

18-11-2008 SCM Security Policy 4.0 Page 1 of 57

Secuware Security Framework - Crypt4000 Module
Security Policy

18-11-2008

Version 4.0

SECUWARE S.L.

Plaza Pablo Ruiz Picasso, S/N
Picasso Tower, 14th floor
28020, Madrid

Telephone: +34 915649149
FAX +34 915629697

This document may be freely copied and distributed without the Author’s
permission provided that it is copied and distributed in its entirety without
modification.

18-11-2008 SCM Security Policy 4.0 Page 2 of 57

Table of contents

1 INTRODUCTION... 6

1.1 Audience.. 6

1.2 Document organization.. 6

1.3 References ... 7

2 MODULE SPECIFICATION.. 8

2.1 The FIPS object module... 8

2.2 Ports and interfaces.. 9

2.3 Functional Specification... 9

2.4 Cryptographic module design ... 11

2.4.1 Modules description ... 12

2.4.2 External Interfaces Specification .. 18

2.4.3 Inter-subsystems Interfaces Specification .. 19

2.5 Approved cryptographic algorithms .. 21

2.6 Non-Approved cryptographic algorithms .. 21

2.7 Approved mode of operation... 21

3 ROLES, SERVICES AND AUTHENTICATION .. 23

3.1 Roles .. 23

3.2 Services.. 23

3.3 Operator Authentication ... 24

4 FINITE STATE MACHINE MODEL .. 25

4.1 Diagram... 25

4.2 States and transitions ... 26

5 OPERATIONAL ENVIRONMENT... 31

5.1 Operational Environment Policy .. 31

5.2 Compatible platforms .. 32

18-11-2008 SCM Security Policy 4.0 Page 3 of 57

5.3 Software security .. 32

5.4 Critical security parameters.. 33

5.5 Physical Security .. 34

5.6 Electromagnetic Interference/Electromagnetic Compatibility... 34

5.7 Mitigation of Other Attacks .. 34

6 CRYPTOGRAPHIC KEY MANAGEMENT ... 35

6.1 RNG... 35

6.2 Key Generation... 35

6.3 Key Establishment.. 35

6.4 Key Entry and Output ... 35

6.5 Key storage and Key Zeroization.. 36

7 SELF-TESTS .. 37

7.1 Power-up and “on demand” Tests .. 37

7.1.1 Integrity Tests... 37

7.1.2 Known Answer Tests ... 40

7.2 Conditional Tests.. 43

7.3 Critical Function Tests... 43

8 DESIGN ASSURANCE... 44

8.1 Configuration management... 44

8.1.1 Configuration Items Identification Method ... 44

8.1.2 Configuration Management System ... 45

8.1.3 Configuration Item List ... 47

8.2 Initialization, Start-up and Operation.. 48

8.2.1 Secure installation .. 48

8.2.2 Secrets distributions... 49

8.2.3 Initialization and start-up.. 49

8.2.4 Operation rules... 50

8.3 Development ... 52

18-11-2008 SCM Security Policy 4.0 Page 4 of 57

8.4 Guidance document.. 53

9 GLOSSARY.. 54

ANNEX: FUNCTIONS HEADER.. 55

18-11-2008 SCM Security Policy 4.0 Page 5 of 57

1 Introduction

1 This document is the FIPS 140-2 security policy for the
Secuware Security Framework – Crypt4000 Module (SCM)
software object module to meet FIPS 140-2 level 1
requirements.

2 This Security Policy details the secure operation of the
Secuware Security Framework – Crypt4000 Module v 3.0
developed by SECUWARE as required in Federal Information
Processing Standards Publication 140-2 as published by the
National Institute of Standards and Technology (NIST) of the
United States Department of Commerce.

1.1 Audience

3 This document is required as a part of the FIPS 140-2 validation
process. It describes the Secuware Security Framework –
Crypt4000 Module in relation to FIPS 140-2 requirements. The
companion document Secuware Security Framework –
Crypt4000 Module User Guide is a technical reference for
developers using and installing the SCM.

1.2 Document organization

4 This Security Policy document is one part of the FIPS 140-2
Submission Package. The Submission Package contains:

− Security Policy: this document

− Algorithm certificates: see 2.5 Approved cryptographic
algorithms

− Functional specification and design documentation: see
sections 2.3 Functional Specification and 2.4
Cryptographic module design of this document.

− User guide: SCM Crypto Officer and User Guidance
reference [GUI] (summarised in this document)

− Finite state machine model: see section 4 Finite state
machine model of this document.

− Configuration Item list: see section 8.1.3 Configuration Item
List of this document.

− Source code listing.

18-11-2008 SCM Security Policy 4.0 Page 6 of 57

5 This document outlines the functionality provided by the
module and gives high level details on the means by which
the module satisfies FIPS 140-2 requirements.

1.3 References

[GUI] Secuware Security Framework – Crypt4000 Module User Guide, v

3.0 June2008

[SP800-38A] Recommendations for Block Cipher Modes of Operation

[F197] FIPS 197 Advanced Encryption Standard (AES), Nov 26, 2001

18-11-2008 SCM Security Policy 4.0 Page 7 of 57

2 Module Specification

6 The Secuware Security Framework – Crypt4000 Module,
referred elsewhere in this document as SECUWARE
Cryptographic Module (SCM), is defined as a specific discrete
unit of binary object code (the “FIPS Object Module”)
generated from a specific set of C language source files
embedded within an object distribution.

7 This object code in an isolated and separated form which
consists of a single file, is used as a library to provide a
cryptographic API (Application Programming Interface) to
any external applications which statically links with it,
embedding it into them.

8 The Module implements the AES algorithm.

2.1 The FIPS object module

9 The Implementation Under Test (IUT) is a function library
implementing crypto services which is delivered to the final
user as a software cryptographic object Module, running on
Windows operating system in a General Purpose Computer.

10 The generation of the SCM and the documented process for
creating it, was developed to satisfy FIPS 140-2 requirements.

11 Although the SCM is software, the physical embodiment will
be a general purpose computer which consists of multiple
components, considered to be a multichip standalone
module by FIPS140-2.

12 The logical cryptographic boundary for the SCM is the
discrete block of object code containing the machine
instructions and data generated from the SCM FIPS source,
which will be allocated continuously in a main memory
address space, as used by the calling application.

13 The physical cryptographic boundary contains the general
purpose computing hardware of the system executing the
application. This system hardware includes the central
processing unit(s), cache and main memory (RAM), system
bus, and peripherals including disk drives and other
permanent mass storage devices, network interface cards,
keyboard and console and any terminal devices.

18-11-2008 SCM Security Policy 4.0 Page 8 of 57

2.2 Ports and interfaces

14 The module provides a logical interface via an Application
Programming Interface (API). The API provides functions that
may be called directly by the referencing application.

15 The API interface provided by the Module is mapped onto the
FIPS 140-2 logical interfaces: data input, data output, control
input, and status output. Each of the FIPS 140-2 logical
interfaces relates to the module's callable interface, as
follows:

− Data input: input parameters to all functions that accept
input from IT entities acting either as Crypto Officer or User
entities.

− Data output: output parameters from all functions that

return data as arguments or return values to Crypto Officer
or User IT entities.

− Control input: all API function input into the module by the

Crypto Officer and User IT entities

− Status output: information about status that may be
queried by Crypto Officer or User IT entities, using the
appropriate function.

16 The API functional specification explaining the logical

interfaces is included below.

2.3 Functional Specification

17 The following functions represent the logical interfaces
available for an external application linked to the SCM:

− int SCM_Init()

This function calls the SCM_Self_test() function and
initialized the module in FIPS mode of operation. It returns
the status of the module by calling the SCM_Show_status()
function.

− void SCM_KeySetup(LPBYTE Key)

18-11-2008 SCM Security Policy 4.0 Page 9 of 57

With a given pointer to the key, this function initializes the
AES sub-keys that are kept internal to the Module. The
subkeys length must be 240 bytes. The key must enter into
the Cryptographic module encrypted by the user
performing a simple AES ECB mode encrypt with a
predefined key which will be given to the user and
hardcoded into the module.

LPBYTE Key: pointer to where the encrypted AES Key is
allocated, length must be of 32 bytes.

− void SCM_Cipher (DWORD counter, LPBYTE buffer)

This function receives the buffer that the programmer
wants to encrypt with the subkeys previously generated,
saving the encrypted block in the same buffer. Counter
modifies the result according to AES-CTR.

DWORD counter: sequential number in a larger data
structure than buffer which the programmer wants to
encrypt/decrypt according to AES-CTR.

LPBYTE buffer: input/output buffer for the
encrypted/decrypted result. Its length must be 16Bytes.

