
Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 11 March 2005

Secure Generic Sub-System (SGSS)

Cryptographic Module

Security Policy

Thales e-Security
4th/5th Floors
149 Preston Road
Brighton
BN1 6BN
UK

Tel: +44 (0)1273 384600
Fax: +44 (0)1273 384601

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page i 11 March 2005

Document History

Version Date Description

001 13 October 1999 FIPS 140-1 level 4 Cryptographic Module
 Security Policy

002 29 October 1999 Updated to incorporate the formal aspects of
 CMSP

003 9 November 1999 Modified following comments by Cygnacom

004 23 November 1999 Modified to more closely relate to FSM

005 9 December 1999 Modified following further comments by
 Cygnacom

006 1 February 2000 Updated in an attempt to make the whole
 document set more generic

007 2 May, 2000 Modified following comments from CygnaCom

008 10 May, 2000 Copyright banner removed

009 29 August, 2000 Updated to reflect responses to NIST questions

010 14 May, 2003 Company’s name and address changed

011 11 March, 2005 Change SafeGuard Security Subsystem to Secure
 Generic Sub-System

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page ii 11 March 2005

Distribution List

Text Location

Master Copy Project log.

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page iii 11 March 2005

Contents

1. Glossary..1

2. Related documents ..2

3. Introduction...3

4. Formal Aspects of the Security Policy..4

5. Roles and Services ..4

5.1 Roles..4
5.1.1 Crypto-Officer Role...4
5.1.2 User Role ..4

5.2 Services ...4
5.2.1 Self-Tests ..5
5.2.2 Cryptographic services...5
5.2.3 Other...5

5.3 Crypto-officer Authentication..5

6. Physical Security...5

7. Software Security..6

8. Cryptographic Key Management...6

9. Cryptographic Algorithms ..7

10. Self-test ..7

11. Formal Description of the System Software..7

11.1 Initial State ...8

11.2 Self-Test ..10

11.3 Load Application..11
11.3.1..Start upload 12
11.3.2..Upload block 12
11.3.3...Complete upload 12

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page iv 11 March 2005

11.3.4... Cancel upload 13

11.4 Other Services..13
11.4.1...Echo 13
11.4.2... Reboot 14
11.4.3...Read Application Configuration 14
11.4.4...Write Application Configuration 14
11.4.5..Set Comms Baud Rate 14
11.4.6.. Get CA Name 14
11.4.7.. SGSSversion 15

11.5 Trap 15 ..15

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 1 11 March 2005

1. Glossary

CA Certificate Authority
DSA Digital Signature Algorithm
EDC Error Detection Code
KAT Known Answer Test
LED Light Emitting Diode
SGSS Secure Generic Sub-System
SHA-1 Secure Hashing Algorithm

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 2 11 March 2005

2. Related documents

FIPS140-1 Federal Information Processing Standards Publication 140-1, Security
Requirements for Cryptographic Modules

0550A109 Key Management Specification

0562A195 Secure Generic Sub-System (SGSS) FIPS 140-1 Supporting Documentation

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 3 11 March 2005

3. Introduction

The purpose of this document is to provide the information required in order to satisfy the FIPS
140-1 requirements for a formal model of the Cryptographic Module Security Policy for submission
of the Secure Generic Sub-System (SGSS) at level 4.

The SGSS is a multi-chip embedded module, as described in Secure Generic Sub-System (SGSS)
FIPS 140-1 Supporting Documentation (0562A195).

The SGSS provides the functionality necessary to start an installed application, and it provides
functionality to securely upgrade this application.

The SGSS is a level four multi-chip embedded module. The module is designed to lie inside a
Datacryptor 2000 or similar device where the module will provide a highly secure security
subsystem. In this capacity, the module provides the Datacryptor 2000 (or other such devices) a
bootstrap capable of securely loading an application while in the field. Applications support services
provided by the Datacryptor 2000. The bootstrap provides system initialization and transfer of
control to the application. The bootstrap may also be used to load a new bootstrap or new
application. The code that is loaded is signed with the Digital Signature Algorithm. Once the
signature is verified, the new code becomes operational. The purpose of the SGSS is to securely
validate the digital signature.

