

FIPS 140-2 Security Policy

BlackBerry Cryptographic Kernel Version 3.8.5.51

Document Version 2.6

Security Certifications Team Research In Motion (RIM)

Document and Contact Information

Version	Date	Description
1.0	30 October 2008	Document creation.
1.1	5 December 2008	Certificate numbers added in.
2.0	15 January 2009	Revised policy with minor modifications
2.1	19 January 2009	Added certificate numbers into table
2.2	20 January 2009	Revised policy with minor modifications
2.3	1 May 2009	Updated policy addressing CMVP comments
2.4	13 May 2009	Revised policy with minor modifications
2.5	15 May 2009	Revised policy with minor modifications
2.6	25 May 2009	Revised policy addressing comments from DOMUS

Contact	Corporate Office
Security Certifications Team	Research In Motion
certifications@rim.com	295 Phillip Street
(519) 888-7465 ext. 72921	Waterloo, Ontario
	Canada N2L 3W8
	www.rim.com
	www.blackberry.com

Contents

Introduction	1
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	5
Roles, Services, and Authentication	6
Physical Security	8
Cryptographic Keys and Critical Security Parameters	9
Self-Tests	10
Mitigation of Other Attacks	12
Glossary	13

List of Tables

Table 1.	Security Functions	2
Table 2.	Implementation of FIPS 140-2 Interfaces	5
Table 3.	Module Services	6
Table 4.	Role Selection by Module Service	7
Table 5.	Cryptographic Keys and CSPs	9
Table 6.	Module Self-Tests	0
Table 7.	Attack Types 1	2

BlackBerry Cryptographic Kernel version 3.8.5.51

List of Figures

Figure 1.	BlackBerry Solution Architecture	•
Figure 2.	Physical Boundary	4

Introduction

BlackBerry® is the leading wireless solution that allows users to stay connected to a full suite of applications, including email, phone, enterprise applications, Internet, SMS, and organiser information. BlackBerry is a totally integrated package that includes innovative software, advanced BlackBerry wireless devices and wireless network service, providing a seamless solution. The BlackBerry architecture is shown in the following figure.

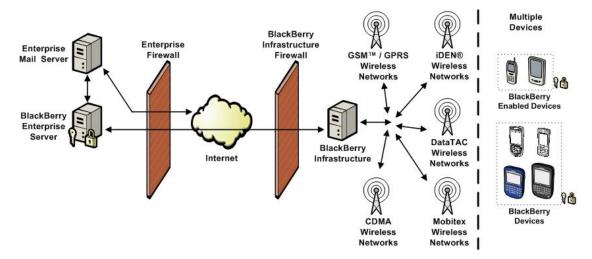


Figure 1. BlackBerry Solution Architecture

BlackBerry devices are built on industry-leading wireless technology, allowing users to receive email and information automatically with no need to request for delivery. Additionally, users are notified when new information arrives, making it easier to stay informed.

BlackBerry devices also provide an intuitive user experience. Users simply click on an email address, telephone number, or URL inside a message to automatically begin composing the new email, make the call, or link to the web page. BlackBerry device users can also easily navigate through icons, menus, and options with the roll-and-click trackwheel or trackball, and quickly compose messages or enter data using the device keyboard.

Each BlackBerry device¹ contains the BlackBerry Cryptographic Kernel, a firmware module that provides the cryptographic functionality required for basic operation of the device. The BlackBerry Cryptographic Module meets the requirements of the FIPS 140-2 Security Level 1.

The BlackBerry Cryptographic Kernel, hereafter referred to as *cryptographic module* or *module*, provides the following cryptographic services:

- Data encryption and decryption
- Message digest and authentication code generation
- Random data generation
- Digital signature verification
- Elliptic curve key agreement

More information on the BlackBerry solution is available from http://www.blackberry.com/.

¹ Excludes RIM 850TM, RIM 950TM, RIM 857TM, and RIM 957TM wireless handheld devices.

Cryptographic Module Specification

Security Functions

The cryptographic module is a firmware module that implements the following FIPS-Approved security functions²:

Table 1. Security Functions

Algorithm	Description	Version	Certificate Number
AES-256 ASM Code	Encrypt and Decrypt, as specified in FIPS 197. The implementation supports the CBC and CTR modes of operation.	3.8.5.51	#947
AES-256 Native Code	Encrypt and Decrypt, as specified in FIPS 197. The implementation supports the CBC and CTR modes of operation.	3.8.5.51	#946
Triple DES	Encrypt and Decrypt, as specified in FIPS 46-3. The implementation supports the CBC mode of operation.	3.8.5.51	#750
SHA-1, SHA-256 & SHA-512	as specified in FIPS 180-3.	3.8.5.51	#921
HMAC-SHA-1, HMAC-SHA-256 & HMAC-SHA-512	as specified in FIPS 198.	3.8.5.51	#526
FIPS 186-2 RNG	as specified in FIPS 186-2. The implementation uses SHA-1 as the function <i>G</i>	3.8.5.51	#536

² A security function is FIPS-Approved if it is explicitly listed in FIPS 140-2 Annex A: Approved Security Functions for FIPS PUB 140-2.

