RSA

LABORATORIES

PKCS #11 Base Functionality v2.30: Cryptoki — Draft 4

RSA Laboratories
10 July 2009

Table of Contents
1 INTRODUCTION. ...ttt sttt se st s b sese st et e e st e b et s s et enssbese s ssesensssesenessesanesen 1
2 S O @] P RTSR 1
3 REFERENCES.......co ottt ettt sttt s et be st ese et e b e st ne e st et e s sae s 1
4 [I N I N S 4
5 SYMBOLSAND ABBREVIATIONS ..ottt ss s bese st tene st snne 6
6 GENERAL OVERVIEW ...ttt ettt st s sese s sesesessesesessesenessasessnsesensnsns 9
6.1 INTRODUCTIONutueeteeeseeeseeseesesessesesessasessssesesessesesessesesesesesssseseasssesessssesessnsesessssessssssesessssensasnses 9
6.2 DESIGN GOALS.....etettrereestsesteseseseesesessasessssesesessesessssesessssesessssensssssessssnsensssesesessnsensssesesessssenssseseneen 9
6.3 GENERAL MODEL ...uvttteetestsensesesessesessssesessesesessssessssesasessssesssesensssesensssesesessssensssesansssesensssesenees 10
6.4 LOGICAL VIEW OF A TOKEN 1..vtututeuieeeeesesessesesensesessssessssssesessssensssssesessnsensssssesessssessssssesessssenssseses 12
6.5 USERS ..ueuttemeteseeseetenesessenesseseseseesensssesasessssesesensenesansenessnsasesensenesensasessnsenessnsenesensensnsnsesessnsenessnses 13
6.6 APPLICATIONS AND THEIR USE OF CRYPTOK Ivcttutteteeseeeesesenseneseesesessesesessesessssesensssesessssesssssses 14
6.6.1 APPliCatioNS AN PrOCESSES.........couereerierirristereeeereesesteseseseere s e e eessestesressessesseensensensessessens 14
6.6.2 Applications and thrEadS..........ccecueiirereirse e e nae e nre s 15
6.7 RS ST N T 16
6.7.1 Read-0nly SESSION SLALES......cceeeeeeieeriere e st st eeereeesee e e ere s e e e srestesresresre e e enaeeenaenrenrens 16
6.7.2 Read/MIIte SESSION STALEScuiieeeiriieeiiriee et e et 17
6.7.3 Permitted object aCcCeSSES DY SESSIONSccviieiceeeicere s 18
B.7.4 SESSION BVENES ...ttt ettt ettt r ekt h e st e st s h e bt s he b e e e e s e e e e s e b e sr e eb e e e e nne e e nenrenneas 19
6.75 Session handlesand object handIES...........coviieeeiciere e 20
6.7.6 CapabilitieS Of SESSIONS.......cciieeeereeriese sttt e et e et sresre s e e e eeenaesrenrens 20
6.7.7 EXample Of USE Of SESSIONS.......cceceereiiesie ettt ettt re e eenaeneennens 21
6.8 SECONDARY AUTHENTICATION (DEPRECATED)veveetesereneesesensesesessesessssenessssessssssesessssenssessenees 23
6.9 FUNCTION OVERVIEWvtutteteseieteseseetesesesseseseesesesassessssssesessssssessssessssnsensssssesessnsessasssesessnsesessnses 24
7 SECURITY CONSIDERATIONS ..ottt sttt se ettt ss ettt saebene s nenesnenas 27
8 PLATFORM- AND COMPILER-DEPENDENT DIRECTIVESFOR C OR C++....ccccoveneee. 28
8.1 STRUCTURE PACKING w..uuvetesteeteseseetesesessesessesesessssenessssasessssessssesensssesensssesensssssensssesessssesensssesenees 28
8.2 POINTER-RELATED MACROSc.tettrteetesesessesesessesessssensssesesessssensssssesessssenessesesessssensasesesessssesessnses 29
S & G = I = T TR TR 29
¢ CK DEFINE_FUNCTION......cceirtrietrirereentseeseesessesesessesesessssessssesessssessssesesessssessssssesessssessssnses 29
¢ CK DECLARE _FUNCTION......cciitiietiiiteteitsie et ss st e s tes s tese s be s ssebese s sensssesessssssenesnnns 29
¢ CK _DECLARE_FUNCTION_POINTER.......coirtirtintreeteerestenesieteesessesssessesesessesesessesessssessnenss 29

Copyright © 1994-2009 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

i PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

’ CK_CALLBACK _FUNCTIONciiiiiiesieeerseeseeseeseeseeseessessseesseessesssssssssssssessssssesssesenssenss 30

’ N1 1 I 1 S 30
8.3 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODEccccciuiieeitiieeeireeeseneeeeesteeesssnseeessaseeens 30
S TG T0 R VLY 1 12 OSSOSO 30
B.3.2 WMINLB... oottt ettt et e b e et e e e b e e e ae e e ha e e ae e e eba e e aeeeabaeeabeeeabbeeaaeeebaeeaaeeeres 31
8.3.3 GENENICUNIX ...ttt ettt ettt e ste e e e ba e e sae e e sbbe e saeeesbeeebeeebeeebeeebaeenbeeesbeeenseeenses 32

9 GENERAL DATA TYPES. ...ttt ettt ettt et e st e e saae e st e e saee e stae e nneeentaeenneeesnaeenneeenes 33
9.1 GENERAL INFORMATIONcttitteeteessteseteeestesansessssesesessnsesasesssesssessssessnsessnsesssessnsessnsessasessnsessns 33
’ CK_VERSION; CK_VERSION PTR... oottt sttt st s st saeesreentesneesneesnaens 33

’ CK_INFO; CK_INFO _PTR ... iicieiieseesie e see st e eeste e esee e stee e e seeneesnessseesseensssnsssnsessensseens 34

’ CK U NOTIFICATION. ... e ettt te ettt s e e te et e eaeestaesteesteestesntesaeesaeesseenseenseensessenssenns 35
9.2 SLOT AND TOKEN TYPES ... iittiieiittieeiitteeeeateeeesiseeesastteesaasseeesasseeasanssessaassesesasseessassesesasssesssasseeann 35
’ CK_SLOT _ID; CK_SLOT _ID_PTR .. ieieee e seeseesie e eeeseaesteeseesseseeseesseesseesseenseessnssensseens 35

’ CK_SLOT INFO; CK_SLOT INFO PTR...oi ettt sttt snaesnee s 36

’ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR....ociitiiteiieieseesieeseestessee s seesseeseeesessenssensseens 37
9.3 S S T Vi 1 = =L TSRS 42
’ CK_SESSION_HANDLE; CK_SESSION HANDLE PTR.......coieiieiice et 42

’ L S U 1S =l R I 4 SRS 43

’ L0 LS 1 7 I =SSP 43

’ CK_SESSON_INFO; CK_SESSION _INFO _PTR...cccicicieeeeseeseese e see e e sae e eee e neeens 43
9.4 (O o M 1 = = S 44
’ CK_OBJECT HANDLE; CK_OBJECT HANDLE PTR......ccceiiieiieieeie e ee s 44

’ CK_OBJECT_CLASS, CK_OBJIECT_CLASS PTR....oiicicieciesieneese s ssee e seesee e eeesseeneeens 45

’ CK U HW FEATURE TYPE ...ttt sttt ettt st te et et s aesneesne e aeenneeneesnnesnnens 45

’ L0 S (= N I ¢ =SSR 45

’ CK _CERTIFICATE TYPE.....cc ittt ettt ettt tae s e e te e teetesaaesaeesaeenaeenteeneesnaesneens 46

’ CK ATTRIBUTE _TYPE... .ot cieeteestee st e ste s e see e s e esae et sseesseesseesseessesnsesnesssessssenseensesssessenssenns 46

’ CK_ATTRIBUTE; CK_ATTRIBUTE _PTR....i ittt sttt sneens 47

’ L S 7 I =SSR a7
9.5 DATA TYPES FOR MECHANISMSvvieiiieeitteesteesiteeseeessteessesssseesssssssssessessssseesssssssssessessssesenseesses 48
’ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE _PTR.....ccociieieeiece et 48

’ CK_MECHANISM; CK_MECHANISM_PTRuiiiteteteeieeeesteesee e esee e ssee e e sseseeeneesseesseens 48

’ CK_MECHANISM_INFO; CK_MECHANISM_INFO PTR.....cccoieiieiecee et 49
9.6 FUNCTION TYPES....eiiiitteee ittt e e ettt e eettee e s sttt e e e e be e e e eeateeeseaseeeeasseaeaasseeasassaeasabseessanseeesannseeesasseeann 50
’ L1 5SS 51

’ L0 S 1 (O 2 11 SRS 51

’ L S O 00 PSS 51

’ CK_FUNCTION_LIST; CK_FUNCTION_LIST PTR; CK_FUNCTION_LIST PTR PTR...... 52
9.7 LOCKING-RELATED TYPESuetiieittieeiitteeeiiteeeeaatteeesaseeessssesasatsessaassssasansssessassesssassesesasssesesaseeenn 54
’ CK_CREATEMUTEX ...t et etietiestiesteesteesteeseeseesseesseeseestesseesseesseessesssesnsssnsssssesssessesnsessessenssenns 54

’ CK _DESTROYMUTEXtictiitieiiestee st eiteseesee st e st ste et eaeesteestaesteesteensesnessaeesaeensesnsesnsessenssenns 54

’ CK_LOCKMUTEX and CK_UNLOCKMUTEX.....cccccivrirrirereerereeieseessessessesseseeseesesssessessenses 54

’ CK_C _INITIALIZE_ARGS, CK_C INITIALIZE_ARGS PTRcccieiieiecee et eeeve e 56

O O] = N 1 = 3 10 USRI 58
10.1 CREATING, MODIFYING, AND COPYING OBJECTS ...eeccteeiiteeeireeiteeeiseessesessessssessssessnsessssessnsessnsessns 59
10.1.1 (O = 1] 1o [0 o)1= £ SSS 59
10.1.2 Tl T3 Y g Te o o= £ 61
10.1.3 (00070107 0] 1= ox SO 61
10.2 COMMON ATTRIBUTES. ...cutttiiteeeteeiiteeetesesesessessssesassessssesassesssessasessssesessessssessssessnsessssessssessnsessns 62
10.3 HARDWARE FEATURE OBUJECTS.....uttiiteeittiesteestteeseeessteessesssseessassssssesssssssseesssssssssessessssesensessnnes 63
10.3.1 DEfINITIONS....ccvieitiiie ettt ettt ettt e s e st e saeesbe e beeabesabeebeesbeesbeenbeensesanesaeesreenseenns 63

Copyright © 2009 RSA Security Inc. April 2009

10.3.2 L@ Y= Y 1= SRS 63
10.3.3 L o TS 63
10.34 Monotonic CouNter ODJECES........ooiiire e e 64
10.35 User INterface ODJECES.coiiieeee et 65
104 STORAGE OBUJECTS ...c.utiteeteaureaueasteestesaseaasessssaeesseasseaastasseassesseesseassesasessssasssaeasseesseansesnsesssnssenns 67
10.5 DATA OBJIECTS ...eiteeteeteesteeeesieestee s bt e bt s st sae e st e e sbe e beeaeesaeesaeeeae e bt eabeeabeeaeeabeabeeabeebesanesaeesaeanneanns 68
10.5.1 (1= T Tl (o] S 68
10.5.2 (@Y= Y 1= SRR 68
10.6 CERTIFICATE OBJECT S ..utteutteuttaueasteastesssesasessssueesseaaseanssaaseassessessssassesssesasssasssssesseessesnsesssesnsssenns 69
10.6.1 (1= T Tl (o] S 69
10.6.2 L@ Y= Y 1= SRR 69
10.6.3 X.509 public key certificate ODJECESooiieiereieee s 70
10.6.4 WTLS public key certificate ObjECLS.......cooviiiiiie e s 73
10.6.5 X.509 attribute certificate ODJECES.........oiiieieeie s 74
10.7 KIEY OBJECTS -.utiitieteesteeste sttt e sae e bt et e bt eseesbe e b e et e et e e e e sae e eae e bt e bt e aeeeaeeebeebeeabeeneesanesanesreanneanne 76
10.7.1 (1= T Tl (o] 76
10.7.2 L@ Y= Y 1= SRR 76
10.8 PUBLIC KEY OBJECTS. ... tteteetesuteaueasteesstasseassesseassesasesasesasssaeesseasssanseansessssssssssesssesnsesasesnssssesssesnns 77
10.9 PRIVATE KEY OBJECT S, cetteuteiutesueaateeiseasseassesseassesasesasssasssaessseasseansessssssssssssssesasesnsessssssssesssesnns 79
10.10 SECRET KEY OBJECTS. .. tteutesteasteasterasessasuesaueasseasseaasesstassssssassesssesssesasesasssssssesssesssesasesnsesssssenns 8l
10.11 DOMAIN PARAMETER OBJECTS .. ccttetttetesueesueasueasseaasessessssssssssesssesssesasssnsssssssesssesssesssesnsessesssenns 84
10.11.1 (1= T Tl (o] 84
10.11.2 L@ Y= Y 1= SRS 84
10.12 MECHANISM OBJIECTS. .. .teeutesteesueasseessessesuessseasseasseaasesseassasssassesssesssesasesassssesseessesnsesnsesnsesenssenns 85
10.12.1 (1= T Tl (o] S 85
10.12.2 (@Y= Y 1= SRRSO 85
L1 FUNGCTIONS. ..ottt st bbbkt b et b e s e et ebeseeseebe st e st et e st e e ebesee e ebeneeneas 86
11,1 FUNCTION RETURN VALUES.....cutitiuiitirienertestesestestenessestesessestesessestenssseseessesessensesessensesessensesessensens 87
1111 Universal Cryptoki function return ValUES...........cccvcvveeereceesecse e 87
11.1.2 Cryptoki function return values for functionsthat use a session handle............cccceevenee 88
11.1.3 Cryptoki function return values for functionsthat use a token.........cccecvvevceeceverenennne 89
11.1.4 Foecial return value for application-supplied callbackscccovvevievivivieccescresene 89
11.1.5 Foecial return values for mutex-handling fuNCtions...........ccceeecevevinie s 20
11.1.6 All other Cryptoki fuNCtion returN VAIUEScccovieiere et 20
11.1.7 More on relative priorities of CryptoKi €ITOrS.......cccvvvvereeeerecrere e 98
11.1.8 Error code " gotChas’eceeeceiece s 98
11.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER................. 99
11.3 DISCLAIMER CONCERNING SAMPLE CODEc.cittrteuertireeuesseseesessessesessessesessessssessessesessessenessessenes 100
114 GENERAL-PURPOSE FUNCTIONS. ...cuctttrteuertieetesteeesessesessessessssessessesessessesessessenessessenessessenessensenes 100
R O 1 0T - = RO 100

T O w1 0T 1 . TSRS 102

L O € 1 | o) o TR 102

T O €7 | ¥ o o N SRS 103
115 SLOT AND TOKEN MANAGEMENT FUNCTIONSoveuirtieeuertineesesteseesesseseesessessssessessesessensesessessenes 104
L O €= 1 o1 T ST 104

T O €7 1 o111 o) {0 RS 106

R O €= o] o1 o1 {o 1SS 106

T O 1LY Th (o 8S o | Y= | SRS 107

R O €= 11V, 1= 0= 1 1 S SRRSO 109

¢ C_GetMeChaniSMINTO.....c.coiiire et e e st neena e e eaenrenne s 110

R O 1 071 Ko = o [RSSO 111

T S O | 01 | N SRR 112

L O = 1 = N TSR 113

April 2009 Copyright © 2009 RSA Security Inc.

=
=
»

=Y
=

= =
[EN [EN

[
[

= =
[N [N

o
[
‘$B‘$‘$"B‘$$$‘$}:‘$‘$‘5$‘$‘©$‘$$m$$$$$$$‘$\l$$$$$$$$

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

SESSION MANAGEMENT FUNCTIONS.....c.teeteeteeeeseesieesseasseessessesssesssesseessesssesssesnsessssasesseessesnes 115
(O @0 1= 155 =5 T o] o TR SSNS 115
O O L0151 = o] o IS 116
C _ClOSBAIISESSIONS.......eeieecteeeeteeeeieseeste st sae et e e eesee s e tesaesteaseeseeeensesaeseesbessessesseenseseensensesnnns 117
O €165 =SS o o] 1 o) o S 118
O = (@] 0= = 1i0] 1 L= P SSRS 119
(O < (@] 01c £= 111010 r= 1= TSR TRRPURURN 120
L o o RS SRSS 123
LG oo [0 11 | H SO O PP 124
OBJECT MANAGEMENT FUNCTIONSceteeteeteseeseesueesseasseassessesasesssassesssesssessssssesnsssaesssesssesnes 125
(O == 1.0 o= SRS 125
(O 001 0)7L @ o] = o SE USRS 127
(O L= i 071 o= R SRU 129
O €1 (0 o] = o1 1S .- TSRS 130
C_GEAIITDULEVAIUE........eceececeeeecese ettt sttt st snesne s e eneeseeneenrennens 131
O = AN i1 o1U 1 L=V 7= [T T 133
(O 1870 (@] 1= o1 5 1 1 RSN 134
O 1010 (@] 1= ox USRS 135
(O 1410 (@] 1= o1 5 T R SRS 136
ENCRY PTION FUNCTIONS ...t teueetesteseetestesesteseesessestesessestesestessesessesaenessessenessessesessessenessessenessensens 137
(O = oo Y o111 o USRS 137
L T o 138
C_ENCIYPLUPUALE.cee ettt et s e e bbb s e et e e e e e sbenae s 139
LR =g Ter Y o1 T 0 RS RUS 139
DECRYPTION FUNCTIONS. ...c.teutetesteseetestesesteseesessessesessessesessessesessessenessessenessessesessessenessessenessensens 142
O B L= ol Y/ o111 1) USSP 142
L = o Y/ | 143
C DECIYPLUPAALE.eteeeeteeeetee ettt sttt re bbb e be s bt sbe e e et e seeseesbesae s 144
LR =Y, oL 7= | RS SRUS 144
M ESSAGE DIGESTING FUNCTIONS.cvtteueetesieesteseesestestesessesseesseseesessessenessessesessessenessessenessensens 146
LR o = 1 | o TSSO 146
LR o = OSSPSR 147
C _DIQESIUPUALEc.eeeeee ettt sttt b st re bbb e besaesbe e e e nseseeneesbesaeas 148
(O T 1 1=, RS SNSP 148
(O B ITo (=S T o= USRS SPTRORN 149
SIGNING AND MACING FUNCTIONScitteteeteeeeseesieesseasseessesssesasssssesseessesssesssessssnsssaessseessesnns 150
LR o 11T R SRSS 150
LGRS o o SRRSO 151
LGRS T 18«0 1 (= RS SNTS 152
LGRS o o] i o= SRRSO 152
O 1o 11 C=wT0)Y,= o 1 o SRS 153
€ SIGNRECOVESeieitiite ittt ettt sttt sttt he st e e e e s e e besheehe e aeea e e e aneeabeseeebesaeeaeeaeenseseeneanbesaeas 154
FUNCTIONS FOR VERIFYING SIGNATURES AND MAGCS.......coiiiiiiiireesieeie e 156
LR = 1) 12T PSSR 156
(O 1 VTSSOSO 157
(O 11 Y{ 8 oo = L= RSP 158
C VEIITYFINGL ...ttt b bt sae e e e e e e seenbesae s 158
C_ VEXITYRECOVEITNIT......oceeceieeceeece ettt e ettt snesne s e enaeseeneesrenneas 159
C VEIITYRECOVES ...ttt et b et e bbb e be s bt sb e e e e s e seeseesbesaeas 160
DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS.....ceitteteesteseeseesueesueassesssesssessssssesssesssesssesssesnns 161
C _DIgeStENCIYPLUPAALE.ccueeeeeeeieriesiesie e eteeeeeesee e e st st sse e e s e stesresresnesnesseesaeneensessesnnns 161
C _DeCryptDIgESIUPUALEeeueeeiiiiesiesie ettt bbb sa e e seesbenae s 164

Copyright © 2009 RSA Security Inc. April 2009

I GRS Yo o] =g er Y/ o) (10 ol F=1 (TSRS 167

¢ C DeCryptVErifylUPOate.cooiuirieieeieere sttt sttt s ne et e nn s 170

11.14 KEY MANAGEMENT FUNCTIONS.uttttiieiiiiiiitrrtieeseesiisssseesssssssssssseesssssssssssssssssssessssssseesssessssnes 173

L O €1 0= = (SRS 173

C_GNErAtEKEYPAINcceieiieie ettt bt e et ae b ne e e e nte e nne 174

L O VLY - oY SSS 176

@ C UNWEAPKEY ...ttt b e b b e b e s e e st e s ae e sae e ebe e bt e beenresnnenreen 178

T O B T 1Y/ Q- SRS 180

11.15 RANDOM NUMBER GENERATION FUNCTIONScoeiicteieeitreeeiisreeseereeeessseessssesesssssessssssesssssseeees 182

R OB S = <o = oo (o] o RO 182

T O €1 0= == T (o o SRS 183

11.16 PARALLEL FUNCTION MANAGEMENT FUNCTIONS......utiiiireeeiirreeeeereeesesseeesseseeesssssesssessesssnseeeees 183

C GEFUNCHONSIALUSeocvieieeie e cee ettt ettt et s tee st e e e te e te st e s e e saeesaeesreenseenneeneesneesrnens 184

R O O+ o7 U1 o 1 o] o TS 184

1117 CALLBACK FUNCTIONS ... cuveeeietteeeieteteeeiseeessssseessasesssssssessssseeessasesssassessssasesessassesssessssessssreees 184

11.17.1 SUTENAEr CAIDACKS.......eiieiii it sre s e b e s sre e e res 184

11.17.2 Vendor-defined CAIDACKScouiiieiicei ettt sree v s 185

12 CRYPTOKI TIPSAND REMINDERSottt ettt sttt s st an s s saae e s s sban e anes 186

12.1 OPERATIONS, SESSIONS, AND THREADS ...viiiiiiiiiitieeieeseesiibssseeesssssibssseessssssssssssesssssssssssssessssnns 186

12.2 MULTIPLE APPLICATION ACCESS BEHAVIORcciiiiiiiiiiiiiiee e eeiitteiie e s essabsns s e s s s e ssabasseeesssssannes 186

12.3 OBJECTS, ATTRIBUTES, AND TEMPLATES ...iiiiiiiiitttiiee s eesitbisesee s s s s sabbsseesssssssbssssessssssssssssssssesns 187

12.4 SIGNING WITH RECOVERYuttttiiiieiiiiiitieiiesssessisssstesssssssssssssesssesssssssssesssssssssssssesssssssssssssessssss 187

A MANIFEST CONST ANT S .ot ee et e et e e s e e e s s eba e e e sasbeeesesseeesanbeeeseanreeesannens 189

B TOKEN PROFILES ...ttt ettt e ettt ae e e s st e e s st e e s s eabe e e s sbeeassasbaesssasanessreneeas 192

B.1 GOVERNMENT AUTHENTICATION=ONLY 111tttiiiiiiiurrreieesiesisrssseeesssssissssssesssssssssssssessssssssssssesssssns 193

B.2 CELLULAR DIGITAL PACKET DATA .ottt ettt ettt sbbr e e s s s sabbaa e e e s s s s sabarseeaeeeean 193

B.3 (@[= (0] = T =SSO 193

C COMPARISON OF CRYPTOKI AND OTHER APIS ...t 194

Cl FORTEZZA CIPG, REV. 152 ...ttt e e e e s e s ebee e s ennenessnaeeean 194

C.2 L O 2y AN . R 196

D INTELLECTUAL PROPERTY CONSIDERATIONS. ... oottt 198
E METHOD FOR EXPOSING MULTIPLE-PINSON A TOKEN THROUGH CRYPTOKI

(DEPRECATED) ..ttt sttt h et e e e et e s b e s a e eb e e it e meeseebesbesbeebesneeneesesanbeseens 199

F REVISION HISTORY .ottt ettt e e e et e e et e s s e aee e s s baeessstesesasseeesanbreessaseeeesannees 200

List of Figures

FIGURE 1, GENERAL CRYPTOKI MODELcciiutiiiiiieieiiiiesiieesiee et e e s e 11
FIGURE 2, OBIECT HIERARCHYviiiiiiiiiiiiiesitee et s ettt sttt st nnn e snneennnee s 12
FIGURE 3, READ-ONLY SESSION STATES....ccctttiitteiesiieesieeesieesssseesssessssesssssesssssesssssessnsees 17
FIGURE 4, READ/WRITE SESSION STATESuviiteeiteeieseesseesesseesseessesseessessssssesssessssssesssesssens 18
FIGURE 5, OBJECT ATTRIBUTE HIERARCHYoiiiiiiiiiiiisiieesieeesiee e snee st 58

List of Tables

TABLE L, SYMBOLS...ceiiiutteitteeiteeesteeesteesssseesssteeasssesssssessseessseeessseesssseesssseesassessnnsessnseessnnes 6

April 2009 Copyright © 2009 RSA Security Inc.

Vi PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

N = S o o = D = 6
TABLE 3, CHARACTER SET . .uttttiiiiiei i i iiittireie i e s s ssssabbssesiesssssssssbaseeesssssssassbsbanesessssssssnsssnnnes 8
TABLE 4, READ-ONLY SESSION STATES...uutttiiiiiiiiiiirieriieeessssssssssseresesssssssssssssseessssssssssssssnes 17
TABLE 5, READ/WRITE SESSION STATES ...vviiiiiitiiieciiitiiesesiieeessssaeessssssaessssssssessssssssssssssnns 18
TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTSBY DIFFERENT TYPES OF SESSIONS........ 19
TABLE 7, SESSION EVENTS. .. cuttitiiiiii ittt e s s s s s s bar e e e s e s s s s ssabbban e e e s s s s s e snbbsneees 19
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS.......tttiiiiiiiiiiiiiririre e ssissreseee s s s sesssvssees 24
TABLE 9, MAJOR AND MINOR VERSION VALUES FOR PUBLISHED CRY PTOKI SPECIFICATIONS34
TABLE 10, SLOT INFORMATION FLAGS....uuttiiiiii ittt esrarer e e ssssbas e e e s s s s asbssees 36
TABLE 11, TOKEN INFORMATION FLAGS ... uuuutuuuitiuireerirsisisrsrsssrsrsrsrsrersssrsrssss..... 39
TABLE 12, SESSION INFORMATION FLAGSciiiiiiiittieiiee ettt 44
TABLE 13, MECHANISM INFORMATION FLAGS ...ttt 50
TABLE 14, C_INITIALIZE PARAMETER FLAGS......ciiiiiiieiie ettt 57
TABLE 15, COMMON FOOTNOTES FOR OBJECT ATTRIBUTE TABLEScoiieetvrieeeee e eeavvveeen, 62
TABLE 16, COMMON OBJECT ATTRIBUTES . ..eiiiiiiiiiiitririieeesssssssssseresesssssssssssssssssssssssssssssnes 63
TABLE 17, HARDWARE FEATURE COMMON ATTRIBUTES......cccitttiriieeeiesiiisreneeee s s s sessssssees 63
TABLE 18, CLOCK OBJECT ATTRIBUTES...uutttiieiiiiiiiirririieeessssssssssereiessssssssssssssesssssssssssssssnes 64
TABLE 19, MONOTONIC COUNTER ATTRIBUTES......utttiriiiieiiiiiiirsrereiessssssssssesseessssssssssssssnes 65
TABLE 20, USER INTERFACE OBJIECT ATTRIBUTES....utttiiiiiiiiiiiiirrereieeessssissseseeessssssssssssssnes 66
TABLE 21, COMMON STORAGE OBJECT ATTRIBUTES . ..citiiiiiiiiiirrrireieeesessissreseeesssssessssssenes 67
TABLE 22, DATA OBJECT ATTRIBUTES ..uttttiiiieeiiiiiiitririiesesssssssssssresesssssssssssssesssssssssssssssnes 68
TABLE 23, COMMON CERTIFICATE OBJECT ATTRIBUTEScoocitttiriiee e seisrreeeee e e sessssssees 69
TABLE 24, X.509 CERTIFICATE OBJECT ATTRIBUTES . ..citiiiiiiiitirrireiee e s e seissreseees s s s sesssssseees 71
TABLE 25: WTLS CERTIFICATE OBJECT ATTRIBUTES...ceiiiiiiiiirtrireiee e s ssisrreeeee s s e essssssees 73
TABLE 26, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES..c.cccoiiiiirrririeee e eessseeeen, 75
TABLE 27, COMMON KEY ATTRIBUTES. ..utttttiieiiiiiiiirierrieeesesissssssssresesssssssssssssseessssssssssssssnes 76
TABLE 28, COMMON PUBLIC KEY ATTRIBUTESuttitiiiieiiiiiiisrereieeesssssssssseeesssssessssssssnes 77
TABLE 29, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC
S0 25 T, 79
TABLE 30, COMMON PRIVATE KEY ATTRIBUTESuuttitiiiieiiiiiiisrireieessssssssreseeesssssssssssssnes 79
TABLE 31, COMMON SECRET KEY ATTRIBUTES......uttitiiiieiiiiiiirnrireieessssssssrsseeesssssessssssssees 82
TABLE 32, COMMON DOMAIN PARAMETER ATTRIBUTES......ccctttttiriieeeessiirsreneeee s e ssssssseens 85
TABLE 33, COMMON MECHANISM ATTRIBUTES......uuttitiiiieiiiiiiisrereiessssssssssessesssssssssssssssees 85

Copyright © 2009 RSA Security Inc. April 2009

1. INTRODUCTION 1

1 I ntroduction

This document describes the basic PK CS#11 token interface and token behavior.