The private and the public key pair that is used to sign and verify the bootstrap of application is
generated by the factory Certificate Authority (CA). The cryptographic officer loads the public key
certificate into the module at the factory and the factory retains the private key.

The SGSS is a Level 4 module for the secure loading of applications. Once an application is loaded
the SGSS functions as a component of the Datacryptor 2000 and may no longer function
independently as a Level 4 module.

In normal operation, the user need not be aware of the existence of the bootstrap. Its use is
restricted to configuration and maintenance tasks such as reading and updating configuration
information and erasing and updating the loaded application.

When a user application is present, the bootstrap will provide basic system initialisation and transfer
control to the application. The application is provided with an interface to the bootstrap via the trap
15 instruction.

To allow for erasure of a malfunctioning application, at system boot time a specific data exchange
sequence is attempted using the bootstrap command protocol. If this succeeds, the application is
erased and control returned to the bootstrap.

When no application is present the bootstrap operates in a command mode to allow loading of a
new application.

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 4 11 March 2005

The SGSS guarantees the integrity of any application loaded within the SGSS.

This document is a mixture of informal descriptive text and formal notation. The descriptive text is
included to make the formal Z definitions more accessible to the reader.

4. Formal Aspects of the Security Policy

Only those aspects of the security policy that directly relate to FIPS 140-1 relevant aspects of the
SGSS are specified using the Z notation. These aspects are:

♦ Crypto-officer role
♦ Show status
♦ Self-tests
♦ Cryptographic services
♦ Physical security

There are sections within this document relating to each of these aspects in the security policy. The
formalisation of these aspects builds directly on their informal specification. In fact, this exercise
simply reiterates the informal specification using the formal notation of Z, for these aspects.

5. Roles and Services

5.1 Roles

5.1.1 Crypto-Officer Role

The SGSS is required to contain a DSA public key. The purpose of this key is to enable the SGSS
to verify the signature of any application that it is requested to load. The manufacturing plant requires
a crypto-officer to load the SGSS public key certificate. Once the SGSS is fielded, new applications
may be generated at the plant and signed using the private key. In the field, the user, acting on behalf
of the factory, may load the signed application into the SGSS where the signature is verified using
the public key.

5.1.2 User Role

An individual performing the user role, acting on behalf of the factory, is responsible for loading new
application images into the SGSS using the commands specified in Section 11.

See section 5.2.2 for the formal specification of this role.

5.2 Services

The SGSS offers a number of services. The only cryptographic service is invoked when a certified
application is loaded into the SGSS. However the other services operate in such a way as to
maintain the SGSS in a secure state.

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 5 11 March 2005

5.2.1 Self-Tests

At start-up the SGSS validates its application by checking it using an EDC algorithm. It also
performs a known answer test (KAT) on the signature checking algorithms (DSA with SHA-1).

This is described formally in section 11.2.

5.2.2 Cryptographic services

Loading a new application is the only cryptographic service offered by the SGSS software. The
SGSS checks the signature of an application before loading it. It uses DSA with SHA-1 and its own
DSA certificate. It rejects any application whose signature fails to verify.

This is formally described in section 11.3.3.

5.2.3 Other

The user role may perform the following other non sensitive services:

Ø Echo (Echoes back an input string)
Ø Erase application (Erases application)
Ø Get version (Provides SGSS version number)
Ø Get CA name (Provides name of CA (factory) which generated public/private key pair)
Ø Read/Write configuration (Provides/selects current configuration)
Ø Reboot unit (Resets the unit)

5.3 Authentication

The module provides two roles (Crypto-officer and User), and only one identity, that of the factory.
The Cryptographic Officer, acting on behalf of the factory, initializes the module by inserting the
public key certificate into the module. The user, acting on behalf of the factory, loads the application.
The identification and authentication of the factory is performed by the fact that the application is
validated by means of the digital signature. Only the factory could have created the application that is
successfully loaded into the module. Thus, the SGSS permits the factory to authenticate and load
secure applications.