RSA PKCS#1	Signature verification, as specified in PKCS #1, version 2.1	3.8.5.51	#456
ECDSA	Signature verification, as specified in FIPS 186-2 and ANSI X9.62. The implementation supports elliptic curve K-571.	3.8.5.51	#118

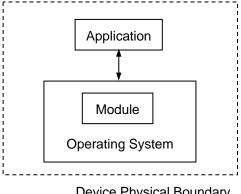
The module implements the following non-Approved security functions that, per *FIPS 140-2 Annex D: Approved Key Establishment Techniques for FIPS PUB 140-2*, may presently be used in a FIPS-Approved mode of operation:

- **EC Diffie-Hellman** (key agreement, key establishment methodology provides 256 bits of encryption strength), as specified in IEEE P1363 Draft 13. The implementation supports elliptic curves P-521 and K-571.
- **ECMQV** (key agreement, key establishment methodology provides 256 bits of encryption strength), as specified in IEEE P1363 Draft 13. The implementation supports elliptic curves P-521 and K-571.

Modes of Operation

The module does not have a non-Approved mode of operation and, consequently, always operates in a FIPS-Approved mode of operation.

Conformance Testing and FIPS-Compliance


For the purposes of FIPS 140-2 conformance testing, the module was executed on the BlackBerry Storm 9500, per FIPS 140-2 Implementation Guidance G.5, remains FIPS-compliant when executed on other BlackBerry devices.

Conformance testing was performed using BlackBerry OS version 4.7. In order for the module to remain validated on a specific handheld device, both the module and the tested operating platform shall be ported to any device unchanged.

Cryptographic Boundary

The physical boundary of the module is the physical boundary of the BlackBerry device that executes the module and is shown in the following figure. Consequently, the embodiment of the module is multiple-chip standalone.

Device Physical Boundary

Figure 2. Physical Boundary

Determining the Module Version

The operator may determine the version of the module on a BlackBerry device by performing the following operations:

- 1. Navigate to the **Options** list.
- 2. Click the About item.
- 3. The About screen appears and displays the module version, e.g. "Cryptographic Kernel v3.8.5.51".

Cryptographic Module Ports and Interfaces

The module ports correspond to the physical ports of the BlackBerry device executing the module, and the module interfaces correspond to the logical interfaces to the module. The following table describes the module ports and interfaces.

Table 2. Implementation of FIPS 140-2 Interfaces

FIPS 140-2 Interface	Module Ports	Module Interfaces
Data Input	Keyboard, microphone, USB port, headset jack, wireless modem, Bluetooth® wireless radio	Input parameters of module function calls
Data Output	Speaker, USB port, headset jack, wireless modem, Bluetooth wireless radio	Output parameters of module function calls
Control Input	Keyboard, USB port, trackwheel, trackball, touchscreen, menu button, escape button, backlight button, phone button, end button	Module function calls
Status Output	USB port, Primary LCD screen, LED	Return codes of module function calls
Power Input	USB port	Not supported
Maintenance	Not supported	Not supported

Roles, Services, and Authentication

Roles

The module supports a User and Crypto Officer role. The module does not support a maintenance role. The module does not support multiple or concurrent operators and is intended for use by a single operator, thus it always operates in a single-user mode of operation.

Services

The services described in the following table are available to the operator.