− int SCM_Show_status ()

This function returns an integer showing the status of the
cipher in the form 2 * system status + key fixed.

 int system_status

Represents a control variable which value is 1 if the system
is ready to operate and a different value if the system is
not ready to operate:

0. INITIAL_STATE
1. OK (ready to operate)
2. INT_ERROR (integrity error)
3. KAT_ERROR
4. SELF_TESTING

 int key_fixed

Represents a control variable which value is 1 if the keys
are set up, and 0 in the other case.

18-11-2008 SCM Security Policy 4.0 Page 10 of 57

− void SCM_Terminate (LPBYTE Key, DWORD *counter)

This function must be called at the end of the encryption /
decryption or in case of recovery, doing a zeroization in
the memory address that allocates the Key, the counter
and the generated subkeys that are kept internal to the
Module.

LPBYTE Key: pointer to where the AES Key is allocated.

DWORD * counter: pointer to the AES-CTR counter.

− void SCM_Self_test()

Runs the self tests on demand, updating the system status
variable.

2.4 Cryptographic module design

18 The basic design of the SCM, collects three subsystems with their
corresponding interfaces properly defined, as well as the
interaction that identifies the reason of the communication
between the subsystems.

Figure 1: SCM logical Boundary

18-11-2008 SCM Security Policy 4.0 Page 11 of 57

Note (as defined in 2.2 Ports and interfaces) for external interfaces:

• DI: Data input
• DO: Data output
• CI: Control input
• SO: Status output

Al interfaces are detailed in 2.4.2 External Interfaces Specification

19 The module consists of a single object code component
(scm_v40.o) which is built from the following files: scm.h, scm.c,
aes.c, scm_hatillo.c, associated with each of the subsystems
within the logical boundary as illustrated in Figure 1. Applications
that use the module must link the module object code
scm_v40.o in to use the services it provides.

20 This section describes the modules collection of the SCM product
and their interfaces.

2.4.1 Modules description

 SCM Subsystem

21 The SCM subsystem implements three different functionalities:

− The SCM initialization.

− The proper encrypt/decrypt operation calls.

− The system status check.

22 This subsystem provides an interface to the AES subsystem. All
encrypt/decrypt operation is performed via SCM subsystem.

23 The initialization functionality is in charge of calling the
mandatory power-up self-tests, including the integrity and KAT
algorithm tests, and calling AES sub-keys derivation. For this
purpose, the initialisation receives a 256 bits encrypted key as an
input parameter and prior to the key expansion it will ECB-
decrypt the entered key using a hardcoded key, and returns the
sub-keys derived from the entered key.

24 As part of the initialization process, the self-test functionality
performs power-up self-tests to ensure that the system is not on
error state:

• Integrity of the object cryptographic module (SCM) in the
runtime executable application at runtime.

18-11-2008 SCM Security Policy 4.0 Page 12 of 57

• KAT over the AES module in order to check whether the

AES-ECB decrypt algorithm, and the AES-CTR algorithm
behaves as expected.

25 Once the initialization functionality has finished as expected -
power-up self test performed with OK result and AES sub-keys
derived-, the AES-CTR encrypt/decrypt functionality is available.

26 Each encryption/decryption operation requires carrying out a
system status checking prior to its execution. On error state, the
crypto operations will not be available and the outputs will be
inhibited.

27 The encryption/decryption operation calls are made using
SCM_Cipher() function.

 AES Subsystem

28 The AES subsystem implements four different functionalities:

− The sub-keys derivation for encryption.

− The sub-keys derivation for decryption.

− The CTR encrypt/decrypt operation.

− The ECB decrypt operation.

29 The subsystem implements AES sub-keys expansion ([F197]
section 5.2). For this purpose, it receives a 256 bits key as an input
parameter, which the sub-keys used by the encryption algorithm
are derived from. A self test must have been performed before
starting with AES sub-keys derivation for encryption.

30 The process of generating subkeys works according to the AES
key expansion method ([F197] section 5.2), where 256 bits key is
expanded to a 240 Bytes expanded key, applying several
operations a number of times.

31 The AES module implementation, programmed in C, works in
AES-CTR mode where the size of the buffer is 16 Bytes.

32 The module will always use 256 bits keys, so the number of AES
rounds is fixed. This implementation has a great performance
and very low memory consumption.

18-11-2008 SCM Security Policy 4.0 Page 13 of 57

33 In each AES encryption round, the subBytes, shiftRows,

addRoundKey and mixColumns operations are done in an
optimized way.

34 Once the AES subsystem has finished its execution, the
zeroization functionality will erase the AES Key, the counter and
the generated AES sub-keys.

35 This subsystem also implements the sub-keys derivation algorithm
for decryption and the AES-ECB decryption algorithm. Those
functions are called from the SCM subsystem for decrypting the
key used by the user for the AES-CTR functionality.

36 AES Operation mode

− The crypto module operates in an AES-CTR (Advanced
Encryption Standard Counter) confidentiality mode when
the buffer size is fixed to 16 Bytes. The underlying block
cipher algorithm of the mode, AES, is a FIPS approved
algorithm, a symmetric key algorithm which operates on
fixed-length groups of bits. The algorithm is implemented
using C code and it may be used to encrypt and decrypt
a buffer.

− The Counter (CTR) mode is a confidentiality mode that
features the application of the forward cipher to a set of
input blocks, called counters, to produce a sequence of
output blocks that are exclusive-ORed with the plaintext to
produce the ciphertext, and vice versa. The sequence of
counters must have the property that each block in the
sequence is different from every other block ([SP800-38A]).

18-11-2008 SCM Security Policy 4.0 Page 14 of 57

Figure 2: CTR schema

 Supporting Functions Subsystem

37 The following supported functions are provided:

SelfTest

The self-test function (see also section 7 Self-Tests) performs
self-tests (on module power-up or on user demand) to
ensure that the AES module behaves properly. Power-up
self-tests are performed when the cryptographic module
starts its execution.

 If the cryptographic module fails the power-up self-
tests, it does not progress in its normal operation, staying
in a non operative status.

 If the cryptographic module fails a self-test, the module
enters a recovery state and updates the system status
indicator which can be read via the status output
interface. The cryptographic module does not perform
any cryptographic operations while in the recovery
state.

18-11-2008 SCM Security Policy 4.0 Page 15 of 57

The following values are taking into account (see section 4
Finite state machine model) when checking the availability
of the cryptographic operations due to a possible error:

System Status Key Fixed Functionality
TRUE Unreachable state INITIAL_STATE

 FALSE Crypto operations not
available

TRUE Crypto operations
available

OK

FALSE Crypto operations not
available

TRUE Recovery required
Crypto operations not
available

INT_ERROR

FALSE Crypto operations not
available

TRUE Recovery required
Crypto operations not
available

KAT_ERROR

FALSE Crypto operations not
available

TRUE Crypto operations not
available

SELF_TESTING

FALSE Crypto operations not
available

The power-up tests are initiated automatically without
requiring operator intervention. When the power-up tests
are completed, the results are returned via the “status
output” interface. If the tests succeed, the AES Module
enters in a healthy state and begins its normal operation;
otherwise the module does not progress in its normal
operations staying in a non operating state.

In addition the cryptographic module allows operators to
initiate the tests on demand for periodic testing of the
module.

The following self tests (for both power-up and on
demand) are provided:

18-11-2008 SCM Security Policy 4.0 Page 16 of 57

• Software integrity test over the object

cryptographic module in the runtime executable
application at runtime. The integrity tests are
performed using a HMAC-SHA1 digest calculated
over the final executable.

• Cryptographic algorithm test: Known Answer Tests
(KATs) are tests where a cryptographic value is
calculated and compared with a stored
previously determined answer. KAT for the AES-
CTR Algorithm encrypts with a 256 bit key a known
vector and then the obtained value is compared
with the known result. KAT for the AES-ECB
Algorithm, decrypts with a 256 bit key a known
vector and then the obtained value is compared
with the known result.

The variables system_status and key_fixed, implemented in
the source code, are in charge of determining the System
Status. The following table shows the correspondence with
the design and the finite state machine system status
control:

System_status Key_fixed FSM States
TRUE Unreachable state INITIAL_STATE

 FALSE NO OPERATIVE
TRUE OPERATIVE OK
FALSE HEALTHY
TRUE RECOVERY INT_ERROR

 FALSE ERROR
TRUE RECOVERY KAT_ERROR
FALSE ERROR
TRUE SELF_TEST SELF_TESTING
FALSE SELF_TEST

• When system_status is on INT_ERROR, the integrity
Self-Test has failed.

• When system_status is on KAT_ERROR, the KAT Self-
Test has failed.

• When system_status is on SELF_TESTING, the Self-
Test is being performed.

