PKCS #11: Cryptographic Token
Interface Standard

An RSA Laboratories Technical Note

Version 1.0
April 28, 1995

RSA Laboratories

100 Marine Parkway

Redwood City, CA 94065 USA
(415) 595-7703

(415) 595-4126 (fax)

E-Mail: rsa-labs@rsa.com

Copyright © 1994-5 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as “RSA Data Security, Inc. Public-Key Cryptography
Standards (PKCS)” in all material mentioning or referencing this document. RSA, RC2, and RC4 are
registered trademarks and MD2 and MD?5 are trademarks of RSA Data Security, Inc. The RSA public-key
cryptosystem is protected by U.S. Patent #4,405,829. OS/2 is a registered trademark of International
Business Machines Corporation. Windows is a trademark of Microsoft Corporation. Unix is a registerd
trademark of UNIX System Laboratories.

003-903052- 100- 000- 000

Page 111

Foreword

As public-key cryptography begins to see wide application and acceptance one thing is increasingly clear:
If it is going to be as effective as the underlying technology allows it to be, there must be interoperable
standards. Even though vendors may agree on the basic public-key techniques, compatibility between
implementations is by no means guaranteed. Interoperability requires strict adherence to an agreed-upon
standard format for transferred data.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives of industry,
academia and government, a family of standards called Public-Key Cryptography Standards, or PKCS for
short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-key
technology. It is RSA Laboratories' intention to improve and refine the standards in conjunction with
computer system developers, with the goal of producing standards that most if not all developers adopt.
The role of RSA Laboratories in the standards-making process is four-fold:

1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or necessary changes and
extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference implementations.
During the process of PKCS development, RSA Laboratories retains final authority on each document,
though input from reviewers is clearly influential. However, RSA Laboratories” goal is to accelerate the
development of formal standards, not to compete with such work. Thus, when a PKCS document is
accepted as a base document for a formal standard, RSA Laboratories relinquishes its “ownership” of the
document, giving way to the open standards development process. RSA Laboratories may continue to
develop related documents, of course, under the terms described above.
The PKCS family currently includes the following documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

Copyright © 1994-5 RSA Laboratories

Page 1v PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.
PKCS documents are available by electronic mail to <pkcs@ sa. con®, or via anonymous ftp to
ftp. rsa. comin the pub/ pkcs directory. There is also a electronic mailing list for discussion of PKCS
issues, <pkcs-users@sa.conm; to join the list, send a request to <pkcs-users-
request @sa. conp.
Comments on the PKCS documents, requests to register extensions to the standards, and suggestions for
additional standards are welcomed. Address correspondence to: PKCS Editor, RSA Laboratories, 100

Marine Parkway, Suite 500, Redwood City, CA 94065; 415/595-7703; fax: 415/595-4126; E-mail: <pkcs-
edi tor @sa. conp.

Acknowledgements
It is difficult to enumerate all the people whose contributions brought PKCS #11 to fruition, and any list
will doubtless be incomplete. However, RSA Laboratories would particularly like to acknowledge those
who provided feedback on the draft documents:

Richard Ankney, Fischer International

Ashar Aziz, Sun Microsystems Inc.

Ali Bahreman, Bellcore

Frank Balluffi, Bankers Trust

Sara Bitan, RadGaurd LTD.

Eric Blossom, COMSEC Partners

John C. Brainard, Security Dynamics

Liudvikas Bukys, University of Rochester

Steve Burnett, RSA Data Security, Inc.

Victor Chang, RSA Data Security, Inc.

Bruno Couillard, EMCON Ltd.

Greg Dunn, Telequip Corp.

Steve Dussé, RSA Data Security, Inc.

Alan Eldridge, IRIS Associates

Mark H. Etzel, AT&T Bell Laboratories

Bill Fox, National Semiconductor

Copyright © 1994-5 RSA Laboratories

Page v

Hazem Hassan, Datakey, Inc.
Thomas C. Jones, ViaCrypt
John Kennedy, Cylink
Larry Kilgallen, LJK Software
Kevin Kingdon, Novell
Scott Lindsay, Mobius
Roland Lockhart, BNR
Hoa Ly, RSA Data Security, Inc.
Thi Nguyen, Secure Communications Inc.
Denis Pinkas, Bull
Jim Press, ICL
P. Rajaram, Bellcore
William Rohland, Datakey, Inc.
Andrew Ryan, SmartDiskette Limited
Paul Schlyter, AU System
Wolfgang Schneider, GMD
Stephen Seal, CRYPTOCard
Don Stephenson, Sun Microsystems, Inc.
Bruno Struif, GMD
Mandan M. Valluri, National Semiconductor
Charlie Watt, SecureWare
David E. Wood, DataKey, Inc.
Richard R.D. Young, BNR
Arthur Zachai, representing Telequip Corp.
Neal Ziring, NSA
RSA Laboratories is grateful to those who assisted in other ways, and apologizes for any omissions. In all,

the mailing list for PKCS #11 consisted of more than 130 people, and as the document was available on
RSA’s ftp server, it is likely that that may others saw it as well.

Copyright © 1994-5 RSA Laboratories

Page VI PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS #11’s document editor was Aram Pérez of International Computer Services, under contract to RSA
Laboratories; the project coordinator was Burt Kaliski of RSA Laboratories.

Copyright © 1994-5 RSA Laboratories

Page vII

Table of Contents

SO0 @ = 1
A =t N[= ST 2
. DEFINITIONS. ...ttt ettt ettt eae et e e s tesaeebesaeeaeeseestessesseabessesbesssssseasessestesaestesseeneenesnseseesrens 4
4. SYMBOLSAND ABBREVIATIONS.o ottt sttt st sttt st st st b e st seesre et 6
5. GENERAL OVERVIEW ...ttt ettt etes et s et etesseeaestestastessestessssssessessessessessesnsensensensessesrens 8
5.1 DESIGN GOALS....ueeuveteeteiteiteetesseeseessessestessessessessesssessessesssssesssesesssessessesssatessestessssnssssessesseseestessseneessssessessens 8
5.2 GENERAL MODELveuveeveeteiteesesseeseessessessesssssessesssssesessesssssesssssssssessessesssssesssssessssssesssssessessessesssesesssssessessens 8
5.3 LOGICAL VIEW OF A TOKEN ...veiueeteeiteetestesteesessesssessessessssssssessesssssessesssssessesssssesssessessesssssesssssesssssssssessessesns 10
LY U S =TT 11
LIS =i [0 N T 12
5.5.1 ReAd-0NlY SESSION SLALESeveieeeiirieeeeeeeiesiestestesre et s e e seeseestesresre e e esee e eseeseestestesaessesseensessensessennens 12
5.5.2 REAA/WIITE SESSION SLALESccveitieiteete et etreetee st esteesteeeteseesaeesbeesbeebeeabesssesbeesbeesbeenbesasesasesaeesseenseenns 13
5.5, 3 SESSION EVENLS......veeiteeiteete ettt et e ebe et e et e ebeesbe e st e e besasesasesaeesbeebeenbeeaseebeeebeesbeesbeenbeensesanesaeesreenreenns 14
5.6 FUNCTION OVERVIEW ...veviiviiveeeeeseeseeetestessessesseessessessessssssssessessessssssesssssessesssssssssssssssessessesssssessesssssessesseses 14
6. SECURITY CONSIDERATIONS......coi ittt sttt sttt st sttt sb st s ts st b sbssbe e sae e s sbesre e 17
AT I N I = = TR 19
7.1 GENERAL INFORMATIONviiveiueeteessessestesseesessesssessessesssssessessessssssssesssssessessessesssessessesssssesssssessssssessessessesns 19
CK UVERSION.... .ottt sttt st e et st e et e st e e te s te e ebesae e e besaeseete s aesesbesbeneebesbeseetesteneatesaeneatestensareeens 19
L@ 1\ 0 OO SR 19
L@ G 1V L@ T o = OSSPSR 20
CK UNOTIFICATIONcectiiteieetesteee s teeeteste st ete e st e teste e tesaeseetesbessesesseseatesaeseatesseseetesseneetesseseatesseneasesens 20
7.2 SLOT AND TOKEN TYPES ..veivtcteiueeteestestestesseesessesssessessessssssssessessessssssesssssessessessssssesessesssssesssssesssesssssessessesns 20
L@ QS @ 1 I 5 TSRS 20
(OGS @ I 5 T . 1 SO STRSR 20
L@ QS @ I N SO SRSRP 21
CK _SLOT INFO _PTR ..ottt sttt sttt et et st e et st e e e be st et e be s ene et e st e e ebesbeneateseenesteeens 21
CK_TOKEN INF Q..o ettt sttt sttt st et st eete st e e ete s te e s besaenesbesbeneebestensetesteneateseeneatensens 21
CK_TOKEN _INFO _PTR....oi ittt sttt sttt sttt et st e te st e te s te e stesae st sbesaesestesse s etesteneatesaenearesens 23
A =i [0 N Y = =X 23
CK_SESTION HANDLEooictiieeete ettt sttt s sttt sttt a et be st enesbe st e e ebesteneetesaeneetenaens 23
CK_SESIION _HANDLE _PTR ..ottt sttt sttt sttt st sttt st e st st se et st neebesae e ebesteneenennens 23
CK UUSER TYPE ... oottt sttt st e et sttt st et et e st e e be st e seebe st eseebesae st ebesbeneebesteneetesteneatessenearesens 24
O 1 2 I SO OSTSRPR 24
CK_SESTION INFO ..ottt sttt sttt st e et s te et st e et st e seetesbe s etestesesbesaenesbesseseetestensebesteneatesseneatesens 24
CK_SESTION _INFO PTR ..ottt sttt sttt te s te et e st st se et s be e sbesae s e besaesesbesteneebesteneatesaeneetensens 25
AN =N =l i 17 = =TT 25
CK_OBJIECT HANDLEoi ittt sttt sttt sttt st ettt et e b se e be st e e ebe b e e ste st neetennens 25
CK_OBJIECT _HANDLE PTR....oiiiicti ettt sttt sttt sttt st a et st ssbe st ne st e st neebe st e e etesneneetennens 25
CK _OBUIECT _CLASS ...ttt sttt sttt sttt s e et st e et e st e e e te s be e e te st eseebe st eneebesaeseebeste e etesteneatesaeneateneens 25
CK_OBJIECT _CLASS PTR....oiiciiiteietestete et e et te st e te e e te e e tesaesssteste s stesae s atessenestesseneetesteneatessensssessens 26
L0 G N 2 I 1 SO SO 26
CK _CERTIFICATE _TYPE ... oottt sttt sttt sttt sttt st et sttt st e e be st eneete st eneetesbeneetesaeneetennens 26
CK ATTRIBUTE _TYPE ..ottt sttt sttt et st e et sttt st seebe b eseebe st e e etesteneetesaeneetennens 26
O N I 1 {1 =10 8 I OSSOSO 27
CK ATTRIBUTE _PTR ...ttt sttt sttt st sttt st et be st e e be b ene et e ste e ebesbeneatesaeneetenens 28

Copyright © 1994-5 RSA Laboratories

Page vilI PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

L@ I SRS 28
TS IMECHANISMS ...ttt ettt ettt e bt e bt e e e st e s ae e eae e bt e st easeeaeeeh e e b e e b e e e e e ae e sRe e eheeebe e bt embeeaseeaeeabe e bennbeerennnas 28
CK_MECHANISM _TYPE........cct ettt sieeeteste st e st e ste e tesae e tesae e teste e stesaeseatessesestesseneasesseseasessesensensens 28
CK_MECHANISM_TYPE _PTR.....oetet ettt ettt st et st sa st sttt st se st sae e stessenessesaenessessens 29
CK UMECHANISM ...ttt sttt st e sttt te st e te s te e tesbe e e testeseebesaeneabesbeneebesteneabesaeneabesaeseateneens 29
CK_MECHANISM _PTR.....uiitiiiettsteieetestees e steseste s e ses e stesastesaesestestessesestesessessessssessesessessensasessesessessessssensens 30
CK_MECHANISM_INFO.....cuiiieiiiieieiesieesiestesestesteses e stesestesaesestessessssessessssessessssessesessessensasessessssessessssensens 30
CK_MECHANISM_INFO _PTR....tiieiiteiee st ste ettt st se e st e e st ste e steste e stesse e stessesessessesessessns 30
CK_RC2 _CBC _PARAMS.......oceettiteiete et teste st steste st ste st tesae st tesae e etesbe e stesaeseabesseseatesseneatesteneatessenensessns 30
7.8 FUNCTIONS ...t iueeiueete et eteeaeeetee s te e s b e e bt e ee s e e sae e eae e st e bt eas e eaeeeh e e b £ e b e e b e e ae e e ae e eheeeRe e bt eaneanseebeenbeebeesbeenesnnas 31
L@ = VI 11 2RSS 31
O Y S 31
LSO 2] L O S TSRO 33
8.1 COMMON ATTRIBUTEScttueetertereesesteseesesteseesessessesessessesessessesessessesessessesessessesessessesessessenessessensssessenessensenes 35
8.2 DATA OBJIECTS..uetiteeeterteeetesteeesesteseesesteseebe st e e e b sae e e b e et e seese e b e e es e e b e e eb e b et e b e e bt s e e Rt e b e st e s e e b et en e b et eneebentenes 35
8.3 CERTIFICATE OBJECTS ...vtteueeterteseesesseseesessessesessessesessessesessessesessessesessessesessessesessessesessessenessessensssessenessensenes 36
8.4 COMMON KEY ATTRIBUTES.cetttetertereesesteseesesseseesessessesessessesessessesessessesessessesessessesessessesessessensssessenessessenes 37
8.5 PUBLIC KEY OBJECTS . uttteeetestereesesseneesessessesessessesessessesessessesessessesessessesessessesessessesessessenessessensssessenessensenes 38
8.5.1 RSA PUBIIC KEY ODJECES. ..ot sttt st e e e e e eenrenne s 38
LSRN DS AN o1 o [T ol G YA o) o= ot £ SRS 39
8.5.3 Diffie-Hellman public KeY ODJECES........cveee e 40
8.6 PRIVATE KEY OBJIECTS .. .eittutetertereetesteseesesseseesessessesessessesessessesessessesessessasessessesessessesessessensssessessssessenessensenes 41
8.6.1 RSA PriVaLe KEY ODJECLSeveviieeieieieceeeeeieste sttt st ae e st et s st eese e e e e saestestesneere s e eneeneensensennens 41
8.6.2 DSA Private KEY ODJECES.....cueiiiiueceieeceeeeeesie sttt ee e ae e st s st eese e e e e stestesbesnesre s e eneeneenseneennens 43
8.6.3 Diffie-Hellman private KEY ODJECLScc.cce e st nne s 43
8.7 SECRET KEY OBJIECTS ..uttiueetesteseetesteseesesseseesessessesessessesessessesessessesessessesessessesessessesessessenessessenessessenessensenes 44
8.7.1 GENEXIC SECTEL KEY ODJECLS ...e.vivireirieeeeeeeiesie st s st e e s et e s e e e e seestesbesnesreeneeneeseensenrennens 45
8.7.2 RC2 SECTEt KEY ODJECES.....eiiiiie ettt ettt s e et e st st e s neste e e enaeneentenrennens 46
8.7.3 RCA SECTEt KEY ODJECES.....eiiicie ettt s e st st et e nesre e e enae e e eenrennens 47
8.7.4 DES SECIEt KEY ODJECES. ... eiiiiiii ittt cte sttt st e e e sae s testesnesre e e eneeneeneenrennens 47
8.7.5 DES2 SECIEt KEY ODJECES....c.ueiiiieeciiee ettt sttt sre e e e e e tenrennens 48
8.7.6 DES3 SECT et KEY ODJECLS....c.ueiiieeciieece ettt sttt st s re e e e e e tenrennens 49
LT N I 0]\ 3T 50
O.1 GENERAL PURPOSEteeutteuttsutasueassesssesaseaasesessaeasseaassastsassssssssssssesssesasesasesasssseasseansesnsessssssssssesssesssesnsesnes 52
O 1 11 1TSS 52
LR © =1 o1 {o TS 52
9.2 SLOT AND TOKEN MANAGEMENTceutteteeteseesueesseasseasesasesssasssesseessessesasssasssseasseansesnsesnssssssssesssesssesssesans 53
LR €= 1S Lo 1 I SRS 53
O €= 6 (o111 o1 {o SR 54
O C 1= 0 Ko 1=) {0 SR 54
O = 11V = ot = g TS T SR 55
O C 1= 11V = ot = o TR o g (o S 56
LR 1 11 0] o IS 56
L@ 1 11 £ SRS 57
LS 1 | SRS 58
O.3 SESSION MANAGEMENT ...utiiuttiteesteesteaateaeeseesueasseasseaseaasesssasseasseesseaasesasesaeesaeasseaseanseansesssasseesbesssessesnnas 59
(OO0 1< 15 =T o H SRR 59
O @101 =1 = o] o ISR 60
C ClOSEAIISESSIONSveeveeite et eteestee st et e e et e st e s teeste e beeateeaeesaaeste e beesesaeesaeesaeesseeseenteentesneesteesteensennsesaeas 61
O €= 65 =0 011 01 {0 SR 61
(G oo 1 o BSOSO 62
LG ol o 11| U ST U O U UR PR 63
0.4 OBJIECT MANAGEMENT ...tutieuteettestiesteestesseseesaeasseaseasseaasesaeaaseaaseeaseeseaasesaeesaeeaaeanseanseeasesasasbeesbeensesnsasanas 63