2 Scope

This standard specifies an application programming interface (API), called “ Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki follows a simple object-based approach, addressing the goals of technology
independence (any kind of device) and resource sharing (multiple applications accessing
multiple devices), presenting to applications a common, logical view of the device called
a " cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from the PKCS Web
page. This document and up-to-date errata for Cryptoki will also be available from the
same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of deviceor torunina
different environment; thus, the application is portable. How Cryptoki provides this
isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

Details of cryptographic mechanisms (algorithms) may be found in the associated
document PKCS#11 Mechanisms.

Cryptoki is intended for cryptographic devices associated with a single user, so some
features that might be included in a genera-purpose interface are omitted. For example,
Cryptoki does not have a means of distinguishing multiple users. The focusison asingle
user’s keys and perhaps a small number of certificates related to them. Moreover, the
emphasis is on cryptography. While the device may perform useful non-cryptographic
functions, such functions are left to other interfaces.

3 References
ANSI C ANSI/ISO. American National Sandard for Programming Languages

—C. 1990.

April 2009 Copyright © 2009 RSA Security Inc.

CC/PP

CDPD

FIPS PUB 46-3

FIPSPUB 74

FIPS PUB 81

FIPS PUB 113

GCS-API

ISO/IEC 7816-1

ISO/IEC 7816-4

ISO/IEC 8824-1

ISO/IEC 8825-1

ISO/IEC 9594-1

ISO/IEC 9594-8

ISO/IEC 9796-2

JavaMIDP

MeT-PTD

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

W3C. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.0rg/TR/CCPP-struct-vocab/

Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

NIST. FIPS 46-3: Data Encryption Sandard (DES). October 25,
1999. URL: http://csrc.nist.qgov/publications/fips/index.html

NIST. FIPS74: Guidelines for Implementing and Using the NBS Data
Encryption Sandard. April 1, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

NIST. FIPS 81: DES Modes of Operation. December 1980. URL.:
http://csrc.nist.gov/publications/fips/index.html

NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

X/Open Company Ltd. Generic Cryptographic Service APl (GCS
API), Base - Draft 2. February 14, 1995.

ISO. Information Technology — ldentification Cards — Integrated
Circuit(s) with Contacts —Part 1: Physical Characteristics. 1998.

ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO. Information Technology—ASN.1 Encoding Rules. Soecification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER). 2002.

ISO. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. 2001.

ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO. Information Technology — Security Techniques — Digital
Sgnature Scheme Giving Message Recovery — Part 2 Integer
factorization based mechanisms. 2002.

Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL: http://[cp.org/jsr/detail/118.[sp

MeT. MeT PTD Dsefinition — Personal Trusted Device Definition,
Version 1.0, February 2003. URL : http://www.mobiletransaction.org

Copyright © 2009 RSA Security Inc. April 2009

http://www.w3.org/TR/CCPP-struct-vocab/
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://csrc.nist.gov/publications/fips/index.html
http://jcp.org/jsr/detail/118.jsp
http://www.mobiletransaction.org/

3. REFERENCES

PCMCIA

PKCS#1
PKCS#3

PKCS#5

PKCS#7

PKCS#8

PKCS#11-C

PKCS#11-P
PKCS#11-M1
PKCS #11-M2
PKCS#12

RFC 1421

RFC 2045

RFC 2246

RFC 2279

RFC 2534

RFC 2630

RFC 2743

April 2009

Personal Computer Memory Card International Association. PC Card
Sandard, Release 2.1,. July 1993.

RSA Laboratories. RSA Cryptography Sandard. v2.1, June 14, 2002.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993.

RSA Laboratories. Password-Based Encryption Sandard. v2.0,
March 25, 1999

RSA Laboratories. Cryptographic Message Syntax Sandard. V1.5,
November 1993

RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993.

RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000.

RSA Laboratories. PKCS#11 Profiles for mobile devices, June 2003.
RSA Laboratories. PKCS#11 Mechanisms, June 2009.
RSA Laboratories. PKCS#11 Other Mechanisms, June 2009.

RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999.

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL.: http://ietf.org/rfc/rfc2045.txt

T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL.: http://ietf.org/rfc/rfc2246.txt

F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998. URL.: http://ietf.org/rfc/rfc2279.txt

Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL.: http://ietf.org/rfc/rfc2630.txt

J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000. URL.:
http://ietf.org/rfc/rfc2743.txt

Copyright © 2009 RSA Security Inc.

http://ietf.org/rfc/rfc1421.txt
http://ietf.org/rfc/rfc2045.txt
http://ietf.org/rfc/rfc2246.txt
http://ietf.org/rfc/rfc2279.txt
http://ietf.org/rfc/rfc2534.txt
http://ietf.org/rfc/rfc2630.txt
http://ietf.org/rfc/rfc2743.txt

RFC 2744

SEC1

SEC 2

TLS

WIM

WPKI

WTLS

X.500

X.509

X.680

X.690

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

J. Wray. RFC 2744: Generic Security Services APl Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

Standards for Efficient Cryptography Group (SECG). Sandards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL :
http://ietf.org/rfc/rfc2246.txt

WAP. Wireless Identity Module. — WAP-260-WM-20010712-a. July
2001. URL: http://www.wapforum.org/

WAP. Wirdless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS
20010406-a. April 2001. URL: http://www.wapforum.org/.

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Overview of Concepts, Models and Services. February
2001.

Identical to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.

Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

4 Definitions

For the purposes of this standard, the following definitions apply:

API Application programming interface.

Application Any computer program that calls the Cryptoki

interface.

Copyright © 2009 RSA Security Inc. April 2009

http://ietf.org/rfc/rfc2744.txt
http://www.ietf.org/
http://ietf.org/rfc/rfc2246.txt
http://www.wapforum.org/
http://www.wapforum.org/
http://www.wapforum.org/

4. DEFINITIONS

ASN.1
Attribute
BER
CBC

Certificate

CMS
Cryptographic Device

Cryptoki

Cryptoki library

DER
DES

DSA

EC
ECB

v

MAC

M echanism
Object

PIN
PKCS
PRF
PTD
RSA

April 2009

Abstract Syntax Notation One, as defined in X.680.
A characteristic of an object.
Basic Encoding Rules, as defined in X.690.

Cipher-Block Chaining mode, as defined in FIPS PUB
81.

A signed message binding a subject hame and a public
key, or a subject name and a set of attributes.

Cryptographic Message Syntax (see RFC 2630)

A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in
this standard.

Distinguished Encoding Rules, as defined in X.690.

Data Encryption Standard, as defined in FIPS PUB 46-
3.

Digital Signature Algorithm, as defined in FIPS PUB
186-2.

Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB
81.

Initialization Vector.
Message Authentication Code.
A process for implementing a cryptographic operation.

Anitem that is stored on atoken. May be data, a
certificate, or akey.

Personal Identification Number.

Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

Copyright © 2009 RSA Security Inc.

Reader

Session

Slot
SSL
Subject Name

SO
TLS
Token

User

UTF-8

WIM
WTLS

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The means by which information is exchanged with a
device.

A logical connection between an application and a
token.

A logical reader that potentially contains a token.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a
key is assigned.

A Security Officer user.
Transport Layer Security.

Thelogical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to
Cryptoki.

Universal Character Set (UCS) transformation format
(UTF) that represents 1SO 10646 and UNICODE
strings with a variable number of octets.

Wireless Identification Module.
Wireless Transport Layer Security.

5 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix | Description

C_ Function

CK_ Datatype or general constant
CKA_ | Attribute

Copyright © 2009 RSA Security Inc.

April 2009

5. SYMBOLS AND ABBREVIATIONS

Prefix | Description

CKC_ | Certificate type

CKD_ | Key derivation function
CKF_ | Bitflag

CKG_ | Mask generation function
CKH_ | Hardware feature type
CKK_ | Key type

CKM_ | Mechanism type

CKN_ [Notification

CKO_ | Object class

CKP_ | Pseudo-random function
CKS_ | Session state

CKR_ | Returnvalue

CKU_ | User type

CKZ_ | Sat/Encoding parameter source
h ahandle

ul aCK_ULONG

p apointer

pb apointer toaCK_BYTE
ph apointer to ahandle

pul apointer toaCK_ULONG

Cryptoki isbased on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
t ypedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
t ypedef CK BYTE CK CHAR;

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK UTF8CHAR;

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOOL;

/* an unsigned val ue, at
t ypedef unsigned |long int CK ULONG

/* a signed val ue,
typedef long int CK _LONG

April 2009

| east 32 bits long */

the sanme size as a CK ULONG */

Copyright © 2009 RSA Security Inc.

8 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

/* at least 32 bits; each bit is a Boolean flag */
t ypedef CK _ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */

CK _UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG PTR /* Pointer to a CK ULONG */
CK VO D_PTR /[* Pointer to a void */

Cryptoki aso defines a pointer to a CK_VOID_PTR, which is implementation-
dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded
by “Ox”, in which case they are hexadecimal values.

The CK_CHAR datatype holds characters from the following table, taken from ANSI C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters | ! “#%& ‘ ()* +,-./:1;<=>2[\]"_{|} ~
Blank character C

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified in
RFC2279. UTF-8 alows internationalization while maintaining backward compatibility
with the Local String definition of PKCS #11 version 2.01.

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 9

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or fase. A
zero value means false, and a nonzero value means true. Similarly, an individual bit flag,
CKF _..., can also be set (true) or unset (false). For convenience, Cryptoki defines the
following macros for use with values of type CK_BBOOL:

#define CK FALSE O
#define CK TRUE 1

For backwards compatibility, header files for this version of Cryptoki aso defines TRUE
and FALSE as (CK_DI SABLE_TRUE_FAL SE may be set by the application vendor):

#i f ndef CK_DI SABLE_TRUE_FALSE
#i f ndef FALSE

#defi ne FALSE CK FALSE

#endi f

#i f ndef TRUE

#defi ne TRUE CK _TRUE
#endi f

#endi f

6 General overview

6.1 Introduction

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the
private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications are
developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6.2 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA
cards, and smart diskettes. There are dready standards (de facto or official) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, 1SO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the

April 2009 Copyright © 2009 RSA Security Inc.

10 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

devicee. To do so is dtill a long-term goal, and would certainly contribute to
interoperability. The primary goal of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a*“ cryptographic token” (or simply “token”).

A secondary goa was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one
device a agiven time.

It is not the goa of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with the
functions that Cryptoki provides. Cryptoki isintended to complement, not compete with,
such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 2743 and RFC 2744) and “ Generic Cryptographic Service
API” (GCS-API) from X/Open.

6.3 General model
Cryptoki's general model isillustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with

one or more cryptographic devices, on which some or al of the operations are actually
performed. A user may or may not be associated with an application.

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 11

Application 1 Application k
Other Security Lavers Other Security Lavers
Cryptoki Cryptoki

e

Device Contention/Synchronization

— T

Slot 1 Slotn
Token 1 Token n
(Device 1) (Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots’. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the dot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of dots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a
system has some number of slots, and applications can connect to tokens in any or all of
those dots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logicaly like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or even
know which ones are involved); Cryptoki hides these details. Indeed, the underlying
“device” may be implemented entirely in software (for instance, as a process running on a
server)—no special hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; aternatively, Cryptoki can be a so-caled “shared” library (or dynamic link

April 2009 Copyright © 2009 RSA Security Inc.

12 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if alibrary is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not al libraries will support all the mechanisms (algorithms) defined in this
interface (since not al tokens are expected to support al the mechanisms), and libraries
will likely support only a subset of al the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will be
developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles’ will emerge.

6.4 Logical view of atoken

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object stores a certificate. A
key object stores a cryptographic key. The key may be a public key, a private key, or a
secret key; each of these types of keys has subtypes for use in specific mechanisms. This
view isillustrated in the following figure:

Object

—_— v,

Data Key Certificate

— v T,

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 13

Objects are also classified according to their lifetime and visibility. “Token objects’ are
visible to al applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions’ (connections between an application and the
token) are closed and the token is removed from its slot. “Session objects’ are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects’; however, to view “private objects’, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See Table 6 on page 19 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can dso
perform cryptographic functions with objects. A token may have an internal random
number generator.

It is important to distinguish between the logica view of a token and the actual
implementation, because not all cryptographic devices will have this concept of “objects,”
or be able to perform every kind of cryptographic function. Many devices will simply
have fixed storage places for keys of afixed algorithm, and be able to do a limited set of
operations. Cryptoki's role is to trandate this into the logical view, mapping attributes to
fixed storage elements and so on. Not al Cryptoki libraries and tokens need to support
every object type. It is expected that standard “profiles’ will be developed, specifying
sets of algorithms to be supported.

“Attributes’ are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as amodulus or exponent for
RSA keys.

6.5 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer
(SO). The other type isthe normal user. Only the normal user is allowed access to private
objects on the token, and that access is granted only after the normal user has been
authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private
objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

April 2009 Copyright © 2009 RSA Security Inc.

14 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that
they are variable-length strings of characters from the set in Table 3. Any trandation to
the device's requirements is left to the Cryptoki library. The following issues are beyond
the scope of Cryptoki:

e Any padding of PINs.

e How the PINs are generated (by the user, by the application, or by some other means).

PINs that are supplied by some means other than through an application (e.g., PINs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such aPIN to be supplied and used, and little more.

6.6 Applicationsand their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki function C_Initialize (see Section 11.4) from one of its threads; after thiscall is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki function C_Finalize (see Section 11.4) and ceases to
be a Cryptoki application.

6.6.1 Applicationsand processes

In general, on most platforms, the previous paragraph means that an application consists
of asingle process.

Consider a UNIX process P which becomes a Cryptoki application by caling
C_Initialize, and then uses the f or k() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write operation,
if the operating system follows the copy-on-write paradigm), they are not part of the same
application. Therefore, if C needs to use Cryptoki, it needs to perform its own
C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki isundefined if C triesto use it without itsown C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED;
however, because of the way f or k() works, insisting on this return value might have a

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 15

bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potentia “shortcuts” which might (or might not!) be available because of this.

In the scenario specified above, C should actualy call C_Initialize whether or not it
needs to use Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize
immediately thereafter. This (having the child immediately call C_Initialize and then
cal C _Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of thef or k() call; however, it isnot required by Cryptoki.

6.6.2 Applicationsand threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki
enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki
library with a call to C_lInitialize, it can specify one of four possible multi-threading
behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 3% and 4™ types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling
mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If acall is made by athread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

April 2009 Copyright © 2009 RSA Security Inc.

16 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

See Section 9.7 for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.7 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token's objects and functions. A session provides a logical connection
between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenti cated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if a single application has multiple sessions open with atoken, and it uses one of
them to create a session object, then that session object is visible through any of that
application’s sessions. However, as soon as the session that was used to create the object
is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
alimited number of sessions—or only alimited number of read/write sessions-- however.

An open session can be in one of severa states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are
described in Section 6.7.1 and Section 6.7.2.

6.7.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initially opened, it is in either the “R/O Public Session” state (if the
application has no previously open sessions that are logged in) or the “R/O User
Functions’ state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 17
R/O Public
Session

R/O User
Functions

Figure 3, Read-Only Session States
The following table describes the session states:

Close Session/

Open Session Device Removed

Login User
Logout

Close Session/
Device Removed

Open Session

Table 4, Read-Only Session States

State Description

R/O Public Session | The application has opened aread-only session. The application
has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions | The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.7.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.
When the session is opened, it is in either the “R/W Public Session” state (if the
application has no previously open sessions that are logged in), the “R/W User
Functions’ state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions’ state (if the application aready has an open
session that the SO islogged into).

April 2009 Copyright © 2009 RSA Security Inc.

18 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

R/W SO
Functions

Close Session/

Open Session Device Removed

Close Session/

Open Session

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session >
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States

The following table describes the session states:

Tableb, Read/Write Session States

State Description

R/W Public Session | The application has opened a read/write session. The application
has read/write access to all public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal user’s

PIN.
R/W User The normal user has been authenticated to the token. The
Functions application has read/write access to all objects.

6.7.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no
access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a“R/O User
Functions’ session cannot create or delete atoken object.

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 19

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previoudly indicated, the access to a given session object which is shown in Table 6 is
limited to sessions belonging to the application which owns that object (i.e., which
created that object).

6.7.4 Session events

Session events cause the session state to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

LogIn SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes al sessions.

Device Removed | the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, al sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token that is not present. Realistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token's absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki, all sessions that an application has with a token must have the same
login/logout status (i.e., for a given application and token, one of the following holds: al
sessions are public sessions; al sessions are SO sessions; or all sessions are user
sessions). When an application’s session logs into a token, all of that application’s
sessions with that token become logged in, and when an application’s session logs out of
atoken, all of that application’s sessions with that token become logged out. Similarly,
for example, if an application already has a R/O user session open with atoken, and then
opens a R/W session with that token, the R/W session is automatically logged in.

April 2009 Copyright © 2009 RSA Security Inc.

20 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/'W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.7.5 Session handlesand object handles

A session handle is a Cryptoki-assigned value that identifies a session. It isin many ways
akin to afile handle, and is specified to functions to indicate which session the function
should act on. All threads of an application have equal accessto all session handles. That
is, anything that can be accomplished with a given file handle by one thread can also be
accomplished with that file handle by any other thread of the same application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among all threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers convenience, Cryptoki defines the following symbolic value:

CK_I NVALI D_HANDLE
6.7.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, asingle
session can perform only one operation at atime; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section 11.13.

A consequence of the fact that a single session can, in general, perform only one
operation at a time is that an application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application all need to
use Cryptoki to access a particular token, it might be appropriate for each thread to have

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 21

its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded access to it. Even if it issafeto
access the library from multiple threads simultaneously, it is still not necessarily safe to
use a particular session from multiple threads simultaneoudly.

6.7.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technigque here, we demonstrate “pushing the envelope’.

For our example, we suppose that two applications, A and B, are using a Cryptoki library
to access a single token T. Each application has two threads running: A has threads Al
and A2, and B has threads B1 and B2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. Aland Bl eachinitiaize the Cryptoki library by calling C_lInitialize (the specifics of
Cryptoki functions will be explained in Section 10.12). Note that exactly one call to
C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this
isthe first session to be opened for A, it isapublic session.

3. A2 opens a R/O session and receives the session handle 4. Since al of A’s existing
sessions are public sessions, session 4 is also a public session.

4. Al atempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. Al receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION_READ_ONLY_EXISTYS).

5. A2 logsthe normal user into session 7. Thisturns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that because A1 and A2 belong to
the same application, they have equal access to all sessions, and therefore, A2 is able
to perform this action.

April 2009 Copyright © 2009 RSA Security Inc.

22

10.

11.

12.

13.

14.

15.

16.

17.

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

A2 opens a R/W session and receives the session handle 9. Since al of A’s existing
Sessions are user sessions, session 9 is also a user session.

A1 closes session 9.

B1 attempts to log out session 4. The attempt fails, because A and B have no access
rights to each other's sessions or objects. B1 receives an error message which
indicates that there IS no such session handle
(CKR_SESSION_HANDLE_INVALID).

B2 attempts to close session 4. The attempt fails in precisely the same way as B1's
atempt to log out sesson 4 faled (i.e, B2 receives a
CKR_SESSION_HANDLE_INVALID error code).

B1 opens a R/W session and receives the session handle 7. Note that, as far asB is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s
session 7 are completely different sessions.

Bllogsthe SO into [B's] session 7. Thisturns B’s session 7 into a R/W SO session,
and has no effect on either of A’s sessions.

B2 attempts to open a R/O session. The attempt fails, since B aready has an SO
session open, and R/O SO sessions do not exist. B1 recelves an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION_READ_WRITE_SO_EXISTS).

Al uses [A’s] session 7 to create a session object O1 of some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the
object handle 7. Aswith session handles, different applications have no access rights
to each other’s object handles, and so B’s object handle 7 is entirely different from
A’s object handle 7. Of course, since B1 is an SO session, it cannot create private
objects, and so O2 must be a public object (if B1 attempted to create a private object,
the attempt would fall with error code CKR_USER _NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

B2 uses [B’g] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifies O2.

Al uses[A’s] session 4 to perform an object search operation to get a handle for O2.
The search returns object handle 1. Note that A’s object handle 1 and B’s object
handle 7 now point to the same object.

Al attempts to use [A’s] session 4 to modify the object associated with [A’s] object
handle 1. The attempt fails, because A’s session 4 is a R/O session, and is therefore

Copyright © 2009 RSA Security Inc. April 2009

6. GENERAL OVERVIEW 23

incapable of modifying O2, which is a token object. Al receives an error message
indicating that the session isa R/O session (CKR_SESSION_READ_ONLY).

18. Al uses [A’s] session 7 to modify the object associated with [A’s] object handle 1.
Thistime, since A’s session 7 is a R/W session, the attempt succeeds in modifying
02.

19. B1 uses[B’s] session 7 to perform an object search operation to find O1. SinceO1lis
a session object belonging to A, however, the search does not succeed.

20. A2 uses [A’g] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifies O1.

21. A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1.
This destroys O2.

22. B1 attempts to perform some operation with the object associated with [B’s] object
handle 7. The attempt fails, since there is no longer any such object. B1 recelves an
error message indicating that its object handle is invaid
(CKR_OBJECT_HANDLE _INVALID).

23. Al logsout [A’s] session 4. Thisturns A’s session 4 into a R/O public session, and
turns A’s session 7 into a R/W public session.

24. Al closes[A’s] session 7. This destroys the session object O1, which was created by
A’ssession 7.

25. A2 attempt to use [A’'S] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no longer any
such object. It returnsaCKR_OBJECT _HANDLE INVALID.

26. A2 executesacall to C_CloseAllSessions. Thiscloses[A’s] session 4. At this point,
if A were to open a new session, the session would not be logged in (i.e., it would be
apublic session).

27. B2 closes[B’g] session 7. At this point, if B were to open a new session, the session
would not be logged in.

28. A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

6.8 Secondary authentication (Deprecated)

Note: This support may be present for backwards compatibility. Refer to
PKCS11 V 2.11 for details.

April 2009 Copyright © 2009 RSA Security Inc.

24 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

6.9 Function overview

The Cryptoki API consists of a number of functions, spanning slot and token

management and object management, as well as cryptographic functions.
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

These

Category Function Description
Genera C _Initidize initializes Cryptoki
purpose C Findize clean up miscellaneous Cryptoki-
functions associ ated resources
C_GetlInfo obtains general information about
Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot andtoken | C_GetSlotList obtains alist of slotsin the system
management C_GetSlotinfo obtains information about a particular slot
functions C_GetTokenlnfo obtains information about a particul ar
token
C_WaitForSlotEvent waits for aslot event (token insertion,
removal, etc.) to occur
C_GetMechanismList obtains alist of mechanisms supported by
atoken
C_GetMechanisminfo obtains information about a particul ar
mechanism
C _InitToken initializes atoken
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an application
management and a particular token or setsup an
functions application callback for token insertion
C CloseSession closes a session
C CloseAllSessions closes all sessions with atoken
C _GetSessioninfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state
of asession
C_SetOperationState sets the cryptographic operations state of a
session
C Login logsinto atoken
C_Logout logs out from a token

Copyright © 2009 RSA Security Inc.

April 2009

6. GENERAL OVERVIEW 25
Category Function Description
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeVaue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsinit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption
operation
C_EncryptFinal finishes a multiple-part encryption
operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption
operation
C_DecryptFind finishes a multiple-part decryption
operation
Message C _Digestlnit initializes a message-digesting operation
digesting C Digest digests single-part data
functions C_DigestUpdate continues a multiple-part digesting
operation
C_DigestKey digests akey
C_DigestFinal finishes a multiple-part digesting
operation

April 2009

Copyright © 2009 RSA Security Inc.

26 PKCS#11 BASE FUNCTIONALITY vV2.30: CRYPTOKI
Category Function Description
Signing C_Signinit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature
operation
C_SignFina finishes a multiple-part signature

operation

C_SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover signs single-part data, where the data can
be recovered from the signature
Functions for C_Verifylnit initializes a verification operation
verifying
signatures C Veify verifies asignature on single-part data
and MACs C VerifyUpdate continues a multiple-part verification
operation
C VerifyFina finishes a multiple-part verification
operation
C_VerifyRecoverlnit initializes a verification operation where
the datais recovered from the signature
C_VerifyRecover verifies asignature on single-part data,
where the data is recovered from the
signature
Dual-purpose | C_DigestEncryptUpdate | continues simultaneous multiple-part
cryptographic digesting and encryption operations
functions C_DecryptDigestUpdate | continues simultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations
C_DecryptVerifyUpdate | continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) akey
C_UnwrapKey unwraps (decrypts) akey
C DeriveKey derives akey from abase key

Copyright © 2009 RSA Security Inc.

April 2009

7. SECURITY CONSIDERATIONS 27

Category Function Description

Random C_SeedRandom mixes in additional seed materia to the

number random number generator

generation

functions C_GenerateRandom generates random data

Parallel C_GetFunctionStatus legacy function which always returns

function CKR_FUNCTION_NOT_PARALLEL

management

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

Callback application-supplied function to process

function notifications from Cryptoki

7 Security consider ations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Accessto private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may aso be
needed.

2. Additional protection can be given to private keys and secret keys by marking them as
“sensitive” or “unextractable’. Sensitive keys cannot be revealed in plaintext off the
token, and unextractable keys cannot be revealed off the token even when encrypted
(though they can till be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other
than Cryptoki (e.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’s PIN. The particular mechanism for protecting
private objects is |eft to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especialy since
the PIN may be passed through the operating system. This can make it easy for a rogue

April 2009 Copyright © 2009 RSA Security Inc.

28 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

application on the operating system to obtain the PIN; it is also possible that other devices
monitoring communication lines to the cryptographic device can obtain the PIN. Rogue
applications and devices may also change the commands sent to the cryptographic device
to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play arole here; for instance, atoken may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for a
variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a built-
in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8 Platform- and compiler-dependent directivesfor C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section 8.

8.1 Structurepacking

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Windows platforms, Cryptoki structures should be packed with 1-byte alignment. In
a UNIX environment, it may or may not be necessary (or even possible) to alter the byte-
alignment of structures.

Copyright © 2009 RSA Security Inc. April 2009

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

8.2 Pointer -related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

¢ CK_PTR

CK_PTRisthe “indirection string” a given platform and compiler uses to make a pointer
to an object. It isused in the following fashion:

t ypedef CK_BYTE CK PTR CK_BYTE_PTR;
¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API functionin a
Cryptoki library. r et ur nType isthe return type of the function, and nane isits name.
It isused in the following fashion:

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR pReserved

)
{
}
¢ CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType isthe return type of the function, and nane isits name.
It isused in the following fashion:

CK_DECLARE_FUNCTION(CK_RV, C Initialize)(
CK_ VA D _PTR pReserved
);

¢ CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki library. r et ur nType isthereturn
type of the function, and nane is its name. It can be used in either of the following
fashions to define a function pointer variable, myC | ni ti al i ze, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
snippets actualy assignsavauetonyC I nitial i ze):

April 2009 Copyright © 2009 RSA Security Inc.

