) for key transport / key agreement as allowed by FIPS 140-2 Implementation Guidance D.2 (key agreement; key establishment methodology provides 80 bits of encryption strength).

Table 1-2	Approved	Algorithms	supported by	Hydra	PC Locksmith

Encryption & Decryption		
AES-128/192/256 (Certs. #1016 and #1104)		
Digital Signatures		
ECDSA, key sizes: 256, 384, 521 (Cert. #129)		
Hash		
SHA-224, SHA-256, SHA-384, SHA-512 (Certs. #973, #974		
and #1027)		
Random Number Generator		
HASH_DRBG (SP 800-90) (Cert. #14)		
RNG for Seeding		
FIPS 186-2 (Cert. #582)		
Key Transport / Key Agreement		
KAS (SP 800-56A, vendor affirmed, key agreement; key		
establishment methodology provides 80 bits of encryption		
strength)		

2 FIPS 140-2 Security Levels

The Hydra PC Locksmith cryptographic module complies with the requirements for FIPS 140-2 validation to the levels defined in Table 2.1. The FIPS 140-2 overall rating of the Hydra PC Locksmith is Level 2

FIPS 140-2 Category	Level
1. Cryptographic Module Specification	3
2. Cryptographic Module Ports and Interfaces	2
3. Roles, Services, and Authentication	3
4. Finite State Model	2
5. Physical Security	2
6. Operational Environment	N/A
7. Cryptographic Key Management	2
8. EMI/EMC	3
9. Self-tests	2
10. Design Assurance	3
11. Mitigation of Other Attacks	N/A

Table 2-1	FIPS	140-2	Certification	Levels
-----------	------	-------	---------------	--------

3 Security Rules

The Hydra PC Locksmith enforces the following security rules. These rules are separated into two categories: 1) rules imposed by FIPS 140-2; and 2) rules imposed by SPYRUS.

3.1 FIPS 140-2 Imposed Security Rules

Policy	Rule Statement
Authentication Feedback	The Hydra PC Locksmith shall obscure feedback of authentication data to an operator during authentication (e.g., no visible display of characters result when entering a password).
Authentication Mechanism	The Hydra PC Locksmith shall enforce Identity- Based authentication.
Authentication Strength (1)	The Hydra PC Locksmith shall ensure that feedback provided to an operator during an attempted authentication shall not weaken the strength of the authentication mechanism.
Authentication Strength (2)	The Hydra PC Locksmith shall satisfy the requirement for a single–attempt false acceptance rate of no more than one in 1,000,000 authentications.
Authentication Strength (3)	The Hydra PC Locksmith shall satisfy the requirement for a false acceptance rate of no more than one in 100,000 for multiple authentication attempts during a one minute interval.
Configuration Management	The Hydra PC Locksmith shall be under a configuration management system and each configuration item shall be assigned a unique identification number.
CSP Protection	The Hydra PC Locksmith shall protect all CSPs from unauthorized disclosure, modification, and substitution.

 Table 3-1 FIPS 140-2 Policies and Rule Statements

Policy	Rule Statement
Emissions Security	The Hydra PC Locksmith shall conform to the
	EMI/EMC requirements specified in FCC Part
	15, Subpart B, Class B.
Error State (1)	The Hydra PC Locksmith shall inhibit all data
	output via the data output interface whenever an
	error state exists and during self-tests.
Error State (2)	The Hydra PC Locksmith shall not perform any
	cryptographic functions while in an Error State.
	cryptographic functions while in an Error otate.
Guidance Documentation	The Hydra PC Locksmith documentation shall
	provide Administrator and User Guidance per
	FIPS 140-2, Section 4.10.4.
Hardware Quality	The Hydra PC Locksmith shall contain
	production quality ICs with standard passivation.
Interfaces (1)	The Hydra PC Locksmith interfaces shall be
	logically distinct from each other.
Interfaces (2)	The Hydra PC Locksmith shall support the
	following five (5) interfaces:
	data input
	data output
	control input
	status output
	power interface
Key Association	The Hydra PC Locksmith shall provide that: a
	key entered into, stored within, or output from
	the Hydra PC Locksmith is associated with the
	correct entity to which the key is assigned.
Logical Separation	The Hydra PC Locksmith shall logically
	disconnect the output data path from the circuitry
	and processes performing the following key
	functions:
	key generation, key zeroization
	key zeroization
Mode of Operation	The Hydra PC Locksmith services shall indicate
	that the module is in an approved mode of
	operation with a standard success return code