18-11-2008 SCM Security Policy 4.0 Page 17 of 57

• On a recovery required status, the SCM will finish

any crypto operation and the module will have to
be again initialized.

• While in no operative status or during the self-test
execution, the SCM encryption/decryption
functionality is not available and the output
interface is inhibited.

• The status of the system may be queried by the
user using an API function (SCM_Show_status ()).

Zeroization

Zeroization must be called by the user IT entity of the
API, to erase the keys and the counter in the following
cases:

• The AES module has finished

• A recovery is required

The function uses a technique called zeroization, which
fills keys structure and the counter with 0’s. User keys
established externally by the API user IT entity which are
the input parameter for the key setup functionality in
order to derive the AES sub-keys, are also zeroized:
when the module is initialized, the main AES key, the
counter and the derived sub-keys are established and
reside in RAM, until they are zeroized by the user
application at the end of the session by calling
SCM_Terminate. The user application must call
SCM_Terminate at the end of each session, regardless if
it completed successfully or if processing errors where
encountered.

2.4.2 External Interfaces Specification

SCM Subsystem external observable Interface [SCM-EXT]

38 SCM provides to the user application the following functions with
their associated parameters as specified in section 2.3 Functional
Specification:

• int SCM_Init()

• void SCM_KeySetup(LPBYTE Key)

18-11-2008 SCM Security Policy 4.0 Page 18 of 57

• void SCM_Cipher (DWORD counter, LPBYTE buffer)

• int SCM_Show_status ()

Supporting Functions Subsystem external observable Interface
[SUP-EXT]

39 The Supporting Functions Module provides to the user
application the following functions with their associated
parameters as defined in section 2.3 Functional Specification:

• void SCM_Self_test()

• void SCM_Terminate (LPBYTE Key, DWORD *counter)

2.4.3 Inter-subsystems Interfaces Specification

 SCM Subsystem – Supporting Functions Subsystem Interface

[SCM-SUP]

40 The Supporting Functions Module provides to the SCM module
the following function with their associated parameters as
specified in section 2.3 Functional Specification for power up self
test purposes:

• void SCM_Self_test()

 SCM Subsystem - AES Subsystem Interface [SCM-AES]

41 The AES module provides to the SCM Module the following
functions with their associated parameters:

• int AesFastKeySetupEnc256(u32 sk[240], const u8 Key[32])

With a given pointer to the key, this function initializes the
AES sub-keys at the specified memory position. If the
operation succeeds, the function return 1 else it returns 0.

u32 sk[240]: pointer to where the programmer wants to
save the generated subkeys, length must be 240 bytes

const u8 Key[32]: pointer to where the AES Key is allocated,
length must be 32 bytes.

18-11-2008 SCM Security Policy 4.0 Page 19 of 57

• void AesFastCipherBlock_sk(const u32 sk[240], u32 counter,

u8 buffer[16])

This function receives the pointer to the AES subkeys, and
the buffer that the programmer wants to encrypt or
decrypt, saving the encrypted block in the same buffer.

const u32 sk[240]: pointer to where the programmer has
saved the generated subkeys.

u32 counter: sequential number in a larger data structure
than buffer which the programmer wants to
encrypt/decrypt.

u8 buffer[16]: buffer where the programmer wants to save
the encrypted/decrypted result.

• int AesFastKeySetupDec256(u32 sk[240], const u8 Key[32])

With a given pointer to the key, this function initializes the
AES sub-keys for decryption at the specified memory
position. If the operation succeeds, the function return 1
else it returns 0.

u32 sk[240]: pointer to where the programmer wants to
save the generated subkeys, length must be 240 bytes

const u8 Key[32]: pointer to where the AES Key is allocated,
length must be 32 bytes.

• void StandAloneECB(const u32 sk[240], u8 buffer[16])

Execute standalone AES-ECB encryption.

const u32 sk[240]: pointer to the generated subkeys.

u8 buffer[16]: buffer to encrypt.

• void StandAloneECBDeciph(const u32 sk[240], u8
buffer[16])

Execute standalone AES-ECB decryption.

const u32 sk[240]: pointer to the generated subkeys.

u8 buffer[16]: buffer to decrypt.

18-11-2008 SCM Security Policy 4.0 Page 20 of 57

 AES Subsystem – Supporting Functions Subsystem Interface [AES-

SUP]

42 The AES module provides to the Supporting Functions Module the
following functions with their associated parameters as specified
in SCM Module - AES Module Interface section:

• int AesFastKeySetupEnc256(u32 sk[240], const u8 Key[32])

• void AesFastCipherBlock_sk(const u32 sk[240], u32 counter,
u8 buffer[16])

2.5 Approved cryptographic algorithms

43 The Module supports the following FIPS approved
cryptographic algorithms: Advanced Encryption Standard
(AES – FIPS 197, 256 key length), symmetric key block cipher
algorithm validated under the CAVP with certificate number
#792 as published in the on-line AES algorithm validation list in
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.
html#792.

44 For the integrity tests purposes, SCM applies a Key-hash
Message Authentication Code (HMAC – FIPS 198 Key-hash
Message Authentication Code with supporting SHA-1
implementation) validated under the CAVP with certificate
number #513 as published in the on-line HMAC algorithm
validation list in
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmac
val.html#513.

45 The SHA-1 implementation is validated under the CAVP with
certificate number #905 as published in the on-line SHA-1
algorithm validation list in
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.
htm#905.

2.6 Non-Approved cryptographic algorithms

46 There are no Non-Approved cryptographic algorithms in SCM.

2.7 Approved mode of operation

47 A single initialization call, SCM_Init (), is required to initialize the
SCM for operation in the only implemented FIPS 140-2

18-11-2008 SCM Security Policy 4.0 Page 21 of 57

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#792
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html#792
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#513
http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmacval.html#513
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#905
http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm#905

approved mode: AES-CTR. All services are performed in this
approved mode.

48 SCM can only be operated in AES-CTR FIPS Approved mode;
after the module initialization, it will be operating in this
approved mode (see paragraph 36 AES Operation mode).

18-11-2008 SCM Security Policy 4.0 Page 22 of 57

3 Roles, Services and Authentication

3.1 Roles

49 The User and Crypto Officer roles are implicitly assumed by
any entity that can access services implemented in the
Module. In addition, the Crypto Officer role can install and
initialize the Module (not to be confused with SCM_Init API
functionality, see section 8.2 Initialization, Start-up and
Operation); this role is implicitly entered when installing the
module or performing system administration functions on the
host operating system as described in the following table:

Role Authorized Services
User All the services except secure

installation, initialization and start-up
Crypto Officer All the services including secure

installation, initialization and start-up

3.2 Services

50 The operational services provided by the SCM are listed in the
following table. All operational services may be performed in
both User and Crypto Officer roles. Non operational services
(secure installation, initialization and start-up services as
described in section 8.2 Initialization, Start-up and Operation)
may only be performed by in the Crypto Officer role.

Roles Service CSP Algorithm API function Access
User
Crypto
Officer

Initialization None NA SCM_Init X

User
Crypto
Officer

Terminate symmetric
key, subkeys
and
counter

Zeroization SCM_Terminate RWX

User
Crypto
Officer

Symmetric
Encryption/
Decryption

subkeys and
counter

AES-256 SCM_Cipher RWX

User
Crypto
Officer

Key setup symmetric
key and
subkeys

NA SCM_Keysetup RWX

User
Crypto
Officer

Show status None NA SCM_Show_status X

18-11-2008 SCM Security Policy 4.0 Page 23 of 57

User
Crypto
Officer

Self Test
(includes
integrity,
known
answer
tests)

HMAC-SHA-
1 key

HMAC-SHA-
1 (for
integrity)

SCM_Self_test X

51 The services inputs and the services outputs are defined in the
functional specification.

3.3 Operator Authentication

52 The Cryptographic Module does not provide identification or
authentication mechanisms that would distinguish between
the two supported roles. These roles are implicitly assumed by
the services that are accessed. As a library and as allowed by
FIPS 140-2 level 1, the SCM does not support user identification
or authentication for those roles.

18-11-2008 SCM Security Policy 4.0 Page 24 of 57

4 Finite state machine model

53 This section describes the Finite State Machine (FSM) model for
an application utilizing the SCM FIPS Object Module. Figure 3
represents a finite state diagram showing the states and
transitions between states. Anytime the SCM is in one and only
one state.