6. Physical Security

The SGSS is enclosed in a tamper resistant system that surrounds the secure area. This is called the
alarm circuit. The circuit consists of an electronic wire grid, which is encased in a hard opaque
epoxy. Breaking the wire grid will trigger the alarm circuit that will erase the contents of the RAM
and cipher FPGA. Superficial tampering would mar the epoxy and could be detected by inspection.
Any penetration significant enough to disturb the wire grid would erase the critical security
parameters.

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 6 11 March 2005

The alarm circuit is powered from the main power supply when this is available, but if the unit is not
powered up then a battery powers it. If this battery is disconnected of fails the alarm triggers.
Similarly, if the power levels surge or are actively driven above of below the normal levels, then the
alarm circuit is triggered. The voltage protection is on the VCCC pin (+5V). The effects of triggering
this are the same as for any other of the alarm circuit triggers. The alarm circuit is described in
section 5.2.1.6 of the “Secure Generic Sub-System (SGSS) FIPS 140-1 supporting
documentation”. The alarm will trigger at some point between 6.5 and 7 volts on the VCC line. If
this line drops below 4.5 volts, the microprocessor is not powered. In this case a battery powers the
alarm circuit. If the battery line drops below 2.3 volts, then the alarm circuit is triggered.
Additionally, a temperature sensor causes the alarm circuit to be triggered at temperatures above
60°C or below -5°C.

The effect of triggering the alarm is to erase the RAM and the FPGA, and isolate the interface lines
of the SGSS.

Once an alarm has been triggered, the unit must be returned to the factory for the alarm to be reset.

PhysicalSecurity AlarmState

ALARM ::= alarmed | notAlarmed
POWER ::= acceptable | unacceptable
ENCLOSURE ::= intact | tampered
OperatingTemperature : -5°C . . 60°C

AlarmState
t? : Temperature
p? : POWER
e? : ENCLOSURE
a! : ALARM
a! = (t? ∉ ran OperatingTemperature ⇒ alarmed)
∨ (p? = unacceptable ⇒ alarmed)
∨ (e? = tampered ⇒ alarmed)
∨ notAlarmed

7. Software Security

See sections 5.2.2, 8, and 9.

8. Cryptographic Key Management

There is no cryptographic key management performed by the SGSS software.

The SGSS contains the public key component of its CA.

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 7 11 March 2005

The SGSS CA can be changed only if a new certified SGSS application that contains a new CA is
loaded to replace the existing SGSS that contains the existing CA public key.

9. Cryptographic Algorithms

The only cryptographic algorithm used by the SGSS is DSA with SHA-1 used to validate the
signatures on any prospective application before loading it.

10. Self-test

See section 5.2.1.

11. Formal Description of the System Software

This section contains a complete Z specification of the software that makes up the SGSS product.
Attempts have been made to group the information according to function and operational state.

Types:

OPERATIONAL_STATE ::= POS | TEST | CMD | LOAD | RUN | TRAP
PERSON ::= an individual
UNIT ::= SGSS product

CA_NAME ::= ASCII string

String ::= ASCII string

errorCheckResult ::= validEDC | invalidEDC

dsaKatResult ::= validKAT | invalidKAT

powerOnEraseRequest ::= ErasureRequested | RequestTimedOut

Trap15Command ::= GetSgssVersion | RebootUnit | EraseApplication | ReadAppConfig |
WriteAppConfig | GetDramSize | CacheControl

CacheSetting ::= enable | disable | invalidate

booleanFlag ::= TRUE | FALSE

BAUD_RATE ::= 110 | 300 | 600 | 1200 | 2400 | 4800 | 9600 | 14400 | 19200 | 28800 | 38400 |
56000 | 57600 | 115200

Sets:

vApp = = set of all valid candidateApplication

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 8 11 March 2005

invApp = = set of all invalid candidateApplication

App = = vApp ∪ invApp

unitPool = = set of all UNIT

cryptoOfficerPool = = set of all PERSON

Data:

CA_name : CA_NAME

currentBaudRate : BAUD_RATE

EraseApplicationRequest : powerOnEraseRequest

Version : String

CacheState : CacheSetting

DRAM :

System
cryptoOfficer : cryptoOfficerPool
appInUse : vApp
sgssApp : vApp
opState : OPERATIONAL_STATE
s : unitPool
#cryptoOfficer = 1
#s = 1