Copyright © 1994-5 RSA Laboratories

(OO =110 o] 1=t USSR 63
(O 0 0)L @ o] = o A SRRSO 65
(O B T== (£0)Y @ o] = o SRRSO 66
(O €T (@]] o 1S I SRRSO 67
O C1c /AN ui g1 o101 (=N = VTSR 68
O = A 1] 01U V7= [L= SRS 69
(O T 01e (@] 1= ot £ 1 o 1 U URSTUS RPN 69
(O 010 (@] 7= ot £ SRS 70
9.5 ENCRYPTION AND DECRYPTION ...uttttteteasesuessueasseasseanseassesssssssessesssesasesssssssssesssansessesnssssssssesssesssesssesns 71
(O =g Tex Y o1 1 o SRRSO 71
O =1 01 o | U TP UTOU ORI 72
(O = gTex Y o110 o F= SO TRSUSRORURN 73
(O = gTex Y o1 T = | SO 73
(O B T= w0, oo S SRRSO 74
O < ol Y/ o SRR U O PR 75
(O B T= v Y, o (U oo =L (= SO URPRTR 76
C DECIYPLFINGL ...ttt b ettt e s e e be et eb e s st e meese et e s besbesbesaeeneeeasesbennen 77
O.6 M ESSAGE DIGESTINGutieuteeueesueasteestesasesasesessueasseasseansesasssssaasssssesssesasesasesasssseasssanssansesnsessssssesssesssesnsesns 78
(O BT 1= {1 a1 SO URUSPTORURN 78
(O B T 1= SRRSO 79
C _DIQESEUPTALE ...ttt ettt sttt ettt bt b et et e e e s ee s besaeeb e s it emeese e besbesbeebesaeeneeeatenbesrens 79
(O BT 1= (T SRR RO 80
9.7 SIGNATURE AND VERIFICATIONuttetteteateseesueasseasseasesssesssasssessesssesasesssssassssessssansessessssssssssesssesssesssesnss 8l
(O3 To o] 1 4T SO RURUSTSUORRN 81
(O o o SRRSO 82
(O o |18 o0 = L L= SRRSO 83
(O o o1 T o= SRRSO 83
C_SIGNRECOVEITNIT........eieiiiite ittt ettt ae bt e e e st e s e e besaeebesaeeseese e besbeseesbesaeeneeeasanbenbens 84
(O o g1 2= o0 < SRRSO 85
(O 41 1Y, 1 4L SO SUSPTORRN 85
(O 41 | SRRSO 86
(O YL 4118 oo = L= SRS 87
(O L= 1Y, T 0= SRRSO 88
C VENITYRECOVEITNIT ...ttt b et e e e e et e et eb e e aeese e e e be s besbesbesaeeneeneatanbeseens 88
C VI ITYRECOVES ...ttt ettt h e e bt e e et e s b e besaeeb e s aeemeese e benbesbesbesaeeneeneatesbenren 89
O.8 KEY MANAGEMENT ...uttitieuteauteettasteasteasseaaseseesaeasseaseaaseaaseaaeesaeeabeeabeeeeaaeesaeesaeeaaeambeambeanbeeaeenbeenbennbesnrasnnas 90
O €< g1 = 1= (=Y TR PO U T OU O PR 90
C_GENEIALEKEYPAITceiitiiteieeeteeee ettt ettt ettt e et b st e e e st e s be s besaeebeeaeeme e e e besbesbeebesaeeneeneabanbeneens 91
O VLY =T o (U TP UOU RPN 93
C UNWIAPIKEY ...ttt ettt ettt st a et e et et e e et e ehe e s he e b e e e e e ae e s ae e eaeeebe e bt e abeeabeebeesbe e beenbeesenanas 94
(O BT 1= SRRSO 95
9.9 RANDOM NUMBER GENERATIONceuttettetesuessueasseasseasesasesssasssessesssessesssssasssssesseansesssssssssssssesssesssesasesass 97
LGRS == |11 (o o TSRS 97
O €= 1= = 1 (= 2= 10 (o] o S S 98
9.10 PARALLEL FUNCTION MANAGEMENTeitiiutiiueasteasseeseauseaseesssessesssesasessesaeesseasssansesnsesnsessssssesssesssesnsesnss 98
C_GEIFUNCHIONSIALUS........ecviceieeiieeteesiees e e teeste s eesaeesteete et e saeesseesteeste e sesasesaeesaeesseeseenteensessaessaesseensesnsesaens 98
O @1 0r= | ¥ o] o 1S 99
O.11 CALLBACK FUNCTION ...ttiutteuteeutasueasteasseasesaseasssusesseasseasssanssssssasssssssssesssesasesasesasssuessssassesssesnsessssssssssenns 100
N1 YU SPPR 100
TO. MECHANISMS ...ttt e b etk e e bt bt s bt b e st e s e e e eR e s b e eheeb e e se e s e e s e nrennenneas 101
10.1 PKCS#1 RSA KEY PAIR GENERATIONcutettetetestessessessesseessesessessessessessesssessessessessessessesseessensensensessens 101
JO.2ZPKICSHLRSA .ottt e et h bt s Rt b e e e s e e e e eE e e b e e R e eb e e se e s e e eeeaRen bt eReeb e e ne e s e e e e nr e nenneas 102
L1O.3ISOMEC Q796 RSA ...ttt sttt sttt sttt sttt sttt stk bt b e st et e ke st e st et e s be e et e st et ebeseenesbeneene 103
10.4 X509 (RAW) RSA ... ooieectieieeiesees e et s e e e et st et e s s ese e e enteseestesbesaeeaeeseenaeneesaesaesneesenneeneeneensenenseens 104

Copyright © 1994-5 RSA Laboratories

Page x PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.5 DSA KEY PAIR GENERATION ..ttiiiiiiiiuttttiesseeiissssseeessssssssssssesssssssssssssssessssassssssssesssssssssssssessssssssssssessssns 105
O] 1S R 105
10.7 PKCS#3 DIFFIE-HELLMAN KEY PAIR GENERATIONuuuttiiiiieiiiiiirieiiesessessssssiesssessssssssesssssssssssssessssnns 106
10.8 PKCS#3 DIFFIE-HELLMAN KEY DERIVATION ..uuttiiiiiiiiiittieeieessesiasresiessssesssssssessssesssssssssssssssssssssssesssssns 106
J1O.9 RC2 KEY GENERATION.....cicuttttiiteiiiiitareiesssesisisssseeessssssisssssesssssassssssssessssassssssssssssesssssssssessssssssssseessseis 106
JOLO RC2-ECBi..... ettt ettt e ettt e e e ettt e s e e e e s s aabeessaatae e s aabeeessbbeesasbesesasbeeessbbeesssstesesassnnesssssneeas 107
O I 2 (O O = O 108
O 2 2 (O |V N OSSR 108
J1O.13 RCA KEY GENERATIONuuttttiiieiiiiittreiesssesisissseeessssssssssssesssssassssssssssssssassssssssesssesssssssssessssssssssseessssis 108
05 2 (O ST 109
J1O.15 DESKEY GENERATION ...uuutttiiieiiiiiittseiessseiiassssseeessssasisssssesssssasssssssssessssasssssssesssessssssssssssssssssssseesssis 109
O L BT S O = ST 109
O A B] s T O T TR 110
O RS BT S Y N R 111
10.19 DOUBLE-LENGTH DESKEY GENERATIONuuuttiiiieiiiiiiittieiessiisssssestessssassssssssesssesssssssssesssssssssssseesssens 111
10.20 TRIPLE-LENGTH DESKEY GENERATION......cccuttiiieiiiiiittttieteessiassssestesssssssssssssssssesssssssssesssssssssssssessssnns 111
JO2ZL TRIPLE-DES ECB ...ttt ettt e et e e a e e s s e bt e e s st e e e s asbeeessabbeesssntaessssnnnessbenasan 112
O == I = B] S O = T O 112
JO.23 TRIPLE-DES IMAC ...ttt ettt ettt e s et e e s eta e e s s ebb e e s s st e e e s asbeeessbbeesssstaeessssnnessbenasan 113
02 Y 1 R 113
02 1Y 1 0 LS TR 114
O 3 o e R 114
APPENDIX A, TOKEN PROFILES..... .ottt e e s e eee s sbae e s enaee s s naeeasanbeeeeenns 115
APPENDIX B, COMPARISON OF CRYPTOKI AND OTHER API’'S.....o oo 119
List of Figures

FIGURE 5-1, GENERAL IMODEL ...uvttiiiiiiiiiitiiiiee e i e iiiiieties s s e sssbasseesssssssbstasessssssassbasssssssssssssbssssssssssssssssssesssessssnes 9
FIGURE 5-2, OBIECT HIERARCHY ..cciiiiiiiititiiiiee e iesiiatiiei e e s s seiiabbesesssssebabasssessssasssbbssssesssasssbssssesssesssssbsnssasssssnnres 10
FIGURE 5-3, READ-ONLY SESSION STATES....iiiiiiiitttiiieeeiiiittieiieessiasisssssiessssasssssstssssssssssssstessssssssssssessssssssnes 12
FIGURE 5-4, READ/WRITE SESSION STATES. ...uiiiieteteiitiisseiteiesasssssssssssssassssssassssssssssssssassssesssssssssssssssssssssssnns 13
FIGURE 8-1, CRYPTOKI OBJIECT HIERARCHYcoiiitttiiiiiiiiiiiitiiii e s e s sesibbess e s s s sssaabasssesssessasbbsssessssssssssnsssssssssnnses 33
FIGURE 8-2, KEY OBJIECT DETAIL.uiiiiiiiiiiitiiiieeiiiiiitiieies st esiabbeeees st ssssabssssessssasssbssesssssssssssssesssessssssssssessssssnses 34
List of Tables

B =W B Y 120 I TR 6
B =W S R = = = D =S RO 6
TABLE 4-3, CHARACTER SET .uuttiiiiiiiiitttiiies e e isibtsteee s s s s sebasteesessssssbabsseseesssassabbssseassessabasseeesssssasbasbeeessssassbarsnnes 7
TABLE 5-1, READ-ONLY SESSION STATES.....cccttttttieiiiiiiirreiessseisitssseesssssssssssseessssissssssssessssssssssssssssssssssssssees 13
TABLE 5-2, READ/WRITE SESSION STATES.....ttiiiiiittieiiiteiesssasessassssssssssssssssssssssssssesssssssssssssssssssssessssssssssssens 14
TABLE 5-3, SESSION EVENTS...eiiiiiiiiiitiiiies et e iitbire i e e s s s e st b saeea s s e s sabasaeessssssaabbbbeeeeessassbbbbeeeessssassbbbanssesssssbabrnenas 14
TABLE 5-4, SUMMARY OF CRYPTOKI FUNCTIONS......cciiittiiiie i e iiirriie e e s e s ssbarseee e s s ssbasaees s s s s ssssssseesssssssssansnssas 15
TABLE 7-1, SLOT INFORMATION FLAGSiiiiititiiie i e ettt ie e s e s sbbtre e e s s e s sbab s e e e s s s s sabbbbeeesesssabbbseesesssssssabrnees 21
TABLE 7-2, TOKEN INFORMATION FLAGS.... oottt ittt ettt s bbbt e s s s bbb e e e s s s s sabbbaee s e e s sesbasbneeas 23
TABLE 7-3, SESSION INFORMATION FLAGSttt ittt ettt e s baabe e e s s s s s bbb b e e e e s s s e sbabanees 25
TABLE 7-4, MECHANISM INFORMATION FLAGS....ciiiiiiiittiiiie ettt ettt baaae e s s e s s sbaab e e s e s s s e aaraeee s 30
TABLE 8-1, COMMON OBJIECT ATTRIBUTES.....uutttiiiiiiiiiittrtieseieisissssiesssssisssssssessssisssssssssssssssssssssesssssssssssssees 35
TABLE 8-2, DATA OBJIECT ATTRIBUTES.....ciitiiitttttiieiiiiiitrtrtiesssssssbssseessssssssssssesssssssssssssesssssssssssssessssssssssssssses 35
TABLE 8-3, CERTIFICATE OBJECT ATTRIBUTES ..vttiiiiiiiitttttiee e e e isibsssieessssssbssseesssssssbssssessesssssssssssssssssssssssssss 36