29

30 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK_ VA D _PTR pReserved
);

or:

t ypedef CK_DECLARE_FUNCTI ON_PQO NTER(CK_RV,
myC InitializeType)(
CK VO D _PTR pReserved

);
myC InitializeType nyC.lInitialize;

¢ CK_CALLBACK_FUNCTION

CK_CALLBACK _FUNCTI ON(r et urnType, nane), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to an application callback function that can be used by a Cryptoki AP
function in a Cryptoki library. ret urnType is the return type of the function, and
name isits name. It can be used in ether of the following fashions to define a function
pointer variable, nyCal | back, which can point to an application callback which takes
arguments ar gs and returns a CK_RV (note that neither of the following code snippets
actually assignsavaueto nyCal | back):

CK_CALLBACK _FUNCTI ON(CK_RV, nyCal | back) (args);
or:
t ypedef CK_CALLBACK FUNCTI ON(CK_RV,

myCal | backType) (args);
myCal | backType myCal | back;

¢ NULL_PTR
NULL_PTR is the value of aNULL pointer. In any ANSI C environment—and in many
others as well—NULL _PTR should be defined simply as 0.

8.3 Sampleplatform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#define CK_| MPORT_SPEC _ decl spec(dl i nport)

Copyright © 2009 RSA Security Inc. April 2009

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

[* Define CRYPTOKI EXPORTS during the build of cryptoki
* |ibraries. Do not define it in applications.
*/

#i f def CRYPTOKI _EXPORTS

#defi ne CK_EXPORT_SPEC _ decl spec(dl | export)

#el se

#def i ne CK_EXPORT_SPEC CK_| MPORT_SPEC

#endi f

/* Ensures the calling convention for Wn32 builds */
#define CK CALL _SPEC _ cdecl

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC name

#def i ne CK_DECLARE _FUNCTI ON(r et urnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC nane

#defi ne CK_DECLARE FUNCTI ON_PO NTER(returnType, nane) \
returnType CK_ | MPORT_SPEC (CK_CALL_SPEC CK_PTR hamne)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (CK_CALL_SPEC CK_PTR nhane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

Hence the calling convention for all C_xxx functions should correspond to "cdecl” where
function parameters are passed from right to left and the caller removes parameters from
the stack when the call returns.

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Win16 Cryptoki .dIl might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)

#define CK_ PTR far *

April 2009 Copyright © 2009 RSA Security Inc.

32

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal nane

#def i ne CK_DECLARE _FUNCTI ON(r et urnType, nane) \
returnType _ export _far _pascal nane

#defi ne CK_DECLARE FUNCTI ON_PO NTER(returnType, nane) \
returnType _ _export _far _pascal (* nane)

#def i ne CK_CALLBACK FUNCTI ON(returnType, nanme) \
returnType _far _pascal (* nane)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK PTR *

#def i ne CK_DEFI NE_FUNCTI ON(r et urnType, nane) \
returnType nanme

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType nane

#def i ne CK_DECLARE _FUNCTI ON_PO NTER(ret urnType, nane) \
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#1 f ndef NULL_PTR
#define NULL_PTR O
#endi f

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 33

9 General datatypes

The genera Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section 12.

A C or C++ source file in a Cryptoki application or library can define all these types (the
types described here and the types that are specifically used for particular mechanism
parameters) by including the top-level Cryptoki includefile, pkcs11. h. pkcs1l. h,in
turn, includes the other Cryptoki includefiles, pkcs11t . h and pkcs11f. h. A source
filecan also include just pkcs11t . h (instead of pkcs11. h); this defines most (but not
all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directivesindicated in Section 8.

91 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a dtructure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. It isdefined asfollows:

t ypedef struct CK VERSI ON {
CK_BYTE mgj or;
CK_BYTE mi nor;

} CK_VERSI ON\;

The fields of the structure have the following meanings:

maj or major version number (the integer portion of the
version)

minor minor version number (the hundredths portion of the
version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and
minor = 10. Table 9 below lists the magor and minor version values for the officially
published Cryptoki specifications.

April 2009 Copyright © 2009 RSA Security Inc.

34 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Table9, Major and minor version valuesfor published Cryptoki specifications

Version | major | minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 Ox0a
211 0x02 Ox0b
2.20 0x02 O0x14
2.30 0x02 Oxle

Minor revisions of the Cryptoki standard are always upwardly compatible within the
same major version number.

CK_VERSION_PTR isapointer toaCK_VERSION.

¢ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It isdefined asfollows:

typedef struct CK I NFO {
CK_VERSI ON cr ypt oki Ver si on;
CK_UTF8CHAR manuf acturerl| D[32];
CK_FLAGS f | ags;
CK_UTF8CHAR | i braryDescri ption[32];
CK_VERSI ON | i braryVer si on;

} CK_INFG

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility
with future revisions of thisinterface

manufacturer|D ID of the Cryptoki library manufacturer. Must be
padded with the blank character (*). Should not be
null-terminated.

flags bit flags reserved for future versions. Must be zero for
thisversion

libraryDescription character-string description of the library. Must be
padded with the blank character (*). Should not be
null-terminated.

libraryVersion Cryptoki library version number

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 35

For libraries written to this document, the value of cryptokiVersion should match the
version of this specification; the value of libraryVersion is the version number of the
library software itself.

CK_INFO_PTR isapointer to aCK_INFO.

¢ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It isdefined asfollows:

t ypedef CK _ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:
CKN_SURRENDER

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function
(see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a dot. It is defined as
follows:

typedef CK ULONG CK SLOT | D
A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any vaue of
CK_SLOT_ID can be a valid dot identifier—in particular, a system may have a sot
identified by the value O. It need not have such a slot, however.

CK_SLOT_ID_PTRisapointer toaCK_SLOT_ID.

April 2009 Copyright © 2009 RSA Security Inc.

36 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT _INFO providesinformation about aslot. It isdefined asfollows:
t ypedef struct CK SLOT I NFO {
CK_UTF8CHAR sl ot Descri pti on[64] ;
CK_UTF8CHAR manuf acturer| D[32];
CK_FLAGS f | ags;
CK_VERSI ON har dwar eVer si on;

CK_VERSI ON fi rmnar eVer si on;
} CK_SLOT_I NFG,

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (*). Should not be
null-terminated.

manufacturerD ID of the slot manufacturer. Must be padded with the
blank character (*). Should not be null-terminated.

flags bitsflagsthat provide capabilities of thedlot. The
flags are defined below

hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’ sfirmware

The following table defines the flags field:

Table 10, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 | Trueif atokenis present in the slot
(e.g., adeviceisin the reader)

CKF_REMOVABLE_DEVICE | 0x00000002 | Trueif the reader supports removable
devices

CKF HW_SLOT 0x00000004 | Trueif the dot isahardware slot, as
opposed to a software slot
implementing a“ soft token”

For a given dot, the value of the CKF_REMOVABLE_DEVICE flag never changes.
In addition, if this flag is not set for a given dot, then the CKF_TOKEN_PRESENT
flag for that slot isalways set. That is, if aslot does not support aremovable device, then
that dot always hasatoken iniit.

CK_SLOT_INFO_PTR isapointer toaCK_SLOT_INFO.

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES

37

¢ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO providesinformation about atoken. It isdefined as follows:

typedef struct CK_TOKEN_I NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturer| D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunber|[16] ;
CK_FLAGS f 1l ags;

CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG
CK_ULONG

ul MaxSessi onCount ;

ul Sessi onCount ;

ul MaxRwSessi onCount ;
ul RwSessi onCount ;

ul MaxPi nLen;

ul M nPi nLen;

ul Tot al Publ i cMenory;
ul FreePubl i cMenory;
ul Tot al Pri vat eMenory;
ul FreePri vat eMenory;

CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi rmnar eVer si on;
CK_CHAR ut cTi me[16] ;

} CK_TOKEN_I NFO

The fields of the structure have the following meanings:

April 2009

label

manufacturer D

model

serial Number

flags

ulMaxSessionCount

application-defined label, assigned during token
initialization. Must be padded with the blank character
(* *). Should not be null-terminated.

ID of the device manufacturer. Must be padded with
the blank character (*). Should not be null-
terminated.

model of the device. Must be padded with the blank
character (* *). Should not be null-terminated.

character-string serial number of the device. Must be
padded with the blank character (*). Should not be
null-terminated.

bit flags indicating capabilities and status of the device
as defined below

maximum number of sessions that can be opened with

the token at one time by a single application (see note
below)

Copyright © 2009 RSA Security Inc.

38

ul SessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Copyright © 2009 RSA Security Inc.

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

number of sessions that this application currently has
open with the token (see note below)

maximum number of read/write sessions that can be
opened with the token at one time by asingle
application (see note below)

number of read/write sessions that this application
currently has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin
which public objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for public objects (see note below)

the total amount of memory on the token in bytesin
which private objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for private objects (see note below)

version number of hardware
version number of firmware

current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the second,;
and 2 additional reserved ‘0’ characters). The vaue of
thisfield only makes sense for tokens equipped with a
clock, asindicated in the token information flags (see
below)

April 2009

9. GENERAL DATA TYPES

The following table defines the flags field:

Table 11, Token Information Flags

39

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

Trueif the token hasits own
random number generator

CKF_WRITE_PROTECTED

0x00000002

Trueif the token iswrite-
protected (see below)

CKF_LOGIN_REQUIRED

0x00000004

Trueif there are some
cryptographic functions that
auser must beloggedinto
perform

CKF_USER_PIN_INITIALIZED

0x00000008

Trueif the normal user's
PIN has been initialized

CKF_RESTORE_KEY _NOT_NEEDED

0x00000020

Trueif a successful save of
asession’s cryptographic
operations state always
contains all keys needed to
restore the state of the
session

CKF_CLOCK_ON_TOKEN

0x00000040

Trueif token hasits own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

Trueif token has a
“protected authentication
path”, whereby a user can
log into the token without
passing a PIN through the
Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

Trueif asingle session with
the token can perform dual
cryptographic operations
(see Section 11.13)

CKF_TOKEN_INITIALIZED

0x00000400

Trueif the token has been
initialized using

C _InitToken or an
equivalent mechanism
outside the scope of this
standard. Calling
C_InitToken when this flag
is set will cause the token to
be reinitialized.

April 2009

Copyright © 2009 RSA Security Inc.

40 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Bit Flag

Mask

Meaning

CKF_SECONDARY_AUTHENTICATION

0x00000800

True if the token supports
secondary authentication for
private key objects.
(Deprecated; new
implementations MUST
NOT set thisflag)

CKF_USER_PIN_COUNT_LOW

0x00010000

Trueif anincorrect user
login PIN has been entered
at least once since the last
successful authentication.

CKF_USER_PIN_FINAL_TRY

0x00020000

Trueif supplying an
incorrect user PIN will
cause it to become locked.

CKF_USER_PIN_LOCKED

0x00040000

Trueif the user PIN has
been locked. User login to
the token is not possible.

CKF_USER _PIN_TO BE_CHANGED

0x00080000

Trueif the user PIN valueis
the default value set by
token initialization or
manufacturing, or the PIN
has been expired by the
card.

CKF_SO_PIN_COUNT_LOW

0x00100000

Trueif an incorrect SO
login PIN has been entered
at least once since the last
successful authentication.

CKF_SO_PIN_FINAL_TRY

0x00200000

Trueif supplying an
incorrect SO PIN will cause
it to become locked.

CKF_SO_PIN_LOCKED

0x00400000

Trueif the SO PIN has been
locked. SO login to the
token is not possible.

CKF_SO PIN._TO BE _CHANGED

0x00800000

Trueif the SO PIN valueis
the default value set by
token initialization or
manufacturing, or the PIN
has been expired by the
card.

CKF_ERROR STATE

0x01000000

True i f the token
failed a FIPS 140-2
sel f-test and entered
an error state.

Copyright © 2009 RSA Security Inc.

April 2009

9. GENERAL DATA TYPES 41

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these
actions can include any of the following, among others:

e Creating/modifying/deleting any object on the token.
¢ Creating/modifying/deleting a token object on the token.
e Changing the SO’'s PIN.

e Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending on
the session state to implement its object management policy. For instance, the token may
set the CKF_WRITE_PROTECTED flag unless the session state is R/'W SO or R/'W
User to implement a policy that does not allow any objects, public or private, to be
created, modified, or deleted unless the user has successfully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may always
be set to fase if the token does not support the functionality or will not reveal the
information because of its security policy.

The CKF_USER_PIN_TO_BE_CHANGED and
CKF_SO_PIN_TO_BE_CHANGED flags may always be set to false if the token does
not support the functionaity. If a PIN is set to the default value, or has expired, the
appropriate CKF_USER_PIN_TO_BE_CHANGED or
CKF_SO_PIN_TO_BE_CHANGED flag is set to true. When either of these flags are
true, logging in with the corresponding PIN will succeed, but only the C_SetPIN function
can be called. Calling any other function that required the user to be logged in will cause
CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.

Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotal PublicMemory, ulFreePublicMemory, ul Total PrivateMemory,

and ulFreePrivateMemory can have the special value
CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is
unable or wunwilling to provide that information. In addition, the fields

ulMaxSessionCount and ulMaxRwSessionCount can have the specia vaue
CK_EFFECTIVELY _INFINITE, which means that there is no practical limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

It is important to check these fields for these special values. Thisis particularly true for
CK_EFFECTIVELY_INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’'t open any sessions with the token, which is far from being the case.

The upshot of al this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something aong the lines of the following:

April 2009 Copyright © 2009 RSA Security Inc.

42 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CK_TOKEN_| NFO i nf o;

i f ((CK_LONG info.ul MaxSessi onCount
== CK_UNAVAI LABLE | NFORMATI ON) {
/* Token refuses to give val ue of ul MaxSessi onCount */

} él se if (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_I NFI NI TE) {
/* Application can open as many sessions as it wants */

} else {
/* ul MaxSessi onCount really does contain what it should
*/

}

CK_TOKEN_INFO_PTR isapointer toaCK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

¢ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

t ypedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbolic value:

CK_| NVALI D_HANDLE

CK_SESSION_HANDLE_PTR isapointer to aCK_SESSION_HANDLE.

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 43

¢ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 6.5, and, in
addition, a context-specific type described in Section 10.9. It isdefined asfollows:

t ypedef CK ULONG CK _USER TYPE;

For this version of Cryptoki, the following types of users are defined:

CKU_SO
CKU_USER
CKU_CONTEXT_SPECI FI C

¢ CK_STATE

CK_STATE holds the session state, as described in Sections 6.7.1 and 6.7.2. It is defined
asfollows:

t ypedef CK _ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

CKS_RO PUBLI C_SESSI ON
CKS_RO_USER_FUNCTI ONS
CKS_RW PUBLI C_SESSI ON
CKS_RW USER_FUNCTI ONS
CKS_RW SO FUNCTI ONS

¢ CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO provides information about a session. It is defined as follows:
t ypedef struct CK _SESSI ON | NFO {
CK_SLOT_I D slotlD;
CK_STATE st at e;
CK_FLAGS f 1 ags;

CK_ULONG ul Devi ceError;
} CK_SESSI ON | NFO

The fields of the structure have the following meanings:
dotiD ID of the ot that interfaces with the token
state the state of the session

flags bit flags that define the type of session; the flags are
defined below

April 2009 Copyright © 2009 RSA Security Inc.

44 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

The following table defines the flags field:

Table 12, Session Infor mation Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | Trueif the session is read/write; false if the
session is read-only

CKF_SERIAL_SESSION | 0x00000004 | Thisflag is provided for backward
compatibility, and should aways be set to
true

CK_SESSION_INFO_PTR isapointer to aCK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

¢ CK_OBJECT HANDLE; CK_OBJECT HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

t ypedef CK_ULONG CK_OBJECT HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an
object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object as long as
the session continues to exist, the object continues to exist, and the object continues to be
accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbolic value:

CK_| NVALI D_HANDLE

CK_OBJECT HANDLE_PTR isapointer toaCK_OBJECT_HANDLE.

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 45

¢ CK_OBJECT CLASS; CK_OBJECT_CLASS PTR

CK_OBJECT_CLASS is a vaue that identifies the classes (or types) of objects that
Cryptoki recognizes. It isdefined asfollows:

t ypedef CK ULONG CK_OBJECT_CLASS;

Object classes are defined with the objects that use them. The type is specified on an
object through the CKA _CLASS attribute of the object.

Vendor defined values for this type may aso be specified.

CKO_VENDCR_ DEFI NED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS PTRisapointer toaCK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a vaue that identifies a hardware feature type of a
device. It isdefined as follows:

typedef CK_ULONG CK_HW FEATURE TYPE;

Hardware feature types are defined with the objects that use them. The type is specified
on an object through the CKA_HW_FEATURE_TY PE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR _DEFI NED

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their feature types through
the PKCS process.
¢ CK_KEY_TYPE
CK_KEY_TYPE isavauethat identifies akey type. It is defined as follows:

t ypedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is
specified on an object through the CKA_KEY _TY PE attribute of the object.

April 2009 Copyright © 2009 RSA Security Inc.

46 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Vendor defined values for this type may aso be specified.
CKK_VENDOR_DEFI NED

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

¢ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is avaue that identifies a certificate type. It is defined as
follows:

t ypedef CK ULONG CK_CERTI FI CATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The
certificate type is specified on an object through the CKA_CERTIFICATE TYPE
attribute of the object.

Vendor defined values for this type may aso be specified.
CKC_VENDOR_DEFI NED

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types through
the PKCS process.

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

typedef CK_ULONG CK_ATTRI BUTE_TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are
specified on an object as alist of type, length value items. These are often specified as an
attribute templ ate.

Vendor defined values for this type may aso be specified.

CKA VENDOR DEFI NED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their attribute types through
the PKCS process.

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 47

¢ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is astructure that includes the type, value, and length of an attribute.
It is defined as follows:
t ypedef struct CK_ATTRI BUTE {
CK_ATTRI BUTE_TYPE type;
CK_ VO D _PTR pVal ue;

CK_ULONG ul Val uelLen;
} CK_ATTRI BUTE;

The fields of the structure have the following meanings:
type the attribute type
pValue pointer to the value of the attribute
ulValueLen lengthin bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValueisirrelevant. An
array of CK_ATTRIBUTEs s called a“template” and is used for creating, manipulating
and searching for objects. The order of the attributes in atemplate never matters, even if
the template contains vendor-specific attributes. Note that pValue is a “void”’ pointer,
facilitating the passing of arbitrary values. Both the application and Cryptoki library must
ensure that the pointer can be safely cast to the expected type (i.e., without word-
alignment errors).

CK_ATTRIBUTE_PTR isapointer toaCK_ATTRIBUTE.

¢ CK_DATE

CK_DATE isastructure that defines adate. It is defined as follows:
typedef struct CK _DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;
CK_CHAR day|[2] ;
} CK_DATE;
The fields of the structure have the following meanings:
year theyear (“1900” - “9999")
month the month (“01” - “12")

day theday (“O1” - “31")

April 2009 Copyright © 2009 RSA Security Inc.

48 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The fields hold numeric characters from the character set in Table 3, not the literal byte
values.

When a Cryptoki object carries an attribute of this type, and the default value of the
atribute is specified to be "empty," then Cryptoki libraries shall set the attribute's
ulValueLen to O.

Note that implementations of previous versions of Cryptoki may have used other methods
to identify an "empty" attribute of type CK_DATE, and that applications that needs to
interoperate with these libraries therefore have to be flexible in what they accept as an
empty value.

9.5 Datatypesfor mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

¢ CK_MECHANISM TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is avaue that identifies a mechanism type. It is defined as
follows:

t ypedef CK ULONG CK_MECHANI SM TYPE;
Mechanism types are defined with the objects and mechanism descriptions that use them.

Vendor defined values for this type may aso be specified.
CKM_VENDOR_DEFI NED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechanism types
through the PKCS process.

CK_MECHANISM_TYPE_PTR isapointer toaCK_MECHANISM_TYPE.

¢ CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any
parametersit requires. It is defined asfollows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK_ VO D_PTR pPar anet er;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 49

The fields of the structure have the following meanings:
mechanism thetype of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary vaues.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTRisapointer toaCK_MECHANISM.

¢ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

t ypedef struct CK _MECHANI SM I NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS f 1 ags;

} CK_MECHANI SM | NFO

The fields of the structure have the following meanings:

ulMinKeySze the minimum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

ulMaxKeySze the maximum size of the key for the mechanism
(whether thisis measured in bitsor in bytesis
mechani sm-dependent)

flags it flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySze and ulMaxKeySze fields have meaningless
values.

April 2009 Copyright © 2009 RSA Security Inc.

50

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The following table defines the flags field:

Table 13, Mechanism Information Flags

Bit Flag Mask Meaning
CKF_HW 0x00000001 | Trueif the mechanism is performed
by the device; false if the mechanism
is performed in software
CKF_ENCRYPT 0x00000100 | True if the mechanism can be used
with C_Encryptlnit
CKF _DECRYPT 0x00000200 | True if the mechanism can be used
with C_Decryptlnit
CKF_DIGEST 0x00000400 | Trueif the mechanism can be used
with C_DigestInit
CKF_SIGN 0x00000800 | True if the mechanism can be used
with C_Signlnit
CKF_SIGN_RECOVER 0x00001000 | Trueif the mechanism can be used
with C_SignRecover I nit
CKF_VERIFY 0x00002000 | True if the mechanism can be used
with C_Verifylnit
CKF_VERIFY_RECOVER 0x00004000 | Trueif the mechanism can be used
with C_VerifyRecoverInit
CKF_GENERATE 0x00008000 | True if the mechanism can be used
with C_GenerateK ey
CKF_GENERATE_KEY_PAIR | 0x00010000 | Trueif the mechanism can be used
with C_GenerateK eyPair
CKF_WRAP 0x00020000 | True if the mechanism can be used
with C_WrapKey
CKF_UNWRAP 0x00040000 | True if the mechanism can be used
with C_UnwrapKey
CKF_DERIVE 0x00080000 | Trueif the mechanism can be used
with C_DeriveK ey
CKF_EXTENSION 0x80000000 | Trueif thereis an extension to the

flags, fase if no extensions. Must
be false for this version.

CK_MECHANISM_INFO_PTR isapointer toaCK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

Copyright © 2009 RSA Security Inc.

April 2009

9. GENERAL DATA TYPES 51

¢ CK_RV

CK_RV is avalue that identifies the return value of a Cryptoki function. It is defined as
follows:

t ypedef CK _ULONG CK RV,

Vendor defined values for this type may aso be specified.
CKR_VENDOR_DEFI NED

Section 11.1 defines the meaning of each CK_RV vaue. Return vaues
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

¢ CK_NOTIFY

CK_NOTIFY s the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_ HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VA D_PTR pApplication

);

The arguments to a notification callback function have the following meanings:
hSesson The handle of the session performing the callback
event Thetype of notification callback

pApplication An application-defined value. Thisisthe same value
aswas passed to C_OpenSession to open the session
performing the callback

¢ CK_C_XXX

Cryptoki aso defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki API (see Section 10.12 for detailed information about each of
them), Cryptoki defines a type CK_C_ XXX, which is a pointer to a function with the
same arguments and return value as C_XXX has. An appropriately-set variable of type
CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.

April 2009 Copyright © 2009 RSA Security Inc.

52

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It isdefined asfollows:

typedef struct CK_FUNCTI ON_LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;
CK C Finalize C Finalize;

R

OO

0022200009

200992200002200002000022000090

, CetInfo C Getlnfo;

t Functi onLi st C _Get Functi onLi st;

t Sl ot Li st C GetSlotList;

tSlotlnfo C GetSlotlnfo;

t Tokenl nf o C_Cet Tokenl nf o;

t Mechani snLi st C_Get Mechani snii st ;

t Mechani sm nfo C_Get Mechani sm nf o;

i t Token C_InitToken;

itPIN C.InitPIN,

tPIN C _SetPIN;

enSessi on C_(OpenSessi on;

oseSessi on C _Cl oseSessi on;

oseAl | Sessions C_C oseAl | Sessi ons;

t Sessi onl nfo C_Get Sessi onl nf o;

t OperationState C _CGet Operati onSt at e;
t Oper ationState C _SetQperationStat e;
gin C_Login;

gout C_Logout;

eate(bj ect C Create(nject;

pyObj ect C_CopyObj ect ;

stroyQbj ect C Dest royOoj ect;

t Qbj ect Si ze C _Get Obj ect Si ze;
tAttributeVal ue C GetAttri buteVal ue;
et Attri buteVal ue C Set Attri but eVal ue;
i ndQbj ectslnit C FindObjectslnit;

i ndObj ects C_Fi ndObj ect s;

i ndObj ect sFi nal C Fi ndOoj ect sFi nal ;
ncryptlnit C Encryptlinit;

ncrypt C _Encrypt;

ncrypt Updat e C_Encrypt Updat e;

ncrypt Fi nal C_EncryptFi nal ;

cryptinit C Decryptlnit;

crypt C _Decrypt,;

crypt Updat e C Decrypt Updat e;

crypt Final C _DecryptFinal;

i gestInit C Digestlnit;

i gest C_Di gest;

i gest Updat e C_Di gest Updat e;

i gest Key C _Di gest Key;

i gest Fi nal C_Digest Final ;

@@QQQSS%@@QQQQEEQQQQQQ

I'I'II'I'II'I'IITI'I'I'I'I'I'I(D

ooup'yy'y

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 53

|gnln|t C Signlnit;

ign C_Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

i gnRecoverlnit C_Si gnRecoverI nit;
i gnRecover C_ Si gnRecover;
erifylnit C Verifylnit;

U)(I)U)(I)(DU)

<

> Verify C Verify;

> VerifyUpdate C VerifyUpdate;

> VerifyFinal C VerifyFinal;

> VerifyRecoverlnit C Veri fyRecoverI nit;
Verl fyRecover C VerifyRecover;

gest Encrypt Updat e C Di gest Encrypt Updat e;
crypt Di gest Updat e C Decrypt Di gest Updat e;
i gnEncrypt Updat e C_Si gnEncr ypt Updat e;
crypt Veri fyUpdate C Decrypt Veri fyUpdat e;
ner at eKey C_Gener at eKey;,
ner at eKeyPai r C_Gener at eKeyPai r;
apKey C W apKey;
wr apKey C_Unwr apKey;
ri veKey C DeriveKey;
edRandom C_SeedRandom
ner at eRandom C_Gener at eRandom
t Functi onSt at us C_CGet Functi onSt at us;
> Cancel Function C_Cancel Functi on;
CK_C Wi t For Sl ot Event C Wi t For Sl ot Event ;
} CK_FUNCTI ON_LI ST;

QD

02222000092200009220000
(I)

0,0,0,0,000,00,0000000000000000
@@%995999

Qggg

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is aso owned by the library) may be obtained by the
C_GetFunctionList function (see Section 11.2). The value that this pointer points to can
be used by an application to quickly find out where the executable code for each function
in the Cryptoki API is located. Every function in the Cryptoki APl must have an entry
point defined in the Cryptoki library's CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library’s CK_FUNCTION_LIST structure should point to afunction
stub which simply returns CKR_FUNCTION_NOT_SUPPORTED.

In this structure ‘version’ is the cryptoki specification version number. It should match
the value of ‘cryptokiVersion’ returned in the CK_INFO structure.

An application may or may not be able to modify a Cryptoki library’s static
CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
0.

CK_FUNCTION_LIST_PTRisapointer toaCK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR isapointer toaCK_FUNCTION_LIST_PTR.

April 2009 Copyright © 2009 RSA Security Inc.

54 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

9.7 Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneously. Applications which will not do this need
not use any of these types.

¢ CK_CREATEMUTEX

CK_CREATEMUTEX isthe type of apointer to an application-supplied function which
creates a new mutex object and returns a pointer to it. It isdefined as follows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D PTR_PTR ppMit ex

)

CallingaCK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values. CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

¢ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It isdefined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_DESTROYMJUTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

¢ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functionsis as follows:

e |If aCK_LOCKMUTEX function is called on a mutex which is not locked, the
calling thread obtains alock on that mutex and returns.

e |If aCK_LOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES 55

e IfaCK_LOCKMUTEX function is called on a mutex which islocked by the caling
thread, the behavior of the function call is undefined.

e |If aCK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

e |f exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains alock on that mutex, and its CK_L OCKMUTEX call returns.

¢ |f more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains a lock on the mutex, and its CK_LOCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

e If aCK_UNLOCKMUTEX function is called on a mutex which is not locked, then
the function call returns the error code CKR_MUTEX_NOT_LOCKED.

e |f aCK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX isdefined as follows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_LOCKMJTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be
locked. Such a function should return one of the following values. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

April 2009 Copyright © 2009 RSA Security Inc.