Policy	Rule Statement
	and the output of the "GetCapabilities" command.
Physical Security	The Hydra PC Locksmith implements an opaque, tamper-evident epoxy. In order to maintain the security of the module, the operator can inspect the epoxy for any chips, scratches, or other evidence of tamper.
Public Key Protection	The Hydra PC Locksmith shall protect public keys against unauthorized modification and substitution.
Re-authentication	The Hydra PC Locksmith shall re-authenticate an identity when it is powered-up after being powered-off.
RNG Strength	The Hydra PC Locksmith shall use a 'seed input' into the deterministic random bit generator of sufficient length that ensures at least the same amount of operations are required to determine the value of the generated key.
Secure Development (1)	The Hydra PC Locksmith source code shall be annotated.
Secure Development (2)	The Hydra PC Locksmith software shall be implemented using a high-level language except that limited use of a low-level language is used to enhance the performance of the module.
Secure Distribution	The Hydra PC Locksmith documentation shall include procedures for maintaining security while distributing and delivering the module.
Self-tests (1)	The power-up tests shall not require operator intervention in order to run.
Self-tests (2)	The Hydra PC Locksmith shall perform the self- tests identified in Section 7.
Self-tests (3)	The Hydra PC Locksmith shall enter an Error State and output an error indicator via the status interface whenever self-test is failed.
Services	The Hydra PC Locksmith shall provide the

Policy	Rule Statement
	following services:
	(see Reference Table 4.2).
Software Integrity	The Hydra PC Locksmith shall apply a SHA-384 hash to check the integrity of all firmware components
Status Output	The Hydra PC Locksmith shall provide an indication via the "GetUserState" command if all of the power-up tests are passed successfully.
Strength of Key Establishment	The Hydra PC Locksmith shall use a key establishment methodology that ensures at least the same amount of operations are required to determine the value of the transported/agreed upon key.
Unauthorized Disclosure	The Hydra PC Locksmith shall protect the following keys from unauthorized disclosure, modification and substitution: • secret keys • private keys.
Zeroization (1)	The Hydra PC Locksmith shall provide a zeroization mechanism that can be performed either procedurally by the operator <i>or</i> automatically by the Hydra PC Locksmith interface software on the connected host platform.
Zeroization (2)	The Hydra PC Locksmith shall provide the capability to zeroize all plaintext cryptographic keys and other unprotected critical security parameters within the Hydra PC Locksmith (HPC140-F).

3.2 SPRYUS Imposed Security Rules

Table 3-2	SPYRUS Impos	sed Policies and Ru	le Statements
-----------	--------------	---------------------	---------------

Policy	Rule Statement
Single User Session	The Hydra PC Locksmith shall not support

Policy	Rule Statement
	multiple concurrent operators.
No Maintenance Interface	The Hydra PC Locksmith shall not provide a maintenance role/interface.
No Bypass Mode	The Hydra PC Locksmith shall not support a bypass mode.

3.3 Identification and Authentication Policy

The table below describes the type of authentication and the authentication data to be used by operators, by role. For a description of the roles, see section 4.2.

Role	Type of Authentication	Authentication Data
Administrator (CO)	Identity-based	Service and ECDSA Signature (384-bits)
User	Identity-based	Service and PIN (minimum 7 to 262 characters)

 Table 3-3 Identification and Authentication Roles and Data

4 Hydra PC Locksmith Roles and Services

4.1 Roles

The Hydra PC Locksmith supports two roles, Administrator (Crypto-Officer) and User, and enforces the separation of these roles by restricting the services available to each one. Each role is associated with a single user identity, namely the service that has been requested and is associated with the role.

Table 4-1 Roles and Responsibilities

Role	Responsibilities
Administrator	The Administrator is responsible for performing Firmware Updates and setting configuration of the Hydra PC Locksmith (HPC140-F). The Hydra PC Locksmith validates the Administrator identity by way of a signature before accepting any FirmwareUpdate or SetConfiguration commands.
User	The User role is available after the Hydra PC Locksmith has been initialized. The user can load, generate and use secret keys for encryption services.