Copyright © 1994-5 RSA Laboratories

TABLE 8-4, COMMON KEY ATTRIBUTES.ceiiiiitieeeiiteteeeiteeesateeesasteeesasssesesasseessasssesssassssessssssessssseesesssesesssnees 37
TABLE 8-5, COMMON PUBLIC KEY ATTRIBUTESutttiiiittieeiitiieeeeteeeeeereeessssseesatsessasssesesssssesssssesssasesesansens 38
TABLE 8-6, RSA PUBLIC KEY OBJECT ATTRIBUTES.cccttieiitiiieeiteeeeeitteeeesreeeeastressesssesessssesasssssesssansesesensens 39
TABLE 8-7, DSA PUBLIC KEY OBJECT ATTRIBUTES.cccctteeiiiieeeeteeeeeiareeeesseeasastseesesasesesassesasssssesssasesesannens 39
TABLE 8-8, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTESutiiiiiieeeiiieeeetreeeeereeeesaneeeesrseeeeenseeeeennns 40
TABLE 8-9, COMMON PRIVATE KEY ATTRIBUTESuutiiiitieeiiiieeeeiteeeeeereeessaeeesstsessesssesessssseesssssesssasesesannees 41
TABLE 8-10, RSA PRIVATE KEY OBJECT ATTRIBUTES.uutiiiitiieeeitieeeeitreeeesteeeeastreeseesseesssasesassssesssasssesennees 42
TABLE 8-11, DSA PRIVATE KEY OBJECT ATTRIBUTESuutiiiitieeeeteeeeeitteeeesteeesetreeeeenseeessaseeassnsseessnssssessnnens 43
TABLE 8-12, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTESutiieiiiieeeetieeeeenreeeeeineeeesrreeeeenseeeeennes 44
TABLE 8-13, COMMON SECRET KEY ATTRIBUTES.......ecciitieeiiiiieeiiteeeeeereeeesaeeesatsessesssesessssssesssssesssassesesannens 45
TABLE 8-14, GENERIC SECRET KEY OBJECT ATTRIBUTESuutiieeiitiieeeiiteeeestteeeeestreeeesaseeessnneeesssseesessssssssnnees 45
TABLE 8-15, RC2 SECRET KEY OBJECT ATTRIBUTES.uuttieiiiieeeeiteeeeeitreeeesreeesastseesesaseesssssesesasssesssasssesannens 46
TABLE 8-16, RCA SECRET KEY OBJECTutiiiiiiieeeiieieeeiteeeseteeeeeiteeeeeasseeesssseeassssesssassesessssssassnsseesenssesessnens 47
TABLE 8-17, DES SECRET KEY OBJIECTutiiiiiiieeeiteeeeeiteeeeeteee e ettt e s eeaseeesssaeeasassseessassesessssasasasseesenssesesansens 47
TABLE 8-18, DES2 SECRET KEY OBJIECT ATTRIBUTESueiiiiiiieeiiieeeeitteeeesreeeeestreeeeeaseeessaseeessnsseesennsessssnnens 48
TABLE 8-19, DES3 SECRET KEY OBJIECT ATTRIBUTESuiiiiitiieeitieeeeitteeeesteeesetreeeeeaseesssaseeassnsseessassesessnnens 49
TABLE 9-1, RETURN VALUESutiiiiiieiecettee e e ettee e e ettt e e etae e e s etteeaaaataeeeeaaseeessssaeaeansseeeaaseeesassseaeansteeesansenesansens 50
TABLE 9-2, ENCRYPTING IMECHANISMSuviiiiitiieeeeteeeeeiteeeeeteeeeeteeeeeaaseeesssseeasassesssansesessnsssasasseesenssesesannens 71
TABLE 9-3, DIGESTING MECHANISMS....c..utiiieiiiieeeeteeeeeiteeeseteeeeatseesessseeesasseeasaassessaassesassssseasassseessassesesssens 78
TABLE 9-4, SIGNING MECHANISMS.......ouiiiiiutieeiittieeeaiteteeeiteeesaseeesastseesaasseeesasseeasaassessaassesssasesesassssessassssesssees 81
TABLE 9-5, SIGNING WITH RECOVERY IMECHANISMScuviiiiiiiieeeitieeeeitteeeesreeeeetreeeeeaseeessaseeessssseeseensesesennens 84
TABLE 9-6, VERIFYING MECHANISMSuuttiieiitieeeeeiteeeeetteeesetteeeseteeeseassesesasseeasaassesssassesasassssessnsseessnsssesasens 86
TABLE 9-7, VERIFY WITH RECOVERY MECHANISMS......uutiieiiiieeeiieeeeeitteeeesneeeeesteeeeesaseeessaseeesssseessansesesannens 89
TABLE 9-8, KEY GENERATION IMECHANISMS......oeiiitiiieeiieeietieeeeeitteeeeesseeeessseeasatsessessseesssnsssessnssesseassesesannens 91
TABLE 9-9, KEY PAIR GENERATION IMECHANISMS......cciiiuiiieiiiieeeeteeeeeereeeesaeeesatsessesasessssssseesassesssansesesansens 92
TABLE 9-10, WRAPPING MECHANISMS........utiiiiiiieeeeiteeeeeitteeeseteeeeestseeseasseeesssseeasasssessaassesassssssasassseessassssessnsens 93
TABLE 9-11, UNWRAPPING IMECHANISMScoeiitiieeeieeeeeiteeeeetieeeeeteeeseeateeeessseeasansseesaanseeesssnssesassessennsesesannens 94
TABLE 9-12, DERIVING MECHANISMSuutiieiitiieeeeiteeeeeiteeeseteeeeasteeesaasseeasssseessaassesssasesssssssessssseesssnsssesssees 96
TABLE 10-1, MECHANISMS VS, FUNCTIONScutiieiiitieeeitieeeeeateeeesseeesatsesesssseesasseessasssssasssesssassesesassesesansens 101
TABLE 10-2, PKCS#1 RSA KEY AND DATA LENGTH CONSTRAINTSutviiiiiiieeiitieeeeeteeeeeinreeeesareeeseaseeesennes 103
TABLE 10-3, ISO/IEC 9796 RSA KEY AND DATA LENGTH CONSTRAINTSceeivieiiteeitreeireestreeeneessreesneessneas 104
TABLE 10-4, X.509 (RAW) RSA KEY AND DATA LENGTH CONSTRAINTSccutiueruereeeeseeseesieseessesseeeeseeseeseeses 104
TABLE 10-5, DSA KEY AND DATA LENGTH CONSTRAINTSuutiieiiiiieeetieeeeiteeeeetteeeeeteessessesssassesesnnseeessnnees 105
TABLE 10-6, RC2-ECB KEY AND DATA LENGTH CONSTRAINTSuttiiiitiieeeiieeeietieeeeeireeeenneeesssreeessaseeeesnnees 107
TABLE 10-7, RC2-CBC KEY AND DATA LENGTH CONSTRAINTS......uitiiiitiieeeireeeietteeeeetreeeenseessassesesanreessennnes 108
TABLE 10-8, RC2-MAC KEY AND DATA LENGTH CONSTRAINTS......ciiiitiiieeitieeiitteeeeetreeeenneessssseeesnaseeesennnns 108
TABLE 10-9, RC4 KEY AND DATA LENGTH CONSTRAINTSuuttieiiiieeeiteeeeeiireeeestteeeeetsessensesssassesesasesessnnees 109
TABLE 10-10, DES-ECB KEY AND DATA LENGTH CONSTRAINTS.....coeiiitiiieeitieeiitreeeesteeeeenseeesssreeesnaseessennees 110
TABLE 10-11, DES-CBC KEY AND DATA LENGTH CONSTRAINTS.....ceeiiitiiieeittieeiitreeeeatreeeesnseessssseeesnaseeesennees 110
TABLE 10-12, DES-MAC KEY AND DATA LENGTH CONSTRAINTS ...ceeiitiiieeirieeeitteeeesreeeeeinneeessrseeeseaseeesennes 111
TABLE 10-13, TRIPLE-DES-ECB KEY AND DATA LENGTH CONSTRAINTSuvtieiiiieeeiieeeeeireeeeenreeeeereeeeennees 112
TABLE 10-14, TRIPLE-DES-CBC KEY AND DATA LENGTH CONSTRAINTSuutiiiiiiieeiieeeeenreeeesireeeeereeeeennees 113
TABLE 10-15, TRIPLE-DES-MAC KEY AND DATA LENGTH CONSTRAINTSceiiiiiieeeeieeeeeteeeeseireeeeereeeeenneas 113
TABLE 10-16, MD2 DATA LENGTH CONSTRAINTS. .. .ueteiiitiieeeiteeeiiteeeeestreeeeasseeesssseessassesesesssesssassesesassssssasees 114
TABLE 10-17, MD5 DATA LENGTH CONSTRAINTS.ueiiiiitiieeeiteeeesreeeeestreeeeasseeesasseessaseessesssesssassesesassesesasees 114
TABLE 10-18, SHA-1 DATA LENGTH CONSTRAINTSeeiiittieeiiteeeeeteeeestreeeeesseeesssseeeeatesssesssesssassesesassssesssens 114

Copyright © 1994-5 RSA Laboratories

Page X11 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

SCOPE Page 1

1. Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to devices which
hold cryptographic information and perform cryptographic functions. Cryptoki, pronounced “crypto-
key” and short for “cryptographic token interface,” follows a simple object-based approach, addressing
the goals of technology independence (any kind of device) and resource sharing (multiple applications
accessing multiple devices), presenting to applications a common, logical view of the device called a
“cryptographic token.”

This document specifies the data types and functions available to an application requiring cryptographic
services using the ANSI C programming language. These data types and functions will be provided as a
C header file by the supplier of a Cryptoki library. A separate document provides a generic,
programming language independent Cryptoki interface. Additional documents will provide bindings
between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application does not
have to change to interface to a different type of device or to run in a different environment; thus the
application is portable. How Cryptoki provides this isolation is beyond the scope of this document,
though some conventions for the support of multiple types of device will be addressed in a separate
document.

The set of cryptographic mechanisms (algorithms) supported in this version is somewhat limited; but
new mechanisms can easily be added without changing the general interface. It is expected that
additional mechanisms will be published from time to time in separate documents. It is also possible for
token vendors to define their own mechanisms (although for interoperability, registration through the
PKCS process is preferable).

Cryptoki is intended for cryptographic devices associated with a single user, so some features that would
be included in a general-purpose interface are omitted. For example, Cryptoki does not have a means of
distinguishing multiple “users.” The focus is on a single user’s keys and perhaps a small number of
public-key certificates related to them. Moreover, the emphasis is on cryptography. While the device may
perform useful non-cryptographic functions, such functions are left to other interfaces.

Copyright © 1994-5 RSA Laboratories

Page 2

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. References

ANSI C

ANSI X9.9

ANSI X9.17

ANSI X9.31

ANSI X9.42

CDPD

FIPS PUB 46-2

FIPS PUB 74

FIPS PUB 81

FIPS PUB 113

FIPS PUB 180

FIPS PUB 186

GCS-API

ISO 7816-1

ISO 7816-4

ANSI/ISO. ANSI/ISO 9899-1990: American National Standard for Programming Languages --
C. 1990.

ANSI. American National Standard X9.9: Financial Institution Message Authentication Code.
1982.

ANSI. American National Standard X9.17: Financial Institution Key Management (Wholesale).
1985.

Accredited Standards Committee X9. Public Key Cryptography Using Reversible Algorithms
for the Financial Services Industry: Part 1: The RSA Signature Algorithm. Working draft,
March 7, 1993.

Accredited Standards Committee X9. Public Key Cryptography for the Financial Services
Industry: Management of Symmetric Algorithm Keys Using Diffie-Hellman. Working draft,
September 21, 1994.

Ameritech Mobile Communications et al. Cellular Digital Packet Data System Specifications:
Part 406: Airlink Security. 1993.

National Institute of Standards and Technology (formerly National Bureau of Standards).
FIPS PUB 46-2: Data Encryption Standard. December 30, 1993.

National Institute of Standards and Technology (formerly National Bureau of Standards).
FIPS PUB 74: Guidelines for Implementing and Using the NBS Data Encryption Standard.
April 1, 1981.

National Institute of Standards and Technology (formerly National Bureau of Standards).
FIPS PUB 81: DES Modes of Operation. December 1980.

National Institute of Standards and Technology (formerly National Bureau of Standards).
FIPS PUB 113: Computer Data Authentication. May 30, 1985.

National Institute of Standards and Technology. FIPS PUB 180: Secure Hash Standard
(SHS). May 11, 1993. In May 1994, NIST announced a weakness in the Secure Hash
Standard defined in FIPS 180; a revised version is expected to be issued as FIPS 180-1.

National Institute of Standards and Technology. FIPS PUB 186: Digital Signature Standard.
May 19, 1994.

X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base - Draft 2.
February 14, 1995.

ISO. International Standard 7816-1: Identification Cards — Integrated Circuit(s) with Contacts
— Part 1: Physical Characteristics. 1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts — Part 4: Inter-industry
Commands for Interchange. Committee draft, 1993.

Copyright © 1994-5 RSA Laboratories

REFERENCES

1SO/IEC 9796

PCMCIA

PKCS #1
PKCS #3
PKCS #7
RFC 1319

RFC 1321

RFC 1421

RFC 1423

REC 1508

REC 1509

X.208

X.209

X.500

X.509

Page 3

ISO/IEC. International Standard 9796: Digital Signature Scheme Giving Message Recovery.
July 1991.

Personal Computer Memory Card International Association. PC Card Standard. Release
2.1, July 1993.

RSA Laboratories. RSA Encryption Standard. Version 1.5, November 1993.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.
RSA Laboratories. Cryptographic Message Syntax Standard. Version 1.5, November 1993.
B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories, April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for Computer
Science and RSA Data Security, Inc., April 1992.

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. IAB IRTF PSRG, IETF PEM WG, February 1993.

D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part I11: Algorithms,
Modes, and Identifiers. TIS and IAB IRTF PSRG, IETF PEM WG, February 1993.

J. Linn. RFC 1508: Generic Security Services Application Programming Interface. Geer Zolot
Associates, September 1993.

J. Wray. RFC 1509: Generic Security Services API: C-bindings. Digital Equipment
Corporation, September 1993.

ITU-T (formerly CCITT). Recommendation X.208: Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1). 1988.

ITU-T (formerly CCITT). Recommendation X.209: Specification of Abstract Syntax Notation
One (ASN.1). 1988.

ITU-T (formerly CCITT). Recommendation X.500: The Directory — Overview of Concepts and
Services. 1988.

ITU-T (formerly CCITT). Recommendation X.509: The Directory — Authentication Framework.
1993. (Proposed extensions to X.509 are given in ISO/IEC 9594-8 PDAM 1: Information
Technology — Open Systems Interconnection — The Directory: Authentication Framework —
Amendment 1: Certificate Extensions. 1994.)

Copyright © 1994-5 RSA Laboratories

Page 4

3. Definitions

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For the purposes of this standard, the following definitions apply.

API
Application
ASN.1
Attribute
BER

CBC
Certificate

Cryptographic Device

Cryptoki
Cryptoki library
DES

DSA

ECB

MAC

MD2

MD5

Mechanism
Object

PIN

RSA

RC2

Application programming interface.

Any computer program that calls the Cryptoki interface.
Abstract Syntax Notation One, as defined in X.208.

A characteristic of an object.

Basic Encoding Rules, as defined in X.209.

Cipher Block Chaining mode, as defined in FIPS PUB 81.

A signed message binding a subject name and a public key.

A device storing cryptographic information and possibly
performing cryptographic functions. May be implemented as a
smart card, smart disk, PCMCIA card, or with some other
technology, including software only or a process on a server.
The Cryptographic Token Interface defined in this standard.

A library that implements the functions specified in this standard.
Data Encryption Standard, as defined in FIPS PUB 46-2.

Digital Signature Algorithm, as defined in FIPS PUB 186.
Electronic Codebook mode, as defined in FIPS PUB 81.

Message Authentication Code, as defined in ANSI X9.9.

RSA Data Security, Inc.'s MD2 message-digest algorithm, as defined
in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest algorithm, as defined
in RFC 1321.

A process for implementing a cryptographic operation.

An item that is stored on a token; may be data, a certificate, or a key.
Personal Identification Number.

The RSA public-key cryptosystem, as defined in PKCS #1.

RSA Data Security’s proprietary RC2 symmetric block cipher.

Copyright © 1994-5 RSA Laboratories

DEFINITIONS

RC4
Reader
Session
SHA
Slot

Subject Name

SO
Token

User

Page 5

RSA Data Security’s proprietary RC4 symmetric stream cipher.
The means by which information is exchanged with a device.
A logical connection between an application and a token.
Secure Hash Algorithm, as defined in FIPS PUB 180.

A logical reader that potentially contains a token.

The X.500 distinguished name of the entity to which a key is
assigned.

A Security Officer user.
The logical view of a cryptographic device defined by Cryptoki.

The person using an application that interfaces to Cryptoki.

Copyright © 1994-5 RSA Laboratories

Page 6 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

4. Symbols and abbreviations

The following symbols are used in this standard:

Table 4-1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 4-2, Prefixes

Prefix Description

C_ Function
CK_ Data type

CKA_ Attribute

CKC_ Certificate type
CKF_ Bit flag

CKK_ Key type

CKM_ | Mechanism type
CKN_ Notification

CKO_ Object class

CKS_ Session state

CKR_ Return value

CKU_ | User type

P a pointer

pb a pointer to a CK_BYTE

ph a pointer to a handle

pus a pointer to a
CK_USHORT

ul a CK_ULONG

us a CK_USHORT

In Cryptoki, a flag is a boolean flag that can be TRUE or FALSE. A zero value means the flag is FALSE,
and a non-zero value means the flag is TRUE. Cryptoki defines these labels if they are not already
defined.

#i f ndef FALSE
#defi ne FALSE O
#endi f

Copyright © 1994-5 RSA Laboratories

SYMBOLS AND ABBREVIATIONS Page 7

#i f ndef TRUE

#define TRUE (! FALSE)

#endi f

Cryptoki is based on ANSI C types and defines the following data types:

/* an unsigned 8-bit val ue */
t ypedef unsi gned char CK BYTE;

/* an unsigned 8-bit character */
t ypedef CK BYTE CK CHAR

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOOL;

/* an unsigned value, at least 16 bits long */
t ypedef unsigned short int CK USHORT;

/* an unsigned value, at least 32 bits long */
t ypedef unsigned |ong int CK ULONG

/* at least 32 bits, each bit is a Boolean flag */
typedef CK ULONG CK_FLAGS;

Cryptoki also uses pointers to these data types which are implementation dependent. These pointers are:

CK_BYTE_PTR
CK_CHAR_PTR
CK_USHORT_PTR
CK_VO D_PTR

NULL_PTR

/* Pointer to a CK BYTE */
/* Pointer to a CK CHAR */
/* Pointer to a CK _USHORT */
/* Pointer to a void */

/* a NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to another
(e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However, these details
should not affect the application, assuming it is compiled with a Cryptoki header file consistent with the
Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by “0x”, in
which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 4-3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters

V# % & ()*+,-./5;<=>2[\]"_{]|}~

Blank character

i

Copyright © 1994-5 RSA Laboratories

Page 8 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

5. General overview

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are ideal tools for
implementing public-key cryptography, as they provide a way to store the private-key component of a
public-key/private-key pair securely, under the control of a single user. With such a device, a
cryptographic application, rather than performing cryptographic operations itself, programs the device to
perform the operations, with sensitive information such as private keys never being revealed. As more
applications are developed for public-key cryptography, a standard programming interface for the these
devices becomes increasingly valuable. This standard addresses this need.

5.1 Design goals

Cryptoki was intended from the beginning as an interface between applications and all kinds of portable
cryptographic devices, such as those based on smart cards, PCMCIA cards, and smart diskettes. There
are already standards (de facto or official) for interfacing to these devices at some level. For instance, the
mechanical characteristics and electrical connections are well-defined, as are the methods for supplying
commands and receiving results. (See, for example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It would not be
enough simply to define command sets for each kind of device, as that would not solve the general
problem of an application interface independent of the device. To do so is still a long-term goal, and
would certainly contribute to interoperability. The primary goal of Cryptoki was a lower-level
programming interface that abstracts the details of the devices, and presents to the application a common
model of the cryptographic device, called a “cryptographic token” (or simply “token”).

A secondary goal was resource sharing. As desktop multi-tasking operating systems become more
popular, a single device should be shared between more than one application. In addition, an application
should be able to interface to more than one device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or security services,
although one certainly could build such operations and services with the functions that Cryptoki
provides. Thus, Cryptoki is intended to complement, not compete with such emerging and evolving
interfaces as “Generic Security Services Application Programming Interface” (RFC’s 1508 and 1509) and
“Generic Cryptographic Service AP1” (GCS-API) from X/Open.

5.2 General model
Cryptoki's general model is illustrated in the following figure. The model begins with one or more
applications that need to perform certain cryptographic operations, and ends with a cryptographic device,

on which some or all of the operations are actually performed. A user may be associated with an
application.