56 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is
defined as follows:

typedef struct CK C I N TIALI ZE_ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oy Mut ex;
CK_LOCKMUTEX LockMuit ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS f 1 ags;
CK VO D _PTR pReserved;

} CK C INTIALI ZE ARGS;

The fields of the structure have the following meanings:
CreateMutex pointer to afunction to use for creating mutex objects

DestroyMutex pointer to afunction to use for destroying mutex
objects

LockMutex pointer to afunction to use for locking mutex objects

UnlockMutex pointer to afunction to use for unlocking mutex
objects

flags bit flags specifying options for C_Initialize; the flags
are defined below

pReserved reserved for future use. Should be NULL_PTR for this
version of Cryptoki

Copyright © 2009 RSA Security Inc. April 2009

9. GENERAL DATA TYPES

The following table defines the flags field:

Table 14, C_Initialize Parameter Flags

57

Bit Flag

Mask

Meaning

CKF_LIBRARY_CANT _CREATE OS THREADS

0x00000001

Trueif
application
threads which
are executing
calsto the
library may not
use native
operating system
callsto spawn
new threads;
falseif they may

CKF_OS LOCKING_OK

0x00000002

Trueif the
library can use
the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS PTRisapointer toaCK_C_INITIALIZE_ARGS.

April 2009

Copyright © 2009 RSA Security Inc.

58 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

10 Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS datatype. An object consists of a set of attributes, each of which
has a given value. Each attribute that an object possesses has precisely one value. The
following figure illustrates the high-level hierarchy of the Cryptoki objects and some of
the attributes they support:

Object
Class
Storage Hardware feature Mechanism
Feature type Mechanism type
Token
Private
k/labde]l. bl Domain
odifiable
> parameters
Data Key
Application
Object Identifier N
Value Certificate

Figure5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateK ey) also create key objects to hold their results.

Objects are dways “well-formed” in Cryptoki—that is, an object aways contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for sometime. In Cryptoki, objects are always initialized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attribute values may also take the following types:

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 59

Bytearray an arbitrary string (array) of CK_BYTEs

Big integer astring of CK_BY TESs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.g., theinteger 32768 is represented as the 2-byte
string 0x80 0x00)

Local string an unpadded string of CK_CHARS (see Table 3) with
no null-termination

RFC2279 string an unpadded string of CK_UTF8CHARSs with no null-
termination

A token can hold severa identical objects, i.e,, it is permissible for two or more objectsto
have exactly the same values for al their attributes.

In most cases each type of object in the Cryptoki specification possesses a completely
well-defined set of Cryptoki attributes. Some of these attributes possess default values,
and need not be specified when creating an object; some of these default values may even
be the empty string (“”). Nonetheless, the object possesses these attributes. A given
object has a single value for each attribute it possesses, even if the attribute is a vendor-
specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section 11.14) may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section 12). In any
case, dl the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveK ey (see Section
11.14). In addition, copying an existing object (with the function C_CopyObject) aso
creates a new object, but we consider this type of object creation separately in Section
10.1.3.

April 2009 Copyright © 2009 RSA Security Inc.

60 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attributeis
valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID. The
valid values for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT. A set of attribute values is inconsistent if not
al of its members can be satisfied simultaneously by the token, although each value
individualy is valid in Cryptoki. One example of an inconsistent template would be
using a template which specifies two different values for the same attribute. Another
example would be trying to create a secret key object with an attribute which is
appropriate for various types of public keys or private keys, but not for secret keys. A
final example would be a template with an attribute that violates some token specific
requirement. Note that this final example of an inconsistent template is token-
dependent—on a different token, such atemplate might not be inconsi stent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fall with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 61

their libraries behave as though the attribute had only appeared once in the template;
application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section
11.7). The template supplied to C_SetAttributeValue can contain new vaues for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may actually not
be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiable insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key object’'s CKA_SENSITIVE attribute can be changed
from CK_FALSE to CK_TRUE, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

10.1.3 Copying objects

Unl ess an object's CKA COPYABLE (see table 21) attribute is set to
CK_FALSE, it may be copied with the Cryptoki function C_CopyObject (see Section
11.7). Inthe process of copying an object, C_CopyObject aso modifies the attributes of
the newly-created copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being modifiable,
plus the three gpeciad attributes CKA_TOKEN, CKA_PRIVATE, and
CKA_MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyObject operation insofar as the Cryptoki specification is concer ned.
A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
atribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.

April 2009 Copyright © 2009 RSA Security Inc.

62 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

For example, a secret key object’'s CKA_SENSITIVE attribute can be changed from
CK_FALSE to CK_TRUE during the course of a C_CopyObject operation, but not the
other way around.

If the CKA COPYABLE attribute of the object to be copied is set to
CK _FALSE, C CopyObhject returns CKR _COPY_PRCHI BI TED. O herwi se, the
scenarios described in 10.1.1 - and the error codes they return - apply
to copying objects with C CopyObhject, except for the possibility of a

tenmpl at e bei ng i nconpl et e.

10.2 Common attributes

Table 15, Common footnotes for object attribute tables
! Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

® Must be specified when object is generated with C_GenerateKey or

C_GenerateKeyPair.

* Must not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

> Must be specified when object is unwrapped with C_UnwrapK ey.
® Must not be specified when object is unwrapped with C_UnwrapK ey.

" Cannot be revealed if object hasits CKA_SENSITIVE attribute set to CK_TRUE or
itsCKA_EXTRACTABLE attribute set to CK_FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. However, it is possible that a
particular token may not permit modification of the attribute during the course of a
C_CopyObject cal.

® Default value is token-specific, and may depend on the values of other attributes.
19 Can only be set to CK_TRUE by the SO user.
1 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.

12° Attribute cannot be changed once set to CK_FALSE. It becomes a read only
attribute.

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 63

Table 16, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS | Object class (type)

"Refer to table Table 15 for footnotes

The above table defines the attributes common to all objects.

10.3 Hardware Feature Objects

10.3.1 Definitions

This section defines the object class CKO HW_FEATURE for type
CK_OBJECT_CLASS as used inthe CKA_CLASS attribute of objects.

10.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device. They
provide an easily expandable method for introducing new value-based features to the
cryptoki interface.

When searching for objects using C_FindObjectslnit and C_FindObjects, hardware
feature objects are not returned unless the CKA_CL ASS attribute in the template has the
value CKO_HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 17, Hardwar e Feature Common Attributes

Attribute Data Type Meaning

CKA_HW_FEATURE TYPE | CK_HW_FEATURE | Hardware feature (type)
1

"Refer to table Table 15 for footnotes

10.3.3 Clock

10.3.3.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type
CK_HW_FEATURE.

April 2009 Copyright © 2009 RSA Security Inc.

64 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

10.3.3.2 Description

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source asthe utcTimefield in the CK_TOKEN_INFO structure.

Table 18, Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE | CK_CHAR[16] | Current time as a character-string of length 16,
represented in the format YY Y'Y MM DDhhmmssxx
(4 charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters).

The CKA_VALUE attribute may be set using the C_SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The device
may require the SO to be the user logged in to modify the time vaue.
C_SetAttributeValue will return the error CKR_USER _NOT_LOGGED IN to indicate
that adifferent user typeis required to set the value.

10.3.4 Monotonic Counter Objects

10.3.4.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value
CKH_MONOTONIC_COUNTER of type CK_HW_FEATURE.

10.3.4.2 Description

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.
This might be used by an application for generating serial numbers to get some assurance
of uniqueness per token.

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 65

Table 19, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET ON_INIT* | CK_BBOOL | The value of the counter will reset to a
previously returned valueif thetokenis
initialized using C_InitToken.

CKA_HAS RESET" CK_BBOOL | The value of the counter has been reset at
least once at some point in time.
CKA_VALUE! Byte Array The current version of the monotonic
counter. The valueisreturned in big endian
order.
'Read Only

The CKA_VALUE attribute may not be set by the client.

10.3.5 User Interface Objects

10.3.5.1 Definition

The CKA_HW_FEATURE_TYPE atribute takes the value
CKH_USER_INTERFACE of type CK_HW_FEATURE.

10.3.5.2 Description

User interface objects represent the presentation capabilities of the device.

April 2009 Copyright © 2009 RSA Security Inc.

66

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Table 20, User Interface Object Attributes

Attribute

Data type

Meaning

CKA_PIXEL_X

CK_ULONG

Screen resolution (in pixels) in X-axis
(e.g. 1280)

CKA_PIXEL_Y

CK_ULONG

Screen resolution (in pixels) in Y-axis
(e.g. 1024)

CKA_RESOLUTION

CK_ULONG

DPI, pixels per inch

CKA_CHAR ROWS

CK_ULONG

For character-oriented displays;
number of character rows (e.g. 24)

CKA_CHAR_COLUMNS

CK_ULONG

For character-oriented displays:
number of character columns (e.g.
80). If display is of proportional-font
type, thisisthe width of the display in
“em”-s (letter “M”), see CC/PP
Struct.

CKA_COLOR

CK_BBOOL

Color support

CKA_BITS PER_PIXEL

CK_ULONG

The number of bits of color or
grayscale information per pixel.

CKA_CHAR_SETS

RFC 2279
string

String indicating supported character
sets, as defined by IANA MIBenum

sets (www.iana.org). Supported
character sets are separated with “;”.
E.g. atoken supporting iso-8859-1
and us-ascii would set the attribute

vaueto“4; 3.

CKA_ENCODING_METHODS

RFC 2279
string

String indicating supported content
transfer encoding methods, as defined
by IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and base64
could set the attribute value to

“Tbi t; 8bit; base64”.

CKA_MIME_TYPES

RFC 2279
string

String indicating supported
(presentable) MIME-types, as defined
by IANA (www.iana.org). Supported
types are separated with “;”. E.g. a
token supporting MIME types "a/b",
"alc" and "a/d" would set the attribute
valueto“al/ b; a/ c; a/ d”.

The selection of attributes, and associated data types, has been done in an attempt to stay
as digned with RFC 2534 and CC/PP Struct as possible. The specia vaue

Copyright © 2009 RSA Security Inc.

April 2009

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/

10. OBJECTS 67

CK_UNAVAILABLE INFORMATION may be used for CK_ULONG-based attributes
when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the
application needs to send MIME objects with encoded content to the token.

10.4 Storage Objects

Thisis not an object class, hence no CKO _ definition isrequired. It is a category of object
classes with common attributes for the object classes that follow.

Table 21, Common Storage Object Attributes

Attribute Data Type Meaning

CKA_TOKEN CK_BBOOL CK_TRUE if object is atoken object;
CK_FALSE if object isasession
object. Default is CK_FALSE.

CKA_PRIVATE CK_BBOOL CK_TRUE if object is a private object;
CK_FALSE if objectisapublic
object. Default value is token-specific,
and may depend on the values of other
attributes of the object.

CKA_MODIFIABLE | CK_BBOOL CK_TRUE if object can be modified
Default is CK_TRUE.

CKA_LABEL RFC2279 string Description of the object (default
empty).

CKA COPYABLE CK BBOOL CK_TRUE i f object can be copied

usi ng C CopyObject. Defaults to
CK_TRUE. Can't be set to TRUE once
itissetto FALSE.

Only the CKA_LABEL attribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object until
the user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be deleted.

April 2009 Copyright © 2009 RSA Security Inc.

68 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The CKA_LABEL attribute isintended to assist users in browsing.

The value of the CKA COPYABLE attribute deternm nes whether or not an
obj ect can be copied. This attribute can be used in conjunction with
CKA MODI FI ABLE to prevent changes to the permtted usages of keys and
ot her objects.

10.5 Data objects

10.5.1 Definitions

This section defines the object class CKO_DATA for type CK_OBJECT_ CLASS as used
inthe CKA_CLASS attribute of objects.

10.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes defined for this object class:

Table 22, Data Object Attributes

Attribute Datatype | Meaning
CKA_APPLICATION | RFC2279 | Description of the application that manages the
string object (default empty)

CKA_OBJECT_ID Byte Array | DER-encoding of the object identifier indicating
the data object type (default empty)

CKA_VALUE Bytearray | Vaue of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The CKA_OBJECT _ID attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass = CKO_DATA;
CK_UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK_BYTE data[] = “Sanple data”;

CK BBOOL true = CK TRUE;

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 69

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_APPLI CATI ON, application, sizeof(application)-1},
{CKA VALUE, data, sizeof(data)}

b

10.6 Certificate objects

10.6.1 Definitions

This section defines the object class CKO_CERTIFICATE for type
CK_OBJECT_CLASS as used inthe CKA_CLASS attribute of objects.

10.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes defined for this object class:

Table 23, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE" | CK_CERTIFICATE_TYPE | Type of certificate
CKA_TRUSTED™ CK_BBOOL The certificate can be

trusted for the application
that it was created.

CKA_CERTIFICATE_CATEGORY | CK_ULONG Categorization of the
certificate:

0 = unspecified (default
value), 1 = token user, 2 =
authority, 3 = other entity

CKA_CHECK_VALUE Byte array Checksum

CKA_START DATE CK_DATE Start date for the certificate
(default empty)

CKA_END_DATE CK_DATE End date for the certificate
(default empty)

"Refer to table Table 15 for footnotes

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created. Thisversion of Cryptoki supports the following certificate types:

e X.509 public key certificate

April 2009 Copyright © 2009 RSA Security Inc.

70 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

e WTLS public key certificate
e X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It must be
set by atoken initiaization application or by the token’s SO. Trusted certificates cannot
be modified.

The CKA_CERTIFICATE_CATEGORY attributeisused to indicate if a stored
certificate is a user certificate for which the corresponding private key is available on the
token (“token user”), a CA certificate (“authority”), or an other end-entity certificate
(“other entity”). This attribute may not be modified after an object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will
together be used to map to the categorization of the certificates. A certificatein the
certificates CDF will be marked with category “token user”. A certificate in the
trustedCertificates CDF or in the useful Certificates CDF will be marked with category
“authority” or “other entity” depending on the CommonCertificateAttribute.authority
attribute and the CKA_TRUSTED attribute indicatesiif it belongs to the
trustedCertificates or useful Certificates CDF.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by
taking the first three bytes of the SHA-1 hash of the certificate object’'s CKA_VALUE
attribute.

The CKA_START_DATE and CKA_END_DATE attributes are for reference only;
Cryptoki does not attach any special meaning to them. When present, the application is
responsible to set them to values that match the certificate’'s encoded “not before” and
“not after” fields (if any).

10.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X 509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes defined for this object class:

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS

Table 24, X.509 Certificate Object Attributes

Attribute

Data type

Meaning

CKA_SUBJECT!

Byte array

DER-encoding of the certificate
subject name

CKA_ID

Byte array

Key identifier for public/private
key pair (default empty)

CKA_ISSUER

Byte array

DER-encoding of the certificate
issuer name (default empty)

CKA_SERIAL_NUMBER

Byte array

DER-encoding of the certificate
serial number (default empty)

CKA_VALUFE?

Byte array

BER-encoding of the certificate

CKA_URL?®

RFC2279
string

If not empty this attribute gives the
URL where the complete
certificate can be obtained (default

empty)

CKA_HASH_OF SUBJECT _
PUBLIC_KEY*

Byte array

Hash of the subject public key
(default empty). Hash algorithm is

defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF ISSUER_PUBLIC
_KEY*

Byte array

Hash of the issuer public key
(default empty). Hash algorithm is

defined by
CKA_NAME_HASH_ALGORITHM

CKA_JAVA_MIDP_SECURITY
_DOMAIN

CK_ULONG

Java MIDP security domain: 0 =
unspecified (default value), 1 =
manufacturer, 2 = operator, 3 =
third party

CKA_NAME_HASH_ALGORITHM

CK_MECHA
NISM_TYPE

Defines the mechanism used to
calculate
CKA_HASH_OF SUBJECT PUBLIC KEY and
CKA_HASH_OF ISSUER PUBLIC KEY. If
the attribute is not present then the
type defaults to SHA-1.

"Must be specified when the object is created.
*Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.
“Can only be empty if CKA_URL is empty.

71

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

April 2009 Copyright © 2009 RSA Security Inc.

72 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA_ID value without introducing any
ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does
not enforce this association, or even the uniqueness of the key identifier for a given
subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions
to X.509 certificates, the key identifier may be carried in the certificate. It is intended that
the CKA_ID value be identical to the key identifier in such a certificate extension,
although thiswill not be enforced by Cryptoki.

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when

searching for the certificate of the issuer. The hash agorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The CKA_JAVA MIDP_SECURITY_DOMAIN attribute associates a certificate with
aJava MIDP security domain.

The following is a sample template for creating an X.509 certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 509;
CK _UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 73

3
10.6.4 WTL S public key certificate objects

WTLS certificate objects (certificate type CKC WTLS) hold WTLS public key
certificates. The following table defines the WTLS certificate object attributes, in addition
to the common attributes defined for this object class.

Table25: WTL S Certificate Object Attributes

Attribute Data type M eaning

CKA_SUBJECT® Byte array WTLS-encoding (Identifier type)
of the certificate subject

CKA _ISSUER Byte array WTLS-encoding (Identifier type)
of the certificate issuer (default
empty)

CKA_VALUFE? Byte array WTLS-encoding of the certificate

CKA_URL® RFC2279 If not empty this attribute gives

string the URL where the complete

certificate can be obtained

CKA_HASH OF SUBJECT | Bytearray SHA-1 hash of the subject public
_PUBLIC_KEY* key (default empty). Hash
algorithm is defined by
CKA_NAME_HASH_ALGORITHM
CKA_HASH_OF ISSUER P | Bytearray SHA-1 hash of the issuer public
UBLIC_KEY* key (default empty). Hash
algorithm is defined by

CKA_NAME_HASH_ALGORITHM
CKA_NAME_HASH_ALGORITHM | CK_MECHANIS | Defines the mechanism used to
M_TYPE calculate

CKA_HASH_OF SUBJECT_PUBLIC_KEY
and ckA_HASH_OF ISSUER PUBLIC_KEY.
If the attribute is not present then
the type defaults to SHA-1.

Must be specified when the object is created. Can only be empty if CKA_VALUE is empty.
“Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.

*Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes
can befound in [WTLS] (see References).

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

April 2009 Copyright © 2009 RSA Security Inc.

74 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when

searching for the certificate of the issuer. The hash agorithm is defined by
CKA_NAME_HASH_ALGORITHM.

The following is a sample template for creating a WTLS certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC WILS;
CK_UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] = {...};
CK BYTE certificate[] = {...};
CK BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] =
{
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA VALUE, certificate, sizeof(certificate)}
1

10.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X 509 ATTR_CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes defined for this object class:

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 75

Table 26, X.509 Attribute Certificate Object Attributes

Attribute Data Type | Meaning

CKA_OWNER! Byte Array | DER-encoding of the attribute certificate's
subject field. Thisisdistinct from the
CKA_SUBJECT attribute contained in
CKC_X_509 certificates because the ASN.1
syntax and encoding are different.

CKA_AC ISSUER Byte Array | DER-encoding of the attribute certificate's
issuer field. Thisisdistinct from the
CKA_ISSUER attribute contained in
CKC_X_ 509 certificates because the ASN.1
syntax and encoding are different. (default

empty)

CKA_SERIAL_NUMBER | Byte Array | DER-encoding of the certificate serial number.
(default empty)

CKA_ATTR_TYPES Byte Array | BER-encoding of a sequence of object

identifier values corresponding to the attribute
types contained in the certificate. When
present, thisfield offers an opportunity for
applications to search for a particular attribute
certificate without fetching and parsing the
certificate itself. (default empty)

CKA_VALUE" Byte Array | BER-encoding of the certificate.
"Must be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES
attributes may be modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;

CK_CERTI FI CATE_TYPE cert Type = CKC_X 509_ATTR _CERT,;
CK _UTF8CHAR | abel[] = "An attribute certificate object"”;
CK_BYTE owner[] = {...};

CK_BYTE certificate[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (I abel)-1},

{CKA_ OMNER, owner, sizeof (owner)},

{CKA VALUE, certificate, sizeof(certificate)}

}

April 2009 Copyright © 2009 RSA Security Inc.

76 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

10.7 Key objects

10.7.1 Definitions

Thereis no CKO _ definition for the base key object class, only for the key types derived
fromit.

This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE KEY and
CKO_SECRET KEY for type CK_OBJECT CLASS as used in the CKA_CLASS
attribute of objects.

10.7.2 Overview

Key abjects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to al the tables describing
attributes of keys:

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes defined for this object class:

Table 27, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE™® CK_KEY_TYPE | Type of key

CKA_ID® Byte array Key identifier for key (default empty)

CKA_START DATE® CK_DATE Start date for the key (default empty)

CKA_END DATE® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL CK_TRUE if key supports key
derivation (i.e., if other keys can be
derived from this one (default
CK_FALSE)

CKA_LOCAL**® CK_BBOOL CK_TRUE only if key was either

e (generated locally (i.e., on the
token) withaC_GenerateKey or
C_GenerateKeyPair call

e created withaC_CopyObject
call asacopy of akey which had
itsCKA_LOCAL attribute set to

CK_TRUE
CKA KEY_GEN_ CK_MECHANISM | |dentifier of the mechanism used to
MECHANISM?4° _TYPE generate the key material.

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 77

Attribute Data Type Meaning
CKA_ALLOWED_MECHANISMS | CK_MECHANISM | A list of mechanisms allowed to be
B;ﬁtz'rztBTR' used with this key. The number of
CK_MECHANISM mechanisms in the array isthe
_TYPE array ulValuelL.en component of the
attribute divided by the size
of CK_MECHANISM_TY PE.

"Refer to table Table 15 for footnotes

The CKA_ID field is intended to distinguish anong multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the
key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section 10.6 for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of akey according to the dates; doing thisis up to the application.

The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to
derive other keys from the key.

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key
was originally generated on the token by aC_GenerateKey or C_GenerateK eyPair call.

The CKA_KEY_GEN_MECHANISM attribute identifies the key generation
mechanism used to generate the key material. It contains a valid value only if the
CKA_LOCAL attribute has the value CK_TRUE. If CKA_LOCAL has the value
CK_FALSE, the value of the attribute is CK_UNAVAILABLE_INFORMATION.

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following
table defines the attributes common to all public keys, in addition to the common
attributes defined for this object class:

Table 28, Common Public Key Attributes

Attribute Datatype Meaning
CKA_SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

April 2009 Copyright © 2009 RSA Security Inc.

78 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Attribute Datatype Meaning

CKA_ENCRYPT® CK_BBOOL | CK_TRUE if key supports encryption’

CKA_VERIFY® CK_BBOOL | CK_TRUE if key supports verification
where the signature is an appendix to
the data’

CKA_VERIFY_RECOVER® | CK_BBOOL | CK_TRUE if key supports verification
where the data is recovered from the

signature’
CKA_WRAP® CK_BBOOL | CK_TRUE if key supports wrapping
(i.e., can be used to wrap other keys)®
CKA_TRUSTED"™ CK_BBOOL | Thekey can be trusted for the

application that it was created.

The wrapping key can be used to wrap
keys with
CKA_WRAP_WITH_TRUSTED set
to CK_TRUE.

CKA_WRAP TEMPLATE S%ATTR'BUTE— For wrapping keys. The attribute

template to match against any keys
wrapped using this wrapping key. Keys
that do not match cannot be wrapped.
The number of attributesinthe array is
the ulVValueLen component of the
attribute divided by the size of
CK_ATTRIBUTE.

"Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 79

Table29, Mapping of X.509 key usage flags to cryptoki attributesfor public keys

Key usageflagsfor public keysin X.509 | Corresponding cryptoki attributesfor
public key certificates public keys.

dataEnci pherment CKA_ENCRYPT
digital Signature, keyCertSign, cRLSign CKA_VERIFY
digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER

keyAgreement CKA_DERIVE
keyEncipherment CKA_WRAP
nonRepudiation CKA_VERIFY
nonRepudiation CKA_VERIFY_RECOVER

10.9 Privatekey objects

Private key objects (object class CKO_PRIVATE _KEY) hold private keys. The
following table defines the attributes common to al private keys, in addition to the
common attributes defined for this object class:

Table 30, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT® Byte array DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVESH CK_BBOOL | CK_TRUE if key is sensitive’

CKA_DECRYPT® CK_BBOOL | CK_TRUE if key supports
decryption®

CKA_SIGN® CK_BBOOL | CK_TRUE if key supports
signatures where the signature
is an appendix to the data’

CKA_SIGN_RECOVER® CK_BBOOL | CK_TRUE if key supports

signatures where the data can
be recovered from the
signature’

CKA_UNWRAP® CK_BBOOL | CK_TRUE if key supports
unwrapping (i.e., can be used
to unwrap other keys)®

CKA_EXTRACTABLE®" CK_BBOOL | CK_TRUE if key is extractable
and can be wrapped®

CKA_ALWAYS SENSITIVE**® CK_BBOOL | CK_TRUE if key has always
had the CKA_SENSITIVE
attribute set to CK_TRUE

CKA_NEVER_EXTRACTABLE**® | CK_BBOOL | CK_TRUE if key has never
had the

April 2009 Copyright © 2009 RSA Security Inc.

80 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Attribute Data type Meaning

CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH_TRUSTED™ | CK_BBOOL | CK_TRUE if the key can only
be wrapped with awrapping
key that has CKA_TRUSTED
set to CK_TRUE.

Default is CK_FALSE.

CKA_UNWRAP_TEMPLATE S%ATTR'BUTE— For wrapping keys. The
attribute template to apply to
any keys unwrapped using this
wrapping key. Any user
supplied template is applied
after thistemplate asiif the
object has already been
created. The number of
atributesin the array isthe
ulVValueL.en component of the
attribute divided by the size of
CK_ATTRIBUTE.
CKA_ALWAYS AUTHENTICATE | CK_BBOOL | If CK_TRUE, the user hasto
supply the PIN for each use
(sign or decrypt) with the key.
Default is CK_FALSE.

"Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, thisis not enforced by Cryptoki, and it is not required that the certificate
and public key aso be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the private key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of
private key in the attribute table in the section describing that type of key.

The CKA_ALWAYS AUTHENTICATE attribute can be used to force re-
authentication (i.e. force the user to provide a PIN) for each use of a private key. “Use” in
this case means a cryptographic operation such as sign or decrypt. This attribute may only
be set to CK_TRUE when CKA_PRIVATE isaso CK_TRUE.

Re-authentication occurs by «caling C_Login with userType set to
CKU_CONTEXT_SPECIFIC immediately after a cryptographic operation using the
key has been initiated (e.g. after C_Signlnit). Inthis call, the actual user type isimplicitly

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 81

given by the usage requirements of the active key. If C_L ogin returns CKR_OK the user
was successfully authenticated and this sets the active key in an authenticated state that
lasts until the cryptographic operation has successfully or unsuccessfully been completed
(eg. by C_Sign, C_SignFinal,..). A return value CKR_PIN_INCORRECT from
C_Login means that the user was denied permission to use the key and continuing the
cryptographic operation will result in a behavior as if C_Login had not been called. In
both of these cases the session state will remain the same, however repeated failed re-
authentication attempts may cause the PIN to be locked. C_L ogin returns in this case
CKR_PIN_LOCKED and this also logs the user out from the token. Failing or omitting to
re-authenticate when CKA_ALWAYS AUTHENTICATE isset to CK_TRUE will result
in CKR_USER_NOT_LOGGED _IN to be returned from calls using the key. C_L ogin
will return CKR_OPERATION_NOT _INITIALIZED, but the active cryptographic
operation will not be affected, if an attempt is made to re-authenticate when
CKA_ALWAYS AUTHENTICATE isset to CK_FALSE.

10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following
table defines the attributes common to all secret keys, in addition to the common
attributes defined for this object class:

April 2009 Copyright © 2009 RSA Security Inc.

82

Table 31, Common Secret Key Attributes

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Attribute

Data type

Meaning

CKA_SENSITIVESH

CK_BBOOL

CK_TRUE if object is sensitive
(default CK_FALSE)

CKA_ENCRYPT?®

CK_BBOOL

CK_TRUE if key supports
encryption®

CKA_DECRYPT®

CK_BBOOL

CK_TRUE if key supports
decryption®

CKA_SIGN®

CK_BBOOL

CK_TRUE if key supports
signatures (i.e., authentication
codes) where the signatureis an
appendix to the data’

CKA_VERIFY®

CK_BBOOL

CK_TRUE if key supports
verification (i.e., of authentication
codes) where the signatureis an
appendix to the data’

CKA_WRAP®

CK_BBOOL

CK_TRUE if key supports
wrapping (i.e., can be used to
wrap other keys)®

CKA_UNWRAP®

CK_BBOOL

CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)®

CKA_EXTRACTABLE®"

CK_BBOOL

CK_TRUE if key is extractable
and can be wrapped °

CKA_ALWAYS SENSITIVE**®

CK_BBOOL

CK_TRUE if key has always had
the CKA_SENSITIVE attribute
set to CK_TRUE

CKA_NEVER_EXTRACTABLE**
6

CK_BBOOL

CK_TRUE if key has never had
the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_CHECK_VALUE

Byte array

Key checksum

CKA_WRAP WITH_TRUSTED™

CK_BBOOL

CK_TRUE if the key can only be
wrapped with awrapping key that
has CKA_TRUSTED set to
CK_TRUE.