The Hydra PC Locksmith validates the User identity by password before access is granted.

4.2 Services

The following table describes the services provided by the Hydra PC Locksmith (HPC140-F).

Service	CO	User	Unauthenticated	Description
ChangePassword		Х		Changes User Password
Format		Х		Formats the mounted CDROM
GetCapabilities			X	Returns the current capabilities of the system including: global Information, media storage size and the product name. This service provides a response that indicates the approved mode of operation

 Table 4.2 Hydra PC Locksmith Services

Service	CO	User	Unauthenticated	Description
				(see Section 3.1).
GetConfig			Х	Returns the card configuration structure
GetUserState			Х	Returns the state and the Logon attempts remaining.
Initialize		X		Generates a new encryption key and changes the PIN. Secure channel is required. Formats the media.
LogOff		Х		Log Off; Return to unauthenticated state.
LogOn		X		Log on with the user PIN if system is initialized.
MountCDROM		X		Allows the CDROM drive to be mounted as the read/write drive. This permits the CDROM software to be updated by a user application.
ReadMedia		Х		Read user media from SCSI drive.
ReadUserArea			Х	Get a block of data from a specified user area.

Service	CO	User	Unauthenticated	Description
SelfTest			X	Pass/Fail Test of HYDRA PC LOCKSMITH. Will run the Power On Self Tests again.
SetConfig	Х			Writes the card configuration structure if the signature on the structure is valid
SetupBasicSecureChannel			Х	Initializes secure channel.
UpdateFirmware	X			Writes signed blocks to the firmware area of the HYDRA PC LOCKSMITH.
WriteMedia		Х		Writes user media to SCSI drive.
WriteUserArea		Х		Write a block of data to a specified user area. All areas will require the token to be logged on for writes and updates
Zeroize			Х	Clears the encryption keys. Requires the Initialize command to be run again.

5 Identification and Authentication

5.1 Initialization Overview

The Hydra PC Locksmith modules are initialized at the factory to be in the zeroized state. Before an operator can access or operate a HYDRA PC Locksmith, the User must first initialize the module with a User ID and PIN.

5.2 Operator Authentication

Operator Authentication is accomplished by PIN entry by the User or valid ECDSA signature by the CO. Once valid authentication information has been accepted, the Hydra PC Locksmith is ready for operation.

The Hydra PC Locksmith stores the number of User logon attempts in nonvolatile memory. The count is reset after every successful entry of a User PIN. If an incorrect PIN is entered during the authentication process, the count of unsuccessful logon attempts is incremented by one.

If the User fails to log on to the Hydra PC Locksmith in 10 consecutive attempts, the Hydra PC Locksmith will block the user's access to the module, by transitioning to the blocked state. To restore operation to the Hydra PC Locksmith (HPC140-F), the User will have to zeroize the token and reload the User PIN and optional details. When the Hydra PC Locksmith is inserted after zeroization, it will power up and transition to the Zeroized State, where it can be initialized.

5.3 Generation of Random Numbers

The Random Number Generators are not invoked directly by the user. The Random Number output is generated by the HASH-DRBG algorithm specified in SP 800-90 in the case of static private keys and associated key wrapping keys, ephemeral keys and symmetric keys.

5.4 Strength of Authentication

The strength of the authentication mechanism is stated in Table 5-1 below.