4.1 Diagram

Figure 3: Finite State Machine Diagram

Transition
Number

Initial State Final State Input Events Output Events

1 NO
OPERATIVE

SELF-TEST SCM_Init system_status =
SELF_TESTING
and key_fixed = NO

2 SELF-TEST HEALTHY system_status = OK
and key_fixed =
NO

system_status = OK and
key_fixed = NO

3 HEALTHY OPERATIVE SCM_KeySetup system_status = OK and
key_fixed = YES

4 OPERATIVE OPERATIVE SCM_Cipher or system_status = OK and

18-11-2008 SCM Security Policy 4.0 Page 25 of 57

SCM_KeySetup key_fixed = YES

5 OPERATIVE NO
OPERATIVE

SCM_Terminate system_status =
INITIAL_STATE
and key_fixed = NO

6 HEALTHY NO
OPERATIVE

SCM_Terminate system_status =
INITIAL_STATE
and key_fixed = NO

7 OPERATIVE SELF-TEST SCM_Self_test system_status =
SELF_TESTING and
key_fixed = YES

8 ERROR NO
OPERATIVE

SCM_Terminate system_status =
INITIAL_STATE
and key_fixed = NO

9 SELF-TEST ERROR (system_status =
INT_ERROR or
system_status =
KAT_ERROR)
 and key_fixed =
NO

(system_status =
INT_ERROR or
system_status =
KAT_ERROR)
 and key_fixed = NO

10 RECOVERY NO
OPERATIVE

SCM_Terminate system_status = NO
OPERATIVE and
key_fixed = NO

11 SELF-TEST RECOVERY (system_status =
INT_ERROR or
system_status =
KAT_ERROR)
 and key_fixed =
YES

(system_status =
INT_ERROR or
system_status =
KAT_ERROR)
 and key_fixed = YES

12 HEALTHY SELF-TEST SCM_Self_test system_status =
SELF_TESTING and
key_fixed = NO

13 SELF-TEST OPERATIVE system_status = OK
and key_fixed =
YES

system_status = OK and
key_fixed = YES

Table 1: State Transitions Table

4.2 States and transitions

 States

54 No Operative:

The user application is running but the cryptographic module
does not provide any cryptographic service. Only when
performing a call to the function SCM_Init (which contains the
self testing) the transition is provoked and the next state (Self-
Test state) is reached.

18-11-2008 SCM Security Policy 4.0 Page 26 of 57

55 Self-Test:

The user application is performing a self-test operation. There is
no operation which can be performed during self-test
execution. If the operation succeeds the system_status will be
updated to OK else the system_status will change its value to
INT_ERROR or KAT_ERROR.

56 Healthy:

The user application has performed a Self-Test with success.
The keys have not been fixed yet.

57 Operative:

The user application has performed a Self-Test and the Keys
are setup. The cryptographic functionality is available and the
user application is ready to perform encrypt/decrypt
operations.

58 Recovery:

An “on demand Self-Test” required has returned a fail value.
As the keys are setup, a recovery process zeroizing the AES
sub-keys should be mandatory for the API IT entity user. The
zeroization is not performed automatically but the transition to
this state is the only one allowed when self test fail.

59 Error:

An “on demand Self-Test” required has returned a fail value.
The keys still are not fixed. The function SCM_Terminate must
be called by the API IT entity user.

 Transitions

60 Transition 1 (NO OPERATIVE – SELF TEST):

The transition from NO OPERATIVE to SELF TEST state happens
when the SCM performs a SCM_Init(). The status output is set
to system_status = SELF_TESTING and key_fixed = NO. There are
not input and output data. The control data is SCM_init().

61 Transition 2 (SELF TEST - HEALTHY):

The transition from SELF-TEST to HEALTHY state happens when
the power up self-test succeeds and the keys are not fixed.

18-11-2008 SCM Security Policy 4.0 Page 27 of 57

The status output is set to system_status = OK and key_fixed =
NO. There are not input and output data. The transition
depends on the values of the system_status and key_fixed
variables.

62 Transition 3 (HEALTHY – OPERATIVE):

The transition from HEALTHY to OPERATIVE state happens
because the SCM performs a key fixation. The status output is
set to system_status = OK and key_fixed = YES. The input data
is the AES key. There is not output data, the subkeys generated
are stored inside the SCM. The control data is SCM_KeySetup.

63 Transition 4 (OPERATIVE – OPERATIVE):

The reflexive transition in the OPERATIVE state happens
because the SCM may perform a crypto operation or a new
key fixation. All these actions do not provoke a state transition.
The status output remains as system_status = OK and key_fixed
= YES. There are two control data that may be used:
SCM_Cipher or SCM_KeySetup. The input and output data
depend on the control data used. For SCM_Cipher: The input
data are the counter and the buffer to be encrypted. The
output data is the buffer encrypted. For SCM_KeySetup: The
input data is the AES key and the output data is the subkeys
generated again.

64 Transition 5 (OPERATIVE – NO OPERATIVE):

The transition from OPERATIVE to NO OPERATIVE state happens
when the SCM perform the recovery process zeroizing the sub-
key values. Encryption/decryption functionality is not available
and the output interface is inhibited. The status output is set to
system_status = INITIAL_STATE and key_fixed = NO. The input
data are the counter and the key. There is not output data.
The control data is SCM_Terminate.

65 Transition 6 (HEALTHY – NO OPERATIVE):

The transition from HEALTHY to NO OPERATIVE state happens
when the SCM perform the recovery process zeroizing the sub-
key values. Encryption/decryption functionality is not available
and the output interface is inhibited. The status output is set to
system_status = INITIAL_STATE and key_fixed = NO. The input
data are the counter and the key. There is not output data.
The control data is SCM_Terminate.

18-11-2008 SCM Security Policy 4.0 Page 28 of 57

66 Transition 7 (OPERATIVE – SELF TEST):

The transition from OPERATIVE to SELF TEST state happens when
the SCM performs an on demand self-test. The status output is
set to system_status = SELF_TESTING and key_fixed = YES. There
are not input and output data. The control data is
SCM_Self_test.

67 Transition 8 (ERROR – NO OPERATIVE):

The transition from ERROR to NO OPERATIVE state happens
when the SCM perform the recovery process zeroizing the sub-
key values. Encryption/decryption functionality is not available
and the output interface is inhibited. The status output is set to
system_status = INITIAL_STATE and key_fixed = NO. The input
data are the counter and the key. There is not output data.
The control data is SCM_Terminate.

68 Transition 9 (SELF TEST – ERROR):

The transition from SELF-TEST to ERROR state happens when the
SCM performs an on demand Self-Test returning a FAIL result.
The keys will not be fixed. The status output is set system_status
= INT_ERROR or KAT_ERROR and key_fixed = NO. There are not
input and output data. The transition depends on the values
of the system_status and key_fixed variables.

69 Transition 10 (RECOVERY – NO OPERATIVE):

The transition from RECOVERY to NO OPERATIVE state happens
when the SCM perform the recovery process zeroizing the sub-
key values. Encryption/decryption functionality is not available
and the output interface is inhibited. The status output is set to
system_status = INITIAL_STATE and key_fixed = NO. The input
data are the counter and the key. There is not output data.
The control data is SCM_Terminate.

70 Transition 11 (SELF TEST – RECOVERY):

The transition from SELF-TEST to RECOVERY state happens when
the SCM performs an on demand Self-Test returning a FAIL
result. This event will require that the module recovers itself
zeroizing the sub-key values. The status output is set
system_status = INT_ERROR or KAT_ERROR and key_fixed = YES.
There are not input and output data. The transition depends
on the values of the system_status and key_fixed variables.

18-11-2008 SCM Security Policy 4.0 Page 29 of 57

71 Transition 12 (HEALTHY – SELF TEST):

The transition from HEALTHY to SELF TEST state happens when
the SCM performs an on demand self-test. The status output is
set to system_status = SELF_TESTING and key_fixed = NO. There
are not input and output data. The control data is
SCM_Self_test.

72 Transition 13 (SELF TEST - OPERATIVE):

The transition from SELF-TEST to OPERATIVE state happens when
the power up self-test succeeds and the keys are fixed. The
status output is set to system_status = OK and key_fixed = YES.
There are not input and output data. The transition depends
on the values of the system_status and key_fixed variables.

73 For clarity reasons, the remainder events that did not provoke
a state transition or those whose occurrence is considered as
meaningless have not been included in the finite state
diagram.