Copyright © 1994-5 RSA Laboratories

GENERAL OVERVIEW Page 9

Application 1 - - - Applicationn

==

Other Security Layers

4 4
A A
Cryptoki
Slot 1 - - - - Slotn
4 4
A A
Token 1 Tokenn
[Cryptographic Device 1] [Cryptographic Devicen J

Figure 5-1, General Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the system through
a number of “slots”. Each slot, which corresponds to a physical reader or other device interface, may
contain a token. A token is “present in the slot” (typically) when a cryptographic device is present in the
reader. Of course, since Cryptoki provides a logical view of slots and tokens, there may be other physical
interpretations. It is possible that multiple slots may share the same physical reader. The point is that a
system has some number of slots and applications can connect to all those tokens.

A cryptographic device can perform some cryptographic operations, following a certain command set;
these commands are typically passed through standard device drivers, for instance PCMCIA card
services or socket services. Cryptoki makes the cryptographic device look logically like every other
device, regardless of the implementation technology. Thus the application need not interface directly to
the device drivers (or even know which ones are involved); Cryptoki hides these details. Indeed, the
“device” may be implemented entirely in software, for instance as a process running on a server; no
hardware is necessary.

Cryptoki would likely be implemented as a library supporting the functions in the interface, and
applications would be linked to the library. An application may be linked to Cryptoki directly, or
Cryptoki could be a so-called “shared” library (or dynamic link library), in which case the application
would link the library dynamically. Shared libraries are fairly straightforward in operating systems such
as Microsoft Windows™, OS/2™, and can be achieved, without too much difficulty, in Unix™ and DOS
systems.

The dynamic approach would certainly have advantages as new libraries are made available, but from a
security perspective, there are some drawbacks. In particular, if the library is easily replaced, then there
is the possibility that an attacker can substitute a rogue library that intercepts a user’s PIN. From a
security perspective, direct linking would probably be better. However, whether the linking is direct or
dynamic, the programming interface between the application and Cryptoki remains the same.

Copyright © 1994-5 RSA Laboratories

Page 10 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The kinds of devices and capabilities supported will depend on the particular Cryptoki library. This
standard only specifies the interface to the library, not its features. In particular, not all libraries will
support all the mechanisms (algorithms) defined in this interface (since not all tokens are expected to
support all the mechanisms), and libraries will likely support only a subset of all the kinds of
cryptographic devices that are available. (The more kinds, the better, of course, and it is anticipated that
libraries will be developed supporting multiple kinds of token, not just those from a single vendor.) It is
expected that as applications are developed that interface to Cryptoki, standard library and token
“profiles” will emerge.

5.3 Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform cryptographic functions.
Cryptoki defines three classes of object: Data, Certificates, and Keys. A data object is defined by an
application. A certificate object stores a public-key certificate. A key object stores an encryption key. The
encryption key be may a public key (RSA, DSA or Diffie-Hellman), a private key (RSA, DSA or Diffie-
Hellman) or a secret key (RC2, RC4, DES, etc.). This view is illustrated in the following figure. The key
types given are those supported for this version of Cryptoki; other key types may well be added in future
versions.

Object
Object Type
Data Key Certificate
Key Type
Public Key Private Key Secret Key
Public Key Type Private Key Type Secret Key Type
RSA DSA HDeiI];fri:{:-m RSA DSA HDeiI];fri:{:-m Generic| |[RC2| | RC4 | |DES | | DES2 | | DES3

Figure 5-2, Object Hierarchy

Objects are also classified according to their lifetime and visibility. “Token objects” are visible to all
applications connected to the token, and remain in the token after the “session” or connection between an

Copyright © 1994-5 RSA Laboratories

GENERAL OVERVIEW Page 11

application and the token is closed. “Session objects” are visible only to the application that creates them,
and are destroyed automatically when the session is closed.

Further classification defines access requirements. “Public objects” are visible to all applications that have
a session with the token. “Private objects” are visible to an application only after a user has been
authenticated to the token by a PIN.

A token can create and destroy objects, manipulate them, and search for them. It can also perform
cryptographic functions on objects. It is possible for the token to perform the cryptographic operations in
parallel with the application, assuming the underlying device has its own processor. In addition, a token
may have an internal random number generator.

It is important to distinguish between the logical view of a token and the actual implementation, because
not all cryptographic devices will have this concept of “objects,” or be able to perform every kind of
cryptographic function. Many devices will simply have fixed storage places for keys of a fixed algorithm,
and be able to do a limited set of operations. Cryptoki's role is to translate this into the logical view,
mapping attributes to fixed storage elements and so on. Not all Cryptoki libraries and tokens need to
support every object type. It is expected that standard “profiles” will be developed, specifying sets of
algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki, there are general
attributes, such as whether the object is private or public. There are also attributes particular to an object,
such as a modulus or exponent for RSA keys.

5.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer (SO). The other
type is the normal user. Both types of user must be authenticated with a PIN to the token before any
access to private objects is allowed. Some tokens may require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private objects. The role
of the SO is to initialize a token and to set the normal user’s PIN, and possibly manipulate some public
objects. A normal user cannot log in until the SO has set the user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship between the SO
and a community of users. In particular, the SO and the User may be the same person or may be
different, but such matters are outside the scope of this standard.

With respect to PINs, Cryptoki assumes only that they are variable-length character strings from the set in
Table 4-3. Any translation to the device’s requirements is left to the Cryptoki library. The following items
are beyond the scope of Cryptoki:

e Any padding of the PIN.

e How the PINs are generated (by the user, by the application, or some other means).

Future version of Cryptoki will address other means of authentication, such as biometrics and PIN entry
via a PIN pad attached to the device or its reader.

Copyright © 1994-5 RSA Laboratories

Page 12 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

5.5 Sessions

Cryptoki requires that an application “open a session” with a token before the application has access to
the token’s objects and functions. The session provides the logical connection between the application
and the token. A session can be a read/write (R/W) session or a read-only (R/O) session. Read/write
and read-only refer to the access to token objects, not to session objects. In both session types, an
application can create, read, write and destroy session objects, and read token objects. However, only in a
read/write session can an application create, write and destroy token objects.

After a session is opened, the application has access to the token’s “public” objects. To gain access to the
token’s “private” objects, a user must log in and be authenticated.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or more sessions
with one or more tokens. A token may have multiple sessions with one or more applications. Some

tokens may allow only one read /write session at any given time.

An open session can be in one of several states. The session state determines allowable access to objects
and functions that can be performed on them. The session states are described in the next two sections.

5.5.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure. When the session is
opened, it is in the “R/O Public Session” state. Only the normal user may open a read-only session.

R/O Public

. Close Sessio
Session

[
2
>
[
&)

Log In Use
Removed

<
o

R/O User
Functions

Figure 5-3, Read-Only Session States

The following table describes the session states:

Copyright © 1994-5 RSA Laboratories

GENERAL OVERVIEW Page 13

Table 5-1, Read-Only Session States

State Description

R/O Public Session The application has opened a read-only session. The application has
read-only access to public objects on the token.

The normal user has been authenticated to the token. The application
has read-only access to public and private objects on the token.

R/O User Functions

5.5.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure. When the session
is opened, it is in the “R/W Public Session” state.

Device
Removed
(o)

R/W Public
Session

Close Sessio

Removed

[}
L
S
[
[a)

Log In Use

<
o

R/W User
Functions

Figure 5-4, Read/Write Session States

Copyright © 1994-5 RSA Laboratories

Page 14 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table describes the session states:

Table 5-2, Read/Write Session States

State Description

R/W Public Session The application has opened a read/write session. The application has
read/write access to public objects on the token.

R/W SO Functions The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the token,
not to private objects. The SO can set the normal user’s PIN.

R/W User Functions | The normal user has been authenticated to the token. The application
has read/write access to public and private objects on the token.

5.5.3 Session events
Session events cause the session state to change. The following table describes the events.

Table 5-3, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user.

Close Session the application closes the session or an application closes all sessions.
Device Removed the device underlying the token has been removed from its slot.

Note that when the device is removed, the user is automatically logged out. However, the session
remains open. If the device is reinserted, the application can log in the user again without opening a new
session.

5.6 Function overview

The Cryptoki API consists of a number of functions, spanning slot and token management through object
management, as well as cryptographic functions. These functions are presented in the following table.

Copyright © 1994-5 RSA Laboratories

GENERAL OVERVIEW

Table 5-4, Summary of Cryptoki Functions

Page 15

Category Function Description
General C_Initialize initializes Cryptoki
purpose C_GetInfo obtains general information about Cryptoki
Slot and C_GetSlotList obtains a list of slots in the system
token C_GetSlotInfo obtains information about a particular slot
management C_GetTokenInfo obtains information about a particular token
C_GetMechansimList | obtains a list of mechanisms supported by a token
C_GetMechanismInfo obtains information about a particular mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection or “session” between an
management application and a particular token
C_CloseSession closes a session
C_CloseAllSessions closes all sessions with a token
C_GetSessionInfo obtains information about the session
C_Login logs into a token
C_Logout logs out from a token
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
Encryption C_Encryptlnit initializes an encryption operation
and C_Encrypt encrypts single-part data
decryption C_EncryptUpdate continues a multiple-part encryption operation
C_EncryptFinal finishes a multiple-part encryption operation
C_DecryptInit initializes a decryption operation
C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption operation
C_DecryptFinal finishes a multiple-part decryption operation
Message C_DigestInit initializes a message-digesting operation
digesting C_Digest digests single-part data

C_DigestUpdate

continues a multiple-part digesting operation

C_DigestFinal

finishes a multiple-part digesting operation

Copyright © 1994-5 RSA Laboratories

Page 16

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Signature C_SignInit initializes a signature operation
and C_Sign signs single-part data
verification C_SignUpdate continues a multiple-part signature operation
C_SignFinal finishes a multiple-part signature operation
C_SignRecoverInit initializes a signature operation, where the data
can be recovered from the signature
C_SignRecover signs single-part data, where the data can be
recovered from the signature
C_Verifylnit initializes a verification operation
C_Verity verifies a signature on single-part data
C_VerifyUpdate continues a multiple-part verification operation
C_VerifyFinal finishes a multiple-part verification operation
C_VerifyRecoverlnit initializes a verification operation where the data is
recovered from the signature
C_VerifyRecover verifies a signature on single-part data, where the
data is recovered from the signature
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/ private-key pair

C_WrapKey

wraps (encrypts) a key

C_UnwrapKey

unwraps (decrypts) a key

C_DeriveKey

derives a key from a base key

Random number

C_SeedRandom

mixes in additional seed material to the random
number generator

generation C_GenerateRandom generates random data
Function C_GetFunctionStatus obtains updated status of a function running in
management parallel with the application
C_CancelFunction cancels a function running in parallel with the
application
Callbacks Notify processes notifications from Cryptoki

Functions in the “Encryption and decryption,” “Message digesting,” “Signature and verification,” and
“Key management” categories may run in parallel with the application if the token has the capability and

the session is opened in this mode.

Copyright © 1994-5 RSA Laboratories

SECURITY CONSIDERATIONS Page 17

6. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer or
communications system. Two of the particular features of the interface that facilitate such security are the
following:

1. Access to private objects on the token, and possibly to cryptographic functions, requires a PIN. Thus
possessing the cryptographic device that implements the token is not sufficient; the PIN is also
needed.

2. Maximum protection is given to objects marked “sensitive” —they cannot be read from the token, nor
exported through the cryptographic functions (though they can be used as keys).

It is expected that access to private and sensitive object by means other than Cryptoki (e.g., other
programming interfaces, or reverse engineering of the device) would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to store private and
sensitive objects, the device may encrypt the objects with a master key which is perhaps derived from the
user’s PIN. The particular mechanism for protecting private objects is left to the device implementation,
however.

Based on these features it should be possible to design applications in such a way that the token can
provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one component in a system.
While the token itself may be secure, one must also consider the security of the operating system by which
the application interfaces to it, especially since the PIN is passed through the operating system. It is easy
for a rogue application on the operating system to obtain the PIN; it is also possible that other devices
monitoring communication lines to the cryptographic device can obtain the PIN. Rogue applications and
devices may also change the commands sent to the cryptographic device to obtain other services than
what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well play a role here,
for instance if a token is involved in the “booting up” of the system.

It is important to note that none of the attacks just described can compromise objects marked “sensitive,”
since the “sensitive” attribute cannot be changed once set. However, during key generation, before a
private key is marked “sensitive,” a copy of the private key could be obtained by the rogue application, so
it is important to generate keys in a more trusted environment, than the environment in which one
performs normal operations.

An application may also want to be sure that the token is “legitimate” in some sense (for a variety of
reasons, including export restrictions). This is outside the scope of the present standard, but it can be
achieved by distributing the token with a built-in, certified public/private-key pair, by which the token
can prove its identity. The certificate would be signed by an authority (presumably the one indicating that
the token is “legitimate”), whose public key is known to the application. The application would verify the
certificate, and challenge the token to prove its identity by signing a time-varying message with its built-
in private key.

Copyright © 1994-5 RSA Laboratories

Page 18 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Once a normal user has been authenticated to the token, Cryptoki does not restrict which cryptographic
operations the user may perform. The user may perform any operation supported by the token.

Copyright © 1994-5 RSA Laboratories

DATA TYPES Page 19

7. Data types

Cryptoki's data types are described in following subsections, organized into categories, based on the kind
of information they represent.

7.1 General information

Cryptoki represents general information with the following types.

¢ CK_VERSION

CK_VERSION is a structure that describes the version of Cryptoki. It is defined as follows:

typedef struct CK_VERSI ON {
CK_BYTE mmgj or;
CK_BYTE mi nor;

} CK_VERSI ON;

The fields of the structure have the following meanings:
major major version number, the integer portion of the version
minor minor version number, the hundredths portion of the version

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10. Minor revisions of the
standard are always upwardly compatible within the same major version number.

¢ CK_INFO

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK_ I NFO {
CK_VERSI ON ver si on;
CK_CHAR manuf acturerl D[32];
CK_FLAGS fl ags;

} CK_INFG

The fields of the structure have the following meanings:

version Cryptoki interface version number, for compatibility with future
revisions of this interface

manufacturerlD ID of the Cryptoki library manufacturer; must be padded with the
blank character (* ‘)

flags bit flags reserved for future versions; must be zero for this version

Copyright © 1994-5 RSA Laboratories

Page 20 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK_INFO_PTR

CK_INFO_PTR points to a CK_INFO structure. It is implementation dependent.

¢ CK_NOTIFICATION

CK_NOTIFICATION enumerates the types of notifications that Cryptoki provides to an application. Itis
defined as follows:

t ypedef enum CK_NOTI FI CATI ON {
CKN_SURRENDER,
CKN_COWPLETE,

CKN_DEVI CE_REMOVED

} CK_NOTI FI CATI ON;

The notifications have the following meanings:
CKN_SURRENDER Cryptoki is surrendering the execution of a function so that the
application may perform other operations. After performing such

operations, the application should indicate to Cryptoki whether to
continue or cancel the function.

CKN_COMPLETE A function running in parallel has completed.

CKN_DEVICE_REMOVED Cryptoki detected that the device underlying the token has been
removed from the reader (assuming the token has the capability)

7.2 Slot and token types

Cryptoki represents slot and token information with the following types.

¢ CK_SLOT_ID

CK_SLOT_ID is a Cryptoki assigned value that identifies a slot. It is defined as follows:
typedef CK ULONG CK_SLOT_I D

A CK_SLOT_ID is returned by C_GetSlotList.

¢ CK_SLOT_ID_PTR

CK_SLOT_ID_PTR points to a CK_SLOT_ID. It is implementation dependent.

Copyright © 1994-5 RSA Laboratories

DATA TYPES

¢ CK_SLOT_INFO

Page 21

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT_ | NFO {

CK_CHAR sl ot Descri ption[64];
CK_CHAR manuf acturerl D] 32];

CK_FLAGS fl ags;
} CK_SLOT | NFQ

The fields of the structure have the following meanings:

slotDescription

manufacturerlD

flags

character-string description of the slot (the type of interface between
the device and the computer); must be padded with the blank

character (*)

ID of the “slot” manufacturer; must be padded with the blank

character (*)

bits flags that provide capabilities of the slot.

The following table defines the flags.

Table 7-1, Slot Information Flags

Bit Flag Mask | Meaning

CKF_TOKEN_PRESENT 0x0001 | TRUE if a token is present in the slot (e.g., a device is
in the reader)

CKF_REMOVABLE_DEVICE | 0x0002 | TRUE if the reader supports removable devices

CKF_HW_SLOT 0x0004 | TRUE if the slot is a hardware slot as opposed to a

software slot implementing a “soft token”

¢ CK_SLOT_INFO_PTR

CK_SLOT_INFO_PTR points to a CK_SLOT_INFO structure. It is implementation dependent.