Authentication Mechanism	Strength of Mechanism
User Single PIN-entry attempt / False	The probability that a random PIN-entry
Acceptance Rate	attempt will succeed or a false acceptance
	will occur is 1.66 x10 ⁻¹⁴ . The requirement
	for a single-attempt / false acceptance rate
	of no more than 1 in 1,000,000 (i.e., less
	than a probability of 10 ⁻⁶) is therefore met.
User Multiple PIN-entry attempt in one	Hydra PC Locksmith authentication
minute	mechanism has a feature that doubles the
	time of authentication with each
	successive failed attempt. There is also a maximum bound of 10 successive failed
	authentication attempts before zeroization
	occurs. The probability of a successful
	attack of multiple attempts in a one minute
	period is 1.66 x10 ⁻¹³ due to the time
	doubling mechanism. This is less than one
	in 100,000 (i.e., 1×10^{-5}), as required.
Crypto Officer Single attempt / False	The probability that a random ECDSA
Acceptance Rate	signature verification authentication
	attempt will succeed or a false acceptance
	will occur is 1/2^192. The requirement for a
	single-attempt / false acceptance rate of
	no more than 1 in 1,000,000 (i.e., less than
Crupto Officer Multiple DIN entry attempt in	a probability of 10 ⁻⁶) is therefore met.
Crypto Officer Multiple PIN-entry attempt in one minute	The probability of a successful attack of multiple ECDSA signature authentication
	attempts in a one minute period is 1/2^192.
	The computational power needed to
	process this is outside of the ability of the
	module. This is less than one in 100,000
	(i.e., 1×10^{-5}), as required.

Table 5-1	Strength	of Authentication
-----------	----------	-------------------

6 Access Control

6.1 Critical Security Parameters (CSPs) and Public Keys

			<u>.</u>
CSP Designation	Algorithm(s) /	Symbolic	Description
	Standards	Form	
Disk Ephemeral Private	SP 800-56A	d _{e,U}	ECDH ephemeral private key used to
		.,	generate shared secret.
Disk Key Encryption	AES 256	DKEK	AES key used to unwrap the Disk
Key (DKEK)			Encryption Key (DEK).
Drive Encryption Key	AES 512	DEK	A pair of AES 256 keys. The
(DEK)			concatenated value is used to encrypt
			and decrypt the User's encrypted drive.
Hash-DRBG Seed	SP 800-90	S	FIPS 186-2-generated seed used to
			seed the Hash-DRBG RNG.
Hash-DRBG State	SP 800-90	S _{HDRBG}	Hash_DRBG state value
Master Encryption Key	AES 256	MEK	AES 256 wraps / unwraps user's static
(MEK)			private keys in storage.
Secure Channel HYDRA	SP 800-56A	d _{e,SCHP}	ECDH Ephemeral Transport Private
Private			
Secure Channel	SP 800-56A	k _{SCSK}	ECDH / AES key used to encrypt and
Session Key			decrypt commands and responses to
			and from the card.
User PIN		PIN	The user's 7 character PIN for
			authentication to the module
User's Static Signature	X9.62	d _{ECDSA,s,U}	ECDSA Static Signature private key
Private			
User's Static Transport	SP 800-56A	d _{s,U}	ECDH Static Transport private key
Private			
FIPS 186-2 RNG Seed	Hardware RNG	Seed	Seed value generated for use with the
			RNGs

Table 6-1 Hydra PC Locksmith CSPs

Table 6-2 HYDRA PC Locksmith Public Keys

Key	Algorithm(s) Standards	Description/Usage
Configuration Update Key	ANSI X9.62	The ECDSA P-384 public Key is used to verify the signature of the CO before the settings are changed
Card Firmware Update Key	ANSI X9.62	The ECDSA P-384 public Key is used to verify the signature of the CO before loading firmware.

Key	Algorithm(s) Standards	Description/Usage
Disk Ephemeral Public	SP 800-56A	ECDH Ephemeral Transport Public P384. The key is used to generate a shared secret using ECDH with the User's Static Transport Private key.
Secure Channel Host Public	SP 800-56A	ECDH Ephemeral Transport Public P256
Secure Channel HYDRA Public	SP 800-56A	ECDH Ephemeral Transport Public P256. The key is used to generate a shared secret between the host and the card.
User's Static Signature Public	SP 800-56A	ECDH Static Signature Public P384. The key for ECDSA.
User's Static Transport Public	SP 800-56A	ECDH Static Transport Public P384. The key for ECDH.

6.2 CSP Access Modes

Access Type	Description
Generate (G)	"Generate" is defined as the creation of a CSP
Delete (D)	"Delete" is defined as the zeroization of a CSP
Use (U)	"Use" is defined as the process in which a CSP is employed. This can be in the form of loading, encryption, decryption, signature verification, or key wrapping.