74 The API input parameters do not affect the ultimate state of
the transitions.

18-11-2008 SCM Security Policy 4.0 Page 30 of 57

5 Operational Environment

5.1 Operational Environment Policy

75 The following assumptions are to be satisfied by the
operational environment:

a) The linker shell script (linker), the current HMAC-SHA1
calculator (scm_precodigo.c) and the scm.h are delivered
in conjunction with the object module. The integrity may
be compromised by modifying the head file scm.h to
export directly internal low level cryptographic functions or
making visible the status system variable and modifying its
value bypassing this way the status control. Therefore, the
replacement or modification of any component of the
delivered module by unauthorized users is prohibited.

b) The Operating System enforces authentication method(s)
to prevent unauthorized access to Module services.

c) The generation and input of the main key is under user
application responsibility. It is supposed that is verified as
correct and is securely generated and stored. The main
key exchanged between the user application and the
SCM Module must be entered encrypted by the user
application, performing an AES-ECB on the key with a key
which is given to the user as part of the delivered
package.

d) All host system components that can contain sensitive
cryptographic data (main memory, system bus, disk
storage) must be located in a secure environment.

e) The user application accessing the module services in a
separate virtual address space with a separate copy of the
executable code.

f) The application designer must be sure that the client
application is designed correctly and does not corrupt the
address space of the SCM.

g) The unauthorized reading, writing, or modification of the
address space of the SCM is prohibited.

h) The writable memory areas of the SCM (data and stack
segments) are accessible only by a single application so

18-11-2008 SCM Security Policy 4.0 Page 31 of 57

that the module is in "single user" mode, i.e. only the one
application has access to that instance of the module.

i) The operating system is responsible for multitasking
operations so that other processes cannot access the
address space of the process containing the SCM.

j) The user shall not link multi threaded applications to the
SCM API.

k) The Crypto Officer shall be well-trained and non-hostile.

l) The Crypto Officer should install the generated files in a
location protected by the host operating system security
features. These protections should allow write access only
to Crypto Officers and read access only to authorized
users.

5.2 Compatible platforms

76 The Module is designed to run on any Windows platform (up
from W95). The hardware (I386 platform) must support any
Windows operating system. Any such computing platform that
meets the conditions listed above can be used to host a FIPS
140-2 validated Module generated in accordance with this
Security Policy. However, the module has been tested in a
Windows XP SP2.

5.3 Software security

77 Integrity checks are performed in the process of generating
and running an application using the SW Cryptographic
Object Module:

a) Integrity of the Cryptographic module object file
generated from the source code: SECUWARE delivers the
product including a Cryptographic module object digital
signature which will have to be validated by the final user
for integrity assurance.

b) Integrity of the Cryptographic module object in the

runtime executable application is checked at runtime
when the application starts or an on demand self-test is
requested. At runtime the SCM_Self_test() function uses the
embedded HMAC-SHA1 digest to check the integrity of
the memory mapped contents of the Cryptographic
module object.

18-11-2008 SCM Security Policy 4.0 Page 32 of 57

78 This chain of integrity checks assures that applications that are

required to make use of cryptography will use FIPS 140-2
validated cryptographic module. This chain starts from
SECUWARE when signing the SCM object module and the
final user is in charge of verifying it before build the user
application with the SCM.

79 The only way this module can be used in a FIPS 140-2
Approved mode of operation is if it is built according to the
method described in section 8.2 - Initialization, Start-up and
Operation; any deviation from the specified building method
will violate the validation.

5.4 Critical security parameters

80 A Critical Security Parameter (CSP) is information, such as
passwords, symmetric keys, asymmetric private keys, etc., that
must be protected from unauthorized access. Since the
Module is accessed via an API from a user referencing
application, the Module is not in charge of preventing
unauthorised access to any CSP.

81 The following CSPs are managed by the module:

• A 256-bit key (input parameter) to derive the associated
subkeys for the AES algorithm, as part of the initialization
process. As it has been previously mentioned, the
generation, establishment and input of the main key is
under user application responsibility.

• The counter is a sequential number in a larger data
structure than buffer which the programmer wants to
encrypt/decrypt according to AES-CTR.

• The AES sub-keys derived, are the input parameter of
the AES algorithm.

• The hard coded key which decrypts the main AES-256
key entered by the user in encrypted form.

• The hard coded key used for the HMAC integrity tests

82 The application designer and the end user share a
responsibility to ensure that CSPs are always protected from
unauthorized access. This protection will generally make use
of the security features of the host hardware and software

18-11-2008 SCM Security Policy 4.0 Page 33 of 57

5.5 Physical Security

83 The Module does not claim to enforce any physical security as
it is implemented entirely in software.

5.6 Electromagnetic Interference/Electromagnetic Compatibility

84 The software runs in a platform which conforms to the
EMI/EMC requirements specified by 47 Code of Federal
Regulations, Part 15, Subpart B, Unintentional Radiators, Digital
Devices, Class B.

5.7 Mitigation of Other Attacks

85 The SCM does not implement any more countermeasures to
mitigate against any specific attacks.

18-11-2008 SCM Security Policy 4.0 Page 34 of 57

6 Cryptographic key management

6.1 RNG

86 Not applicable; the SCM does not utilize Random number
Generators.

6.2 Key Generation

87 Not applicable; the SCM does not generate any key
internally.

6.3 Key Establishment

88 Not applicable; no key establishment among crypto modules.

6.4 Key Entry and Output

89 The AES main key is generated by the user application and is
entered to the SCM using automated methods and in
encrypted form.

90 The entered key is always associated to the correct user
application entity as long as the Operational Environment
Policy assumptions (bullets e), f), g), h), i) and j)) are met.

91 The main AES-256 key must be entered into the SCM
encrypted by the user performing a simple AES ECB mode
encryption with a predefined key which will be given to the
user. Properties of this predefined key are following:

− type and identifier: 256 bits AES ECB key used for
decrypting the main AES-256 key.

− Storage location: hard coded into the module (scm.c).

− Form in which the key is stored: plaintext.

92 Encryption of the main AES-256 key is under user application
responsibility. As the SCM is a library which is customized for
each customer, each user will have its own predefined key.

93 No key is outputted from the SCM.

18-11-2008 SCM Security Policy 4.0 Page 35 of 57

6.5 Key storage and Key Zeroization

94 The SCM does not store any CSP (except the hard coded key
which decrypts the main AES256 key entered by the user in
encrypted form and the hard coded key for HMAC) in
persistent media; while the module is initialized the main AES
key, the counter and the derived sub-keys reside temporarily
in RAM shall be zeroized by the user application at the end of
the session and in case of recovery (SCM_Terminate). In order
to zeroize the above mentioned hard coded keys, a
reformatting of the hard drive which contains the module shall
be performed.

95 The size of the sub-keys is 240 bytes, the size of the counter is
double word and the size of the main key is 256 bits. The
function uses a technique called Zeroization, which fills byte to
byte the associated structures with 0s.

96 The hard coded key and its associated subkeys are also
zeroized in RAM after been used to decrypt the user key,

18-11-2008 SCM Security Policy 4.0 Page 36 of 57

7 Self-Tests

97 The SCM provides a self-test functionality including “power–
up” and “on demand” self-test to ensure proper operation of
the module.

98 Power-up tests are run automatically when the SCM is
initialized. Additionally, self-tests may be executed at any time
by calling the SCM_Self_test() function which update the
system_status. No FIPS mode cryptographic functionality will
be available until successful execution of all power-up tests.

99 No authentication is required to perform self-tests either
automatically or upon demand.

100 On self-test failure, all cryptographic operations are disabled
and outputs inhibited until the module is recovered. The most
likely cause of a self-test failure is memory or hardware errors.
In practice, a self-test failure means that the user’s application
should exit and be restarted.

7.1 Power-up and “on demand” Tests

101 Power-up and “on-demand” tests include integrity tests and
cryptographic algorithm known answer tests.

7.1.1 Integrity Tests

102 The integrity tests are those that check the object
cryptographic module in the runtime executable application
at runtime as the first power-up self-tests or “on demand”. The
integrity tests are performed using a HMAC-SHA1 digest
calculated over the running executable.

Integrity Algorithm

103 The object code generated by the compilation of the

Cryptographic module files is carefully isolated from
application object code. This isolation is accomplished by
collecting all of Cryptographic module object code into a
single discrete unit of object code (scm_v40.o).

18-11-2008 SCM Security Policy 4.0 Page 37 of 57

scm_precodigo.c

scm.o &

SCM

104 We refer to this discrete unit as the Secuware Security
Framework – Crypt4000 Module (SCM). The SCM contains only
the module object code and its integrity is protected by a
HMAC-SHA1 which is “auto-calculated” in a first stage when
the whole code (SCM + User_App) is compiled with
scm_precodigo.c.

105 In a second stage, the whole code is compiled again
including in the object digest previously calculated. This
process is carried out by the provided script linker, which
behaves as a C compiler.

106 This digest is checked whenever an application linked against
the SW Cryptographic Object Module file, performs a call to
the SCM_init() or SCM_Self_test() functions.

107 The design of the SW Cryptographic Object Module includes
the definition of reference points within the object code that
are used to define the object code to be protected by the
runtime integrity test (scm_start.o and scm_end.o).