Default is CK_FALSE.

CKA_TRUSTED"™

CK_BBOOL

The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED
set to CK_TRUE.

CKA_WRAP_TEMPLATE

CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to match against any

Copyright © 2009 RSA Security Inc.

April 2009

10. OBJECTS 83

Attribute Datatype Meaning

keys wrapped using this wrapping
key. Keysthat do not match
cannot be wrapped. The number
of attributesin the array isthe

ulVValueLen component of the
attribute divided by the size of

CK_ATTRIBUTE

CKA_UNWRAP _TEMPLATE S%ATTR'BUTE— For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping

key. Any user supplied template
is applied after thistemplate as if
the object has already been
created. The number of attributes
in the array isthe ulValueLen
component of the attribute
divided by the size of

CK_ATTRIBUTE.

"Refer to table Table 15 for footnotes

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the secret key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of secret
key in the attribute table in the section describing that type of key.

The key check value (KCV) attribute for symmetric key objects to be called
CKA_CHECK_VALUE, of type byte array, length 3 bytes, operates like a fingerprint,
or checksum of the key. They are intended to be used to cross-check symmetric keys
against other systems where the same key is shared, and as a validity check after manual
key entry or restore from backup. Refer to object definitions of specific key types for
KCV agorithms.

Properties:

1. For two keys that are cryptographically identical the value of this attribute should
beidentical.

2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.

3. Non-uniqueness. Two different keys can have the same CKA_CHECK_VALUE.
Thisisunlikely (the probability can easily be calculated) but possible.

The attribute is optional but if supported the value of the attribute is always supplied by
the library regardless of how the key object is created or derived. It shall be supplied even

April 2009 Copyright © 2009 RSA Security Inc.

84 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

if the encryption operation for the key is forbidden (i.e. when CKA_ENCRYPT is set to
CK_FALSE).

If avaue is supplied in the application template (allowed but never necessary) then, if
supported, it must match what the library calculates it to be or the library returns a
CKR_ATTRIBUTE_VALUE_INVALID. If the library does not support the attribute then
it should ignore it. Allowing the attribute in the template this way does no harm and
allows the attribute to be treated like any other attribute for the purposes of key wrap and
unwrap where the attributes are preserved a so.

The generation of the KCV may be prevented by the application supplying the attribute in
the template as a no-value (0 length) entry. The application can query the value at any
time like any other attribute using C_GetAttributeVaue. C_SetAttributeValue may be
used to destroy the attribute, by supplying no-vaue.

Unless otherwise specified for the object definition, the value of this attribute is derived
from the key object by taking the first three bytes of an encryption of a single block of
null (0x00) bytes, using the default cipher and mode (e.g. ECB) associated with the key
type of the secret key object.

10.11 Domain parameter objects

10.11.1 Definitions

This section defines the object class CKO _DOMAIN_PARAMETERS for type
CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

10.11.2 Overview

This object class was created to support the storage of certain algorithm's extended
parameters. DSA and DH both use domain parameters in the key-pair generation step. In
particular, some libraries support the generation of domain parameters (originally out of
scope for PKCS11) so the object class was added.

To use a domain parameter object you must extract the attributes into a template and
supply them (still in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public
domain parameters.

The following table defines the attributes common to domain parameter objects in
addition to the common attributes defined for this object class:

Copyright © 2009 RSA Security Inc. April 2009

10. OBJECTS 85

Table 32, Common Domain Parameter Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE CK_KEY_TYPE | Type of key the domain parameters can
be used to generate.

CKA_LOCAL** CK_BBOOL CK_TRUE only if domain parameters
were either

e generated locally (i.e., on the token)
withaC_GenerateKey

e created withaC_CopyObject call
as acopy of domain parameters
which had its CKA_LOCAL
attribute set to CK_TRUE

" Refer to table Table 15 for footnotes
The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the
domain parameters were originally generated on the token by aC_GenerateK ey call.

10.12 Mechanism objects

10.12.1 Definitions

This section defines the object class CKO_MECHANISM for type
CK_OBJECT_CLASS asused inthe CKA_CLASS attribute of objects.

10.12.2 Overview

M echanism objects provide information about mechanisms supported by a device beyond
that given by the CK_MECHANISM _INFO structure.

When searching for objects using C_FindObjectslnit and C_FindObjects, mechanism
objects are not returned unless the CKA_CL ASS attribute in the template has the value
CKO_MECHANISM. This protects applications written to previous versions of cryptoki
from finding objects that they do not understand.

Table 33, Common Mechanism Attributes

Attribute Data Type Meaning
CKA_MECHANISM_TYPE | CK_MECHANISM_TYPE | Thetype of mechanism
object

The CKA_MECHANISM _TYPE attribute may not be set.

April 2009 Copyright © 2009 RSA Security Inc.

86 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

11 Functions

Cryptoki's functions are organized into the following categories:

e general-purpose functions (4 functions)

e dlot and token management functions (9 functions)

e session management functions (8 functions)

e object management functions (9 functions)

e encryption functions (4 functions)

e decryption functions (4 functions)

e message digesting functions (5 functions)

e signing and MACing functions (6 functions)

e functionsfor verifying signatures and MACs (6 functions)

e dua-purpose cryptographic functions (4 functions)

e key management functions (5 functions)

e random number generation functions (2 functions)

e parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to
notify an application of certain events, and can aso use application-supplied functions to
handle mutex objects for safe multi-threaded library access.

Execution of a Cryptoki function call isin genera an all-or-nothing affair, i.e., a function
call accomplishes either its entire goal, or nothing at all.

e If aCryptoki function executes successfully, it returns the value CKR_OK.

e If aCryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token isin the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the
failure of the function.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 87

e In unusua (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL_ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partially achieved.

There are a small number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individually with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki APl. However, even
an unsupported function must have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function's entry in the library’s
CK_FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to
this stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section 11.1, we enumerate the various possible return values for Cryptoki functions,
most of the remainder of Section 10.12 details the behavior of Cryptoki functions,
including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions' return
values. We have attempted to specify the behavior of Cryptoki functions as completely as
was feasible; nevertheless, there are presumably some gaps. For example, it is possible
that a particular error code which might apply to a particular Cryptoki function is
unfortunately not actualy listed in the description of that function as a possible error
code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precisely what kind of error), and
behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make an
application that accommodates a range of behaviors from Cryptoki libraries.

1111 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

April 2009 Copyright © 2009 RSA Security Inc.

88 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

e CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token isin an inconsistent state.

e CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

e CKR_FUNCTION_FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that can
be obtained by calling C_GetSessionlinfo will hold useful information about what
happened in its ulDeviceError field. In any event, although the function call failed,
the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the
error actually was, it is possible that an attempt to make the exact same function call
again would succeed.

e CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a
“universal” return value; in particular, the legacy functions C_GetFunctionStatus
and C_CancelFunction (see Section 11.16) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

11.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_lInitialize, C_Finalize, C_Getlnfo, C_GetFunctionList,
C_GetSlotList, C_GetSlotlnfo, C_GetTokenlnfo, C_WaitFor SlotEvent,
C_GetMechanismList, C_GetMechanisminfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following val ues:

e CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

e CKR_DEVICE_ REMOVED: The token was removed from its slot during the
execution of the function.

e CKR_SESSION_CLOSED: The session was closed during the execution of the
function. Note that, as stated in Section 6.7.6, the behavior of Cryptoki is undefined if
multiple threads of an application attempt to access a common Cryptoki session

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 89

simultaneously. Therefore, there is actually no guarantee that a function invocation
could ever return the value CKR_SESSION_CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucia (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.3 Cryptoki function return valuesfor functionsthat use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_Getinfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotlnfo, or C_WaitFor SlotEvent) can return any of the following values:

e CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform
the requested function.

e CKR_DEVICE_ERROR: Some problem has occurred with the token and/or sot.
This error code can be returned by more than just the functions mentioned above; in
particular, it ispossible for C_GetSlotl nfo to return CKR_DEVICE_ERROR.

e CKR_TOKEN_NOT_PRESENT: The token was not present in its ot at the time
that the function was invoked.

e CKR_DEVICE_ REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.4 Special return value for application-supplied callbacks

There is a specia-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function. It
is:

April 2009 Copyright © 2009 RSA Security Inc.

90 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

e CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section 11.17). If the callback
returns the value CKR_CANCEL, then the function aborts and returns
CKR_FUNCTION_CANCELED.

11.1.5 Special return valuesfor mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application devel opers who are not
using their own threading model. They are:

e CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such afunction will successfully detect bad mutex objects and return this value.

e CKR _MUTEX_NOT_LOCKED: Thiserror code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was
not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of afunction, then the function may return any applicable error code.

e CKR_ARGUMENTS BAD: Thisis arather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

e CKR_ATTRIBUTE_READ_ONLY: An atempt was made to set a vaue for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section 10.1 for more information.

e CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive or
unextractable.

e CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a
template. See Section 10.1 for more information.

e CKR _ATTRIBUTE VALUE_INVALID: An invaid vaue was specified for a
particular attribute in atemplate. See Section 10.1 for more information.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 91

¢ CKR _BUFFER_TOO_SMALL: The output of the function is too large to fit in the
supplied buffer.

e CKR_CANT_LOCK: This value can only be returned by C_lInitialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

e CKR_CRYPTOKI_ALREADY _INITIALIZED: This vaue can only be returned by
C_Initialize. It means that the Cryptoki library has already been initialized (by a
previous call to C_lInitialize which did not have amatching C_Finalize call).

e CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function
other than C_lInitialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a cal to
C_Initialize.

e CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is
invalid. Thisreturn value has lower priority than CKR_DATA_LEN_RANGE.

e CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the
plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA_INVALID.

e CKR_DOMAIN_PARAMS INVALID: Invalid or unsupported domain parameters
were supplied to the function. Which representation methods of domain parameters
are supported by a given mechanism can vary from token to token.

e CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED_DATA_LEN_RANGE.

e CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRY PTED_DATA_INVALID.

e CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key
pair generation, domain paraneter generation etc.) failed because we
have exceeded the maxi mum nunber of iterations. This error code has
precedence over CKR _FUNCTI ON _FAI LED. Exanples of iterative algorithns
i ncl ude DSA signature generation (retry if either r = 0 or s = 0) and
generation of DSA prinmes p and q specified in FIPS 186-2.

e CKR_FIPS SELF TEST _FAILED: A FIPS 140-2 power-up self-test or
conditional self-test failed. The token entered an error state.

April 2009 Copyright © 2009 RSA Security Inc.

92

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Future calls to cryptographic functions on the token wll return
CKR_GENERAL_ERROR. CKR FI PS SELF_TEST_FAI LED has a hi gher precedence
over CKR GENERAL ERROR This error nmay be returned by Clnitialize,
if a power-up self-test failed, by C GenerateRandom or C SeedRandom
if the continuous random nunber generator test failed, or by
C GenerateKeyPair, if the pair-w se consistency test failed.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR_CANCEL (see CKR_CANCEL). It aso
happens to a function that performs PIN entry through a protected path. The method
used to cancel a protected path PIN entry operation is device dependent.

CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in
paralel in the specified session. Thisis alegacy error code which is only returned by
the legacy functions C_GetFunctionStatus and C_Cancel Function.

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki API should have a
“stub” in the library; this stub should simply return the vaue
CKR_FUNCTION_NOT_SUPPORTED.

CKR_FUNCTION_REJECTED: The signature request is rejected by the user.

CKR_INFORMATION_SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

CKR_KEY_CHANGED: This vaue is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
original saved session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key’s attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to CK_TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). Thisreturn
value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
Wereiterate here that O is never avalid key handle.

CKR_KEY _INDIGESTIBLE: This error code can only be returned by C_DigestK ey.
It indicates that the value of the specified key cannot be digested for some reason
(perhaps the key isn't a secret key, or perhaps the token ssmply can’t digest this kind
of key).

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 93

e CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It
indicates that the session state cannot be restored because C_SetOperationState
needs to be supplied with one or more keys that were being used in the original saved
session.

e CKR_KEY_NOT_NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

e CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does
not have its CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the
token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_KEY_UNEXTRACTABLE.

e CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actually do it because the supplied key's size is outside the range of key sizes that it
can handle.

e CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key
to use with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

e CKR_KEY_UNEXTRACTABLE: The specified private or secret key can't be
wrapped because its CKA_EXTRACTABLE attribute is set to CK_FALSE.
Compare with CKR_KEY_NOT_WRAPPABLE.

e CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a
dependent shared library.

e CKR_MECHANISM_INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

e CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

e CKR_NEED TO CREATE _THREADS: This value can only be returned by
C_Initialize. Itisreturned when two conditions hold:

1. The application caled C_lInitialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

April 2009 Copyright © 2009 RSA Security Inc.

94

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

2. Thelibrary cannot function properly without being able to spawn new threads
in the above fashion.

CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is
returned when C_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We
reiterate here that O is never avalid object handle.

CKR_OPERATION_ACTIVE: There is aready an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from
activating an encryption operation with C_Encryptlnit. Or, an active digesting
operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’'t support simultaneous dual
cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having caled C_Encryptlnit first to activate an
encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation
cannot be carried out unless C_SetPIN is called to change the PIN value. Whether or
not the normal user’s PIN on atoken ever expires varies from token to token.

CKR_PIN_INCORRECT: The specified PIN isincorrect, i.e., does not match the PIN
stored on the token. More generally-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invaid characters in it. This return
code only applies to functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could
be easy to guess. |If the PINis too short, CKR PIN LEN RANGE shoul d

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 95

be returned instead. This return code only applies to functions which
attenpt to set a PIN.

e CKR PUBLIC KEY_INVALID: The public key fails a public key
val i dati on. For exanple, an EC public key fails the public key
val idation specified in Section 5.2.2 of ANSI X9.62. This error code
may be returned by C Create(hject, when the public key is created, or
by C Verifylnit or C VerifyRecoverlnit, when the public key is used.
It may also be returned by C DeriveKey, in preference to
CKR_MECHANI SM_PARAM | NVALI D, if the other party's public key
specified in the nechanisms parameters is invalid.

e CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’'t have a random
number generator. This return value has higher priority than
CKR_RANDOM_SEED NOT_SUPPORTED.

e CKR_RANDOM_SEED NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not
accept seeding from an application. This return value has lower priority than
CKR_RANDOM_NO_RNG.

e CKR_SAVED _STATE_INVALID: This vaue can only be retuned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations
stateisinvalid, and so it cannot be restored to the specified session.

e CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too
many sessions already open, or because the token has too many read/write sessions
aready open.

e CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It
indicates that a session with the token is already open, and so the token cannot be
initialized.

e CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support parallel sessions. Thisis alegacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel Sessions.
CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is caled in a

particular [deprecated] way.

e CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_TOKEN_WRITE_PROTECTED.

e CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

April 2009 Copyright © 2009 RSA Security Inc.

96

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKR_SESSION_READ_WRITE_SO EXISTS: A read/iwrite SO session already
exists, and so aread-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided signature/MAC isinvalid. Thisreturn
value has lower priority than CKR_SIGNATURE_LEN_RANGE.

CKR_SLOT_ID_INVALID: The specified dot ID isnot valid.

CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is ssimply unable to save
the current state). This return vaue has lower priority than
CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more
information.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section 10.1 for more information.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the dlot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

CKR_UNWRAPPING_KEY_HANDLE INVALID: This vaue can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key isnot valid.

CKR_UNWRAPPING_KEY_SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key's size is outside the range of key sizesthat it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be
returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 97

because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

e CKR_USER ANOTHER ALREADY_LOGGED_IN: This value can only be
returned by C_Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

e CKR_USER NOT_LOGGED_IN: The desired action cannot be performed because
the appropriate user (or an appropriate user) is not logged in. One example is that a
session cannot be logged out unlessit islogged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A fina example is that cryptographic operations on certain
tokens cannot be performed unless the normal user islogged in.

e CKR_USER PIN_NOT _INITIALIZED: This vaue can only be returned by
C_Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

e CKR _USER TOO MANY_TYPES:. An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. Itis
not required to, however. Only if the simultaneous distinct users cannot be supported
does C_L ogin have to return this value. Note that this error code generalizes to true
multi-user tokens.

e CKR_USER TYPE INVALID: An invadid vaue was specified as a
CK_USER_TYPE. vVaid types ae CKU_ SO, CKU USER, and
CKU_CONTEXT_SPECIFIC.

e CKR_WRAPPED_KEY_INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If acall is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return
value has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

e CKR _WRAPPED KEY_LEN_RANGE: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR_WRAPPED_KEY_INVALID.

April 2009 Copyright © 2009 RSA Security Inc.

98 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

e CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another
key isnot valid.

e CKR_WRAPPING KEY_SIZE RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied wrapping key’s size is outside the range of key sizes that it can
handle.

e CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This vaue can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 Moreon relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from
Section 11.1.6. One minor implication of thisis that functions that use a session handle
(i.e., most functions!) never return the error code CKR_TOKEN_NOT_PRESENT (they
return CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

11.1.8 Error code“gotchas’

Hereisashort list of afew particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section 11.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 99

CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED KEY_LEN_RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library
developer to know which of CKR _ATTRIBUTE VALUE INVALID,
CKR_TEMPLATE INCOMPLETE, or CKR_TEMPLATE_INCONSISTENT to
return. When possible, it is recommended that application developers be generous in
thelr interpretations of these error codes.

11.2 Conventionsfor functionsreturning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to alocation which will hold the length of the output produced (say pulBufLen). There
are two ways for an application to call such afunction:

1. If pBuf is NULL_PTR, then al that the function does is return (in *pulBufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR_OK is returned by
the function.

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR_OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER _TOO_SMALL isreturned. In either case, *pulBufLen
is set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should aways
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a O-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return O

April 2009 Copyright © 2009 RSA Security Inc.

100 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

bytes of plaintext. If asingle additional byte of ciphertext is supplied by a subsequent call
to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in Cryptoki.
Most functions will be shown in use in at least one sample code snippet. For the sake of
brevity, sample code will frequently be somewhat incomplete. In particular, sample code
will generally ignore possible error returns from C library functions, and also will not
deal with Cryptoki error returnsin arealistic fashion.

114 General-purposefunctions

Cryptoki provides the following general-purpose functions:

¢ C _Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR plnitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL_PTR
or pointsto aCK_C_INITIALIZE_ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generally supply the value
NULL_PTR to C_Initialize (the consequences of supplying this value will be explained
below).

If plnitArgs is non-NULL_PTR, C _Initialize should cast it to a
CK_C_INITIALIZE_ARGS PTR and then dereference the resulting pointer to obtain
the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL_PTR; if it’s not, then C_Initialize should return with the
vaue CKR_ARGUMENTS BAD.

If the CKF_LIBRARY_CANT_CREATE_OS THREADSflagin the flags field is set,
that indicates that application threads which are executing calls to the Cryptoki library are
not permitted to use the native operation system calls to spawn off new threads. In other
words, the library’s code may not create its own threads. If the library is unable to
function properly under this restriction, C_Initialize should return with the value
CKR_NEED_TO_CREATE_THREADS.

A cdl to C_Initialize specifies one of four different ways to support multi-threaded
access via the value of the CKF_OS LOCKING_OK flag in the flags field and the

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 101

values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer
fields:

1. If the flag isn't set, and the function pointer fields aren’'t supplied (i.e., they al have
the vadue NULL_PTR), that means that the application won't be accessing the
Cryptoki library from multiple threads simultaneoudly.

2. If theflag is set, and the function pointer fields aren’t supplied (i.e., they all have the
value NULL_PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_CANT_LOCK.

3. Iftheflagisn't set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_Initialize should return with the value CKR_CANT _LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return
with the value CKR_CANT_LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ARGUMENTS_BAD.

A cal to C_Initialize with plnitArgs set to NULL_PTR is treated like a cal to
C_Initialize with plInitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL_PTR, and hasthe flags field set to O.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typicaly, it might cause Cryptoki to initialize its internal memory buffers, or any other
resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call
to C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See
Section 6.6 for more details.

Return values: CKR_ARGUMENTS _BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI|_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,

April 2009 Copyright © 2009 RSA Security Inc.

102 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_NEED_TO CREATE_THREADS, CKR_OK.

Example: see C_GetlInfo.

¢ C_Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C Finalize)(
CK_ VA D_PTR pReserved
);

C_Finalizeis called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions; for this version, it should be set to NULL_PTR (if
C_Finalize is called with a non-NULL_PTR value for pReserved, it should return the
value CKR_ARGUMENTS BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call to C_Finalize should be preceded by a single call to C_Initialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section 6.6 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread
becomes unblocked and returns the value CKR_CRYPTOKI_NOT INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values;: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example: see C_GetlInfo.

¢ C Getinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get I nf o) (
CK_I NFO_PTR plnfo

)|

C_Getlnfo returns genera information about Cryptoki. plnfo points to the location that
receives the information.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 103

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK.

Example:

CK_I NFO i nf o;
CK RV rv;
CK_C INTIALI ZE_ARGS I nitArgs;

I nit Args. CreateMut ex = &WCreat eMut ex;

I ni t Args. DestroyMiutex = &WDestroyMit ex;
I nit Args. LockMutex = &WLockMut ex;

I ni t Args. Unl ockMut ex = &WUnl ockMut ex;
InitArgs.flags = CKF_OS_LOCKI NG _CXK;

I nitArgs. pReserved = NULL_PTR;

rv = Clnitialize((CK VO D PTR) & nitArgs);
assert(rv == CKR_XK);

rv = C Getlnfo(& nfo);
assert(rv == CKR_(X);

if(info.version.major == 2) {
/* Do lots of interesting cryptographic things with the
t oken */

}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_XK);

¢ C GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFunct i onLi st

)|

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a vaue which will receive a pointer to the library’'s
CK_FUNCTION_LIST structure, which in turn contains function pointers for al the
Cryptoki API routines in the library. The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether
or not thisis the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_lInitialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

April 2009 Copyright © 2009 RSA Security Inc.

104 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:
CK_FUNCTI ON_LI ST_PTR pFuncti onLi st ;
CK Clnitialize pClnitialize;
CK_RV rv;
/* 1t’s OKto call C_GetFunctionList before calling
Clnitialize */
rv = C_Get Functi onLi st (&Functi onLi st);
assert(rv == CKR_X);
pC Initialize = pFunctionList -> C Initialize;

[* Call the C.lnitialize function in the library */
rv = (*pC_Initialize)(NUL_PTR);

11.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

¢ C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot Li st)(
CK BBOOL t okenPresent,
CK_SLOT_|I D_PTR pSl ot Li st ,
CK_ULONG_PTR pul Count

)

C_GetSlotList is used to obtain a list of dots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (CK_TRUE), or
all dots (CK_FALSE); pulCount points to the location that receives the number of dots.

There are two ways for an application to call C_GetSlotList:

1. If pSotListis NULL_PTR, then al that C_GetSlotList does is return (in * pul Count)
the number of slots, without actually returning a list of slots. The contents of the
buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case,
and the call returns the value CKR_OK.

2. If pSotList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSotList. If that buffer islarge
enough to hold the list of dots, then the list is returned in it, and CKR_OK is
returned. If not, then the call to C_GetSlotList returns the vaue
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the
number of slots.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 105

Because C_GetSlotList does not alocate any space of its own, an application will often
call C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of al dots with a token present, then the number of such dots can
(unfortunately) change between when the application asks for how many such slots there
are and when the application asks for the slots themselves). However, multiple calls to
C_GetSlotList are by no means required.

All slotswhich C_GetSlotL st reports must be able to be queried as valid slots by
C_GetSlotlnfo. Furthermore, the set of slots accessible through a Cryptoki library is
checked at thetime that C_GetSlotL ist, for list length prediction (NULL pSlotList
argument) is called. If an application cals C_GetSlotList with anon-NULL pSlotList,
and then the user adds or removes a hardware device, the changed slot list will only be
visible and effectiveif C_GetSlotList iscalled again with NULL. Evenif C_
GetSlotList issuccessfully called thisway, it may or may not be the case that the
changed slot list will be successfully recognized depending on the library implementation.
On some platforms, or earlier PKCS11 compliant libraries, it may be necessary to
successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK _SLOT_|I D PTR pSl otList, pSlotWthTokenLi st;
CK_RV rv;

/[* Get list of all slots */
rv = C GetSlotList(CK FALSE, NULL_PTR, &ul Sl ot Count);
if (rv == CKR_.OK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_ID));
rv = C GetSlotList(CK FALSE, pSlotList, &ulSlotCount);
if (rv == CKR_XK) {
/* Now use that list of all slots */

}
free(pSlotList);

/[* Get list of all slots

pSl ot Wt hTokenLi st = (CK_
ul SI ot Wt hTokenCount = O;
while (1) {

wth a token present */
LOT_ID PTR) mall oc(0);

April 2009 Copyright © 2009 RSA Security Inc.

106 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

rv = C GetSlotList(

CK_TRUE, pSlotWthTokenList, ul SlotWthTokenCount);
if (rv != CKR BUFFER TOO SMALL)

br eak;
pSl ot Wt hTokenLi st = real |l oc(

pSl ot Wt hTokenLi st ,

ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == CKR_XK) {
/* Now use that list of all slots with a token present
*/

}
free(pSl ot Wt hTokenLi st) ;

¢ C GetSlotinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot nfo)(
CK_SLOT_I D slotlD,
CK_SLOT_|I NFO _PTR plnfo

)

C_GetSlotl nfo obtains information about a particular slot in the system. dotID isthe ID
of the dot; plnfo points to the location that receives the slot information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST _MEMORY, CKR_OK, CKR_SLOT _ID_INVALID.

Example: see C_GetTokenlnfo.

¢ C GetTokenlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Tokenl nf o) (
CK_SLOT_I D slotlD,
CK_TOKEN_|I NFO _PTR plnfo

)

C_GetTokenInfo obtains information about a particular token in the system. dotID is
the ID of the token’s slot; plnfo points to the location that receives the token information.

Return values; CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,

CKR_SLOT ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS _BAD.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 107

Example:

CK_ULONG ul Count ;
CK_SLOT_| D PTR pSl ot Li st
CK_SLOT_I NFO sl ot I nf o;
CK_TOKEN | NFO t okenl nf o;
CK_RV rv;

rv = C GetSlotList(CK FALSE, NULL_PTR, &ul Count);
if ((rv == CKR.K) && (ul Count > 0)) {
pSl ot Li st = (CK_SLOT_I D_PTR)
mal | oc(ul Count *si zeof (CK_SLOT_ID));
rv = C GetSlotList(CK FALSE, pSlotList, &ulCount);
assert(rv == CKR_(X);

/[* Get slot information for first slot */
rv = C GetSlotlnfo(pSlotList[0], &slotlnfo);
assert(rv == CKR_X);

/* Get token information for first slot */

rv = C_Get Tokenl nfo(pSlotList[0], &tokenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) ({

l;ree(pSI ot List);
}

¢ C_ WaitFor SlotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wit For Sl ot Event) (
CK_FLAGS f | ags,
CK_SLOT_| D_PTR pSl ot
CK VO D _PTR pReserved

);

C_WaitFor SlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitFor SlotEvent call blocks (i.e., waits
for a dlot event to occur); pSot points to a location which will receive the ID of the slot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BL OCK:

Internally, each Cryptoki application has a flag for each slot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

April 2009 Copyright © 2009 RSA Security Inc.

108 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and some glot’s event flag is set, then that event flag is cleared, and the call
returns with the ID of that dot in the location pointed to by pSot. If more than onedot’'s
event flag is set at the time of the call, one such dlot is chosen by the library to have its
event flag cleared and to have its ot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and no dot’'s event flag is set, then the cal returns with the vaue
CKR_NO_EVENT. In this case, the contents of the location pointed to by pSot when
C_WaitFor SlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BL OCK flag clear in the flags
argument, then the call behaves as above, except that it will block. That is, if no slot’s
event flag is set at the time of the call, C_WaitFor SlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application has a C_WaitFor SlotEvent call
blocking when another thread of that application cals C_Finalize, the
C_WaitFor SlotEvent call returns with the value
CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous callsto C_WaitF or SlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_NO_EVENT, CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_I D slotl D
CK_SLOT_I NFO sl ot I nf o;

)* Bl ock and wait for a slot event */
rv = C WaitForSlotEvent (flags, &slotlD, NULL_PTR);
assert(rv == CKR_XK);

/* See what’s up with that slot */

rv = C GetSlotInfo(slotlID, &slotlnfo);
assert(rv == CKR X);

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 109

¢ C _GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani snLi st) (
CK_SLOT_I D sl otl D,
CK_MECHANI SM TYPE_PTR pMechani snii st
CK_ULONG_PTR pul Count

)

C_GetMechanismList is used to obtain alist of mechanism types supported by a token.
SotID is the ID of the token's dlot; pulCount points to the location that receives the
number of mechanisms.