¢ CK_TOKEN_INFO

CK_TOKEN_INFO provides information about a token. It is defined as follows:
typedef struct CK TOKEN I NFO {

CK_CHAR | abel [32];

CK_CHAR manuf acturerl D] 32];

CK_CHAR nodel [16] ;
CK_CHAR seri al Nunber[16];

CK_FLAGS fl ags;

CK_USHORT usMaxSessi onCount ;

CK_USHORT usSessi onCount ;

CK_USHORT usMaxRwSessi onCount ;
CK_USHORT usRwSessi onCount ;
CK_USHORT usMaxPi nLen;

Copyright © 1994-5 RSA Laboratories

Page 22

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_USHORT usM nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePri vat eMenory;

} CK_TOKEN_| NFO,

The fields of the structure have the following meanings:

label

manufacturerlD

model

serial Number

flags

usMaxSessionCount

usSessionCount

usMaxRwSessionCount

usRwSessionCount

usMaxPinLen
usMinPinLen

ulTotal PublicMemory
ulFreePublicMemory
ulTotal PrivateMemory

ulFreePrivateMemory

application defined label, assigned during token initialization; must
be padded with the blank character (*)

ID of the device manufacturer; must be padded with the blank
character (*)

model of the device; must be padded with the blank character (")

character-string serial number of the device; must be padded with
the blank character (" *)

bit flags indicating capabilities and status of the device as defined
below

maximum number of sessions that can be opened with the token at
one time

number of sessions that are currently open with the token

maximum number of read/write sessions that can be opened with
the token at one time

number of read/write sessions that are currently open with the
token

maximum length in bytes of the PIN

minimum length in bytes of the PIN

the total amount of memory in bytes occupied by public objects
the amount of free (unused) memory in bytes for public objects
the total amount of memory in bytes occupied by private objects

the amount of free (unused) memory in bytes for private objects

Copyright © 1994-5 RSA Laboratories

DATA TYPES

The flags parameter is defined as follows:

Table 7-2, Token Information Flags

Page 23

Bit Flag Mask | Meaning

CKF_RNG 0x0001 | TRUE if the token has its own random number
generator

CKF_WRITE_PROTECTED 0x0002 | TRUE if the token is write-protected

CKF_LOGIN_REQUIRED 0x0004 | TRUE if a user must be logged in to perform
cryptographic functions

CKF_USER_PIN_INITIALIZED | 0x0008 | TRUE if the normal user’s PIN has been initialized

CKF_EXCLUSIVE_EXISTS 0x0010 | TRUE if an exclusive session exists

¢ CK_TOKEN_INFO_PTR

CK_TOKEN_INFO_PTR points to a CK_TOKEN_INFO structure. It is implementation dependent.

7.3 Session types

Cryptoki represents session information with the following types.

¢ CK_SESSION_HANDLE

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as follows:
t ypedef CK_ULONG CK_SESSI ON_HANDLE;

¢ CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE_PTR points to a CK_SESSION_HANDLE. It is implementation dependent.

Copyright © 1994-5 RSA Laboratories

Page 24 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK_USER_TYPE

CK_USER_TYPE enumerates the types of Cryptoki users described in Section 5.4. It is defined as
follows:

t ypedef enum CK _USER TYPE {
CKU_SO, /* Security O ficer */
CKU USER /* Nornmal user */

} CK_USER _TYPE;

¢ CK_STATE

CK_STATE enumerates the session states decribed in Sections 5.5.1 and 5.5.2. It is defined as follows:

t ypedef enum CK_STATE {
CKS_RW PUBLI C_SESSI ON,
CKS_RW USER_FUNCTI ONS,
CKS_RO _PUBLI C_SESSI ON,
CKS_RO_SO_FUNCTI ONS,
CKS_RO_USER_FUNCTI ONS

} CK_STATE;

¢ CK_SESSION_INFO

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK SESSI ON | NFO {
CK SLOT_ID slotlD
CK_STATE st at e;
CK_FLAGS fl ags;
CK_USHORT usDevi ceError;
} CK_SESSI ON_I NFO,

The fields of the structure have the following meanings:
slotID ID of the slot that interfaces with the token

state the state of the session
flags bit flags that define the type of session; the flags are defined below

usDeviceError an error code defined by the cryptographic device. Used for errors
not covered by Cryptoki.

The flags are defined in the following table.

Copyright © 1994-5 RSA Laboratories

DATA TYPES Page 25

Table 7-3, Session Information Flags

Bit Flag Mask | Meaning

CKF_EXCLUSIVE_SESSION | 0x0001 | TRUE if the session is exclusive; FALSE if the session
is shared

CKF_RW_SESSION 0x0002 | TRUE if the session is read/ write; FALSE if the
session is read-only

CKF_SERIAL_SESSION 0x0004 | TRUE if cryptographic functions are performed in
serial with the application; FALSE if the functions may
be performed in parallel with the application

¢ CK_SESSION_INFO_PTR

CK_SESSION_INFO_PTR points to a CK_SESSION_INFO structure. It is implementation dependent.

7.4 Object types

Cryptoki represents object information with the following types.

¢ CK_OBJECT_HANDLE

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:
t ypedef CK_ULONG CK_OBJECT_HANDLE;

The handle is assigned by Cryptoki when an object is created. The handle for an object is unique among
all objects in the token at a given time, and remains constant until the object is destroyed.

Cryptoki considers an object handle valid if and only if the object exists and is accessible to the
application. In particular, object handles for private objects are valid if only if a user is logged in.

¢ CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE_PTR points to a CK_OBJECT_HANDLE. It is implementation dependent.

¢ CK_OBJECT_CLASS

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki recognizes. It
is defined as follows:

t ypedef CK_USHORT CK_OBJECT CLASS;

For this version of Cryptoki, the following classed of objects are defined:

#defi ne CKO_DATA 0x0000
#defi ne CKO_CERTI FI CATE 0x0001
#defi ne CKO_PUBLI C_KEY 0x0002

Copyright © 1994-5 RSA Laboratories

Page 26 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#def i ne CKO_PRI VATE_KEY 0x0003
#def i ne CKO_SECRET_KEY 0x0004
#def i ne CKO_VENDOR_DEFI NED 0x8000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their object classes through the PKCS process.

¢ CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS_PTR points to a CK_OBJECT_CLASS structure. It is implementation dependent.

¢ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:
t ypedef CK_USHORT CK_KEY_TYPE;

For this version of Cryptoki, the following key types are defined:

#def i ne CKK_RSA 0x0000
#def i ne CKK_DSA 0x0001
#def i ne CKK_DH 0x0002
#defi ne CKK_GENERI C_SECRET 0x0010
#def i ne CKK_RC2 0x0011
#def i ne CKK_RC4 0x0012
#def i ne CKK_DES 0x0013
#def i ne CKK_DES2 0x0014
#defi ne CKK_DES3 0x0015

#defi ne CKK_VENDOR_DEFI NED 0x8000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their key types through the PKCS process.

¢ CK_CERTIFICATE _TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:
t ypedef CK USHORT CK_CERTI FI CATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:
#define CKC_X_509 0x0000
#defi ne CKC_VENDOR_DEFI NED 0x8000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their certificate types through the PKCS process.

¢ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:

Copyright © 1994-5 RSA Laboratories

DATA TYPES

typedef CK_USHORT CK_ATTRI BUTE_TYPE;

Page 27

For this version of Cryptoki, the following attribute types are defined:

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

CKA_CLASS
CKA_TOKEN

CKA_PRI VATE
CKA_LABEL

CKA_APPLI CATI ON
CKA_VALUE

CKA_CERTI FI CATE_TYPE
CKA_I SSUER

CKA_SERI AL_NUMBER
CKA_KEY_TYPE
CKA_SUBJECT

CKA_ID

CKA_SENSI TI VE
CKA_ENCRYPT
CKA_DECRYPT
CKA_WRAP
CKA_UNVRAP

CKA_SI GN

CKA_SI GN_RECOVER
CKA_VER! FY

CKA_VERI FY_RECOVER
CKA_DERI VE
CKA_MODULUS
CKA_MODULUS_BI TS
CKA_PUBLI C_EXPONENT
CKA_PRI VATE_EXPONENT
CKA_PRI VE_1

CKA_PRI VE_2
CKA_EXPONENT _1
CKA_EXPONENT_2
CKA_COEFFI Cl ENT
CKA_PRI MVE
CKA_SUBPRI VE
CKA_BASE
CKA_VALUE BI TS
CKA_VALUE_LEN
CKA_VENDOR _DEFI NED

0x0000
0x0001
0x0002
0x0003
0x0010
0x0011
0x0080
0x0081
0x0082
0x0100
0x0101
0x0102
0x0103
0x0104
0x0105
0x0106
0x0107
0x0108
0x0109
0x010A
0x010B
0x010C
0x0120
0x0121
0x0122
0x0123
0x0124
0x0125
0x0126
0x0127
0x0128
0x0130
0x0131
0x0132
0x0160
0x0161
0x8000

Section 8 defines the attributes for each object class. Attribute types CKA_VENDOR_DEFINED and
above are permanently reserved for token vendors. For interoperability, vendors should register their
attribute types through the PKCS process.

¢ CK_ATTRIBUTE

CK_ATTRIBUTE is a structure that includes the type, length and value of an attribute. It is defined as

follows:

t ypedef struct CK ATTRI BUTE {

CK_ATTRI BUTE_TYPE t ype
CK_ VO D _PTR pVal ue;
CK_USHORT usVal uelLen

} CK_ATTRI BUTE;

Copyright © 1994-5 RSA Laboratories

Page 28 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The fields of the structure have the following meanings:
type the attribute type
pValue pointer to the value of the attribute
usValueLen length in bytes of the value
If an attribute has no value, then pValue = NULL_PTR, and usValueLen = 0. An array of CK_ATTRIBUTEs
is called a “template” and is used for creating, manipulating and searching for objects. Note that pValue is

an “void” pointer, facilitating the passing of arbitrary values. Both the application and Cryptoki library
must ensure that the pointer can be safely cast to the expected type (e.g., without word-alignment errors).

¢ CK_ATTRIBUTE_PTR

CK_ATTRIBUTE_PTR points to a CK_ATTRIBUTE structure. It is implementation dependent.

¢ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK DATE{
CK_CHAR year[4];
CK_CHAR nont h[2] ;
CK_CHAR day][2];

} CK_DATE;

The fields of the structure have the following meanings:
year the year (“1900” - “9999”)
month the month (“01” - “12”)
day the day (“01” - “31”)

The fields hold numeric characters from the character set in Table 4-3, not the literal byte values.

7.5 Mechanisms
A mechanism specifies how a certain process is to be performed. Cryptoki supports the following types

for describing mechanisms. Section 10 provides a complete description of the mechanisms and their
relation to the functions.

¢ CK_MECHANISM_TYPE

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:
t ypedef CK_USHORT CK_MECHANI SM TYPE;

Copyright © 1994-5 RSA Laboratories

DATA TYPES Page 29

For this version of Cryptoki, the following mechanism types are defined:
#defi ne CKM_RSA_PKCS_KEY_PAI R_GEN 0x0000

#def i ne CKM RSA PKCS 0x0001
#defi ne CKM_RSA 9796 0x0002
#defi ne CMK_RSA X 509 0x0003
#defi ne CKM_DSA KEY_PAlI R_GEN 0x0010
#def i ne CKM DSA 0x0011
#defi ne CKM DH _PKCS_KEY_PAIR_GEN 0x0020
#defi ne CKM_DH_PKCS_DERI VE 0x0021
#defi ne CKM_RC2_KEY_GEN 0x0100
#defi ne CKM RC2_ECB 0x0101
#defi ne CKM_RC2_CBC 0x0102
#def i ne CKM RC2_MAC 0x0103
#defi ne CKM_RC4_KEY_GEN 0x0110
#def i ne CKM RC4 0x0111
#defi ne CKM DES_KEY_GEN 0x0120
#def i ne CKM DES ECB 0x0121
#defi ne CKM_DES_CBC 0x0122
#def i ne CKM DES MAC 0x0123
#defi ne CKM DES2_KEY_GEN 0x0130
#defi ne CKM DES3_KEY_GEN 0x0131
#defi ne CKM _DES3_ECB 0x0132
#defi ne CKM_DES3_CBC 0x0133
#def i ne CKM DES3_MAC 0x0134
#def i ne CKM _MD2 0x0200
#def i ne CKM_MD5 0x0210
#defi ne CKM SHA 1 0x0220
#def i ne CKM_VENDCOR_DEFI NED 0x8000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their mechanism types through the PKCS process.

¢ CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE_PTR points to a CK_MECHANISM_TYPE structure. It is implementation
dependent.

¢ CK_MECHANISM

CK_MECHANISM is a structure that specifies a particular mechanism. It is defined as follows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK VO D_PTR pPar anet er ;
CK_USHORT usPar anet er Len;

} CK_MECHANI SM

The fields of the structure have the following meanings:

mechanism the type of mechanism
pParameter pointer to the parameter if required by the mechanism
usParameterLen length in bytes of the parameter

Copyright © 1994-5 RSA Laboratories

Page 30 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Note that pParameter is an “void” pointer, facilitating the passing of arbitrary values. Both the application
and Cryptoki library must ensure that the pointer can be safely cast to the expected type (e.g., without
word-alignment errors).

¢ CK_MECHANISM_PTR

CK_MECHANISM_PTR points to a CK_MECHANISM structure. It is implementation dependent.

¢ CK_MECHANISM_INFO

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism. It is
defined as follows:

typedef struct CK_MECHANI SM | NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM_| NFO,

The fields of the structure have the following meanings:
ulMinKeySize the minimum size of the key for the mechanism
ulMaxKeySize the maximum size of the key for the mechanism
flags bit flags specifying mechanism capabilities
The flags are defined as follows.

Table 7-4, Mechanism Information FLags

Bit Flag Mask Meaning

CKF_HW 0x0001 TRUE if the mechanism is performed by the device; FALSE if
the mechanism is performed in software

CKF_EXTENSION | 0x8000 TRUE if an extension to the flags; FALSE if no extensions.
Must be FALSE for this version.

¢ CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO_PTR points to a CK_MECHANISM_INFO structure. It is implementation
dependent.

¢ CK_RC2_CBC_PARAMS

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC mechanism.
It is defined as follows:

Copyright © 1994-5 RSA Laboratories

DATA TYPES

typedef struct CK RC2_CBC PARAMS {
CK_USHORT usEffectiveBits;
CK BYTE iv][8];

} CK_RC2_CBCG;

The fields of the structure have the following meanings:

usEffectiveBits
between 1 and 1024

Page 31

the effective number of bits in the RC2 search space, must be

iv the initialization vector for cipher block chaining mode

7.6 Functions

Cryptoki represents information about functions with the following data types.

¢ CK_ENTRY

CK_ENTRY is an entry (or function) into Cryptoki. It is implementation dependent.

¢ CK_RV

CK_RYV is a value that identifies the return value of a Cryptoki function. It is defined as follows:
t ypedef CK USHORT CK RV,

For this version of Cryptoki, the following return values are defined:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKR_OK
CKR_CANCEL

CKR_HOST_MVEMORY

CKR_SLOT_I D_| NVALI D
CKR_FLAGS_| NVALI D

CKR_ATTRI BUTE_READ ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_| NVALI D
CKR_ATTRI BUTE_VALUE_| NVALI D
CKR_DATA | NVALI D
CKR_DATA_LEN_RANGE

CKR_DEVI CE_ERROR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED_DATA_| NVALI D
CKR_ENCRYPTED_DATA_LEN_RANGE
CKR_FUNCTI ON_CANCELED
CKR_FUNCTI ON_NOT_PARAL LEL
CKR_FUNCTI ON_PARALLEL
CKR_KEY_HANDLE_| NVALI D
CKR_KEY_SENSI TI VE

CKR_KEY_S| ZE_RANGE
CKR_KEY_TYPE_| NCONSI STENT
CKR_MECHANI SM | NVALI D
CKR_MECHANI SM_PARAM | NVALI D
CKR_OBJECT _CLASS_| NCONSI STENT

0x0000
0x0001
0x0002
0x0003
0x0004
0x0010
0x0011
0x0012
0x0013
0x0020
0x0021
0x0030
0x0031
0x0032
0x0040
0x0041
0x0050
0x0051
0x0052
0x0060
0x0061
0x0062
0x0063
0x0070
0x0071
0x0080

Copyright © 1994-5 RSA Laboratories

Page 32 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#def i ne CKR_OBJECT_CLASS | NVALI D 0x0081
#defi ne CKR_OBJECT_HANDLE | NVALI D 0x0082
#def i ne CKR_OPERATI ON_ACTI VE 0x0090
#def i ne CKR_OPERATI ON_NOT_| NI TI ALl ZED 0x0091
#defi ne CKR_PI N_| NCORRECT 0x00A0
#define CKR_PI N_| NVALI D 0x00AL
#defi ne CKR_PI N_LEN_RANGE 0x00A2
#def i ne CKR_SESSI ON_CLOSED 0x00B0
#def i ne CKR_SESSI ON_COUNT 0x00B1
#def i ne CKR_SESSI ON_EXCLUSI VE_EXI STS 0x00B2
#defi ne CKR_SESSI ON_HANDLE_| NVALI D 0x00B3
#defi ne CKR_SESSI ON_PARALLEL_NOT_SUPPORTED 0x00B4
#def i ne CKR_SESSI ON_READ ONLY 0x00B5
#defi ne CKR_SI GNATURE_| NVALI D 0x00C0
#defi ne CKR_S| GNATURE_LEN RANGE 0x00CL
#def i ne CKR_TEMPLATE_I NCOMPLETE 0x00D0
#defi ne CKR_TEMPLATE_| NCONSI STENT 0x00D1
#def i ne CKR_TOKEN_NOT_PRESENT 0x00EQ
#def i ne CKR_TOKEN_NOT_RECOGNI ZED 0x00E1L
#def i ne CKR_TOKEN_WRI TE_PROTECTED 0Xx00E2
#def i ne CKR_UNWRAPPI NG_KEY_HANDLE_| NVALI D 0x00F0
#def i ne CKR_UNWRAPPI NG_KEY_SI ZE_RANGE 0x00F1
#defi ne CKR_UNWRAPPI NG_KEY_TYPE_| NCONSI STENT Ox00F2
#def i ne CKR_USER ALREADY_ LOGGED_I| N 0x0100
#defi ne CKR_USER_NOT_LOGGED | N 0x0101
#defi ne CKR_USER_PI N_NOT_| NI TI ALI ZED 0x0102
#defi ne CKR_USER_TYPE_| NVALI D 0x0103
#defi ne CKR_WRAPPED_KEY_| NVALI D 0x0110
#def i ne CKR_WRAPPED_KEY LEN_RANGE 0x0112
#defi ne CKR_WRAPPI NG_KEY_HANDLE_| NVALI D 0x0113
#def i ne CKR_WRAPPI NG_KEY_S| ZE_RANGE 0x0114
#defi ne CKR_WRAPPI NG_KEY_TYPE_| NCONSI STENT ~ 0x0115
#def i ne CKR_VENDOR_DEFI NED 0x8000

Section 9 defines the meanings of each CK_RV value. Return values CKR_VENDOR_DEFINED and
above are permanently reserved for token vendors. For interoperability, vendors should register their
return through the PKCS process.