Integrity
Functions

scm_start.o

scm_end.o

User_App

linker

scm_v40.o

18-11-2008 SCM Security Policy 4.0 Page 38 of 57

Memory Map

scm.o & aes.obj scm_v40.o

scm_start.o

scm_end.o

108 As it was explained above, at application link time, a HMAC-
SHA-1 digest of the memory mapped object code is created
and stored in the SW Cryptographic Object Module. This
digest is calculated entirely within the confines of the SW
Cryptographic Object Module and so will never include
extraneous object code.

109 The integrity test is required over the object code within the
logical boundary only. This integrity test will be performed
each time the SCM is initialized and as part of the self-test user
requests.

110 The linker script is in charge of performing the following steps:

1. Compile and link the files: scm_precodigo.c, scm_v40.o
and the user application code generating an executable
file.

2. Execute the executable generated in the previous step.
The object digest will be returned.

3. Recompile and link the files: scm_precodigo.c, scm_v40.o,
and the application code giving as a parameter the
previously calculated digest. The final executable file or
object will be generated.

111 The final result is an executable program that executes the

application code. The integrity check will be performed
whenever the SCM starts (the application calls the SCM_init()
function).

Integrity Process File Description

18-11-2008 SCM Security Policy 4.0 Page 39 of 57

112 The description of the files involved in the module compilation

and the executable application generation is as follows:

• scm.o: this file contains the SCM API including the
integrity functions.

• aes.obj: C AES functions
• scm_start.o: start reference point within the object code

that is used to define the object code to be protected
by the runtime integrity test.

• scm_end.o: end reference point within the object code
that is used to define the object code to be protected
by the runtime integrity test.

• scm_hatillo.c: in charge of generating the start and end
references above mentioned.

• scm_v40.o: a single discrete unit of object code that
contains scm_start.o, scm.o, aes.obj and scm_end.o.

• scm_precodigo.c: during the first compilation, it is in
charge of calling the functions that will calculate the
HMAC-SHA1 digest. After that, it is involved in final
executable generation.

• User application: The user IT entity - application code
that contains the main application functionality. It calls
SCM API functions.

• linker: It is in charge of generating the final application
that contains the SCM and the CM integrity check.

7.1.2 Known Answer Tests

113 Known Answer Tests (KATs) are tests where a cryptographic
value is calculated and compared with a stored previously
determined answer. KAT tests are performed to check
whether the algorithm behaves as expected.

114 KAT are performed over:

− AES-CTR algorithm

− AES ECB decrypt function

KAT for AES-CTR algorithm

115 The method uses the following parameters:

• A 256 bit prefixed key, which the sub-keys used by
the AES-CTR encryption algorithm are derived from.

• An initial 16 bytes known vector for the AES-CTR KAT.

18-11-2008 SCM Security Policy 4.0 Page 40 of 57

• A final 16 bytes known vector for the AES-CTR KAT.

This final vector is the result of encrypting the initial
vector before performing the KAT.

• A fixed counter for the AES-CTR KAT.

116 The KAT procedure performs the following steps:

− AES (CTR) encryption

1. The sub-keys used by the CTR algorithm are
derived from the 256 bit prefixed key.

2. The initial vector is encrypted with the sub-keys
derived in the previous step and the fixed
counter.

3. The vector obtained is compared byte to byte to
the final known vector.

4. If the comparison succeeds, this known answer
test has finished successfully.

− AES (CTR) decryption

1. The sub-keys used by the CTR algorithm are
derived from the 256 bit prefixed key.

2. The final vector is decrypted with the sub-keys
derived in the previous step and the fixed
counter.

3. The vector obtained is compared byte to byte to
the initial known vector.

4. If the comparison succeeds, this known answer
test has finished successfully.

− AES (ECB) encryption

1. The sub-keys used by the ECB decryption
algorithm are derived from the 256 bit prefixed
key for encryption.

2. The initial vector is encrypted with the sub-keys
derived in the previous step.

3. The vector obtained is compared byte to byte to
the final known vector.

18-11-2008 SCM Security Policy 4.0 Page 41 of 57

4. If the comparison succeeds, this known answer

test has finished successfully.

− AES (ECB) decryption

1. The sub-keys used by the ECB decryption
algorithm are derived from the 256 bit prefixed
key for decryption.

2. The initial vector is decrypted with the sub-keys
derived in the previous step.

3. The vector obtained is compared byte to byte to
the initial known vector.

4. If the comparison succeeds, this known answer
test has finished successfully.

117 If all the tests have finished successful, then the module returns
ok.

KAT for AES-ECB decrypt function

118 The method uses the following parameters:

• A 256 bit prefixed key, which the sub-keys used by
the AES-ECB decryption algorithm are derived from.

• An initial 16 bytes known vector for the AES-ECB
decrypt function KAT.

• A final 16 bytes known vector for the AES-ECB KAT.
This final vector is the result of decrypt the initial
vector before performing the KAT.

119 The KAT procedure performs the following steps:

1. The sub-keys used by the ECB decryption algorithm
are derived from the 256 bit prefixed key.

2. The initial vector is encrypted with the sub-keys
derived in the previous step.

3. The vector obtained is compared byte to byte to the
final known vector.

18-11-2008 SCM Security Policy 4.0 Page 42 of 57

4. If the comparison succeeds, the known answer test

has finished successfully.

7.2 Conditional Tests

120 Pair-wise Consistency Test: Not applicable; the SCM does not
implement any public key cryptographic function.

121 Software/Firmware Load Test: Not applicable; the SCM does
not utilize externally loaded cryptographic modules.

122 Manual Key Entry Test: Not applicable; keys are not manually
entered into the Module.

123 Bypass Test: Not applicable; the SCM does not implement any
bypass capability.

7.3 Critical Function Tests

124 The SCM does not implement any critical function tests.

18-11-2008 SCM Security Policy 4.0 Page 43 of 57

8 Design Assurance

8.1 Configuration management

125 Configuration management: CIs version control, change
control, flaw remediation tracking, is managed by SECUWARE
using VSS 2005 (Visual Source Safe) for managing the life-
cycle of its products. The source code revisions are
maintained in a VSS repository with write access restricted to
the authorised developers.

8.1.1 Configuration Items Identification Method

126 In order to ensure that it would be possible for consumers to

identify the SCM version (e.g. at the point of purchase or use),
the module contains a unique reference (version number)
which is stated as part of the delivered Software
Cryptographic Object Module file name: scm_vXY.o where X
is de version number and Y the revision number.

127 For source code files, VSS assign automatically the revision
number used for internal purposes. In addition, to allow
traceability to the item configuration list (section 8.1.3
Configuration Item List), a tag with the version number X.Y
(where X is de version number and Y the revision number – it
shall not to be confused with the internal VSS revision) is
manually added to each source file.

128 When any source file is created, version v10 is always
assigned. Every minor revision implies a Minor revision number
increase. Every major revision implies a Major revision number
increase. The minor revision number is set to 0 when major
revision is increased.

129 The method used to uniquely identify the documentation
configuration items describe how the status of each
configuration item can be tracked throughout the life-cycle
of the SCM.

130 Each document to be managed by VSS is considered a
manageable element as a whole. The methodology user for
managing and controlling the versioning of the
documentation throughout its life-cycle is the following:

− Naming.

18-11-2008 SCM Security Policy 4.0 Page 44 of 57

Name vX.Y, where Name is the name of the related
document. The name differentiates each document
among the others, so each name must be unique
among the managed documentation elements. vX.Y is
the version of the document.

− Version update

The Version of a document consists of two parts:

 Major number (X)

This number indicates the actual version of the
document.

 Minor number (Y)

This number indicates the revision number of the
document.

131 When a document is created, version v1.0 is always assigned.
Every minor revision in the content of the document, such as
those related to normal evolution of the document (e.g.
references update, small changes in the content, reviews,
etc.), implies a Minor revision number increase. Every major
revision in the content of the document (e.g. new parts
added, important structural changes, etc.) implies a Major
revision number increase. The minor revision number is set to 0
when major revision is increased.

132 The CI identification method allows:

a) tracking versions of the same configuration item;
b) identifying superseded versions of a configuration item.

8.1.2 Configuration Management System

133 As a preparation for the configuration management, the
following directories are created as the folders to be
managed by VSS:

− Development Directory: all versions and code
modifications are held in this folder.

− Documentation Directory: all (versioned) documents are
held in this folder.

− Tools: all (versioned) tools used for a product development
are stored in this folder.

18-11-2008 SCM Security Policy 4.0 Page 45 of 57

134 Updates and modifications are carried out following the
options VSS offers:

− Define users with a predefined profile.