Table 3. Module Services

Service	Description
Reset	Resets the module. The module may be reset by pressing the Alt + Right Shift + Backspace key combination or power cycling the module.
View Status	Displays the status of the module.
Perform Key Agreement	Establishes a secure channel to the module utilizing ECDH and ECMQV key agreement algorithms in transport of the new Master Key that is created outside the cryptographic boundary.
Inject PIN Master Key	Replaces the existing PIN Master Key with a new PIN Master Key. The new PIN Master Key is created outside the cryptographic boundary and is encrypted for input into the module for this service.
Generate Session Key	Generates a Session Key or a PIN Session Key. This service is performed automatically on behalf of the operator during the Encrypt Data service.
Encrypt Data	Encrypts data that is to be sent from the device. A Session Key is automatically generated via the Generate Session Key service and used to encrypt the data. The Session Key is encrypted with the Master Key and then the encrypted data and encrypted Session Key are ready for transmission.
Decrypt Data	Decrypts data that has been received by the device. The encrypted Session Key is decrypted with the Master Key and is then used to decrypt the data. This service is performed automatically on behalf of the operator.
Generate HMAC	Generates a message authentication code.
Perform Self-Tests	Executes the module self-tests.
Verify Signature	Verifies the digital signature of an IT policy received by the device. This service is performed automatically on behalf of the operator.
Wipe Handheld	Zeroizes device keys and user data present on device.

Authentication

The module does not support operator authentication. Roles are implicitly selected based on the service performed by the operator. Implicit role selection is summarised in the following table, as are the keys and critical security parameters (CSPs) that are affected by each service.

Table 4. Role Selection by Module Service

Service	Role Implicitly Selected	Affected Keys and CSPs	Access to Keys and CSPs
Reset	User	N/A	N/A
View Status	User	N/A	N/A
Dayfarm Kay Agraamant	Crumto Officer	ECC Key Pair	Execute
Perform Key Agreement	Crypto Officer	Master Key	Write
Inject PIN Master Key	Crypto Officer	PIN Master Key	Write
Generate Session Key	User	Session Key / PIN Session Key	Write
Face and Date	Haan	Master Key / PIN Master Key	Execute
Encrypt Data	User	Session Key / PIN Session Key	Execute
Door at Data	Haan	Master Key / PIN Master Key	Execute
Decrypt Data	User	Session Key / PIN Session Key	Execute
Generate HMAC	User	HMAC Key	Execute
Perform Self-Tests	User	Firmware Integrity Key	Execute
Verify Signature	User	ECC Public Key	Execute
Wipe Handheld	Crypto Officer	All	Write

Physical Security

The BlackBerry device that executes the module is manufactured using industry standard integrated circuits and meets the FIPS 140-2 Level 1 physical security requirements.

Cryptographic Keys and Critical Security Parameters

The following table describes the cryptographic keys, key components, and CSPs utilised by the module.

Table 5. Cryptographic Keys and CSPs

Key / CSP	Description
	A Triple DES or AES-256 key used to encrypt and decrypt Session Keys. The Master Key is always generated outside the cryptographic boundary. The Key may be input into the module:
Master Key	 in plaintext as parameters to an API call when connected directly to the USB port of a workstation operating BlackBerry Desktop Manager, or
	 encrypted by the current Master Key if utilizing key agreement with the BlackBerry Enterprise Server.
Session Key	A Triple DES or AES-256 key used to encrypt and decrypt data. The module generates Session Keys using the implemented FIPS 186-2 RNG.
	A Master Key that is specifically a Triple DES key used to encrypt and decrypt PIN Session Keys. The PIN Master Key is generated outside the cryptographic boundary The Key may be input into the module:
PIN Master Key	 in plaintext as parameters to an API call when connected directly to the USB port of a workstation operating BlackBerry Desktop Manager, or
	 encrypted by the current Master Key if utilizing key agreement with the BlackBerry Enterprise Server.
PIN Session Key	A Session Key that is specifically a Triple DES key used to encrypt and decrypt data for PIN messaging. The module generates PIN Session Keys using the implemented FIPS 186-2 RNG.
ECC Key Pair	A key pair used to perform key agreement during Master Key transport over elliptic curves.
ECC Session Key	An ECC session key, that is specifically a short lived ephemeral key, is used during key agreement during Master Key transport and is zeroized after use.
ECC Public Key	A public key used to verify digital signatures over elliptic curves
HMAC Key	A key used to calculate a message authentication code using the HMAC algorithm.

Key Zeroization

The BlackBerry security solution provides multiple protective features to ensure algorithmic keys and key components are protected. Similarly, data, and specifically key, removal through zeroization is built in as an integral part of the BlackBerry security solution. A user may also request a zeroization at anytime by navigating to the **Options** list and selecting "Wipe Handheld" via the **Security Options** → **General Settings.** The BlackBerry Enterprise Server administrator may also zeroize the device remotely to wipe all device data and keys.

Furthermore, session keys that are created per datagram are destroyed after each data fragment is sent.

Self-Tests

The module implements the self-tests described in the following table.