There are two ways for an application to call C_GetM echanismL ist:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList doesis return
(in *pulCount) the number of mechanisms, without actually returning a list of
mechanisms. The contents of *pulCount on entry to C_GetM echanismList has no
meaning in this case, and the call returns the value CKR_OK.

2. If pMechanismList isnot NULL_PTR, then * pulCount must contain the size (in terms
of CK_MECHANISM TYPE e€ements) of the buffer pointed to by
pMechanismList. If that buffer is large enough to hold the list of mechanisms, then
the list is returned in it, and CKR_OK is returned. If not, then the cal to
C_GetMechanismList returns the value CKR_BUFFER TOO SMALL. In ether
case, the value * pul Count is set to hold the number of mechanisms.

Because C_GetMechanismList does not alocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

Return values; CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_SLOT ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS _BAD.

Example:

CK_SLOT_I D slotlD;

CK_ULONG ul Count ;

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK_ RV rv;

rv = C_Get Mechani snlist(slotl D, NULL_PTR, &ul Count);
if ((rv == CKR.K) && (ul Count > 0)) {
pMechani snli st =
(CK_MECHANI SM TYPE_PTR)

April 2009 Copyright © 2009 RSA Security Inc.

110 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani snii st (slotlD, pMechanisnList,
&ul Count) ;
if (rv == CKR_XK) {

}
free(pMechani snii st);

}

¢ C_GetMechanisminfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani sm nf o) (
CK_SLOT_I D sl ot 1D,
CK_MECHANI SM TYPE type,
CK_MECHANI SM | NFO_PTR pl nfo

)|

C_GetMechanisminfo obtains information about a particular mechanism possibly
supported by a token. slotID is the ID of the token’s dlot; type is the type of mechanism;
plnfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS _BAD.

Example:

CK SLOT_I D slotlD
CK_MECHANI SM | NFO i nf o;
CK_ RV rv;

)* Get information about the CKM MD2 nechanismfor this
t oken */
rv = C _Get Mechani sm nfo(slotlD, CKMM?2, & nfo);
if (rv == CKR_X) {
if (info.flags & CKF_DI GEST) {

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 111

¢ C_InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C I nitToken)(
CK_SLOT_I D sl otl1D,
CK_UTF8CHAR _PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR PTR pLabel

)|

C_InitToken initializes a token. dlotID is the ID of the token’s slot; pPin points to the
SO'sinitial PIN (which need not be null-terminated); ulPinLen is the length in bytes of
the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated). This standard alows PIN
values to contain any valid UTF8 character, but the token may impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from caling
C_InitToken. If set, the token will be reinitialized, and the client must supply the
existing SO password in pPin.

When atoken isinitialized, all objects that can be destroyed are destroyed (i.e., al except
for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user’s PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session
with it; when acall to C_InitToken is made under such circumstances, the call fails with
error CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is
called that some other application does have an open session with the token, but Cryptoki

April 2009 Copyright © 2009 RSA Security Inc.

112 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

cannot detect this, because it cannot detect anything about other applications using the
token. If thisisthe case, then the consequences of the C_I nitToken call are undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In
these situations, an initialization mechanism outside the scope of Cryptoki must be
employed. The definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS BAD.

Example:
CK SLOT_ID slotlD;

CK_UTF8CHAR PTR pin = “M/PI N’;
CK_UTFSCHAR | abel [32] ;

CK RV rv;

menset (1 abel, © ', sizeof (label)):

mencpy(l abel, “My first token”, strlen(“My first
t oken”));

rv = CInitToken(slotlID, pin, strlen(pin), |abel);
if (rv == CKR_X) {

}

¢ C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C InitPIN)(
CK_SESSI ON_ HANDLE hSessi on,
CK_UTF8CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_InitPIN initializes the norma user's PIN. hSession is the session’s handle; pPin
points to the normal user’s PIN; ulPinLen is the length in bytes of the PIN. This standard
allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_InitPIN can only be called in the “R/W SO Functions’ state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT_LOGGED _IN.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 113

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag inits CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initidize the norma user's PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL_PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitPIN can be used to initialize the normal user’s token
access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS BAD.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR newPi n[] = {"“ NewPI N'};
CK_ RV rv;
rv = C_InitPlIN(hSession, newPin, sizeof(newPin)-1);
if (rv == CKR_X) {
}
¢ C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C _SetPIN) (
CK_SESSI ON_HANDLE hSessi on,
CK_UTF8CHAR_PTR pd dPi n,

CK_ULONG ul d dLen,
CK_UTF8CHAR_PTR pNewPi n,
CK_ULONG ul NewLen

)|

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER
PIN if the session is not logged in. hSession is the session’s handle; pOIdPin points to
the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new

April 2009 Copyright © 2009 RSA Security Inc.

114 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to
contain any valid UTF8 character, but the token may impose subset restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions”
state, or “R/W User Functions’ state. An attempt to call it from a session in any other
state fails with error CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flaginits CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on atoken with such a protected authentication
path, the pOIdPin and pNewPin parametersto C_SetPIN should be NULL_PTR. During
the execution of C_SetPIN, the current user will enter the old PIN and the new PIN
through the protected authentication path. It is not specified how the PINpad should be
used to enter two PINSs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR ol dPin[] = {“A dPIN};
CK_UTF8CHAR newPin[] = {“NewPIN'};
CK RV rv;

rv = C_Set PI N
hSessi on, ol dPin, sizeof(oldPin)-1, newPin,
si zeof (newPi n)-1);
if (rv == CKR_.OK) {

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 115

11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select atoken.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the
token.

3. Cdl C_Login to log the user into the token. Since al sessions an application has
with atoken have a shared login state, C_L ogin only needs to be called for one of the
Sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Cal C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessionsto close al the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is aso possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

¢ C OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_OpenSessi on) (
CK_SLOT I D slotlD,
CK_FLAGS f 1 ags,
CK_VO D_PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON_HANDLE_PTR phSessi on

)

C_OpenSession opens a session between an application and a token in a particular slot.
dotID is the dot’s ID; flags indicates the type of session; pApplication is an application-
defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section 11.17); phSession points to the location that
receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical
OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy
reasons, the CKF_SERIAL_SESSION bit must aways be set; if a cal to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_SESSION_PARALLEL_NOT_SUPPORTED.

April 2009 Copyright © 2009 RSA Security Inc.

116 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

There may be a limit on the number of concurrent sessions an application may have with
the token, which may depend on whether the session is “read-only” or “read/write’. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application calling C_OpenSession aready has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 6.7.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as the Notify parameter. See Section 11.17 for more information about
application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS BAD.

Example: see C_CloseSession.

¢ C_CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseSessi on) (
CK_SESSI ON_ HANDLE hSessi on

)

C_CloseSession closes a session between an application and a token. hSession is the
session’s handle.

When a session is closed, al session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections
6.7.5-6.7.7 for more details).

If this function is successful and it closes the last session between the application and the
token, the login state of the token for the application returns to public sessions. Any new
sessions to the token opened by the application will be either R/O Public or R/W Public
sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “gected” from its reader (if this capability exists).

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 117

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION _CLOSED is an error return. It actualy indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made to C_CloseSession to close this particular session, and that call finished executing
first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will
occur in genera if an application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT_I D sl ot D,

CK_BYTE application;
CK_NOTI FY MyNot i fy;
CK_SESSI ON_ HANDLE hSessi on;
CK_RV rv;

application = 17;
MyNoti fy = &Encrypti onSessi onCal | back;
rv = C _OpenSessi on(
slotl D, CKF_SERI AL_SESSI ON | CKF_RW SESSI ON,
(CK_ VO D _PTR) &application, MyNotify,
&hSessi on);
if (rv == CKR_.OK) {

C_Cl oseSessi on(hSessi on);

}
¢ C CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _d oseAl | Sessi ons) (
CK SLOT_ID slotID

)|

C_CloseAllSessions closes al sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed
automatically.

After successful execution of this function, the login state of the token for the application
returns to public sessions. Any new sessions to the token opened by the application will
be either R/O Public or R/W Public sessions.

April 2009 Copyright © 2009 RSA Security Inc.

118 PKCS#11 BASE FUNCTIONALITY vV2.30: CRYPTOKI
Depending on the token, when the last open session any application has with the token is
closed, the token may be “gected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT.

Example:

CK SLOT_ID slotlD
CK RV rv;

.rv = C O oseAl | Sessions(slotlD);

¢ C_GetSessioninfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sessi onl nf o) (
CK_SESSI ON_ HANDLE hSessi on,
CK_SESSI ON_I NFO_PTR pl nfo

);

C_GetSessionl nfo obtains information about a session. hSession is the session’s handle;
plnfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK_ RV rv;

'rv = C_Get Sessi onl nf o(hSessi on, & nfo);
if (rv == CKR_X) {
if (info.state == CKS_RW USER FUNCTI ONS) {

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 119

¢ C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C Get OperationState)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pQper ati onSt at e,
CK_ULONG_PTR pul Operati onSt at eLen

)

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the session’s handle; pOperationSate points to
the location that receives the state; pulOperationSateLen points to the location that
receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention
described in Section 11.2 on producing output.

Precisely what the “cryptographic operations state’ this function saves is varies from
token to token; however, this state is what is provided as input to C_SetOper ationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the
session is using the CKM_SHA_1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts. the state of SHA-1's 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at alater time.

Consider next a session which is performing an encryption operation with DES (a block
cipher with ablock size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session
is using the CKM_DES CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and
output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts. the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data till
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES key
being used for encryption (see C_SetOperationState for more information on whether or
not the key is present in the saved state).

April 2009 Copyright © 2009 RSA Security Inc.

120 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain al the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a session which does not
currently have some active savable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some legad combination of two of these) should fall with the error
CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of
various reasons (certain necessary state information and/or key information can't leave
the token, for example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI|_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE,
CKR_ARGUMENTS BAD.

Example: see C_SetOperationState.

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C Set OperationState) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pQper ati onSt at e,
CK_ULONG ul Qper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

)

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained with C_GetOperationState. hSession is the session’s handle;
pOperationSate points to the location holding the saved state; ulOperationSatelen holds
the length of the saved state; hEncryptionKey holds a handle to the key which will be
used for an ongoing encryption or decryption operation in the restored session (or O if no
encryption or decryption key is needed, either because no such operation is ongoing in the
stored session or because all the necessary key information is present in the saved state);
hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or O if no such key is
needed, either because no such operation is ongoing in the stored session or because al
the necessary key information is present in the saved state).

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 121

The state need not have been obtained from the same session (the “source session”) as it
is being restored to (the “destination session”). However, the source session and
destination sesson should have a common sesson state (eg.,
CKS_RW_USER_FUNCTIONS), and should be with a common token. Thereis also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determineis not valid saved state (or is cryptographic operations state from a
session with a different session state, or is cryptographic operations state from a different
token), it failswith the error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the hEncryptionkey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. |If the key in
use for the operation is saved in the state, then it can be supplied in the hEncryptionKey
argument, but thisis not required.

Similarly, if asaved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the state, then it
must be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is
not, then C_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key
in use for the operation is saved in the state, then it can be supplied in the
hAuthenticationKey argument, but thisis not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle
is submitted in the hEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_KEY_NOT_NEEDED.

If akey issupplied as an argument to C_SetOperationState, and C_SetOperationState
can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), then C_SetOperationState fails
with the error CKR_KEY_CHANGED.

An application can look a the CKF_RESTORE_KEY_NOT_NEEDED flag in the
flags field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handlesto C_SetOperationState calls. If thisflagistrue, then acal
to C_SetOperationState never needs a key handle to be supplied to it. If this flag is
false, then at least some of the time, C_SetOperationState requires a key handle, and so
the application should probably always pass in any relevant key handles when restoring
cryptographic operations state to a session.

April 2009 Copyright © 2009 RSA Security Inc.

122 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

C_SetOperationState can successfully restore cryptographic operations state to a session
even if that session has active cryptographic or object search operations when

C_SetOperationStateis called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_ CHANGED,
CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK_BYTE data3[] = {0x10, OxOF, OxOE, Ox0D, 0x0C};
CK_BYTE pDi gest|[20];

CK_ULONG ul Di gest Len;

CK_ RV rv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMechanism;
assert(rv == CKR_XK);

[* Start hashing */
rv = C_DigestUpdate(hSession, datal, sizeof(datal));
assert(rv == CKR_XK);

/[* Find out how big the state m ght be */

rv = C Get QperationState(hSession, NULL_PTR
&ul St at eLen);

assert(rv == CKR_(X);

/* Allocate sonme nenory and then get the state */
pState = (CK BYTE PTR) mal | oc(ul St atelLen);

rv = C GetOperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C _Digest Updat e(hSessi on, data2, sizeof(data2));
assert(rv == CKR_(X);

/* Restore state. No key handl es needed */
rv = C_Set OperationState(hSession, pState, ul Statelen,
0);

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 123

assert(rv == CKR_XK);

/* Continue hashing fromwhere we saved state */
rv = C _DigestUpdat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_XK);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDi gest);
rv = C_DigestFinal (hSession, pDigest, &ulDigestLen);
if (rv == CKR_XK) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}

¢ C Login

CK_DEFI NE_FUNCTI ON(CK_RV, C _Logi n) (
CK_SESSI ON_HANDLE hSessi on,
CK_USER _TYPE user Type,
CK_UTF8CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_Login logsauser into atoken. hSession is a session handle; user Type is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN. This standard allows PIN
values to contain any valid UTF8 character, but the token may impose subset restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the
application's sessions will enter either the "R/W SO Functions' state, the "R/W User
Functions® state, or the "R/O User Functions' state. If the user type is
CKU_CONTEXT_SPECIFIC , the behavior of C_Login depends on the context in which
it is caled. Improper use of this user type will result in a return value
CKR_OPERATION_NOT _INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected
authentication path, the pPin parameter to C_Login should be NULL_PTR. When
C_L ogin returns, whatever authentication method supported by the token will have been
performed; a return value of CKR _OK means that the user was successfully
authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

April 2009 Copyright © 2009 RSA Security Inc.

124 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

If there are any active cryptographic or object finding operations in an application’s
session, and then C_L ogin is successfully executed by that application, it may or may not
be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_L ogin has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section 6.7.7). An attempt to do this will result
in the error code CKR_SESSION_READ_ONLY_EXISTS.

C_Login may be called repeatedly, without intervening C_L ogout calls, if (and only if) a
key with the CKA_ALWAYS AUTHENTICATE attribute set to CK_TRUE exists, and
the user needs to do cryptographic operation on this key. See further Section 10.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS,
CKR_USER_ALREADY_LOGGED IN,

CKR_USER_ANOTHER _ALREADY_LOGGED IN,

CKR_USER_PIN_NOT _INITIALIZED, CKR_USER_TOO _MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_L ogout.

¢ C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_ HANDLE hSessi on
);

C_L ogout logs a user out from atoken. hSession isthe session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions
will enter either the “R/W Public Session” state or the “R/O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, al private session objects from sessions belonging to the
application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s
session, and then C_L ogout is successfully executed by that application, it may or may
not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 125

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_UTF8CHAR userPIN[] = {“M/PIN'};
CK_ RV rv;

rv = C_Logi n(hSession, CKU USER, userPIN,

si zeof (userPIN)-1);
if (rv == CKR.X) {

rv == C _Logout (hSessi on);
if (rv == CKR_.K) {

}
}

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions
provided specifically for managing key objects are described in Section 11.14.

¢ C _CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C CreateObject)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at €,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phQbj ect
);

C_CreateObject creates anew object. hSession is the session’s handle; pTemplate points
to the object’s template; ulCount is the number of attributes in the template; phObject
points to the location that receives the new object’s handle.

If acall to C_CreateObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to CK_FALSE. If that key object is a secret or private key

April 2009 Copyright © 2009 RSA Security Inc.

126 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

then the new key will have the CKA_ALWAYS SENSITIVE attribute set to
CK_FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user islogged in.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_ TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE

hDat a,

hCertificate,

hKey;
CK_OBJECT_CLASS

dat aCl ass = CKO_DATA,

certificated ass = CKO CERTI FI CATE,

keyd ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};

CK_BYTE subject[] = {...};

CK_BYTE id[] ={...};

CK_BYTE certificateValue[] = {...};

CK_BYTE nodul us[] = {...};

CK_BYTE exponent[] = { 3

CK_BBOOL true = CK_TRUE

CK_ATTRI BUTE dat aTenpl ate[] = {

{CKA CLASS, &datad ass, sizeof(datad ass)},

{CKA TOKEN, &true, sizeof(true)},

{ CKA_APPLI CATI ON, application, sizeof(application)-1},
{CKA VALUE, dataVal ue, sizeof(dataVval ue)}

CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass,
si zeof (certificated ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS

127

{CKA VALUE, certificateVal ue, sizeof(certificateValue)}

CK_ATTRI BUTE keyTenpl ate[] = {

{CKA CLASS, &keyd ass, sizeof (keyd ass)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

{CKA WRAP, &true, sizeof(true)},

{CKA_MODULUS, nodul us, sizeof (nodul us)},

{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

}1
CK RV rv;

)* Create a data object */

rv = C Create(bj ect (hSessi on, &dataTenplate, 4, &hData);

if (rv == CKR_X) {

}
/* Create a certificate object */
rv = C Creat enj ect (

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_X) {

}

/* Create an RSA public key object */
rv = C _Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {

}
¢ C_CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyOhj ect) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phNew(bj ect
);

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to the template for the
new object; ulCount is the number of attributes in the template; phNewObject points to

the location that receives the handle for the copy of the object.

April 2009 Copyright © 2009 RSA Security Inc.

128 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The template may specify new values for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key’'s CKA_EXTRACTABLE
attribute may be changed from CK_TRUE to CK_FALSE, but not the other way around.
If this change is made, the new key’'s CKA_NEVER_EXTRACTABLE attribute will
have the value CK_FALSE. Similarly, the template may specify that the new key's
CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same value for its
CKA_ALWAYS SENSITIVE attribute as the original key). It may also specify new
values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

If acall to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object. If the object indicated by hObject has its
CKA_COPYABLE attribute set to CK_FALSE, C_CopyObject will return
CKR_COPY_PROHIBITED.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user islogged in.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED IN,
CKR_COPY_PROHIBITED.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY,
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] ={...};
CK_BBOOL fal se = CK_FALSE;
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &fal se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 129

CK_ATTRI BUTE copyTenpl ate[] = {

{CKA TOKEN, &true, sizeof(true)}
1
CK RV ryv;

/* Create a DES secret key session object */
rv = C Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {
/* Create a copy which is a token object */
rv = C Copy(Obj ect (hSessi on, hKey, ©Tenplate, 1,
&hNewkKey) ;

}

¢ C _DestroyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Destroyject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect

)

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is
the object’ s handle.

Only session objects can be destroyed during a read-only session. Only public objects
can be destroyed unless the normal user islogged in.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

April 2009 Copyright © 2009 RSA Security Inc.

130 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C_GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Obj ect Si ze) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ULONG_PTR pul Si ze
);

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle;
hODbject is the object’ s handle; pul S ze points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’ssizeis. Intuitively, itis
some measure of how much token memory the object takes up. If an application deletes
(say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token's CK_TOKEN_INFO structure increases by
approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_OBJECT_CLASS dat ad ass
CK_UTF8CHAR application[]
CK_BYTE dataVal ue[] = {...
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &datad ass, sizeof(datad ass)},

{CKA TOKEN, &true, sizeof(true)},

{ CKA_APPLI CATI ON, application, sizeof(application)-1},

{CKA VALUE, val ue, sizeof(value)}

}s
CK ULONG ul Si ze;

CK RV rv;

CKO_DATA;
{“My Application”};

~ 1l 1l

rv = C Create(bj ect (hSession, & enplate, 4, & bject);
if (rv == CKR_.OK) {

rv = C _Get Obj ectSi ze(hSessi on, hCbject, &ulSize);

if (rv !'= CKR_| NFORMATI ON_SENSI TI VE) {

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 131

}
rv = C DestroyQbj ect (hSessi on, hCbject);

}

¢ C GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C GetAttri buteVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession
isthe session’s handle; hObject is the object’ s handle; pTemplate points to a template that
specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object
cannot be revealed because the object is sensitive or unextractable, then the
ulValuelLen field in that triple is modified to hold the value -1 (i.e., when it is cast to a
CK_LONG, it holds-1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValueLen field in that triple is modified to hold
the value -1.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulVValuelLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer
located at pValue, and the ulValueLen field is modified to hold the exact length of the
attribute.

5. Otherwise, the ulVValuelLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE_TYPE _INVALID. If case 5
applies to any of the requested attributes, then the call should return the vaue
CKR_BUFFER TOO SMALL. As usud, if more than one of these error codes is

April 2009 Copyright © 2009 RSA Security Inc.

132 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

In the specia case of an attribute whose value is an array of attributes, for example
CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, then if the
pValue of elements within the array is NULL_PTR then the ulValueLen of elements
within the array will be set to the required length. If the pValue of elements within the
array isnot NULL_PTR, then the ulValueLen element of attributes within the array must
reflect the space that the corresponding pValue points to, and pValueisfilled in if thereis
sufficient room. Therefore it is important to initialize the contents of a buffer before
calling C_GetAttributeValue to get such an array vaue. If any ulValueLen within the
array isn't large enough, it will be set to -1 and the function will return
CKR_BUFFER_TOO_SMALL, asit does if an attribute in the pTemplate argument has
ulValueLen too small. Note that any attribute whose value is an array of attributes is
identifiable by virtue of the attribute type having the CKF_ARRAY_ATTRIBUTE bit set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER TOO SMALL do not
denote true errors for C_GetAttributeValue. If acall to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every attribute in
the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the cal to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS _BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_OBJECT HANDLE INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQObj ect;
CK_BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenpl ate[] = {
{CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

}1
CK RV rv;

.rv = C CetAttributeVal ue(hSession, hCbject, &tenplate,
2);

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 133

if (rv == CKR_.OK) {
pModul us = (CK _BYTE_PTR)
mal | oc(tenpl at e[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = pModul us;
/[* tenpl ate[0] . ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK BYTE_PTR)
mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenpl ate[1] . ul Val ueLen was set by
C GetAttributeval ue */

rv = C GetAttributeVal ue(hSession, hQbject, & enplate,
2);
if (rv == CKR_XK) {

}
free(pModul us);

free(pExponent);

¢ C_SetAttributevValue

CK_DEFI NE_FUNCTI ON(CK_RV, C Set Attri buteVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)|

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession
isthe session’s handle; hObject is the object’ s handle; pTemplate points to a template that
specifies which attribute values are to be modified and their new values; ulCount is the
number of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be modified.
If the template specifies a value of an attribute which is incompatible with other existing
atributes of the object, the «cal fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 10.1.2 for more details.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,

April 2009 Copyright © 2009 RSA Security Inc.

134 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT HANDLE INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenpl ate[] = {

CKA LABEL, | abel, sizeof(label)-1

}s
CK RV rv;

'rv = C Set AttributeVal ue(hSessi on, hCbject, &tenplate,
1);
if (rv == CKR._ X) {

}
¢ C_FindObjectsinit

CK_DEFI NE_FUNCTI ON(CK_RV, C_FindObjectslnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_FindObjectslnit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template that
specifies the attribute values to match; ulCount is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with all attributes in the
template. To find al objects, set ulCount to O.

After calling C_FindObjectslnit, the application may call C_FindObjects one or more
times to obtain handles for objects matching the template, and then eventualy call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at agiven timein agiven session.

The object search operation will only find objects that the session can view. For example,
an object search in an “R/W Public Session” will not find any private objects (even if one
of the attributes in the search template specifies that the search is for private objects).

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 135

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

Even though C_FindObjectsl nit can return the values
CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it
isnot required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initiadize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

¢ C _FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndQObj ect s) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phbj ect,

CK_ULONG ul MaxObj ect Count
CK_ULONG_PTR pul Obj ect Count

)|

C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. hSession is the session’s handle; phObject points to
the location that receives the list (array) of additional object handles; ulMaxObjectCount
is the maximum number of object handles to be returned; pulObjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pul ObjectCount
points to receives the value 0.

The search must have been initialized with C_FindObjectdl nit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

April 2009 Copyright © 2009 RSA Security Inc.

136 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndQbj ect sFi nal) (
CK_SESSI ON_ HANDLE hSessi on
);

C_FindObjectsFinal terminates a search for token and session objects. hSession is the
session’s handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_ULONG ul Qoj ect Count ;
CK_RV rv;

rv = C_FindOojectslnit(hSession, NULL_PTR 0);
assert(rv == CKR_(X);
while (1) {
rv = C_FindQbj ect s(hSessi on, & bject, 1,
&ul Cbj ect Count) ;
if (rv != CKR. K || ul QojectCount == 0)
br eak;

}

rv = C_Fi ndQbj ect sFi nal (hSessi on) ;
assert(rv == CKR_XK);

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 137

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptinit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; hKey is the handle of the encryption

key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be CK_TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt datain
a single part; or cal C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses acall to C_Encrypt or C_EncryptFinal to actually obtain the
final piece of ciphertext. To process additional data (in single or multiple parts), the
application must call C_Encryptlnit again.

Return values; CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _IN.

Example: see C_EncryptFinal.

April 2009 Copyright © 2009 RSA Security Inc.

138 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

)

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to
the data; ulDatalLen is the length in bytes of the data; pEncryptedData points to the
location that receives the encrypted data; pul EncryptedDatalen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptinit. A cal to
C_Encrypt aways terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be called after
C_Encryptlnit without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, then C_Encrypt will fal with return code
CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pData and
pEncryptedData point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 139

¢ C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)

C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the
length of the data part; pEncryptedPart points to the location that receives the encrypted
data part; pulEncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptinit. This function
may be called any number of times in succession. A call to C_EncryptUpdate which
results in an error other than CKR_BUFFER TOO SMALL terminates the current
encryption operation.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

¢ C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _Encrypt Final) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG_PTR pul Last Encrypt edPartLen

)|

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any; pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

April 2009 Copyright © 2009 RSA Security Inc.

140 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptinit. A cal to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism'’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return
code CKR_DATA_LEN_RANGE.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAI NTEXT_BUF_SZ 200
#defi ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v][8];

CK_MECHANI SM nmechani sm = {
CKM_DES_CBC PAD, iv, sizeof(iv)

3

CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT _BUF_SZ] ;
CK_ULONG ul Encrypt edDat allLen;

CK_ULONG ul Encrypt edDat a2Len;

CK_ULONG ul Encr ypt edDat a3Len;

CK RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT_BUF_SZ-firstPi eceLen;
rv = C Encryptlnit(hSession, &rechanism hKey);
if (rv == CKR_.OK) {
/* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encryptedDat a);
rv = C_Encrypt Updat e(

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 141

hSessi on,

&dat a[0], firstPiecelLen

&encrypt edDat a[0], &ul Encrypt edDat allLen);
if (rv 1= CKR.K) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[firstPi eceLen], secondPi ecelLen,
&encrypt edDat a[ul Encr ypt edDat allLen],
&ul Encr ypt edDat a2Len) ;
if (rv 1= CKR.OK) {

}

/* CGet last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encr ypt edDat allLen-
ul Encrypt edDat a2Len;
rv = C_EncryptFi nal (
hSessi on,

&encr ypt edDat a] ul Encr ypt edDat alLen+ul Encr ypt edDat
a2len],

&ul Encr ypt edDat a3Len) ;
if (rv = CKR.K) {

}

April 2009 Copyright © 2009 RSA Security Inc.

142 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_DecryptlInit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanism; hKey is the handle of the decryption

key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key
supports decryption, must be CK_TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt datain
a single part; or cal C_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active
until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the
final piece of plaintext. To process additional data (in single or multiple parts), the
application must call C_Decryptlnit again

Return values;: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _IN.