− Each user is able to modify solely the assigned resources,
both documentation and source code. At the same time,
each user only has privilege to access certain projects.

− Every change is registered in VSS, and it is possible to
create a log file with those changes.

− VSS allows realizing comparisons between different
versions.

− VSS also allows performing automatic build tasks and
compiling certain code version from a certain date.

Figure 4: Automatic compilation

18-11-2008 SCM Security Policy 4.0 Page 46 of 57

Figure 5: VSS Directory configuration

135 There is an assigned role for each maintenance and update

task:

− Development controller: role in charge of controlling and
maintaining the source code, as well as defining which
new elements related to the development must be
managed by VSS.

− Documentation controller: role in charge of controlling
and maintaining the documentation, as well as defining
which new documents must be managed by VSS.

− Tools controller: role in charge of controlling and
maintaining the tools (e.g. when a new version of a tool is
released, this role must evaluate and decide if migrate the
current one or not).

8.1.3 Configuration Item List

136 The following table contains the Configuration Items which

are controlled in accordance with the configuration
management procedures above described:

CI Version Date
SW Crypto Module Security Policy 4.0 Nov 2008
Software Cryptographic Module User
Guidance

4.0 Nov2008

Source code files:
 Makefile
 aes.c
 scm.c
 scm.h

4.0
4.0
4.0
4.0

Nov2008

18-11-2008 SCM Security Policy 4.0 Page 47 of 57

 scm_hatillo.c 4.0

IUT:
 scm_v40.o

4.0

Nov2008

137 The following table shows items under configuration control
that are not part of the crypto module but are used to
support the generation of the final object:

Item Version Date
Supporting files for building the final object:

 scm_precodigo.c
 linker

4.0
4.0

Nov 2008

8.2 Initialization, Start-up and Operation

8.2.1 Secure installation

138 This section describes the applied procedures for achieving a

security installation for the SW Crypto Module.

Integrity Assurance

139 PGP (Pretty Good Privacy) is used for signing the product with
a SECUWARE certificate, assuring that any modification in the
content is properly detected.

Confidentiality Assurance

140 When using Internet as the media for delivering the product,
an FTP server with access-protected paths is used, and
therefore only the corresponding customer/partner can
access the content after proper identification/authentication.

141 The SECUWARE Service Department creates a virtual directory
specific for the customer/partner in a FTP server
(ftp://ftp.clients.secuware.com/client-x), with a control
access based on user/password exclusively for that
customer/partner

142 PGP is also used for, besides signing the content, encrypting it
with the public key of the customer/partner, ensuring that
only the corresponding receiver can access the content of
the product.

18-11-2008 SCM Security Policy 4.0 Page 48 of 57

ftp://ftp.clients.secuware.com/client-x

143 It is important to highlight, as stated in the previous

paragraph, the fact that the library binaries, with the persisted
key inside (for decrypting the AES256 main key entered by the
user in encrypted form), are delivered to the final customer in
an encrypted form and therefore, the customer must keep
the library binaries within the boundaries of a secure
perimeter once they have been delivered to them. The hard-
coded main AES-256 key can not be changed by the user.

Proof of origin

144 PGP digital signature assures proof of origin.

8.2.2 Secrets distributions

145 PGP is used for protecting the product when using the FTP
directory. For that purpose, PGP public keys must be
exchanged between Secuware and the customer/partner.
This information is sent only once, and can it can be done at
the beginning of the Agreement of Service Contract between
Secuware and the customer/partner or the first time the
customer/partner buys a product.

146 The same way, the harcoded key to be used by the user
application to encrypt the main AES256 key, must be
delivered to the final customer.

147 The customer shall generate a PGP key pair and must send its
public key to Secuware. Secuware will encrypt with this public
key all the secrets:

− information to access the ftp including the URL, user and
password,

− key to be used for AES256 main key ECB encrypt

and will send it to the customer, by e-mail (secuware´s public
key for signature validation purposes has been previously
made available for the customer).

8.2.3 Initialization and start-up

148 The Crypto Module building procedure performs a collection
of steps to build a user application, which interacts with the
SW Crypto module:

18-11-2008 SCM Security Policy 4.0 Page 49 of 57

− Previously it is necessary to install the MingW32

environment and MSYS. An easy way to do this, is to run
the two Windows® installer programs from
http://sourceforge.net/projects/mingw and
www.mingw.org respectively. The current versions are
called MinGW-5.1.3.exe and MSYS-1.0.10.exe. Run the
MINGW installer *first*.

− Copy the provided code into the MingW32 environment.
The user application source and the Crypto module API,
must be copied as a necessary step for Cryptographic
module initialization and Start-up. Those sources will be
used to generate an executable.

− Execute the provided script, linker, as a gcc compiler or a
ld linker, with the following parameters under the mingw32
environment:

 ./linker userApplication.c –o executableName

where userApplication.c is the application source code
that contains CM API calls and executableName is the
final executable name. The files scm_v40.o and
scm_precodigo.c must be on the same path than the
linker script.

− Once the final executable has been generated, then it is
ready to be executed like whichever windows executable
file.

149 The linker script functionality is described in section 7.1.1
Integrity Tests.

150 The final result is an executable program that executes the
Application code. The integrity check will be performed
whenever the SCM starts (the application calls the SCM_Init
function).

151 The version of the compiler and linker needed to build
correctly the module are gcc.exe (GCC) 3.4.5 (mingw
special) and GNU ld version 2.17.50 20060824.

8.2.4 Operation rules

152 The operation rules of the Cryptographic Module are the
followings:

18-11-2008 SCM Security Policy 4.0 Page 50 of 57

http://sourceforge.net/projects/mingw
http://www.mingw.org/

1. The Crypto Officer must provide the user with the user

guidance [GUI].
2. Before performing the cryptographic module key setup,

the system status must be set to OPERATIVE which means
that the self-test (power-up or “on demand”) must have
been successfully completed.

3. The main AES-256 key must be entered into the SCM
encrypted by the user performing a simple AES ECB mode
cipher with a predefined key which will be given to the
user (see 8.2.2 Secrets distributions) and hard coded into
the module. Encrypting the main key is under user
application responsibility. As the SCM is a library which is
customized for each costumer, each user will have its own
key.

4. The library binaries, with the persisted key inside (for
decrypting the AES256 main key entered by the user in
encrypted form), are delivered to the final customer in an
encrypted form and therefore, the customer must keep
the library binaries within the boundaries of a secure
perimeter once they have been delivered to them.

5. Before performing any cryptographic operation, the
system status must be set to OPERATIVE which means that
the self-test (power-up or “on demand”) must have been
successfully completed and the key setup performed.

6. To update the system status, a self-test should be
performed before each crypto operation.

7. Before performing a Self-Test operation, the module must
have been initialized with the SCM_Init function.

8. On Self-test successful, the system status is updated to
OPERATIVE value; else the system status is updated to the
NO OPERATIVE value.

9. On recovery required status, no cryptographic services will
be available, the sub-keys, the key and the counter will be
zeroized and the module will have to be again initialized.

10. While no operative status or during the self-test execution,
the SCM encryption/decryption functionality is not
available and the output interface is inhibited.

11. When the SCM has finished any crypto operation, the sub-
keys, the key and the counter must be zeroized.

12. The specification of the CTR mode requires a unique block
counter (counter according to the API) for each plaintext
block that is ever encrypted under a given key, across all
messages. If, contrary to this requirement, a block counter
is used repeatedly, then the confidentiality of all of the
plaintext blocks corresponding to that counter block may

18-11-2008 SCM Security Policy 4.0 Page 51 of 57

be compromised. Two main aspects are to be taking into
account to satisfy the uniqueness of the counter block:

o An incrementing function for generating the counter
blocks from any initial counter block to ensure that
counter blocks do not repeat within a given
message.

o The initial counter blocks must be chosen to ensure
that counters are unique across all messages that
are encrypted under a given key. The maximum
number of distinct blocks that SCM can crypt without
repeating the counter is 2double word size. See [SP800-
38A].

8.3 Development

153 The operational rules are a trivial translation of the finite state
machine and its implementation as it has been justified in the
SCM design.