6.3 Access Matrix

The following table shows the services (see section 4.2) of the Hydra PC Locksmith (HPC140-F), the roles (see section 4.1) capable of performing the service, the CSPs (see section 6.1) that are accessed by the service and the mode of access (see section 6.3) required for each CSP. The following convention is used: if the role column has an 'X', then that role may execute the command.

Service Name	Roles		Access to Critical Security	
		1	Parameters	
	Admin	User	CSPs	Access Mode
ChangePassword		Х	k _{SCSK}	U
			d _{s,U}	U
			d _{ECDSA,s,U}	U
			d _{e,U,}	U
			DKEK	G, U, D
			DEK	U
			PIN	D,G
Format		Х	d _{e,U}	G, U, D
			DKEK,	G,U,D
			DEK	G,U
GetCapabilities	X	Х		
GetConfiguration	X	X		
GetUserState	X	X		
Initialize		Х	k _{scsк}	U
			d _{s,U}	G
			d _{ECDSA,s,U}	G
			d _{e,U,}	G, U, D
			DKEK	G, U, D
			DEK	G
			MEK	U
			Seed	G, U, D
LogOff		Х		
LogOn		Х	k _{SCSK}	U
			d _{s,U}	U
			DKEK	G,U,D
			DEK	U
			PIN	U
MountCDROM		Х	DEK	U
ReadMedia		Х	DEK	U
ReadUserArea	Х	Х		
SelfTest	Х	Х	S, S _{HDRBG} ,	G
SetConfiguration	X		d _{s,U}	D
			d _{ECDSA,s,U}	D
			DEK	D
SetupBasicSecureChannel		x	d _{e,SCHP}	G,D
•			K _{SCSK}	G,D
UpdateFirmware	Х		d _{s,U}	D
-			d _{ECDSA,s,U}	D
			DEK	D
WriteMedia		Х	DEK	U
WriteUserArea		Х		

Table 6-4 Hydra PC Locksmith Access Matrix

Service Name	Roles		Access to Critical Security Parameters	
	Admin	User	CSPs	Access Mode
Zeroize	Х	Х	d _{s,U}	D
			d _{ECDSA,s,U}	D
			DEK	D

7 Self-Tests

The module performs both power-on and conditional self-tests. The module performs the following power on self-tests:

- Cryptographic Algorithm Tests:
 - AES-128, 192, 256 KATs
 - ECDSA-256, 384, 521 KATs
 - EC-Diffie-Hellman-256, 384, 521 KATs
 - SHA-224 KAT
 - SHA-256 KAT
 - SHA-384 KAT
 - SHA-512 KAT
 - HASH-DRBG KAT
 - FIPS 186-2 RNG KAT
- Firmware Test
 - SHA-384 Hash

The module performs the following Conditional Tests:

- Firmware Load Test
 - ECDSA P-384 signed SHA-384 hash verification
- Pairwise Consistency Test
 - ECDSA key pair generation
 - EC-Diffie-Hellman key pair generation
- Continuous Random Number Generator Test
 - HASH-DRBG SP800-90
 - FIPS 186-2

8 Mitigation of Other Attacks

No claims of mitigation of other attacks listed in Section 4.11 of FIPS 140-2 by the HYDRA PC Locksmith are made or implied in this document.

9 Acronyms

References

FIPS 140-2	FIPS PUB 140-2, Change Notice, Federal Information Processing Standards Publication (Supersedes FIPS PUB 140-1, 1994 January 11) Security Requirements For Cryptographic Modules, Information Technology Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, Issued May 25, 2001.
FIPS 186-2	FIPS PUB 186-2, (+ Change Notice), Federal Information Processing Standards Publication DIGITAL SIGNATURE STANDARD (DSS), National Institute of Standards and Technology (NIST), Gaithersburg, MD, Issued 2000 January 27
SP 800-56A	NIST Special Publication 800-56A Recommendation for Pairwise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised), Barker, E., Johnson, D., Smid, M., Computer Security Division, NIST, March 2007.
SP 800-90	NIST Special Publication 800-90 Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Barker, E., Kelsey, J., Computer Security Division, Information Technology Laboratory, NIST, June 2006.
X9.62	American National Standards Institute (ANSI) Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.