Table 6. Module Self-Tests

Test	Description
Firmware Integrity Test	The module implements an integrity test for the module by verifying its 1024-bit RSA signature. The firmware integrity test passes if and only if the signature verifies successfully using the Firmware Integrity Key.
	The module implements a compare answer test (CAT) for the AES-256 variants. Each AES implementation takes the same test data and same test key to perform an encryption operation. The result of each encryption operation is then compared to each other to verify that they were able to calculate the same result. If the results are the same, the test passes. If the results are different, the encrypt test fails.
AES-256 CAT	The module then performs a compared test for decryption using known encrypted test data and test key where each implementation is given the same key and data and performs a decryption operation. The results of each decryption operation from the C++ and assembler implementations are then compared against the calculated results. If both implementations are able to calculate the same result, the test passes. If they do not calculate the same result, then the test fails.
Triple DES CBC KAT	The module implements a KAT for Triple DES in the CBC mode of operation. The test passes if and only if the calculated output equals the expected output.
SHA-1 KAT	The module implements a KAT for SHA-1. The KAT passes if and only if the calculated output equals the expected output.
SHA-256 KAT	The module implements a KAT for SHA-256. The KAT passes if and only if the calculated output equals the expected output.
SHA-512 KAT	The module implements a KAT for SHA-512. The KAT passes if and only if the calculated output equals the expected output.
HMAC SHA-1 KAT	The module implements a KAT for HMAC SHA-1. The KAT passes if and only if the calculated output equals the expected output.
HMAC SHA-256 KAT	The module implements a KAT for HMAC SHA-256. The KAT passes if and only if the calculated output equals the expected output.
HMAC SHA-512 KAT	The module implements a KAT for HMAC SHA-512. The KAT passes if and only if the calculated output equals the expected output.
RSA Verify KAT	The module implements a KAT for RSA signature verification. The test passes if and only if the calculated output equals the expected output.
ECDSA Verify KAT	The module implements a KAT for ECDSA signature verification. The test passes if and only if the calculated output equals the expected output.
FIPS 186-2 RNG KAT	The module implements a KAT for the FIPS 186-2 RNG. The KAT passes if and only if the calculated output equals the expected output.
Continuous RNG Test	The module implements a continuous RNG test, as specified in FIPS 140-2, for the implemented FIPS 186-2 RNG.

All self-tests, except the Continuous RNG Test, are executed during power-up without requiring operator input or action. The Firmware Integrity Test is the first self-test executed during power-up.

Invoking the Self-Tests

The operator may invoke the power-up self-tests by resetting the module via the Reset service.

The operator may also invoke all of the self-tests with the exception of the Firmware Integrity Test and Continuous RNG test by performing the following operations:

- 1. Navigate to the Security options screen.
- 2. Click the **General Settings** option item.
- 3. Depending on the handheld model, click the trackwheel or trackball to open the General Settings options menu.
- 4. In the menu, click Verify Security Software.

When the self-tests are executed in this manner, the module displays the list of self-tests that are being executed and a pass/fail status upon completion.

Mitigation of Other Attacks

The module is designed to mitigate multiple side-channel attacks specific to the AES algorithm. Mitigation of these attacks is accomplished through the execution of table masking, splitting, and stirring manoeuvres designed to aid in the protection of cryptographic keys and plain text data at all points during the encryption, decryption, and self-test operations.

The following table describes the types of attacks the module mitigates.

Table 7. Attack Types

Attack type	Description
Side-Channel	attempts to exploit physical properties of the algorithm implementation using Power Analysis (for example, SPA and DPA) and Electro-Magnetic Analysis (for example, SEMA and DEMA)
	attempts to determine the encryption keys that a device uses by measuring and analyzing the power consumption, or electro-magnetic radiation, emitted by the device during cryptographic operations

Glossary

AES	Advanced Encryption Standard
ANSI	American National Standards Institute
CBC	Cipher block chaining
CSP	Critical security parameter
DES	Data Encryption Standard
EC	Elliptic curve
ECC	Elliptic curve cryptography
ECDSA	Elliptic curve Digital Signature Algorithm
ECMQV	Elliptic curve Menezes, Qu, Vanstone
FIPS	Federal Information Processing Standard
HMAC	Keyed-hashed message authentication code
IEEE	Institute of Electrical and Electronics Engineers
KAT	Known answer test
LCD	Liquid crystal display
LED	Light emitting diode
PIN	Personal identification number
PKCS	Public Key Cryptography Standard
PUB	Publication
RIM	Research In Motion
RNG	Random number generator
RSA	Rivest, Shamir, Adleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SMS	Short Messaging Service
URL	Uniform resource locator
USB	Universal serial bus