154 The trace of source code to the modules design is shown for
completeness and accuracy checking, in the following table:

Function Module
High level functions
void WINAPI SCM_Init(void); SCM
void WINAPI SCM_KeySetup(LPBYTE
Key);

SCM

void WINAPI SCM_Cipher(DWORD
counter, LPBYTE buffer);

SCM

int WINAPI SCM_Show_status(void); SCM
void WINAPI SCM_Terminate(LPBYTE
Key, DWORD *counter);

Supporting Functions

void WINAPI SCM_Self_test(void); Supporting Functions
Low level functions
int WINAPI SCM_Check_INT(void); Supporting Functions
int WINAPI SCM_Check_KAT(void); Supporting Functions
int CompruebaFirmaInterna(void); Supporting Functions
void FirmaInterna(unsigned char
*hash);

Supporting Functions

int AesFastKeySetupEnc256(u32
sk[240], const u8 Key[32]);

AES

void AesFastCipherBlock_sk(const u32
sk[240], u32 counter, u8
buffer[16]);

AES

18-11-2008 SCM Security Policy 4.0 Page 52 of 57

int AesFastKeySetupDec256(u32
sk[240], const u8 Key[32]);

AES

void StandAloneECB(const u32
sk[240], u8 buffer[16]);

AES

void StandAloneECBDeciph(const u32
sk[240], u8 buffer[16]);

AES

155 Commented function headers are listed in Annex: Functions
Header.

8.4 Guidance document

156 Guidance information for both Crypto Officer and User roles is
included in [GUI], covering the following aspects:

 For Crypto officer role, the guidance specifies:
− the administrative functions,
− security events,
− security parameters,
− logical interfaces,
− procedures on how to administer the cryptographic

module in a secure manner,
− assumptions regarding user behaviour that is

relevant to the secure operation of the
cryptographic module.

 For User role the guidance specifies:

− the approved security functions,
− logical interfaces available to the users of the

cryptographic module,
− all user responsibilities necessary for the secure

operation of the cryptographic module.

18-11-2008 SCM Security Policy 4.0 Page 53 of 57

9 Glossary

AES Advanced Encryption Standard
API Application Programming Interface
CI Configuration Item
CM Cryptographic Module
CSP Critical Security Parameter
CTR Counter
EMC ElectroMagnetic Compatibility
EMI ElectroMagnetic Interferences
FIPS Federal Information Processing Standard
FSM Finite State Machine
HMAC Hash based Message Authentication Code
HW Hardware
IT Information Technology
IUT Implementation Under Test
KAT Known Answer Test
NIST National Institute of Standards and Technology
OS Operating System
PGP Pretty Good Privacy
SCM SECUWARE Cryptographic Module:

Refers to “Secuware Security Framework – Crypt4000
module” module FIPS name

SHA Secure Hash Algorithm
SW Software
SW Cryptographic Module SCM
VSS Visual Source Safe

18-11-2008 SCM Security Policy 4.0 Page 54 of 57

Annex: Functions Header

157 Below, the header information of the low level and high level
functions with appropriate comments is presented.

High level functions

void WINAPI SCM_Init(void);
/**
 * \brief This function calls the SCM_Self_test function and initialized
 * the module in FIPS mode of operation.
 *
 * \param output return 1 if the test has gone well, 0 in another case.
 */

void WINAPI SCM_KeySetup(LPBYTE Key);
/**
 * \brief With a given pointer to the key, this function initializes the
 * AES subkeys
 *
* \param Key pointer to where the AES Key is allocated, length must be 32 bytes.
 */

void WINAPI SCM_Cipher(DWORD counter, LPBYTE buffer);

/**
 * \brief This function receives the buffer that the programmer wants to encrypt,
 * saving the encrypted block in the same buffer. Counter must be
 * modified according to AES-CTR.
 *
 * \param counter sequential number in a larger data structure than buffer which the

programmer wants to encrypt/decrypt according to AES-CTR
 *
 * \param buffer input/output buffer for the encrypted/decrypted result. Its length must

be 16Bytes
 *
 */

int WINAPI SCM_Show_status(void);
/**
 * \brief This function returns true if the SCM is in approved mode of operation
 * and there has been no error or false if it isn't
 *
 * \param output return a integer showing the status of the cipher in the form 2 *

system status + key fixed.
 */

void WINAPI SCM_Terminate(LPBYTE Key, DWORD *counter);
/**
 * \brief This function must be called at the end of the encryption / decryption,
 * doing a zeroization in the memory address that allocates the Key, the counter

and the Subkeys.
 *
* \param Key pointer to where the AES Key is allocated

18-11-2008 SCM Security Policy 4.0 Page 55 of 57

* \param counter pointer to the AES-CTR counter.
 *
 */

void WINAPI SCM_Self_test(void);
/**
 * \brief Performs the self tests, updating the system status
 *
 */

Low level functions

int WINAPI SCM_Check_INT(void);
/**
 * \brief Performs the Integrity Test
 *
 * \param output return 1 if the test has gone well, 0 in another case.
 */

int WINAPI SCM_Check_KAT(void);
/**
 * \brief Performs the Known Answer Test for the AES algorithm implementation
 *
 * \param output return 1 if the test has gone well, 0 in another case.
 */

int CompruebaFirmaInterna(void);
/**
 * \brief This function checks if the stored HMAC-SHA1 is equal to the calculated.
 *
 * \param output Returns 1 if the integrity test has gone well, 0 in another case.
 */

void FirmaInterna(unsigned char *hash);
/**
* \brief This function calculate the HMAC-SHA1 corresponding to the code between

scm_start and scm_end.
 *
 * \param sig where to save the calculated HMAC-SHA1
 */

int AesFastKeySetupEnc256(u32 sk[240], const u8 Key[32]);
/**
 * \brief With a given pointer to the key, this function initializes the AES subkeys
 * at the specified memory position.
 *
 * \param sk pointer to the generated subkeys.
 *
 * \param Key pointer to where the AES Key is allocated. It's 256 bits
 */

void AesFastCipherBlock_sk(const u32 sk[240], u32 counter, u8 buffer[16]);
/**
 * \brief This function receives the pointer to the AES subkeys, and the buffer that
 * the programmer wants to encrypt, saving the encrypted block in the same
 * buffer.

18-11-2008 SCM Security Policy 4.0 Page 56 of 57

18-11-2008 SCM Security Policy 4.0 Page 57 of 57

 *
 * \param sk pointer to the generated subkeys.
 * \param counter sequential number in a larger data structure than buffer which the
 * programmer wants to encrypt/decrypt
* \param buffer input/output buffer where the programmer wants to save the

encrypted/decrypted result.
*/

int AesFastKeySetupDec256(u32 sk[240], const u8 Key[32]);

/**
* \brief With a given pointer to the key, this function initializes the AES subkeys for

 decrypting at the specified memory position.
 *
 * \param sk pointer to the generated subkeys.
 *
 * \param Key pointer to where the AES Key is allocated. It's 256 bits
 */

void StandAloneECB(const u32 sk[240], u8 buffer[16]);
/**
 * \brief Execute standalone AES-ECB encryption
 *
 * \param sk pointer to the generated subkeys.
 *
 * \param buffer buffer to encrypt
 */

void StandAloneECBDeciph(const u32 sk[240], u8 buffer[16]);
/**
 * \brief Execute standalone AES-ECB decryption
 *
 * \param sk pointer to the generated subkeys.
 *
 * \param buffer buffer to decrypt
 */

	1 Introduction
	1.1 Audience
	1.2 Document organization
	1.3 References

	2 Module Specification
	2.1 The FIPS object module
	2.2 Ports and interfaces
	2.3 Functional Specification
	2.4 Cryptographic module design
	2.4.1 Modules description
	2.4.2 External Interfaces Specification
	2.4.3 Inter-subsystems Interfaces Specification
	2.5 Approved cryptographic algorithms
	2.6 Non-Approved cryptographic algorithms
	2.7 Approved mode of operation

	3 Roles, Services and Authentication
	3.1 Roles
	3.2 Services
	3.3 Operator Authentication

	4 Finite state machine model
	4.1 Diagram
	4.2 States and transitions

	5 Operational Environment
	5.1 Operational Environment Policy
	5.2 Compatible platforms
	5.3 Software security
	5.4 Critical security parameters
	5.5 Physical Security
	5.6 Electromagnetic Interference/Electromagnetic Compatibility
	5.7 Mitigation of Other Attacks

	6 Cryptographic key management
	6.1 RNG
	6.2 Key Generation
	6.3 Key Establishment
	6.4 Key Entry and Output
	6.5 Key storage and Key Zeroization

	7 Self-Tests
	7.1 Power-up and “on demand” Tests
	7.1.1 Integrity Tests
	7.1.2 Known Answer Tests
	7.2 Conditional Tests
	7.3 Critical Function Tests

	8 Design Assurance
	8.1 Configuration management
	8.1.1 Configuration Items Identification Method
	8.1.2 Configuration Management System
	8.1.3 Configuration Item List
	8.2 Initialization, Start-up and Operation
	8.2.1 Secure installation
	8.2.2 Secrets distributions
	8.2.3 Initialization and start-up
	8.2.4 Operation rules
	8.3 Development
	8.4 Guidance document

	9 Glossary
	Annex: Functions Header