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 33

8. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type.
Objects consist of a set of attributes, each of which has a given value. The following figure illustrates the
high-level hierarchy of the Cryptoki objects and the attributes they support.

Object

Class
Token
Private
Label

Object Type

Data

Application
Value

Certificate

Subject
ID

Key

Value

Figure 8-1, Cryptoki Object Hierarchy

The following figure illustrates the details of the key objects.

Copyright © 1994-5 RSA Laboratories

Page 34 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Key

KeyType
ID

Start Date
End Date
Derive
Public Key Private Key Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
Unwrap Wrap
Unwrap

Public Key Type Secret Key Type

RSA DSA Diffie-Hellman
Generic RC2 RC4 DES | |DES2| | DES3
magu:us Bit grlg'lev ;nme Value Value Value Value | | Value | | Value
odulus Bits ubprime ase Value Len Value Len| | Value Len
Public Exponent| Base Value
Value
Private Key Type
RSA DSA Diffie-Hellman
Modulus Prime Prime
Public Exponent Subprime Base
Private Exponent Base Value
Prime 1 Value
Prime 2
Exponent 1
Exponent 2
Coefficient

Figure 8-2, Key Object Detail

Cryptoki provides functions for creating and destroying objects, and for obtaining and modifying the
values of attributes. Some of the cryptographic functions (e.g., key generation) also create objects to hold
their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains required attributes, and
the attributes are always consistent with one another, from the time the object is created. (This is in
contrast with object-based paradigms where an object has no attributes other than perhaps a class when it
is created, and is “uninitialized” for some time. In Cryptoki, objects are always initialized.)

To ensure that the required attributes are defined, the functions that create objects take a “template” as an
argument, where the template specifies initial attribute values. The template can also provide input to
cryptographic functions that create objects (e.g., it can specify a key size). Cryptographic functions that
create objects may also contribute some of the initial attribute values (see Section 8 for details). In any
case, all the attributes supported by an object class that do not have default values must be specified
when an object is created, either in the template, or by the function.

Tables in this section define attributes in terms of the data type of the attribute value and the meaning of
the attribute, which may include a default initial value. Some of the data types are defined explicitly by
Cryptoki (e.g., CK_OBJECT_CLASS). Attributes may also take the following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTEs representing an integer of arbitrary size, most

significant byte first, without a sign bit (e.g., the integer 32768 is
represented as the byte string 0x80 0x00)

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 35

Local string a string of CK_CHARs (see Table 4-3)

8.1 Common attributes

The following table defines the attributes common to all objects.

Table 8-1, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS | Object class (type)

CKA_TOKEN CK_BBOOL TRUE if object is a token object (vs. session object)
(default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object (vs. public
object) (default FALSE)

CKA_LABEL Local string Description of the object (default empty)

IMust be specified when object is created

Only the CKA_LABEL attribute may be modified after the object is created. (The CKA_TOKEN and
CKA_PRIVATE attributes can be changed in the process of copying an object.)

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user has been
authenticated to the token.

The CKA_LABEL attribute is intended to assist users in browsing.
Additional attributes for each object type are described in the following sections. Note that only

attributes visible to applications are listed. Objects may well carry other information, useful to a token,
which is not visible to the application.

8.2 Data objects
Data objects (object class CKO_DATA) hold information defined by an application. Other than providing
access to a data objects, Cryptoki does not attach any special meaning to a data object. The following table

lists the attributes supported by data objects, in addition to the common attributes listed in Table 8-1.

Table 8-2, Data Object Attributes

Attribute Data type Meaning

CKA_APPLICATION | Local string | Description of the application that manages the object
(default empty)

CKA_VALUE Byte array Value of the object (default empty)

Both of these attributes may be modified after the object is created.
The CKA_APPLICATION attribute provides a means for applications to distinguish among the objects
they manage. Cryptoki does not provide a means of ensuring that only a particular application has access

to a data object, however.

The following is a sample template for creating a data object:

Copyright © 1994-5 RSA Laboratories

Page 36 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass = CKO _DATA;
CK CHAR | abel[] = “A data object”;
CK _CHAR application[] = “An application”;
CK BYTE data[] = “Sanple data”;
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, data, sizeof(data)}
1

8.3 Certificate objects
Certificate objects (object class CKO_CERTIFICATE) hold public-key certificates. Other than providing
access to a certificate objects, Cryptoki does not attach any special meaning to certificates. The following

table defines the common certificate object attributes, in addition to the common attributes listed in Table
8-1.

Table 8-3, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE! | CK_CERTIFICATE_TYPE | Type of certificate

IMust be specified when the object is created.

8.3.1 X.509 certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 certificates. The following table defines
the X.509 certificate object attributes, in addition to the common attributes listed in Table 8-1 and Table 8-
3.

Table 8-4, X.509 Certificate Object Attributes

Attribute Data type | Meaning

CKA_SUBJECT!? Byte array | DER encoding of the certificate subject name

CKA_ID Byte array | Key identifier for public/private key pair
(default empty)

CKA_ISSUER Byte array | DER encoding of the certificate issuer name
(default empty)

CKA_SERIAL_NUMBER | Byte array | DER encoding of the certificate serial number
(default empty)

CKA_VALUE! Byte array | BER encoding of the certificate

IMust be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified after the
object is created.

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 37

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key pairs
held by the same subject (whether stored in the same token or not). (Since the keys are distinguished by
subject name as well as identifier, it is possible that keys for different subjects may have the same
CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a certificate
will be the same as those for the corresponding public and private keys (though it is not required that all
be stored in the same token). But Cryptoki does not enforce this association, or even the uniqueness of the
key identifier for a given subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7 and
Privacy Enhanced Mail (RFC1421). Note that with the proposed version 3 extensions to X.509 certificates,
the key identifier may be carried in the certificate. It is intended that the CKA_ID value be identical to the
key identifier in such a certificate extension.

The following is a sample template for creating a certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 509;
CK CHAR |l abel[] = “A certificate object”;
CK BYTE subject[] =1{...};
CK_BYTE id[] = {123};
CK BYTE certificate[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)},

8.4 Key objects

Key objects hold encryption keys, which can be public keys, private keys, or secret keys. The following
table defines the attributes common to public key, private key and secret key classes, in addition to the
common attributes listed in Table 8-1.

Table 8-5, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE! CK_KEY_TYPE | Type of key

CKA_ID Byte array Key identifier for key (default empty)

CKA_START_DATE CK_DATE Start date for the key (default empty)

CKA_END_DATE CK_DATE End date for the key (default empty)

CKA_DERIVE CK_BBOOL TRUE if key supports key derivation (default
FALSE)

IMust be specified when the object is created.

All of these attributes except CKA_KEY_TYPE may be modified after the object is created.

Copyright © 1994-5 RSA Laboratories

Page 38 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Note that the start and end dates are for reference only; Cryptoki does not attach any special meaning to
them. In particular, it does not restrict usage of a key according to the dates; this is up to the application.

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and private keys,
this is for multiple keys held by the same subject; the key identifier for a public key and its corresponding
private key should be the same. The key identifier should also be the same as for the corresponding
certificate. Cryptoki does not enforce this association, however. (See Section 8.3 for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

8.5 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki
recognizes three types of public keys: RSA, DSA, and Diffie-Hellman. The following table defines the
attributes common to all public keys, in addition to the common attributes listed in Table 8-1 and Table 8-
5.

Table 8-6, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECT Byte array DER encoding of the key subject name
CKA_ENCRYPT CK_BBOOL | TRUE if key supports encryption!
CKA_VERIFY CK_BBOOL | TRUE if key supports verification'

CKA_VERIFY_RECOVER | CK_BBOOL | TRUE if key supports verification where the data
is recovered from the signature!

CKA_WRAP CK_BBOOL | TRUE if key supports wrapping!

1 Default is up to the token, based on what mechanisms it supports; the application can specify an explicit
value in the template, and Cryptoki may reject it if no compatible mechanism is supported.

All of these attributes may be modified after the object is created.

It is intended in the interests of interoperability that the subject name and key identifier for a public key
will be the same as those for the corresponding certificate and private key. (However, it is not required
that the certificate and private key also be stored on the token.)

8.5.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public keys.

The following table defines the RSA public key object attributes, in addition to the common attributes
listed in Table 8-1, Table 8-5 and Table 8-6.

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 39

Table 8-7, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS! Big integer Modulus n
CKA_MODULUS_BITS? CK_USHORT Length in bits of modulus n
CKA_PUBLIC_EXPONENT! | Big integer Public exponent e

IMust be specified when the object is created. 2Specify this attribute only in a template for generating a
key of this type.

None of these attributes may be modified after the object is created.

Depending on the token, there may be limits on the length of key components. See PKCS #1 for more
information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK CHAR | abel [] = “An RSA public key object”;
CK_BYTE nodul us[] = {...};
CK _BYTE exponent[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_WRAP, &true, 1},
{ CKA_ENCRYPT, &true, 1},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, si zeof (exponent)},

8.5.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public keys.
The following table defines the DSA public key object attributes, in addition to the common attributes
listed in Table 8-1, Table 8-5 and Table 8-6.

Table 8-8, DSA Public Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME! Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME! | Biginteger | Subprime g (160 bits)

CKA_BASE! Big integer | Base g

CKA_VALUE! Big integer | Public value y

IMust be specified when the object is created.

None of these attributes may be modified after the object is created.

Copyright © 1994-5 RSA Laboratories

Page 40 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA
parameters.” See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating an DSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK CHAR | abel [] = “A DSA public key object”;
CK BYTE prinme[] ={...};
CK BYTE subprine[] ={...};
CK _BYTE base[] = {...
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_SUBPRI ME, subprinme, sizeof (subprime)},
{CKA BASE, base, sizeof(base)},

8.5.3 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold Diffie-
Hellman public keys. The following table defines the RSA public key object attributes, in addition to the
common attributes listed in Table 8-1, Table 8-5 and Table 8-6.

Table 8-9, Diffie-Hellman Public Key Object Attributes

Attribute Data type | Meaning
CKA_PRIME! Big integer | Primep
CKA_BASE! Big integer | Base g
CKA_VALUE! | Biginteger | Public valuey

IMust be specified when object is created.
None of these attributes may be modified after the object is created.

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman parameters.”
Depending on the token, there may be limits on the length of the key components. See PKCS #3 for more
information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;

CK_KEY_TYPE keyType = CKK_DH;

CK CHAR label[] = “A Diffie-Hell man public key object”;
CK_BYTE prime[] = {...};

CK_BYTE subprime[] = ..}
CK_BYTE base[] = {...

CK BBOOL true = TRUE;

A

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 41

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_SUBPRI ME, subprinme, sizeof (subprime)},
{CKA BASE, base, sizeof(base)},

8.6 Private key objects

Private key objects (object class CKO_PUBLIC_KEY) hold private keys. This version of Cryptoki
recognizes three types of private key: RSA, DSA, and Diffie-Hellman. The following table defines the
attributes common to all private keys, in addition to the common attributes listed in Table 8-1 and Table
8-5.

Table 8-10, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT Byte array DER encoding of certificate subject name (default
empty)

CKA_SENSITIVE CK_BBOOL TRUE if object is sensitive?

CKA_DECRYPT CK_BBOOL TRUE if key supports decryption!

CKA_SIGN CK_BBOOL TRUE if key supports signatures where the

signature is an appendix to the data’

CKA_SIGN_RECOVER | CK_BBOOL TRUE if key supports signatures where the data
can be recovered from the signature!

CKA_UNWRAP CK_BBOOL TRUE if key supports unwrapping!

1 Default is up to the token, based on what mechanisms it supports; the application can specify an explicit
value in the template, and Cryptoki may reject it if no compatible mechanism is supported.

All of these attributes may be modified after the object is created. However, the CKA_SENSITIVE
attribute may only be set to TRUE.

It is intended in the interests of interoperability that the subject name and key identifier for a private key
will be the same as those for the corresponding certificate and public key. (However, it is not required
that the certificate and public key also be stored on the token.)

If the CKA_SENSITIVE attribute is TRUE, then certain attributes of the private key cannot be revealed
outside the token. Also, the private key cannot be wrapped if the CKA_SENSITIVE attribute is TRUE,
since it could potentially be recovered outside the token if the unwrapping key is known outside. The
attribute table for the each type of private key specifies which attributes are not revealed.

8.6.1 RSA private key objects
RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA private keys.

The following table defines the RSA private key object attributes, in addition to the common attributes
listed in Table 8-1, Table 8-5 and Table 8-10.

Copyright © 1994-5 RSA Laboratories

Page 42 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 8-11, RSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_MODULUS! Big integer | Modulus n
CKA_PUBLIC_EXPONENT! Big integer | Public exponente
CKA_PRIVATE_EXPONENT"2 | Biginteger | Private exponentd
CKA_PRIME_112 Big integer | Primep

CKA_PRIME_212 Big integer | Prime ¢
CKA_EXPONENT_112 Big integer | Private exponent d modulo p-1
CKA_EXPONENT_212 Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT?"2 Big integer | CRT coefficient g1 mod p

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is

TRUE.

None of these attributes may be modified after the object is created.

Depending on the token, there may be limits on the length of the key components. See PKCS #1 for more

information on RSA keys.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA
CK CHAR | abel[] = “An RSA private key object”;
CK BYTE subject[] =1{...};
CK_BYTE id[] = {123};
CK_BYTE nodulus[] = {...};
CK_BYTE publ i cExponent[]
CK _BYTE pri vat eExponent |
CK BYTE prinmel[] ={...};
CK BYTE prinme2[] ={...};
CK _BYTE exponent1[] =
CK _BYTE exponent2[] =
CK _BYTE coefficient][]
CK_BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA_TOKEN, &true, 1},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_SUBJECT, subject, sizeof(subject)},

{CKA_ID, id, sizeof(id)},

{CKA_SENSI TI VE, &true, 1},

{ CKA_DECRYPT, &true, 1},

{CKA SIGN, &rue, 1},

{ CKA_MODULUS, nodul us, sizeof (nodul us)},

—r—

{ CKA_PUBLI C_EXPONENT, publ i cExponent, si zeof (publi cExponent)},
{ CKA_PRI VATE_EXPONENT, privat eExponent, si zeof (privateExponent)},

{CKA PRIME 1, prinel, sizeof(prinel)},
{CKA PRI ME 2, prine2, sizeof(prine2)},

{ CKA_EXPONENT_1, exponentl, sizeof (exponentl)},

{ CKA_EXPONENT_2, exponent2, sizeof (exponent2)},

{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 43

8.6.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA private keys.
The following table defines the DSA private key object attributes, in addition to the common attributes
listed in Table 8-1, Table 8-5 and Table 8-10.

Table 8-12, DSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME! Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME! | Biginteger | Subprime g (160 bits)

CKA_BASE! Big integer | Base g

CKA_VALUE!? Big integer | Private value x

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE.

None of these attributes may be modified after the object is created.