Example: see C_DecryptFinal.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 143

¢ C Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG _PTR pul Dat aLen
);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDatalen is the length of the
encrypted data; pData points to the location that receives the recovered data; pulDatalen
points to the location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_Decryptinit. A call to
C_Decrypt aways terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

C_Decrypt can not be used to terminate a multi-part operation, and must be called after
C_DecryptlInit without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e, it is OK if pEncryptedData
and pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivaent to a sequence of C_DecryptUpdate
operations followed by C_DecryptFinal.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _IN.

Example: see C_DecryptFinal for an example of similar functions.

April 2009 Copyright © 2009 RSA Security Inc.

144 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen
);

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the session’s handle; pEncryptedPart points to the
encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart
points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_Decryptinit. This function
may be called any number of times in succession. A call to C_DecryptUpdate which
results in an error other than CKR_BUFFER _TOO SMALL terminates the current
decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and
pPart point to the same location.

Return values: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _IN.

Example: See C_DecryptFinal.

¢ C DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DecryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR plLast Part,
CK_ULONG PTR pul Last PartLen

)|

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s
handle; pLastPart points to the location that receives the last recovered data part, if any;
pulLastPartLen points to the location that holds the length of the last recovered data part.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 145

C_DecryptFinal usesthe convention described in Section 11.2 on producing outpui.

The decryption operation must have been initialized with C_Decryptinit. A cal to
C_DecryptFinal aways terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED _DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER _TOO _SMALL,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example:

#define Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncrypt edPi eceLen, secondEncrypt edPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE i v][8];
CK_MECHANI SM nmechani sm = {
CKM_DES _CBC PAD, iv, sizeof(iv)

CK_BYTE dat a] PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT _BUF_SZ] ;
CK_ULONG ul Dat alLen, ul DataZ2Len, ul Data3Len;
CK RV rv;

first EncryptedPi eceLen = 90;
secondEncr ypt edPi eceLen = Cl PHERTEXT BUF_SZ-
firstEncryptedPi ecelLen;

rv = C Decryptlnit(hSession, &rechanism hKey);
if (rv == CKR_X) {

/[* Decrypt first piece */

ul Dat alLen = si zeof (dat a);

rv = C _Decrypt Updat e(

hSessi on,

April 2009 Copyright © 2009 RSA Security Inc.

146 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

&encrypt edDat a[0], firstEncryptedPi ecelLen,
&dat a[0], &ul Datallen);
if (rv 1= CKR.OK) {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (dat a) - ul Dat allLen;
rv = C_Decrypt Updat e(
hSessi on,
&encrypt edDat a[fi rst Encrypt edPi eceLen],
secondEncr ypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Data2lLen);
if (rv 1= CKR.OK) {

}

/* CGet last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat alLen-ul Dat a2Len;
rv = C _DecryptFinal (
hSessi on,
&dat a[ul Dat alLen+ul Dat a2Len], &ul Data3Len);
if (rv 1= CKR.OK) {

}
}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

¢ C _Digestlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm

)

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_DigestInit, the application can either call C_Digest to digest data in a
single part; or cal C_DigestUpdate zero or more times, followed by C_DigestFinal, to
digest data in multiple parts. The message-digesting operation is active until the
application uses a call to C_Digest or C_DigestFinal to actually obtain the message

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 147

digest. To process additiona data (in single or multiple parts), the application must call
C_Digestlnit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example: see C_DigestFinal.

¢ C Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C Di gest) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gestLen
);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to
the data; ulDatalLen is the length of the data; pDigest points to the location that receives
the message digest; pulDigestLen points to the location that holds the length of the

message digest.
C_Digest uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_Digestinit. A call to C_Digest
aways terminates the active digest operation unless it returns
CKR_BUFFER_TOO _SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

C_Digest can not be used to terminate a multi-part operation, and must be called after
C_Digestlnit without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e, it is OK if pData and
pDigest point to the same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,

April 2009 Copyright © 2009 RSA Security Inc.

148 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of similar functions.

¢ C _DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing
another data part. hSession is the session’s handle, pPart points to the data part;
ulPartLen isthe length of the data part.

The message-digesting operation must have been initialized with C_Digestlnit. Calls to
this function and C_DigestK ey may be interspersed any number of timesin any order. A
call to C_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C DigestKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Key) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

)

C_DigestKey continues a multiple-part message-digesting operation by digesting the
value of a secret key. hSession is the session’s handle; hKey is the handle of the secret
key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Callsto
this function and C_DigestUpdate may be interspersed any number of timesin any order.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 149

If the value of the supplied key cannot be digested purely for some reason related to its
length, C_DigestK ey should return the error code CKR_KEY _SIZE RANGE.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE,
CKR_KEY_SIZE_RANGE, CKR_OK, CKR_OPERATION_NOT _INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C_DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _DigestFinal)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

);

C_DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. hSession is the session’s handle; pDigest points to the location that
receives the message digest; pulDigestLen points to the location that holds the length of
the message digest.

C_DigestFinal uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_Digestinit. A call to
C_DigestFinal aways terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_MECHANI SM nechani sm = {
CKM MD5, NULL_PTR, O

1

April 2009 Copyright © 2009 RSA Security Inc.

150 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CK BYTE data[] = {...};
CK_BYTE di gest|[16];
CK_ULONG ul Di gest Len;
CK RV rv;

.rv = C Digestlnit(hSession, &rechanisn);
if (rv 1= CKR.OK) {

}

rv = C_DigestUpdat e(hSession, data, sizeof(data));
if (rv 1= CKR.OK) {

}

rv = C _Digest Key(hSession, hKey);
if (rv = CKR.OK) {

}

ul Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulDi gestlLen);

11.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki,

these operations also encompass message authentication codes):

¢ C_Signinit

CK_DEFI NE_FUNCTI ON(CK_RV, C Signlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Signlnit initializes a signature operation, where the signature is an appendix to the
data. hSession is the session’s handle; pMechanism points to the signature mechanism;
hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be CK_TRUE.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 151

After calling C_Signlnit, the application can either call C_Sign to sign in a single part;
or cal C_SignUpdate one or more times, followed by C_SignFinal, to sign data in
multiple parts. The signature operation is active until the application uses a call to
C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in
single or multiple parts), the application must call C_Signlnit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example: see C_SignFinal.

¢ C_Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gn) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

)

C_Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDatalLen is the length of the
data; pSgnature points to the location that receives the signature; pul Sgnaturelen points
to the location that holds the length of the signature.

C_Sign uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_Signlnit. A call to C_Sign
aways terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

C_Sign can not be used to terminate a multi-part operation, and must be called after
C_Signlnit without intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivaent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

April 2009 Copyright © 2009 RSA Security Inc.

152 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_FUNCTION_REJECTED.

Example: see C_SignFinal for an example of similar functions.

¢ C _SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul PartLen

)

C_SignUpdate continues a multiple-part signature operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The signature operation must have been initialized with C_SignlInit. This function may
be called any number of times in succession. A call to C_SignUpdate which results in
an error terminates the current signature operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _|IN.

Example: see C_SignFinal.

¢ C_SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C _SignFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG_PTR pul Si gnat ureLen

)|

C_SignFinal finishes a multiple-part signature operation, returning the signature.
hSession is the session’s handle; pSgnature points to the location that receives the
signature; pul SgnaturelLen points to the location that holds the length of the signature.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 153

C_SignFinal uses the convention described in Section 11.2 on producing output.

The signing operation must have been initidized with C_Signlnit. A cadl to
C_SignFinal aways terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,
CKR_FUNCTION_REJECTED.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

CK BYTE data[] ={...};
CK_BYTE nmac| 4] ;
CK_ULONG ul MacLen;

CK_ RV rv;

'rv = C _Signlnit(hSession, &rechanism hKey);
if (rv == CKR_X) {
rv = C_SignUpdat e(hSessi on, data, sizeof(data));

ﬂl MacLen = si zeof (mac);
rv = C_SignFinal (hSession, nmac, &ul MacLen);

}

¢ C_SignRecoverinit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecoverlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

April 2009 Copyright © 2009 RSA Security Inc.

154 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

C_SignRecovernit initializes a signature operation, where the data can be recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure
that specifies the signature mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the
key supports signatures where the data can be recovered from the signature, must be
CK_TRUE.

After calling C_SignRecover|nit, the application may call C_SignRecover to signin a
single part. The signature operation is active until the application uses a call to
C_SignRecover to actually obtain the signature. To process additional data in a single
part, the application must call C_SignRecoverInit again.

Return values: CKR_ARGUMENTS _BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example: see C_SignRecover.

¢ C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

)

C_SignRecover signs data in a single operation, where the data can be recovered from
the signature. hSession is the session’s handle; pData points to the data; uLDatalen isthe
length of the data; pSgnature points to the location that receives the signature;
pul Sgnaturelen points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignRecoverlnit. A call to
C_SignRecover adways terminates the active signing operation unless it returns
CKR_BUFFER_TOO _SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 155

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O

CK BYTE data[] = {...};
CK_BYTE si gnature[128];
CK_ULONG ul Si gnat ur eLen;
CK_RV rv;

rv = C_SignRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_X) {
ul Si gnat ureLen = si zeof (si gnature);
rv = C_SignRecover (
hSessi on, data, sizeof(data), signature,
&ul Si gnat ur eLen) ;
if (rv == CKR_.OK) {

April 2009 Copyright © 2009 RSA Security Inc.

156 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

11.12 Functionsfor verifying signaturesand MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations also encompass message authentication codes):

¢ C Verifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Verifylnit initializes a verification operation, where the signature is an appendix to
the data. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be CK_TRUE.

After calling C_Verifylnit, the application can either call C_Verify to verify a signature
on data in a single part; or cal C_VerifyUpdate one or more times, followed by
C_VerifyFinal, to verify asignature on data in multiple parts. The verification operation
is active until the application cals C_Verify or C_VerifyFinal. To process additional
data (in single or multiple parts), the application must call C_Verifylnit again.

Return values;: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_ MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER _NOT_LOGGED _IN.

Example: see C_VerifyFinal.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 157

¢ C Verify

CK_DEFI NE_FUNCTI ON(CK_RV, C Verify)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. hSession is the session’s handle; pData points to the data;
ulDatalLen is the length of the data; pSignature points to the signature; ulSgnatureLen is
the length of the signature.

The verification operation must have been initialized with C_Verifylnit. A cal to
C_Verify aways terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active signing operation is terminated.

C_Verify can not be used to terminate a multi-part operation, and must be called after
C_Verifylnit without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivaent to a sequence of C VerifyUpdate
operations followed by C_VerifyFinal.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR _DATA_INVALID, CKR DATA_LEN_RANGE, CKR DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_ RANGE.

Example: see C_VerifyFinal for an example of similar functions.

April 2009 Copyright © 2009 RSA Security Inc.

158 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C VeifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyUpdate) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_VerifyUpdate continues a multiple-part verification operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The verification operation must have been initialized with C_Verifylnit. This function
may be called any number of times in succession. A call to C_VerifyUpdate which
resultsin an error terminates the current verification operation.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR DATA_LEN_RANGE, CKR DEVICE ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

¢ C VerifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyFinal)(
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen

)|

C_VerifyFinal finishes a multiple-part verification operation, checking the signature.
hSession is the session’s handle; pSgnature points to the signature; ulSgnatureLen isthe
length of the signature.

The verification operation must have been initialized with C_Verifylnit. A cal to
C_VerifyFinal always terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating
that the supplied signature isvalid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active verifying operation is terminated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 159

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

}Ck_BYTE data[] ={...};

CK_BYTE nmac| 4] ;
CK RV rv;

.rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_OK)
rv = C VerifyUpdat e(hSession, data, sizeof(data));

'rv = C VerifyFinal (hSession, mac, sizeof(mac));

}

¢ C VeifyRecoverlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecoverlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VerifyRecoverinit initializes a signature verification operation, where the data is
recovered from the signature. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; hKey is the handle of the verification

key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the data is recovered from the signature, must
be CK_TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify
a signature on data in a single part. The verification operation is active until the
application usesacall to C_VerifyRecover to actually obtain the recovered message.

April 2009 Copyright © 2009 RSA Security Inc.

160 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_ HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example: see C_VerifyRecover.

¢ C_VerifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen,
CK_BYTE_PTR pDat a,
CK_ULONG _PTR pul Dat aLen
);

C_VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. hSession is the session’s handle; pSignature points to the
signature; ulSignaturelLen is the length of the signature; pData points to the location that
receives the recovered data; and pulDatalen points to the location that holds the length of
the recovered data

C_VerifyRecover usesthe convention described in Section 11.2 on producing output.

The verification operation must have been initialized with C_VerifyRecoverinit. A call
to C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO _SMALL or is asuccessful cal (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the recovered data.

A successful call to C VerifyRecover should return ether the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should
be returned. The return codes CKR_SIGNATURE INVALID and
CKR_SIGNATURE _LEN_RANGE have a higher priority than the return code
CKR_BUFFER_TOO SMALL, i.e, if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values;: CKR_ARGUMENTS BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR DEVICE_ERROR, CKR DEVICE_MEMORY,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 161

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O

1

CK BYTE data[] ={...};
CK_ULONG ul Dat aLen;
CK_BYTE si gnature[128];
CK_RV rv;

rv = C VerifyRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_XK) {
ul Dat aLen = si zeof (data);
rv = C VerifyRecover(
hSessi on, signature, sizeof(signature), data,
&ul Dat aLen) ;

}
11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token.

¢ C _DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)|

C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. hSession is the session’s handle; pPart points to the data
part; ulPartLen is the length of the data part; pEncryptedPart points to the location that

April 2009 Copyright © 2009 RSA Security Inc.

162 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

receives the digested and encrypted data part; pul EncryptedPartLen points to the location
that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing
output. If a C_DigestEncryptUpdate call does not produce encrypted output (because
an error occurs, or because pEncryptedPart has the vaue NULL _PTR, or because
pul EncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized
with C_Digestlnit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DigestUpdate,
C_DigestKey, and C_EncryptUpdate cals (it would be somewhat unusua to
intersperse callsto C_DigestEncryptUpdate with callsto C_DigestK ey, however).

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER _TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v][8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

1

CK_MECHANI SM encr ypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encr ypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[(2* BUF_SZ) +8] ;

CK_ RV rv;

int i;

ﬁemset(iv, 0, sizeof(iv));
nmenset (data, ‘A, ((2*BUF_SZ)+5));

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 163

rv = C Encryptlnit(hSession, &encryptionMechani sm hKey);
if (rv 1= CKR.K) {

}
rv = C Digestlnit(hSession, &digestMechanism;

if (rv 1= CKR OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_Sz,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with
* separate calls to deal with padding issues in ECB node
*/

[* First, conplete the digest on the buffer */
rv = C_DigestUpdat e(hSessi on, &data[BUF_SZ*2], 5);

QID gestLen = sizeof (digest);
rv = C DigestFinal (hSession, digest, &ul D gestlLen);

/* Then, pad |last part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_SZz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

April 2009 Copyright © 2009 RSA Security Inc.

164 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

&dat a[BUF_SZ*2], 8,
encrypt edDat a, &ul Encrypt edDat aLen);

/* CGet last piece of ciphertext (should have | ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFi nal (hSessi on, encryptedDat a,
&ul Encrypt edDat aLen) ;

¢ C_DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen

)

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data
part; pPart points to the location that receives the recovered data part; pulPartLen points
to the location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing
output. If aC_DecryptDigestUpdate call does not produce decrypted output (because an
error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too
small to hold the entire decrypted part output), then no plaintext is passed to the active
digest operation.

Decryption and digesting operations must both be active (they must have been initialized
with C_Decryptlnit and C_DigestInit, respectively). This function may be caled any
number of times in succession, and may be interspersed with C_DecryptUpdate,
C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse
callsto C_DigestEncryptUpdate with callsto C_DigestK ey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when
using C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate.
This is because when C_DigestEncryptUpdate is caled, precisely the same input is
passed to both the active digesting operation and the active encryption operation;
however, when C_DecryptDigestUpdate is called, the input passed to the active
digesting operation is the output of the active decryption operation. This issue comes up
only when the mechanism used for decryption performs padding.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 165

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and digest the original plaintext thereby
obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate
returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’'t know if there’s
more ciphertext coming, or if the last block of ciphertext held any padding. These 16
bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and digesting operations are linked only
through the C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to
be digested.

A cal to C_DigestFinal, therefore, would compute the message digest of the first 16
bytes of the plaintext, not the message digest of the entire plaintext. It is crucia that,
before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active
digesting operation viaa C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext has
been passed into the active digesting operation. Extreme caution is warranted when
using a padded decryption mechanismwith C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM_DES _ECB, iv, sizeof(iv)

1

CK_MECHANI SM di gest Mechani sm = {

April 2009 Copyright © 2009 RSA Security Inc.

166 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKM MD5, NULL_PTR, 0
1
CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE di gest|[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

menset (iv, 0, sizeof(iv));

menset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm hKey);
if (rv 1= CKR.OK) {

}
rv = C Digestlnit(hSession, &digestMchanisn;
if (rv = CKR._K){

}

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[| BUF_SZ] , BUF_SZ,
data, &ul DatalLen);

/*

* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal wth padding i ssues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SzZ*2], 8,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 167

dat a, &ul Last Updat eSi ze) ;

/* Get last piece of plaintext (should have | ength O,
here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C _DecryptFi nal (hSessi on, &dat a[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.OK) {

}
/* Digest last bit of plaintext */

rv = C_Digest Updat e(hSessi on, &data[BUF_SZ*2], 5);
if (rv 1= CKR.K) {

ul Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSession, digest, &ulDi gestlLen);
if (rv 1= CKR.K) {

}

¢ C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)|

C_SignEncryptUpdate continues a multiple-part combined signature and encryption
operation, processing another data part. hSession is the session’s handle; pPart points to
the data part; ulPartLen is the length of the data part; pEncryptedPart points to the
location that receives the digested and encrypted data part; and pul EncryptedPartLen
pointsto the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing
output. If aC_SignEncryptUpdate call does not produce encrypted output (because an
error occurs, or because pEncryptedPart has the value NULL_PTR, or because
pul EncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized
with C_Signlnit and C_Encryptlnit, respectively). This function may be called any

April 2009 Copyright © 2009 RSA Security Inc.

168 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

number of times in succession, and may be interspersed with C_SignUpdate and
C_EncryptUpdate cals.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK_BYTE i v][8];
CK_MECHANI SM si gnMechani sm = {

CKM DES_MAC, NULL_PTR O

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encr ypt edDat a[BUF_SZ] ;

CK_ULONG ul Encrypt edDat aLen;

CK_BYTE MAC 4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[(2* BUF_SZ) +8] ;

CK_ RV rv;

int i;

menset (iv, 0, sizeof(iv));

nmenset (data, ‘A, ((2*BUF_SZ)+5));

rv = C_Encryptlinit(hSession, &encryptionMechanism
hEncrypti onKey) ;

if (rv 1= CKR.K) {

}
rv = C_Signlnit(hSession, &signMechanism hMacKey);
if (rv = CKR.OK) {

}
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 169

rv = C_Si gnEncrypt Updat e(
hSessi on,
&dat a[0], BUF_SZ,
encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_Sz,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with
* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_Sz*2], 5);

Qlwthen = si zeof (MAC);
rv = C_SignFinal (hSession, MAC, &ul MaclLen);

/* Then pad | ast part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_SZz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* CGet last piece of ciphertext (should have | ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFi nal (hSessi on, encryptedDat a,
&ul Encrypt edDat aLen) ;

April 2009 Copyright © 2009 RSA Security Inc.

170 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C_DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Veri fyUpdate) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen
);

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data;
pPart points to the location that receives the recovered data; and pul PartLen pointsto the
location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because
an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen istoo
small to hold the entire encrypted part output), then no plaintext is passed to the active
verification operation.

Decryption and signature operations must both be active (they must have been initialized
with C_DecryptInit and C_Verifylnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DecryptUpdate and
C_VeifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when
using C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This
is because when C_SignEncryptUpdate is called, precisely the same input is passed to
both the active signing operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is
the output of the active decryption operation. This issue comes up only when the
mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and verify a signature on the original plaintext
thereby obtained.

After initializing decryption and verification operations, the application passes the 24-
byte ciphertext (3 DES blocks) into C_DecryptVerifyUpdate.
C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of ciphertext
held any padding. These 16 bytes of plaintext are passed into the active verification
operation.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 171

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and verification operations are linked
only through the C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed
on to the verification mechanism.

A cdl to C_VerifyFinal, therefore, would verify whether or not the signature supplied is
a valid signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is
crucia that, before C_VerifyFinal is caled, the last 2 bytes of plaintext get passed into
the active verification operation viaaC_VerifyUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted when
using a padded decryption mechanismwith C_DecryptVerifyUpdate.

Return values: CKR_ARGUMENTS _BAD, CKR_BUFFER_TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED _DATA_INVALID, CKR_ENCRYPTED _DATA_LEN_RANGE
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;

CK_BYTE i v][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM_DES ECB, iv, sizeof(iv)

1

CK_MECHANI SM veri fyMechani sm = {
CKM DES_MAC, NULL_PTR, O

1

CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;

CK_BYTE MAC 4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;

CK_ RV rv;

ﬁen‘set(iv, 0, sizeof(iv));

April 2009 Copyright © 2009 RSA Security Inc.

172 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

menset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm
hDecr ypti onKey) ;

if (rv 1= CKR.K) {

}
rv = C Verifylnit(hSession, &erifyMechanism hMacKey);
if (rv = CKR.XK){

}

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul DatalLen);

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[| BUF_SZ], BUF_SZ,
data, &ul datalen);

/*

* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal with padding issues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C _Decrypt Updat e(

hSessi on,

&encr ypt edDat a[BUF_SZ*2], 8,

data, &ul Last UpdateSi ze);

/* Get last little piece of plaintext. Should have
length O */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C DecryptFi nal (hSessi on, &dat a[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.K) {

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 173

}

/* Send last bit of plaintext to verification operation
*/

rv = C VerifyUpdat e(hSessi on, &data[BUF_SZ*2], 5);

if (rv 1= CKR.K) {

}
rv = C VerifyFinal (hSession, MAC, ul MacLen);
if (rv == CKR_SI GNATURE | NVALI D) {

}

11.14 Key management functions

Cryptoki provides the following functions for key management:

¢ C GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Gener at eKey) (
CK_SESSI ON_ HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at €,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phKey
);

C_GenerateKey generates a secret key or set of domain parameters, creating a new
object. hSession is the session’ s handle; pMechanism points to the generation mechanism;
pTemplate points to the template for the new key or set of domain parameters; ulCount is
the number of attributes in the template; phKey points to the location that receives the
handle of the new key or set of domain parameters.

If the generation mechanism is for domain parameter generation, the CKA_CLASS
attribute will have the vadlue CKO_DOMAIN_PARAMETERS, otherwisg, it will have
the value CKO_SECRET_KEY.

Since the type of key or domain parameters to be generated is implicit in the generation
mechanism, the template does not need to supply a key type. If it does supply a key type
which is inconsistent with the generation mechanism, C_GenerateK ey fails and returns
the error code CKR_TEMPLATE INCONSISTENT. The CKA_CLASS attribute is
treated similarly.

If acal to C_GenerateK ey cannot support the precise template supplied to it, it will fail
and return without creating an object.

April 2009 Copyright © 2009 RSA Security Inc.

174 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

The object created by a successful cal to C_GenerateKey will have its CKA_LOCAL
attribute set to CK_TRUE.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES_KEY_GEN, NULL_PTR, O

}1
CK RV rv;

.rv = C_Cener at eKey(hSessi on, &mechanism NULL_PTR, O,
&hKey) ;
if (rv == CKR_X) {

}
¢ C_GenerateKeyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cener at eKeyPair) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE PTR phPri vat eKey

)

C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handle; pMechanism points to the key generation mechanism;
pPublicKkeyTemplate points to the template for the public key;

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 175

ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism,
the templates do not need to supply key types. If one of the templates does supply a key
type which is inconsistent with the key generation mechanism, C_GenerateKeyPair fails
and returns the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS
atribute is treated similarly.

If acal to C_GenerateKeyPair cannot support the precise templates supplied to it, it
will fail and return without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail,
and create no keys; or it can succeed, and create a matching public/private key pair.

The key objects created by a successful cal to C_GenerateKeyPair will have ther
CKA_LOCAL attributes set to CK_TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI|_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA PKCS _KEY_PAIR_CGEN, NULL_PTR, O

}1
CK ULONG npdul usBits = 768;

CK_BYTE publ i cExponent[] ={ 3 };
CK BYTE subject[] ={...};

April 2009 Copyright © 2009 RSA Security Inc.

176

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CK_BYTE id[] = {123};

CK BBOOL true =

CK_TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{ CKA_ENCRYPT,

& rue, sizeof(true)},

{CKA VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA MODULUS BITS, &nodul usBits, sizeof(nodulusBits)},
{ CKA_PUBLI C_EXPONENT, publicExponent, sizeof
(publ i cExponent) }

CK_ATTRI BUTE pri vat eKeyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)},

{ CKA_PRI VATE,
{ CKA_SUBJECT,
{CKAID, id,

& rue, sizeof(true)},
subj ect, sizeof (subject)},

si zeof (id)},

{CKA _SENSI Tl VE, &true, sizeof(true)},

{ CKA_DECRYPT,

& rue, sizeof(true)},

{CKA SIGN, &t rue, sizeof(true)},
{CKA _UNVWRAP, &true, sizeof(true)}

}i
CK RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &mechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&hPubl i cKey, &hPri vat eKey);
if (rv == CKR_X) {

}

¢ C WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C W apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,

)

CK_ULONG_PTR pul W appedKeyLen

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s
handle; pMechanism points to the wrapping mechanism; hWrappingKey is the handle of
the wrapping key; hKey is the handle of the key to be wrapped; pWrappedKey points to
the location that receives the wrapped key; and pulWrappedKeyLen points to the location
that receives the length of the wrapped key.

C_WrapKey uses the convention described in Section 11.2 on producing output.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 177

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be CK_TRUE. The CKA_EXTRACTABLE attribute of the
key to be wrapped must also be CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its
having its CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails
with error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the
specified wrapping key and mechanism solely because of its length, then C_WrapKey
failswith error code CKR_KEY_SIZE RANGE.

C_WorapKey can be used in the following situations:
e To wrap any secret key with a public key that supports encryption and decryption.

e To wrap any secret key with any other secret key. Consideration must be given to key
size and mechanism strength or the token may not allow the operation.

e Towrap aprivate key with any secret key.

Of course, tokens vary in which types of keys can actually be wrapped with which
mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the
attribute CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an
attribute set that will be compared against the attributes of the key to be wrapped. If al
attributes match according to the C_FindObject rules of attribute matching then the wrap
will proceed. The value of this attribute is an attribute template and the size is the number
of items in the template times the size of CK_ATTRIBUTE. If this attribute is not
supplied then any template is acceptable. Attributes not present are not checked. If any
attribute mismatch occurs on an attempt to wrap a key then the function shall return
CKR_KEY_HANDLE INVALID.

Return Values: CKR_ARGUMENTS BAD, CKR_BUFFER _TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE,
CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED IN,
CKR_WRAPPING_KEY_HANDLE_INVALID,

CKR_WRAPPING_KEY_SIZE RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

April 2009 Copyright © 2009 RSA Security Inc.

178 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM _DES3_ECB, NULL_PTR, O
1
CK_BYTE w appedKey| 8] ;
CK_ULONG ul W appedKeyLen;
CK RV rv;

ul W appedKeyLen = si zeof (w appedKey) ;
rv = C_WapKey(

hSessi on, &nmechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeylLen);
if (rv == CKR_.OK) {

}

¢ C UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unwr apKey) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handle; pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points
to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate
points to the template for the new key; ul AttributeCount is the number of attributesin the
template; phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be CK_TRUE.

The new key will have the CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The
CKA_EXTRACTABLE attribute is by default set to CK_TRUE.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 179

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism
structure at the same time that the key is unwrapped.

If acal to C_UnwrapKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_UnwrapKey will have its
CKA_LOCAL attribute set to CK_FALSE.

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute
set that will be added to attributes of the key to be unwrapped. If the attributes do not
conflict with the user supplied attribute template, in ‘pTemplate’, then the unwrap will
proceed. The value of this attribute is an attribute template and the size is the number of
items in the template times the size of CK_ATTRIBUTE. If this attribute is not present
on the unwrapping key then no additional attributes will be added. If any attribute conflict
occurs on an attempt to unwrap a key then the function shal return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER _TOO_SMALL, CKR_CRYPTOK|_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED,

CKR_UNWRAPPING_KEY HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED KEY_INVALID,
CKR_WRAPPED_KEY LEN_RANGE.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM _DES3_ECB, NULL_PTR, O

1
CK_BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyd ass = O SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK_ BBOOL true = CK_TRUE;

April 2009 Copyright © 2009 RSA Security Inc.