AssignCryptoOfficer
m? : cryptoOfficerPool
CryptoOfficer ≠ ∅ ⇒ cryptoOfficer = m

11.1 Initial State

InitialState
∆ System
s? : unitPool
appInUse = ∅
cryptoOfficer? = ∅
s′ = s?
CA_name = "Racal Manufacture"
currentBaudRate = 38400

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 9 11 March 2005

Version = //version specific string
CacheState = disabled
DRAM = amount of DRAM on mainboard

PowerOnState
∆ System
s? : unitPool
opState? : OPERATIONAL_STATE
if opState? = POS
 ((EraseApplicationRequest = ErasureRequested) ⇒ appInUse = ∅)
 ∨ opState! = TEST
fi

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 10 11 March 2005

11.2 Self-Test

poSelfTest
Ξ System
opState? : OPERATIONAL_STATE
if opState? = TEST
 ((errorCheckSGSS ∧ posSuccess)
 ∧ (dsaKat ∧ posSuccess)
 ∧ (errorCheckApp ∧ posSuccess) ⇒ opState! = RUN)
 ∨ ((errorCheckSGSS ∧ posSuccess)
 ∧ (dsaKat ∧ posSuccess)
 ∧ (errorCheckApp ∧ errorCheckAppErr) ⇒ opState! = CMD)
 ∨ ((errorCheckSGSS ∧ posSuccess) ∧ (dsaKat ∧ dsaKatErr) ⇒ opState! = POS)
fi

errorCheckSGSS
Ξ System
result! : errorCheckResult
checksum_a, checksum_b, checksum, j :
checksum_a = 0xff
checksum_b = 0xff
j = sgssFlashStart

do j ≤ sgssFlashEnd
 checksum_a = checksum_a + *j & 0xff
 checksum_b = checksum_b + checksum_a & 0xff
od
checksum = ((checksum_a << 8) | checksum_b) & 0xffff
((checksum = storedChecksum) ⇒ result! = validEDC)
∨ ((checksum ≠ storedChecksum) ⇒ result! = invalidEDC)

errorCheckApp
Ξ System
result! : errorCheckResult
checksum_a, checksum_b, checksum, j :
checksum_a = 0xff
checksum_b = 0xff
j = appFlashStart

do j ≤ appFlashEnd
 checksum_a = checksum_a + *j & 0xff
 checksum_b = checksum_b + checksum_a & 0xff
od
checksum = ((checksum_a << 8) | checksum_b) & 0xffff
((checksum = storedChecksum) ⇒ result! = validEDC)

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 11 11 March 2005

∨ ((checksum ≠ storedChecksum) ⇒ result! = invalidEDC)

dsaKat
Ξ System
result! : dsaKatResult
validKAT ⇒ result! = posSuccess
∨ invalidKAT ⇒ result! = dsaKatErr

posSuccess
Ξ System
r! : Rep
r! = OK

errorCheckSGSSErr
Ξ System
r! : Rep
r! = errorCheckSGSSFailure
errorCheckAppErr
Ξ System
r! : Rep
r! = errorCheckAppFailure

dsaKatErr
Ξ System
r! : Rep
r! = dsaKatFailure

11.3 Load Application

Types:

block ::= 512 byte memory block

candidateApplication ::= array of 512 byte blocks

configuration_area ::= area of memory immediately before application

header_block ::= twenty bytes of data divided into five four-byte parameters

Data:

upload_in_progress : booleanFlag

currentConfig : configuration_area

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 12 11 March 2005

11.3.1 Start upload

SetupConfigurationArea
params? : header_block
config? : configuration_area
//implementation specific, sets up currentConfig to match config?