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA
parameters.” See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA,
CK_CHAR | abel [] = “A DSA pr|vate key object”;
CK_BYTE subject[] = {.
CK_BYTE id[] = {123},
CK_BYTE prime[] = {...};
CK_BYTE subprime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subject, si zeof (subj ect)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, 1},
{CKA SIGN, &true, 1},
{CKA PRI ME, prime, sizeof(prime)},
{CKA_SUBPRI ME, subprime, sizeof (subprine)},
{CKA_BASE, base, sizeof(base)},
{CKA _VALUE, val ue, sizeof(value)}

8.6.3 Diffie-Hellman private key objects
Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold Diffie-

Hellman private keys. The following table defines the Diffie-Hellman private key object attributes, in
addition to the common attributes listed in Table 8-1, Table 8-5 and Table 8-10.

Copyright © 1994-5 RSA Laboratories

Page 44 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 8-13, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME! Big integer Prime p

CKA_BASE! Big integer Base g

CKA_VALUE!? Big integer Private value x
CKA_VALUE_BITS3 CK_USHORT Length in bits of private value x

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE. 3Specify this attribute only in a template for generating a key of this type.

None of these attributes may be modified after the object is created.

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman parameters.”
Depending on the token, there may be limits on the length of the key components. See PKCS #3 for more
information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK DH;
CK_CHAR | abel [] “A D|ff|e Hel | man private key object”

CK_BYTE subj ect[] = {. ;
CK_BYTE id[] {123};
CK_BYTE pr|rre[] ={...};
CK BYTE base[] ={...};
CK BYTE value[] ={...};

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subj ect, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, 1},
{CKA_DERI VE, &true, 1},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

8.7 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of Cryptoki recognizes
six types of secret key: generic, RC2, RC4, DES, DES2, and DES3. The following table defines the
attributes common to all secret keys, in addition to the common attributes listed in Table 8-1 and Table 8-
5.

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 45

Table 8-14, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVE CK_BBOOL TRUE if object is sensitive (default FALSE)

CKA_ENCRYPT CK_BBOOL TRUE if key supports encryption!

CKA_DECRYPT CK_BBOOL TRUE if key supports decryption’

CKA_SIGN CK_BBOOL TRUE if key supports signatures (i.e., authentication
codes) where the signature is an appendix to the
datal

CKA_VERIFY CK_BBOOL TRUE if key supports verification (i.e., of
authentication codes) where the signature is an
appendix to the data’

CKA_WRAP CK_BBOOL TRUE if key supports wrapping’

CKA_UNWRAP CK_BBOOL TRUE if key supports unwrapping!

1 Default is up to the token, based on what mechanisms it supports; the application can specify an explicit
value in the template, and Cryptoki may reject it if no compatible mechanism is supported.

All of these attributes may be modified after the object is created. However, the CKA_SENSITIVE
attribute may only be set to TRUE.

If the CKA_SENSITIVE attribute is TRUE, then certain attributes of the secret key cannot be revealed
outside the token. Also, the secret key cannot be wrapped if the CKA_SENSITIVE attribute is TRUE,
since it could potentially be recovered outside the token if the unwrapping key is known outside. The
attribute table for the each type of secret key specifies which attributes are not revealed.

8.7.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET) hold
generic secret keys. This keys do not support encryption, decryption, signatures or verification; however,
other keys can be derived from them. The following table defines the generic secret key object attributes,
in addition to the common attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-15, Generic Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE!? Byte array Key value (arbitrary length)
CKA_VALUE_LEN3 | CK_USHORT | Length in bytes of key value

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE. 3Specify this attribute only in a template for unwrapping or deriving a key of this type.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a generic secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERI C_SECRET,;
CK_CHAR |l abel [] = “A generic secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

Copyright © 1994-5 RSA Laboratories

Page 46 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},

{CKA LABEL, | abel, sizeof(label)},
{CKA_DERI VE, &true, 1},

{CKA VALUE, val ue, sizeof(value)}

8.7.2 RC2 secret key objects
RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys. The
following table defines the RC2 secret key object attributes, in addition to the common attributes listed in

Table 8-1, Table 8-5 and Table 8-14.

Table 8-16, RC2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE!? Byte array Key value (1 to 128 bytes)
CKA_VALUE_LEN3 | CK_USHORT | Length in bytes of key value

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE. 3Specify this attribute only in a template for generating, unwrapping or deriving a key of this

type.
None of these attributes may be modified after the object is created.

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK _CHAR |l abel [] = “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 47

{CKA_TOKEN, &true, 1},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, 1},

{CKA VALUE, val ue, sizeof(value)}
b

8.7.3 RC4 secret key objects
RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys. The
following table defines the RC4 secret key object attributes, in addition to the common attributes listed in
Table 8-1, Table 8-5 and Table 8-14.

Table 8-17, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE!? Byte array Key value (1 to 256 bytes)
CKA_VALUE_LEN3 | CK_USHORT | Length in bytes of key value

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE. 3Specify this attribute only in a template for generating, unwrapping or deriving a key of this

type.
None of these attributes may be modified after the object is created.

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK _CHAR |l abel [] = “An RC4 secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, 1},
{CKA _VALUE, val ue, sizeof(value)}
i

8.7.4 DES secret key objects
DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length DES
keys. The following table defines the DES secret key object attributes, in addition to the common

attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-18, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE!? | Byte array Key value (always 8 bytes long)

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE.

Copyright © 1994-5 RSA Laboratories

Page 48 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

None of these attributes may be modified after the object is created.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK CHAR | abel [] = “A DES secret key object”;
CK BYTE value[8] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, 1},
{CKA VALUE, val ue, sizeof(value)}

8.7.5 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-length DES
keys. The following table defines the DES2 secret key object attributes, in addition to the common

attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-19, DES2 Secret Key Object Attributes

Attribute Data type | Meaning
CKA_VALUE!? | Byte array | Key value (always 16 bytes long)

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is

TRUE.
None of these attributes may be modified after the object is created.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2?;
CK _CHAR |l abel [] = “A DES2 secret key object”;
CK_BYTE val ue[16] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, 1},
{CKA _VALUE, val ue, sizeof(value)}

b

Copyright © 1994-5 RSA Laboratories

OBJECTS Page 49

8.7.6 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-length DES
keys. The following table defines the DES3 secret key object attributes, in addition to the common
attributes listed in Table 8-1, Table 8-5 and Table 8-14.

Table 8-20, DES3 Secret Key Object Attributes

Attribute Data type | Meaning
CKA_VALUE!? | Byte array | Key value (always 24 bytes long)

Must be specified when object is created. 2Cannot be revealed when CKA_SENSITIVE attribute is
TRUE.

None of these attributes may be modified after the object is created.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES3;
CK _CHAR |l abel [] = “A DES3 secret key object”;
CK_BYTE value[24] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA _CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA_TOKEN, &true, 1},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &true, 1},
{CKA _VALUE, val ue, sizeof(value)}

Copyright © 1994-5 RSA Laboratories

Page 50 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9. Functions

Cryptoki's functions are organized into the following categories:
e general purpose

¢ slot and token management
e session management

e object management

e encryption and decryption
e message digesting

e signature and verification

e key management

e function management

e callback

Each function returns a CK_RV value. The following table lists each function return value (in
alphabetical order):

Table 9-1, Return Values

Return Value Meaning
CKR_ATTRIBUTE_READ_ONLY attribute cannot be modified
CKR_ATTRIBUTE_SENSITIVE attribute is sensitive and cannot be
revealed
CKR_ATTRIBUTE_TYPE_INVALID attribute type is invalid
CKR_ATTRIBUTE_VALUE_INVALID attribute value is invalid
CKR_CANCEL function should be canceled
CKR_DATA_INVALID data is invalid
CKR_DATA_LEN _RANGE data length is out of range
CKR_DEVICE_ERROR device error
CKR_DEVICE_MEMORY not enough memory on device
CKR_DEVICE_REMOVED device has been removed
CKR_ENCRYPTED _DATA_INVALID encrypted data is invalid
CKR_ENCRYPTED_DATA_LEN_RANGE encrypted data length is out of range
CKR_FLAGS_INVALID flags are invalid
CKR_FUNCTION_CANCELED function has been canceled
CKR_FUNCTION_NOT PARALLEL no function is executing in parallel

Copyright © 1994-5 RSA Laboratories

FUNCTIONS

Page 51

Return Value

Meaning

CKR_FUNCTION_PARALLEL

function is executing in parallel

CKR_HOST_MEMORY

not enough memory on host

CKR_KEY_HANDLE_INVALID

key handle is invalid

CKR_KEY_SENSITIVE

key is sensitive and cannot be revealed

CKR_KEY_SIZE_RANGE

key size is out of range

CKR_KEY_TYPE_INCONSISTENT

key type is inconsistent with mechanism

CKR_MECHANISM_INVALID

mechanism is invalid

CKR_MECHANISM_PARAM_INVALID

mechanism parameter is invalid

CKR_OBJECT_CLASS_INCONSISTENT

object class is inconsistent with
mechanism

CKR_OBJECT_CLASS_INVALID

object class is invalid

CKR_OBJECT_HANDLE_INVALID

object handle is invalid

CKR_OK

function has completed successfully

CKR_OPERATION_ACTIVE

another operation is already active

CKR_OPERATION_NOT_INITIALIZED

operation has not been initialized

CKR_PIN_INCORRECT

PIN is incorrect

CKR_PIN_INVALID

new PIN contains invalid characters

CKR_PIN_LEN_RANGE

new PIN length is out of range
(assuming token specifies range)

CKR_SESSION_CLOSED

session has been closed

CKR_SESSION_COUNT

session limits have been reached

CKR_SESSION_EXCLUSIVE_EXISTS

an exclusive session already exists

CKR_SESSION_HANDLE_INVALID

session handle is invalid

CKR_SESSION_PARALLEL_NOT_SUPPORTED

parallel execution is not supported

CKR_SESSION_READ_ONLY

session is read-only

CKR_SIGNATURE_INVALID

signature is invalid

CKR_SIGNATURE_LEN_RANGE

signature length is out of range

CKR_SLOT_ID_INVALID

slot ID is invalid

CKR_TEMPLATE_INCOMPLETE

template is incomplete

CKR_TEMPLATE_INCONSISTENT

template is inconsistent

CKR_TOKEN_NOT_PRESENT

slot does not contain a token

CKR_TOKEN_NOT_RECOGNIZED

the token was not recognized

CKR_TOKEN_WRITE_PROTECTED

token is write-protected

CKR_UNWRAPPING_KEY_HANDLE_INVALID

unwrapping key handle is invalid

CKR_UNWRAPPING_KEY_SIZE RANGE

unwrapping key size is out of range

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT

unwrapping key type is inconsistent
with mechanism

CKR_USER_ALREADY_LOGGED_IN

a user is already logged in

CKR_USER_NOT_LOGGED_IN

a user is not logged in

CKR_USER_PIN_NOT_INITIALIZED

the user’s PIN has not been intialized

CKR_USER_TYPE_INVALID

user type is invalid

CKR_WRAPPED_KEY_INVALID

wrapped key is invalid

Copyright © 1994-5 RSA Laboratories

Page 52 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return Value Meaning

CKR_WRAPPED_KEY_LEN_RANGE wrapped key length is out of range

CKR_WRAPPING_KEY_HANDLE_INVALID wrapping key handle is invalid

CKR_WRAPPING_KEY_SIZE_RANGE wrapping key size is out of range

CKR_WRAPPING_KEY_TYPE_INCONSISTENT wrapping key type is inconsistent with
mechanism

9.1 General purpose

Cryptoki provides the following general purpose functions.

¢ C _Initialize

CK_ RV CK ENTRY C Initialize(
CK_VO D _PTR pReserved
);

C_Initialize initializes the Cryptoki library. C_Initialize should be the first call made by an application.
This function is implementation defined; Cryptoki may, for example, initialize its internal memory
buffers, or any other resources it may require. The pReserved parameter is reserved for future versions.
For this version, it should be set to NULL_PTR.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:
CK RV rv;

rv = Clnitialize(NULL_PTR);

¢ C_GetInfo

CK_RV CK_ENTRY C_Get I nf o(
CK_I'NFO_PTR pl nfo
)

C_GetInfo returns general information about Cryptoki. pInfo points to the location that receives the
information.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:
CK_ INFO i nfo;
CK RV rv;

rv = C Cetlnfo(& nfo);
if(rv == CKR. XK){

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 53

if(info.version.major == 1){

9.2 Slot and token management

Cryptoki provides the following functions for slot and token management.

¢ C_GetSlotList

CK_RV CK _ENTRY C _Get Sl ot Li st (
CK _BBOOL t okenPresent,
CK_SLOT_I D _PTR pSl ot Li st
CK_USHORT_PTR pusCount

);

C_GetSlotList obtains a list of slots in the system. tokenPresent indicates whether the list includes only
those slots with a token present (TRUE), or all slots (FALSE); pSlotList points to the location that receives
the list (array) of slot IDs; and pusCount points to the location that receives the number of slots.

The application should call this function twice. The first time, pSlotList should be NULL_PTR. In this
case, Cryptoki only returns the number of slots. The second time, pSlotList should point to a location large
enough to receive the list of slots. If there are no slot IDs to return, the location that pusCount points to
receives 0.

Return values: CKR_OK, CKR_HOST_MEMORY

Example:

CK_SLOT_I D _PTR pSl ot Li st ;
CK_USHORT usCount ;
CK RV rv;

rv = C GetSlotlList(FALSE, NULL_PTR, &usCount);

if((rv == CKR_.OK) && (usCount > 0)){
pSlotList = (CK_SLOT_ID PTR) mal |l oc(usCount * sizeof (CK_SLOT_ID));
rv = C GetSlotlList(FALSE, pSlotList, &usCount);
if(rv == CKR. X){

}
free(pSlotlList);

Copyright © 1994-5 RSA Laboratories

Page 54 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_GetSlotInfo

CK_RV CK _ENTRY C Get Sl ot | nf o
CK SLOT_ID slotlD,
CK_SLOT_I NFO_PTR plnfo

)

C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the slot; pInfo
points to the location that receives the slot information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_HOST _MEMORY

Example:

CK SLOT_I D PTR pSl ot Li st ;
CK_USHORT usCount ;
CK_SLOT_I NFO i nf o;

CK_RV ryv;

rv = C_GetSlotList(FALSE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
pSlotList = (CK SLOT_ID PTR) mal |l oc(usCount * sizeof (CK SLOT_ID));
rv = C GetSlotlList(FALSE, pSlotList, &usCount);
if(rv == CKR_.OK){
rv = C GetSlotInfo(pSlotList[0], & nfo);

}
free(pSlotlList);

¢ C_GetTokenInfo

CK_RV CK_ENTRY C_Get Tokenl nf o(
CK SLOT_ID slotlD,
CK_TOKEN_I NFO_PTR pl nfo

)

C_GetTokenlInfo obtains information about a particular token in the system. slotID is the ID of the
token’s slot; pInfo points to the location that receives the token information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY, CKR_TOKEN_NOT_RECONIZED

Example:

CK _SLOT_I D PTR pSl ot Li st ;
CK_USHORT usCount ;
CK_TOKEN_I NFO i nf o;

CK_RV ryv;

rv = C GetSlotList(TRUE, NULL_PTR &usCount);
if((rv == CKR_OK) && (usCount > 0)){

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 55

pSlotList = (CK SLOT_ID PTR) mal |l oc(usCount * sizeof (CK SLOT_ID));
rv = C GetSlotlList(TRUE, pSlotList, &usCount);
if(rv == CKR_.OK){

rv = C Get Tokenlnfo(pSlotList[0], & nfo);

}
free(pSlotlList);

¢ C_GetMechanismList

CK_RV CK_ENTRY C_Get Mechani snii st (
CK SLOT_ID slotlD,
CK_MECHANI SM TYPE_PTR pMechani snii st
CK_USHORT_PTR pusCount

)

C_GetMechanismList obtains a list of mechanism types supported by a token. slotID is the ID of the
token’s slot; pMechanismList points to the location that receives the list (array) of mechanism types; and
pusCount points to the location that receives the number of mechanisms.

The application should call this function twice. The first time, pMechanismList should be NULL_PTR. In
this case, Cryptoki only returns the number of mechanisms supported. The second time, pMechanismList
should point to a location large enough to receive the list of mechanism types.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY

Example:

CK SLOT_ID slotlD

CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK_USHORT usCount ;

CK_RV ryv;

rv = C _Get Mechani sniist(slotl D, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)
pMechani smLi st = (CK_MECHANI SM TYPE_PTR) nal | oc(usCount *
si zeof (CK_MECHANI SM TYPE)) ;
rv = C _Get Mechani snlist(slotlD, pMechanisnlist, &usCount);
if(rv == CKR_.OK){

}
free(pMechani snli st);

Copyright © 1994-5 RSA Laboratories

Page 56 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C _GetMechanismInfo

CK_RV CK_ENTRY C_Get Mechani sm nf o(
CK SLOT_ID slotlD,
CK_MECHANI SM TYPE type,
CK_MECHANI SM_| NFO_PTR pl nfo

)

C_GetMechanismInfo obtains information about a particular mechanism possibly supported by a token.
slotID is the ID of the token’s slot; type is the type of mechanism; and plnfo points to the location that
receives the mechanism information.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY

Example:

CK _SLOT_I D PTR pSl ot Li st ;
CK_USHORT usCount ;
CK_MECHANI SM | NFO i nf o;
CK_RV ryv;

rv = C_GetSlotList(TRUE, NULL_PTR, &usCount);
if((rv == CKR_OK) && (usCount > 0)){
pSlotList = (CK SLOT_ID PTR) mal |l oc(usCount * sizeof (CK SLOT_ID));
rv = C GetSlotlList(TRUE, pSlotList, &usCount);
if(rv == CKR_.OK){
rv = C _Get Mechani sm nfo(pSlotList[0], CKM M2, & nfo);

}
free(pSlotlList);

¢ C InitToken

CK_RV CK _ENTRY C I nitToken(
CK SLOT_ID slotlD,
CK_CHAR_PTR pPi n,
CK_USHORT usPi nLen,
CK_CHAR PTR pLabel

)

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial PIN;
usPinLen is the length in bytes of the PIN; pLabel points to the 32-byte label of the token (must be padded
with the blank characters).