180 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA DECRYPT, &true, sizeof(true)}

}s
CK RV rv;

rv = C_Unwr apKey(

hSessi on, &mrechani sm hUnw appi ngKey,

wr appedKey, sizeof (wappedKey), tenplate, 4, &hKey);
if (rv == CKR_XK) {

}

¢ C DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C DeriveKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at €,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE PTR phKey

);

C_DeriveK ey derives a key from a base key, creating a new key object. hSession is the
session’s handle; pMechanism points to a structure that specifies the key derivation
mechanism; hBaseKey is the handle of the base key; pTemplate points to the template for
the new key; ulAttributeCount is the number of attributes in the template; and phKey
points to the location that receives the handle of the derived key.

The vaues of the CK_SENSITIVE, CK_ALWAYS SENSITIVE,
CK_EXTRACTABLE, and CK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section 11.17.2 for any
constraints of thistype.

If acal to C_DeriveKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_DeriveKey will haveits CKA_LOCAL
attribute set to CK_FALSE.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 181

CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_ TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on
CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey, hKey;
CK_MECHANI SM keyPai r Mechani sm = {
CKM _DH_PKCS_KEY_PAIR_GEN, NULL_PTR, O
1
CK_ BYTE prime[] = {...};
CK BYTE base[] = {...};
CK_BYTE publlcvalue[128]
CK_BYTE otherPubllcvaIue[128];
CK_MECHANI SM nmechani sm = {
CKM_DH_PKCS_DERI VE, ot her Publ i cVal ue,
si zeof (ot her Publ i cVal ue)

CK_ATTRI BUTE pTenpl ate[] = {

CKA VALUE, &publicVal ue, sizeof (publicVal ue)}
1
CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY,
CK_KEY_TYPE keyType = CKK_DES;
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{CKA PRI VE, prinme, sizeof(prine)},

{ CKA BASE, base, sizeof (base)}

Ck_ATTRIBUTE privat eKeyTenpl ate[] = {
{CKA DERI VE, &true, sizeof(true)}

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA DECRYPT, &true, sizeof(true)}

1

CK_ RV rv;

April 2009 Copyright © 2009 RSA Security Inc.

182 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

rv = C_Gener at eKeyPai r (
hSessi on, &keyPai r Mechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&Publ i cKey, &hPrivat eKey);
if (rv == CKR_.OK) {
rv = C GetAttributeVal ue(hSessi on, hPubli cKey,
& Tenpl ate, 1);
if (rv == CKR_XK) {
/* Put other guy’ s public value in otherPublicVal ue
*/

rv = C DeriveKey(

hSessi on, &mechani sm

hPrivat eKey, tenplate, 4, &hKey);
if (rv == CKR_XK) {

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

¢ C SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

)|

C_SeedRandom mixes additional seed material into the token's random number
generator. hSession is the session’s handle; pSeed points to the seed material; and
ulSeedLen isthe length in bytes of the seed material.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_SEED NOT_SUPPORTED,
CKR_RANDOM_NO RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN.

Example: see C_GenerateRandom.

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 183

¢ C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eRandom (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

),

C_GenerateRandom generates random or pseudo-random data. hSession is the session’s
handle; pRandomData points to the location that receives the random data; and
ulRandomLen is the length in bytes of the random or pseudo-random data to be generated.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER _NOT_LOGGED IN.

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_BYTE seed[] = {...};
CK_BYTE randoerata[] ={...};
CK RV rv;

'rv = C_SeedRandon(hSessi on, seed, sizeof(seed));
if (rv 1= CKR.K) {

}
rv = C_Gener at eRandon(hSessi on, randonDat a,

si zeof (randonDat a)) ;
if (rv == CKR.XK) {

}

11.16 Parallel function management functions

Cryptoki provides the following functions for managing paralel execution of
cryptographic functions. These functions exist only for backwards compatibility.

April 2009 Copyright © 2009 RSA Security Inc.

184 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

¢ C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Functi onSt at us) (
CK_SESSI ON_ HANDLE hSessi on

)

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in parallel with an application. Now, however, C_GetFunctionStatus is a
legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRY PTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

¢ C _CanceFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on

)|

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in
paralel with an application. Now, however, C_CancelFunction is a legacy function
which should simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values; CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT _PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

11.17 cCallback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the
application of certain events.

11.17.1 Surrender callbacks

Cryptographic functions (i.e., any functions faling under one of these categories:
encryption functions; decryption functions, message digesting functions; signing and
MACIing functions;, functions for verifying signatures and MACs, dua-purpose
cryptographic functions; key management functions, random number generation
functions) executing in Cryptoki sessions can periodically surrender control to the
application who called them if the session they are executing in had a notification
callback function associated with it when it was opened. They do this by calling the
session’'s calback with the arguments (hSessi on, CKN_SURRENDER,

Copyright © 2009 RSA Security Inc. April 2009

11. FUNCTIONS 185

pAppl i cati on), where hSessi on isthe session’s handle and pAppl i cat i on was
supplied to C_OpenSession when the session was opened. Surrender callbacks should
return either the value CKR_OK (to indicate that Cryptoki should continue executing the
function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution
of the function). Of course, before returning one of these values, the callback function
can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback during
alengthy key pair generation operation. Each time the application receives a callback, it
could display an additional “.” to the user. It might also examine the keyboard's activity
since the last surrender callback, and abort the key pair generation operation (probably by
returning the value CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

11.17.2 Vendor-defined callbacks

Library vendors can aso define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each
callback they receive, and if they are unfamiliar with the type of that callback, they should
immediately give control back to the library by returning with the value CKR_OK.

April 2009 Copyright © 2009 RSA Security Inc.

186 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

12 Cryptoki tipsand reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

121 Operations, sessions, and threads

In Cryptoki, there are several different types of operations which can be “active” in a
session. An active operation is essentially one which takes more than one Cryptoki
function call to perform. The types of active operations are object searching; encryption;
decryption; message-digesting; signature with appendix; signature with recovery;
verification with appendix; and verification with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations. digesting and
encryption; decryption and digesting; signing and encryption; decryption and verification.

If an application attempts to initialize an operation (make it active) in a session, but this
cannot be accomplished because of some other active operation(s), the application
receives the error value CKR_OPERATION_ACTIVE. This error value can aso be
received if a session has an active operation and the application attempts to use that
session to perform any of various operations which do not become “active’, but which
require cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

To abandon an active operation an application may have to complete the operation and
discard the result. Closing the session will also have this effect. Alternatively. the library
may alow active operations to be abandoned by the application, ssmply by alowing
initialization for some other operation. In this case CKR_OPERATION_ACTIVE will
not be returned but the previous active operation will be unusable.

Different threads of an application should never share sessions, unless they are extremely
careful not to make function calls at the same time. This is true even if the Cryptoki
library was initialized with locking enabled for thread-safety.

12.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an application, are accessing a set
of common objects the issue of object protection becomes important. This is especially
the case when application A activates an operation using object O, and application B
attempts to delete O before application A has finished the operation. Unfortunately,
variation in device capabilities makes an absolute behavior specification impractical.
General guidelines are presented here for object protection behavior.

Copyright © 2009 RSA Security Inc. April 2009

12. CRYPTOKI TIPS AND REMINDERS 187

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread that is using the object in an active
operation until that operation is complete. For instance, application A has begun a
signature operation with private key P and application B attempts to delete P while the
signature is in progress. In this case, one of two things should happen. The object is
deleted from the device but the operation is allow to complete because the operation uses
atemporary copy of the object, or the del ete operation blocks until the signature operation
has completed. If neither of these actions can be supported by an implementation, then the
error code CKR_OBJECT_HANDLE_INVALID may be returned to application A to
indicate that the key being used to perform its active operation has been del eted.

Whenever possible, changing the value of an object attribute should impact the behavior
of active operations in other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure
should be returned to the application with the active operation.

12.3 Objects, attributes, and templates

In general, a Cryptoki function which requires a template for an object needs the template
to specify—either explicitly or implicitly—any attributes that are not specified elsewhere.
If a template specifies a particular attribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a particular value of the attribute from
among those specified and use that value. In any event, object attributes are aways
single-valued.

12.4 Signing with recovery

Signing with recovery is a genera alternative to ordinary digital signatures (*signing with
appendix”) which is supported by certain mechanisms. Recall that for ordinary digital
signatures, a signature of a message is computed as some function of the message and the
signer’s private key; this signature can then be used (together with the message and the
signer’s public key) as input to the verification process, which yields a simple “signature
valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private
key. However, to verify this signature, no message is required as input. Only the
signature and the signer’s public key are input to the verification process, and the
verification process outputs either “signature invalid” or—if the signature is valid—the

original message.

Consider a simple example with the CKM_RSA_X_ 509 mechanism. Here, amessageis
a byte string which we will consider to be a number modulo n (the signer’s RSA
modulus). When this mechanism is used for ordinary digital signatures (signatures with
appendix), a signature is computed by raising the message to the signer’s private
exponent modulo n. To verify this signature, a verifier raises the signature to the signer’s

April 2009 Copyright © 2009 RSA Security Inc.

188 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

public exponent modulo n, and accepts the signature as valid if and only if the result
matches the original message.

If CKM_RSA_X 509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechanism, any number
modulo n is avalid signature. To recover the message from a signature, the signature is
raised to the signer’s public exponent modulo n.

Copyright © 2009 RSA Security Inc. April 2009

A.MANIFEST CONSTANTS

A M anifest constants

The following definitions can be found in the appropriate header file.

189

Al'so, refer [PKCS #11 ML] and [PKCS #11 M2] for additional
definitions.

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

April 2009

ne

ne

ne
ne

ne

ne

ne
ne
ne

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CK_I NVALI D_HANDLE
CKN_SURRENDER 0

0

CK_UNAVAI LABLE_| NFORMATI ON (~0UL)
CK_EFFECTI VELY_I NFI NI TE 0
CKF_DONT_BLOCK 1

CKF_ARRAY_ATTRIBUTE 0x40000000

CKU_SO 0

CKU_USER 1
CKU_CONTEXT_SPECIFIC 2

CKS_RO_PUBLI C_SESSION 0
CKS_RO_USER_FUNCTI ONS 1

CKS_RW PUBLI C_SESSI ON 2

CKS_RW USER_FUNCTI ONS 3

CKS_RW SO FUNCTIONS 4

CKO_DATA 0x00000000
CKO_CERTI FI CATE 0x00000001
CKO_PUBLI C_KEY 0x00000002

CKO_PRI VATE_KEY 0x00000003
CKO_SECRET_KEY 0x00000004

CKO_HW FEATURE 0x00000005

CKO_DOVAI N_PARAVETERS 0x00000006
CKO_MECHANI SM 0x00000007
CKO_VENDOR_DEFI NED 0x80000000
CKH_MONOTONI C_COUNTER 0x00000001
CKH_CLOCK 0x00000002
CKH_USER_| NTERFACE 0x00000003
CKH_VENDOR_DEFI NED 0x80000000
CKK_VENDOR _DEFI NED 0x80000000

CKC_VENDOR _DEFI NED 0x80000000

CKA_CLASS 0x00000000
CKA_TOKEN 0x00000001
CKA_PRI VATE 0x00000002
CKA_LABEL 0x00000003
CKA_APPLI CATI ON 0x00000010
CKA_VALUE 0x00000011
CKA_OBJECT_I D 0x00000012
CKA_CERTI FI CATE_TYPE 0x00000080
CKA_| SSUER 0x00000081
CKA_SERI AL_NUVBER 0x00000082

Copyright © 2009 RSA Security Inc.

190

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

CKA_AC_| SSUER
CKA_OWRER
CKA_ATTR_TYPES
CKA_TRUSTED

CKA_CERTI FI CATE_CATEGORY
CKA_JAVA_M DP_SECURI TY_DOVAI N

CKA_URL

CKA_HASH_OF SUBJECT_PUBLI C_KEY
CKA_HASH_OF_| SSUER _PUBLI C_KEY
CKA_NAVE_HASH_ALGORI THM

CKA_CHECK_VALUE
CKA_KEY_TYPE
CKA_SUBJECT

CKA_I D

CKA_SENSI TI VE
CKA_ENCRYPT
CKA_DECRYPT
CKA_WRAP
CKA_UNVIRAP

CKA_SI GN

CKA_SI GN_RECOVER
CKA_VER! FY

CKA_VERI FY_RECOVER
CKA_DERI VE
CKA_START_DATE
CKA_END_DATE
CKA_MODULUS
CKA_MODULUS_BI TS
CKA_PUBLI C_EXPONENT
CKA_PRI VATE_EXPONENT
CKA_PRI VE_1

CKA_PRI VE_2
CKA_EXPONENT _1
CKA_EXPONENT_2
CKA_COEFFI Cl ENT
CKA_PRI MVE
CKA_SUBPRI VE
CKA_BASE

CKA_PRI ME_BI TS
CKA_SUBPRI ME_BI TS
CKA_VALUE BI TS
CKA_VALUE_LEN
CKA_EXTRACTABLE
CKA_LOCAL
CKA_NEVER _EXTRACTABLE
CKA_ALWAYS_SENSI Tl VE
CKA_KEY_GEN_MECHANI SM
CKA_MODI FI ABLE
CKA_COPYABLE
CKA_ECDSA_PARANMS
CKA_EC_PARAMS
CKA_EC_POI NT
CKA_SECONDARY_AUTH
CKA_AUTH_PI N_FLAGS

CKA_ALWAYS_AUTHENTI CATE

CKA_WRAP_W TH_TRUSTED
CKA_WRAP_TEMPLATE
CKA_UNVRAP_TEMPLATE
CKA_HW FEATURE_TYPE
CKA_RESET ON INIT

Copyright © 2009 RSA Security Inc.

0x00000083
0x00000084
0x00000085
0x00000086
0x00000087
0x00000088
0x00000089
0x0000008A
0x0000008B
0x0000008C
0x00000090
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000106
0x00000107
0x00000108
0x00000109
0x0000010A
0x0000010B
0x0000010C
0x00000110
0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000126
0x00000127
0x00000128
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000160
0x00000161
0x00000162
0x00000163
0x00000164
0x00000165
0x00000166
0x00000170
0x00000171
0x00000180
0x00000180
0x00000181
0x00000200
0x00000201
0x00000202

0x00000210

0x00000300
0x00000301

/* Deprecated */
/* Deprecated */

CKF_ARRAY_ATTRI BUTE| 0x00000211)
CKF_ARRAY_ATTRI BUTE| 0x00000212)

April 2009

A.MANIFEST CONSTANTS

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

April 2009

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKA_HAS RESET

CKA_PI XEL_X

CKA_PI XEL_Y

CKA_RESOLUTI ON

CKA_CHAR RO\
CKA_CHAR_COLUMNS

CKA_COLOR

CKA_BI TS_PER_PI XEL
CKA_CHAR_SETS

CKA_ENCODI NG_METHODS

CKA_M ME_TYPES

CKA_MECHANI SM_TYPE
CKA_REQUI RED_CMS_ATTRI BUTES
CKA_DEFAULT_CMS_ATTRI BUTES
CKA_SUPPORTED_CMS_ATTRI BUTES

CKA_ALLOWED MECHANI SMS (CKF_ARRAY_ATTRI BUTE| 0x00000600)

CKA_VENDOR DEFI NED
CKM _VENDOR _DEFI NED

CKR_OK

CKR_CANCEL

CKR_HOST_MVEMORY

CKR_SLOT_I D_| NVALI D
CKR_GENERAL_ERROR
CKR_FUNCTI ON_FAI LED
CKR_ARGUVENTS_BAD
CKR_NO_EVENT
CKR_NEED_TO_CREATE_THREADS
CKR_CANT_LOCK

CKR_ATTRI BUTE_READ ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_| NVALI D
CKR_ATTRI BUTE_VALUE_| NVALI D
CKR_COPY_PROHI BI TED
CKR_DATA_| NVALI D
CKR_DATA_LEN_RANGE

CKR_DEVI CE_ERROR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED_DATA | NVALI D
CKR_ENCRYPTED_DATA_LEN_RANGE
CKR_FUNCTI ON_CANCELED
CKR_FUNCTI ON_NOT_PARALLEL
CKR_FUNCTI ON_NOT_SUPPORTED
CKR_KEY_HANDLE_| NVALI D
CKR_KEY_S| ZE_RANGE
CKR_KEY_TYPE_| NCONSI STENT
CKR_KEY_NOT_NEEDED
CKR_KEY_CHANGED
CKR_KEY_NEEDED

CKR_KEY_| NDI GESTI BLE
CKR_KEY_FUNCTI ON_NOT_PERM TTED
CKR_KEY_NOT_W\RAPPABLE
CKR_KEY_UNEXTRACTABLE
CKR_MECHANI SM | NVALI D
CKR_MECHANI SM_PARAM | NVALI D
CKR_OBJECT_HANDLE_| NVALI D
CKR_OPERATI ON_ACTI VE
CKR_OPERATI ON_NOT_| NI TI ALI ZED
CKR_PI N_I NCORRECT

0x00000302
0x00000400
0x00000401
0x00000402
0x00000403
0x00000404
0x00000405
0x00000406
0x00000480
0x00000481
0x00000482
0x00000500
0x00000501
0x00000502
0x00000503

0x80000000

0x80000000

0x00000000
0x00000001
0x00000002
0x00000003
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x00000010
0x00000011
0x00000012
0x00000013
0x0000001A
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000040
0x00000041
0x00000050
0x00000051
0x00000054
0x00000060
0x00000062
0x00000063
0x00000064
0x00000065
0x00000066
0x00000067
0x00000068
0x00000069
0x0000006A
0x00000070
0x00000071
0x00000082
0x00000090
0x00000091
0x000000A0

191

Copyright © 2009 RSA Security Inc.

192

PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

#define CKR_PIN_| NVALI D 0x000000A1
#defi ne CKR_PI N_LEN_RANGE 0x000000A2
#defi ne CKR_PI N_EXPI RED 0x000000A3
#defi ne CKR_PI N_LOCKED 0x000000A4
#defi ne CKR_SESSI ON_CLOSED 0x000000B0
#def i ne CKR_SESSI ON_COUNT 0x000000B1
#defi ne CKR_SESSI ON_HANDLE_| NVALI D 0x000000B3
#defi ne CKR_SESSI ON_PARALLEL_NOT_SUPPORTED 0x000000B4
#def i ne CKR_SESSI ON_READ ONLY 0x000000B5
#defi ne CKR_SESSI ON_EXI STS 0x000000B6
#defi ne CKR_SESSI ON_READ ONLY_EXI STS 0x000000B7
#def i ne CKR_SESSI ON_READ WRI TE_SO EXI STS 0x000000B8
#defi ne CKR_SI GNATURE_| NVALI D 0x00000000
#defi ne CKR_S| GNATURE_LEN RANGE 0x000000C1
#def i ne CKR_TEMPLATE_I NCOMPLETE 0x000000D0
#defi ne CKR_TEMPLATE_| NCONSI STENT 0x000000D1
#def i ne CKR_TOKEN_NOT_PRESENT 0x000000E0
#def i ne CKR_TOKEN_NOT_RECOGNI ZED 0x000000E1
#def i ne CKR_TOKEN_WRI TE_PROTECTED 0x000000E2
#def i ne CKR_UNWRAPPI NG_KEY_HANDLE_| NVALI D 0x000000F0
#def i ne CKR_UNWRAPPI NG_KEY_SI ZE_RANGE 0x000000F1
#defi ne CKR_UNWRAPPI NG_KEY_TYPE_| NCONSI STENT 0x000000F2
#defi ne CKR_USER ALREADY_LOGGED | N 0x00000100
#defi ne CKR_USER_NOT_LOGGED | N 0x00000101
#defi ne CKR_USER_PI N_NOT_| NI TI ALI ZED 0x00000102
#defi ne CKR_USER_TYPE_| NVALI D 0x00000103
#defi ne CKR_USER_ANOTHER ALREADY LOGGED IN 0x00000104
#defi ne CKR_USER_TOO MANY_ TYPES 0x00000105
#def i ne CKR_WRAPPED_KEY_| NVALI D 0x00000110
#def i ne CKR_WRAPPED_KEY LEN_RANGE 0x00000112
#defi ne CKR_WRAPPI NG_KEY_HANDLE_| NVALI D 0x00000113
#def i ne CKR_WRAPPI NG_KEY_S| ZE_RANGE 0x00000114
#defi ne CKR_WRAPPI NG_KEY_TYPE_| NCONSI STENT ~ 0x00000115
#def i ne CKR_RANDOM SEED NOT_SUPPORTED 0x00000120
#def i ne CKR_RANDOM NO_RNG 0x00000121
#defi ne CKR_DOVAI N_PARAMS_| NVALI D 0x00000130
#def i ne CKR_BUFFER_TOO SMALL 0x00000150
#defi ne CKR_SAVED STATE_| NVALI D 0x00000160
#def i ne CKR_| NFORVATI ON_SENSI TI VE 0x00000170
#def i ne CKR_STATE_UNSAVEABLE 0x00000180
#defi ne CKR_CRYPTOKI _NOT_I NI TI ALI ZED 0x00000190
#defi ne CKR_CRYPTOKI _ALREADY_| NI TI ALl ZED 0x00000191
#def i ne CKR_MUTEX_BAD 0x000001A0
#def i ne CKR_MUTEX_NOT_LOCKED 0x000001A1
#def i ne CKR_FUNCTI ON_REJECTED 0x00000200
#def i ne CKR_VENDOR_DEFI NED 0x80000000

B Token profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets would be
standardized as parts of the various applications, for instance within alist of requirements
on the module that provides cryptographic services to the application (which may be a
Cryptoki token in some cases). Thus, these profiles are intended for reference only at this
point, and are not part of this standard.

Copyright © 2009 RSA Security Inc. April 2009

B. TOKEN PROFILES 193

The following table summarizes the mechanisms relevant to two common types of
applications:

Table B-1, Mechanisms and profiles

Application
Government Cellular Digital Packet

M echanism Authentication-only Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS_KEY_PAIR_GEN v
CKM_DH_PKCS_DERIVE v
CKM_RC4_KEY_GEN v
CKM_RC4 v
CKM_SHA_1 v

B.1 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in
FIPS PUB 186-2 for signatures and the Secure Hash Algorithm as defined in FIPS PUB
180-2 for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)
DSA (512-1024 bits)
SHA-1

B.2 Cdlular Digital Packet Data

Cedllular Digita Packet Data (CDPD) is a set of protocols for wireless communication.
The basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(Theinitial CDPD security specification limits the size of the Diffie-Hellman key to 256
bits, but it has been recommended that the size be increased to at least 512 bits.)
B.3 Other profiles

The reader is also informed of the presence of other profiles of PKCS #11 v2. — See
[PKCS #11-C] and [PKCS #11-P]

April 2009 Copyright © 2009 RSA Security Inc.

194 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

C Comparison of Cryptoki and other APIs
This appendix compares Cryptoki with the following cryptographic APIs:

e ANSI N13-94 - Guideline X9.TG-12-199X, Using Tesserain Financial Systems. An
Application Programming Interface, April 29, 1994

e X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

C.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. Itisat alevel
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together
with the equivalent Cryptoki functions:

TableC-1, FORTEZZA CIPG vs. CryptokKi

FORTEZZA CIPG Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C Login

Cl _Close C _CloseSession

Cl_Decrypt C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C_DecryptFind

Cl_DeleteCertificate C_DestroyObject

Cl_DeleteKey C_DestroyObject

Cl_Encrypt C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

Cl_ExtractX C_WrapKey

Cl_GeneratelV C_GenerateRandom

Cl_GenerateMEK C_GenerateKey

Cl_GenerateRa C_GenerateRandom

Cl_GenerateRandom C_GenerateRandom

Cl_GenerateTEK C_GenerateKey

Cl_GenerateX C_GenerateKeyPair

Cl_GetCertificate C_FindObjects

Cl_Configuration C_GetTokeninfo

Cl_GetHash C _Digestlnit, C_Digest, C_DigestUpdate, and
C_DigestFina

Cl_GetlV No equivalent

Cl_GetPersonalityList C_FindObjects

Cl_GetState C_GetSessioninfo

Copyright © 2009 RSA Security Inc. April 2009

C. COMPARISON OF CRYPTOKI AND OTHER APIs

FORTEZZA CIPG

Equivalent Cryptoki

Cl_GetStatus C_GetTokeninfo

Cl_GetTime C_GetTokenlnfo or
C_GetAttributeValue(clock object) [preferred]

Cl_Hash C _Digestinit, C_Digest, C_DigestUpdate, and
C_DigestFina

Cl_Initialize C_Initidize

Cl_InitializeHash C_DigestInit

Cl_InstallX C_UnwrapKey

Cl_LoadCertificate C_CreateObject

Cl_LoadDSAParameters C_CreateObject

Cl_LoadInitValues C_SeedRandom

Cl_LoadlV C_Encryptinit, C_Decryptinit

Cl_LoadK C_Signinit

Cl_LoadPublicKkeyParameters | C_CreateObject

Cl_LoadPIN C_SetPIN

Cl_LoadX C_CreateObject

Cl_Lock Implicit in session management

Cl_Open C_OpenSession

Cl_RelayX C_WrapKey

Cl_Reset C_CloseAllSessions

Cl_Restore Implicit in session management

Cl_Save Implicit in session management

Cl_Select C_OpenSession

Cl_SetConfiguration No equivaent

Cl_SetKey C_Encryptinit, C_Decryptinit

Cl_SetMode C_Encryptinit, C_Decryptinit

Cl_SetPersonality C_CreateObject

Cl_SetTime No equivalent

Cl_Sign C_Signinit, C_Sign

Cl_Terminate C_CloseAllSessions

Cl_Timestamp C_Signinit, C_Sign

Cl_Unlock Implicit in session management

Cl_UnwrapKey C_UnwrapKey

Cl_VerifySignature

C_Verifylnit, C_Verify

Cl_VerifyTimestamp

C_Verifylnit, C_Verify

Cl_WrapKey

C_WrapKey

Cl_Zeroize

C_InitToken

April 2009

Copyright © 2009 RSA Security Inc.

195

196 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

C.2 GCSAPI

This proposed standard defines an APl to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-API
functions with the Cryptoki functions used to implement the functions. Note that full
support of GCS-API isleft for future versions of Cryptoki.

Table C-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation
retrieve CC

release CC

generate_hash C Digestlnit, C_Digest

generate_random_number

C_GenerateRandom

generate_checkvalue

C_SignInit, C_Sign, C_SignUpdate,
C_SignFinal

verify checkvalue

C Veifylnit, C_Veify, C_VerifyUpdate,
C VeifyFina

data_encipher C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data_decipher C_Decryptinit, C_Decrypt, C_DecryptUpdate,
C_DecryptFind

create CC

derive _key C DeriveKey

generate_key C_GenerateKey

store CC

delete CC

replicate CC

export_key C_WrapKey

import_key C_UnwrapKey

archive CC C_WrapKey

restore CC C_UnwrapKey

set_key state

generate_key pattern

verify key pattern

derive clear_key C DeriveKey

generate clear_key C_GenerateKey

load key parts

clear_key_encipher C_WrapKey

Copyright © 2009 RSA Security Inc.

April 2009

C. COMPARISON OF CRYPTOKI AND OTHER APIS

GCS-API

Cryptoki implementation

clear_key decipher

C_UnwrapKey

change_key context

load initial_key

generate initial_key

set_current_master_key

protect_under_new_master key

protect_under_current_master_key

initialise_random_number_generator

C_SeedRandom

install_algorithm

de install_algorithm

disable_algorithm

enable_algorithm

set_defaults

April 2009

Copyright © 2009 RSA Security Inc.

197

198 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

D Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RC5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent clams on the constructions
described in this document, although specific underlying techniques may be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is aregistered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in al materia mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

Copyright © 2009 RSA Security Inc. April 2009

E. METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI
(DEPRECATED) 199

E Method for Exposing Multiple-PINs on a Token Through
Cryptoki (deprecated)

Note: This support may be present for backwards compatibility. Refer to
PKCS11 V 2.11 for details.

April 2009 Copyright © 2009 RSA Security Inc.

200 PKCS#11 BASE FUNCTIONALITY V2.30: CRYPTOKI

F Revision History

Thisistheinitial version of PKCS #11 Base Functionality v2.30.

Copyright © 2009 RSA Security Inc. April 2009