StartUpload
∆ System
opState? : OPERATIONAL_STATE
if opState? = CMD
 ((GetApplicationSize < GetAvailableSpace) ∧ InsufficientStorageErr)
 ∨ (SetupConfigurationArea ⇒ (upload_in_progress = TRUE ∧ opState! = LOAD))
fi

11.3.2 Upload block

UploadBlock
∆ System
opState? : OPERATIONAL_STATE
index :
appBlock : block
if opState? = LOAD
 candidateApplication[index] = appBlock
fi

11.3.3 Complete upload

TotalLoadApplication (LoadApplication ∧ Success) ∨ InvalidSignatureErr
∨ InsufficientStorageErr

LoadApplication
∆ System
opState? : OPERATIONAL_STATE
a? : candidateApplication
if opState? = LOAD
 (a? ∈ vApp ⇒ (Success ∧ appInUse = a?))
 ∨ (a? ∈ invApp ⇒ InvalidSignatureErr)
 upload_in_progress = FALSE
 opState! = CMD
fi

Success

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 13 11 March 2005

Ξ System
a? : candidateApplication
r! : Rep
a? ∈ vApp
r! = OK
GetApplicationSize
size! :
a? : candidateApplication
//implementation specific

GetAvailableSpace
size! :
s? : unitPool
//implementation specific

InvalidSignatureErr
Ξ System
a? : candidateApplication
r! : Rep
a? ∉ vApp
r! = SignatureInvalid

InsufficientStorageErr
Ξ System
a? : APPLICATION
r! : Rep
r! = NotEnoughSpace

11.3.4 Cancel upload

CancelUpload
opState? : OPERATIONAL_STATE
if opState = LOAD
 upload_in_progress = FALSE
 opState! = CMD
fi

11.4 Other Services

11.4.1 Echo

Echo
Ξ System
in? : String
out! : String

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 14 11 March 2005

if opState? = CMD
 out! = in?
fi

11.4.2 Reboot

Reboot
∆ System
s? : unitPool
opState? : OPERATIONAL_STATE
opState! = POS

11.4.3 Read Application Configuration

ReadApplicationConfig
Ξ System
config! : configuration_area
if (opState? = CMD ∨ opState? = TRAP)
 config! = currentConfig
fi

11.4.4 Write Application Configuration

WriteApplicationConfig
∆ System
config? : configuration_area
opState? : OPERATIONAL_STATE
if (opState? = CMD ∨ opState? = TRAP)
 currentConfig = config?
fi

11.4.5 Set Comms Baud Rate

SetCommsBaudRate
∆ System
baudrate? : BAUD_RATE
opState? : OPERATIONAL_STATE
if opState? = CMD
 currentBaudRate = baudrate?
fi

11.4.6 Get CA Name

GetCAname
Ξ System

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 15 11 March 2005

name! : CA_NAME
if opState? = CMD
 name! = CA_name
fi

11.4.7 SGSSversion

SGSSversion
Ξ System
opState? : OPERATIONAL_STATE
ver! : String
if (opState? = CMD ∨ opState? = TRAP)
 ver! = Version
fi

11.5 Trap 15

Trap15
Ξ System
s? : unitPool
opState? : OPERATIONAL_STATE
if opState? = CMD
 opState! = TRAP
fi

HandleTrap15
opState? : OPERATIONAL_STATE
command? : Trap15Command
if opState? = TRAP
 (command? = GetSgssVersion ⇒ (SGSSversion ∧ opState! = RUN))
 ∨ (command? = RebootUnit ⇒ opState! = POS)
 ∨ (command? = EraseApplication ⇒ (appInUse = ∅ ∧ opState! = POS))
 ∨ (command? = ReadAppConfig ⇒ (ReadApplicationConfig ∧ opState! = RUN))
 ∨ (command? = WriteAppConfig ⇒ (WriteApplicationConfig ∧ opState! = RUN))
 ∨ (command? = GetDramSize ⇒ (DRAMsize ∧ opState! = RUN))
 ∨ (command? = CacheControl ⇒ (Cache ∧ opState! = RUN))
fi

Cache
∆ System
opState? : OPERATIONAL_STATE
newSetting? : CacheSetting
if opState? = TRAP
 CacheState = newSetting?
fi

Thales e-Security Secure Generic Sub-System
Cryptographic Module Security Policy

0562A193.011 Page 16 11 March 2005

DRAMsize
Ξ System
opState? : OPERATIONAL_STATE
size! :
if opState? = TRAP
 size! = DRAM
fi