When a token is initialized, all objects are destroyed that can be destroyed (i.e., all except for
“indestructible” objects such as keys built in to the token). Also, access by the normal user is disabled
until the SO sets the normal user’s PIN. Depending on the token, some “default” objects may be created,
and attributes of some objects may be set to default values.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 57

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_ERROR,
CKR_PIN_LEN_RANGE, CKR_TOKEN_NOT_RECOGNIZED

Example:

CK SLOT_ID slotlD

CK_CHAR pin[] = {“"MWPIN};
CK_CHAR | abel [32];

CK_RV ryv;

nenset (1 abel, * ', sizeof(label));
mencpy(l abel, “My first token”, sizeof (“My first token”));
rv = C InitToken(slotlD, pin, sizeof(pin), |abel);

)

f
|
if(rv == CKR.OK){

¢ C_InitPIN

CK_RV CK_ENTRY C_I nit PI N(
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pPi n,

CK_USHORT usPi nLen

)

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the normal
user’s PIN; and usPinLen is the length in bytes of the PIN.

This function can only be called in the “R/W SO Functions” state.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_LEN_RANGE,
CKR_PIN_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR newPi n[]= {“NewPI N'};
CK_RV ryv;

rv = C InitPIN(hSession, newPin, sizeof(newPin));
if(rv == CKR_.OK){

Copyright © 1994-5 RSA Laboratories

Page 58 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_SetPIN

CK_RV CK_ENTRY C_Set PI N(
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pd dPi n,
CK_USHORT usQ dLen,
CK_CHAR_PTR pNewpPi n,
CK_USHORT usNewlLen

)

C_SetPIN modifies the PIN of user that is currently logged in. hSession is the session’s handle; pOldPin
points to the old PIN; usOldLen is the length of the old PIN; pNewPin points to the new PIN; and usNewLen
is the length of the new PIN.

This function can only be called in the “R/W SO Functions” state or “R/W User Functions” state.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_USER_NOT_LOGGED_IN, CKR_PIN_INCORRECT,
CKR_PIN_LEN_RANGE, CKR_PIN_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:
CK_SESSI ON_HANDLE hSessi on;
CK_CHAR ol dPin[] = {“AdPIN};
CK_CHAR newPin[] = {“NewPI N'};

CK_RV ryv;

rv = C SetPI N(hSession, ol dPin, sizeof(oldPin), newPin, sizeof(newPin));
if(rv == CKR_.OK){

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 59

9.3 Session management

Cryptoki provides the following functions for session management.

A typical application would call C_OpenSession after selecting a token and C_CloseSession after
completing all operations with the token. Only in special cases, such as when other applications

connected to a token have failed, would an application call C_CloseAllSessions.

An application may have concurrent sessions with more than one token. It is also possible that a token
may have concurrent sessions with more than one application.

¢ C_OpenSession

CK_RV CK _ENTRY C_OpenSessi on(
CK_SLOT_I D slotlD,
F

CK_FLAGS fl ags,

CK_VO D_PTR pApplicati on,

CK_RV CK_ENTRY (*Noti fy) (CK_SESSI ON HANDLE hSessi on,
CK_NOTI FI CATI ON event, CK VA D _PTR pApplication),

CK_SESSI ON_HANDLE PTR phSessi on
);

C_OpenSession opens a session between an application and a token. slotID is the slot’s ID; flags indicates
the type of session; pApplication is an application-defined pointer to be passed to the notification callback;
Notify is the address of the notification callback function; and phSession points to the location that receives
the handle for the new session.

The flags parameter consists of the logical-or of zero or more bit flags defined in the CK_SESSION_INFO
data type. If no bits are set in the flags parameter, then the session is opened as a shared, read-only
session, with the cryptographic functions performed in parallel with the application (assuming the token
has this capability — otherwise functions are performed in serial).

In a parallel session, cryptographic functions may return control to the application before completing (the
return value CKR_FUNCTION_PARALLEL indicates this condition). The application may call
C_GetFunctionStatus to obtain updated status of the function, which will be
CKR_FUNCTION_PARALLEL until the function completes, and CKR_OK or another return value
indicating an error when the function completes. Alternatively, the application can wait until Cryptoki
sends notification that the function has completed through the Notify callback. The application may also
call C_CancelFunction to cancel the function.

If an application calls another function (cryptographic or otherwise) before one that is executing in
parallel completes, Cryptoki will wait until the one that is executing completes. Thus an application can
run only one function at any given time in a given session. (To achieve parallel execution of multiple

functions, the application should open additional sessions.)

Cryptographic functions running in serial with the application may surrender control through the Notify
callback, so that the application may perform other operations or cancel the function.

Non-cryptographic functions always run in serial with the application, and do not surrender control.

Copyright © 1994-5 RSA Laboratories

Page 60 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

There may be a limit on the number of concurrent sessions with the token, which may depend on whether
the session is “read-only” or “read/write.” There can only be one exclusive session with a token.

If the token is in “write-protected” (as indicated in the CK_TOKEN_INFO structure), then the session also
must be “read-only.”

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not support the callback, it should pass NULL_PTR as the address. The Notify callback
function is described in Section 0.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_FLAGS_INVALID, CKR_SESSION_COUNT,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_TOKEN_WRITE_PROTECTED,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK SLOT_ID slotlD;

CK_RV ryv;

CK_BYTE application;

CK_RV CK_ENTRY MyNot i f y(CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event, CK VO D _PTR pApplication);

slotID = 1;
rv = C_OpenSession(slotlD, CKF_EXCLUSI VE SESSI ON, &application, MyNotify,
&hSessi on) ;

if(rv == CKR OK){

¢ C_CloseSession

CK_RV CK _ENTRY C_C oseSessi on(
CK_SESSI ON_HANDLE hSessi on
)

C_CloseSession closes a session between an application and a token. hSession is the session’s handle.

When a session is closed, session objects created during the session are destroyed automatically, and if a
function is running in parallel with the application, it is canceled.

Depending on the token, when the last session with the token is closed, the token may be “ejected” from
its reader, assuming this capability exists.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK SLOT_ID slotlD

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 61

CK_RV ryv;
CK_BYTE application;

CK_RV CK_ENTRY MyNot i f y(CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event, CK VO D _PTR pApplication);

slotID = 1;
rv = C_OpenSession(slotlD, CKF_EXCLUSI VE SESSI ON, &application, MyNotify,
&hSessi on) ;

if(rv == CKR OK){

'C_CI oseSessi on(hSessi on) ;

¢ C _CloseAllSessions

CK_RV CK_ENTRY C _d oseAl | Sessi ons(
CK SLOT_ID slotID
)

C_CloseAllSessions closes all sessions with a token. slotID specifies the token’s slot.

This function should only be called when there is no other way to recover control of a token, such as when
other applications connected to the token have failed.

Depending on the token, the token may be “ejected” from its reader, assuming this capability exists.

When an application is disconnected from a token in this manner, it receives a CKR_SESSION_CLOSED
error on its next call to Cryptoki.

Return values: CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:
CK SLOT_ID slotlD;
CK_RV ryv;
slotID = 1;
rv = C O oseAll Sessions(slotlD);

¢ C_GetSessionInfo

CK_RV CK _ENTRY C _Get Sessi onl nf of
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_| NFO_PTR plnfo

)

C_GetSessionInfo obtains information about the session. hSession is the session’s handle; and plnfo
points to the location that receives the session information.

Copyright © 1994-5 RSA Laboratories

Page 62 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK_RV ryv;

rv = C _Get Sessionl nfo(hSession, & nfo);
if(rv == CKR_.OK){

¢ C_Login

CK_RV CK_ENTRY C Logi n(
CK_SESSI ON_HANDLE hSessi on,
CK_USER_TYPE user Type,
CK_CHAR_PTR pPi n,
CK_USHORT usPi nLen

)

C_Login logs a user into a token. hSession is the session’s handle; userType is the user type; pPin points to
the user’s PIN; and usPinLen is the length of the PIN. Depending on the user type and the current session
type, the state will become one of the following: “R/W SO Functions”, “R/O SO Functions”, “R/W User
Functions”, or “R/O User Functions”.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_USER_ALREADY_LOGGED_IN, CKR_USER_TYPE_INVALID, CKR_PIN_INCORRECT,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR userPIN[] = {“M/PIN'};
CK_RV ryv;

rv = C Logi n(hSession, CKU USER, userPIN, sizeof(userPIN));
if(rv == CKR_.OK){

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 63

¢ C_Logout

CK_RV CK_ENTRY C Logout (
CK_SESSI ON_HANDLE hSessi on
)

C_Logout logs a user out from a token. hSession is the session’s handle. Depending on the current user
type and the current session type, the state will become either “R/W Public Session” or “R/O Public
Session”.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_USER_NOT_LOGGED_IN, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR userPIN[] = {“M/PIN'};
CK_RV ryv;

rv = C Logi n(hSession, CKU USER, userPIN, sizeof(userPIN));
if(rv == CKR_.OK){

'C_Logout (hSession);

9.4 Object management

Cryptoki provides the following functions for managing objects. Additional functions for managing key
objects are described in Section 9.8.

¢ C_CreateObject

CK_RV CK_ENTRY C _Creat ebj ect (
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount,
CK_OBJECT_HANDLE _PTR phObj ect

);

C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points to the object’s
template; usCount is the number of attributes in the template; and phObject points to the location that
receives the new object’s handle.

Only session object can be created during a read-only session. Only public objects can be created when no
user is logged in.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_CLASS_INVALID, CKR_ATTRIBUTE_TYPE_INVALID,

Copyright © 1994-5 RSA Laboratories

Page 64 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_OBJECT_CLASS
dat aCl ass = CKO_DATA,
certificateC ass = CKO_CERTI FI CATE,
keyCl ass = CKO PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK CHAR application[] = {“My Application”};
CK BYTE dataVvalue[] = {...};
CK BYTE subject[] =1{...};
CKBYTE id[] ={...};
CK BYTE certificatevValue[] = {...};
CK BYTE nodul us[] = {...};
CK _BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &dataCl ass, sizeof(datad ass)},
{CKA_TOKEN, &true, 1},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof(dataVal ue)}

1
CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass, sizeof(certificated ass)},
{CKA_TOKEN, &true, 1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA VALUE, certificateVal ue, sizeof(certificateValue)}
1
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_WRAP, &true, 1},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, si zeof (exponent)}

}1
CK RV rv;

/* Create a data object */
rv = C _Createlbject(hSession, &dataTenplate, 4, &hData);
if(rv == CKR_.OK){

/* Create a certificate object */
rv = C CreateObject(hSession, &certificateTenplate, 5, &hCertificate);

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 65

if(rv == CKR.OK){

/* Create a RSA private key object */
rv = C Createlhject(hSession, &eyTenplate, 5, &hKey);
if(rv == CKR_.OK){

¢ C_CopyObject

CK_RV CK_ENTRY C_Copybj ect (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount,
CK_OBJECT_HANDLE_PTR phNew(bj ect
)

C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s handle;
hObject is the object’s handle; pTemplate points to the template for the new object; usCount is the number of
attributes in the template; and phNewObject points to the location that receives the handle for the copy of
the object.

The template may specify new values of any attributes of the object that can ordinarily be modified, and it
may also specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session
object to a token object).

Only session objects can be created during a read-only session. Only public objects can be created when
no user is logged in.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

CK_OBJECT_HANDLE hNewKey;

CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CKBYTE id[] ={...};

CK BYTE keyValue[] ={...};

CK BYTE fal se = FALSE;

CK_BYTE true = TRUE;

Copyright © 1994-5 RSA Laboratories

Page 66 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA _TOKEN, &false, 1},
{CKA_ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

1

CK_ATTRI BUTE copyTenpl ate[] = {
{CKA_TOKEN, &true, 1}

1

CK_RV ryv;

/* Create a DES secret key session object */
rv = C Createlhject(hSession, &eyTenplate, 5, &hKey);
if(rv == CKR_.OK){
/* Create a copy on the token */
rv = C Copynhj ect (hSessi on, hKey, ©Tenplate, 1, &hNewKey);

¢ C_DestroyObiject

CK_RV CK_ENTRY C Destroybj ect (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQnj ect

)

C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is the object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects can be destroyed
when no user is logged in.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hObj ect;

CK_OBJECT_CLASS dat aCl ass = CKO_DATA,

CK CHAR application[] = {“My Application”};

CK BYTE value[] ={...};

CK_BYTE true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &dataCl ass, sizeof(datad ass)},
{CKA_TOKEN, &true, 1},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, val ue, sizeof(value)}

1

CK_RV ryv;

rv = C Createlhject(hSession, &enplate, 4, &hbject);

Copyright © 1994-5 RSA Laboratories

FUNCTIONS

if(rv == CKR.OK){

C_Dest royQoj ect (hSessi on, hOhj ect);
}

¢ C_GetODbjectSize

Page 67

CK_RV CK _ENTRY C Get Obj ect Si ze(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hnvj ect,
CK_USHORT_PTR pusSi ze

)

C_GetODbjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the object’s
handle; and pusSize points to the location that receives the size in bytes of the object.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OBJECT_HANDLE_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_REMOVED,

CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hnj ect ;
CK_OBJECT_CLASS dat aCl ass = CKO_DATA,

CK CHAR application[] = {“My Application”};

CK BYTE dataVvalue[] = {...};
CK BYTE value[] ={...};
CK_BYTE true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &dataCl ass, sizeof(datad ass)},

{ CKA_TOKEN, &true, 1},

{ CKA_APPLI CATI ON, application, sizeof(application)},

{CKA VALUE, val ue, sizeof(value)}
1
CK_USHORT usSi ze;
CK_RV ryv;

rv = C CreateObject(hSession, & enplate,

if(rv == CKR OK){

rv = C Get Qbj ect Si ze(hSessi on, hQhj ect,

C_Dest royQoj ect (hSessi on, hOhj ect);
}

4, &hoject);

&usSi ze) ;

Copyright © 1994-5 RSA Laboratories

Page 68 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_GetAttributeValue

CK_ RV CK ENTRY C Get Attri buteVal ue(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount

)

C_GetAttributeValue obtains the value of one or more object attributes. hSession is the session’s handle;
hObject is the object’s handle; pTemplate points to a template that specifies which attribute values are to be
obtained, and receives the attribute values; and usCount is the number of attributes in the template.

The application must ensure that the location that receives a attribute value can hold the value. If it does
not know the length of the value, then the application should pass NULL_PTR as the pValue parameter
for the attribute in the template and C_GetAttributeValue will only return the length of the value. See
Section 8 for more details on attributes.

If the object is marked “sensitive”, it may not be possible to obtain the value of the attribute.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_SENSITIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenplate[] = {

{ CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}
1
CK_RV ryv;

rv = C GetAttributeVal ue(hSession, hCbject, &enplate, 2);
if(rv == CKR_.COK){
pModul us = (CK BYTE_PTR) mal | oc(tenpl ate[0] . usVal ueLen) ;
tenpl at e[0] . pVal ue = pModul us;
pExponent = (CK BYTE PTR) nal |l oc(tenpl at e[1] . usVal uelLen);
tenpl at e[1] . pVal ue = pExponent;
rv = C GetAttributeVal ue(hSession, hCbject, & enplate, 2);
if(rv == CKR_.COK){

}
free(pModul us);
free(pExponent);

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 69

¢ C_SetAttributeValue

CK_RV CK ENTRY C Set Attri buteVal ue(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount

)

C_SetAttributeValue modifies the value of one or more attributes of an object. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to a template that specifies which attribute values
are to be modified and their new values; and usCount is the number of attributes in the template.

Only session objects can be modified during a read-only session.
Not all attributes can be modified; see Section 8 for more details.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY
CKR_SESSION_CLOSED, CKR_OBJECT_HANDLE_INVALID, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TOKEN_WRITE_PROTECTED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hnvj ect ;
CK CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, |abel, sizeof(label)
1

CK_RV ryv;

rv = C SetAttributeVal ue(hSession, hCbject, &enplate, 1);
if(rv == CKR_.OK){

¢ C_FindObjectsInit

CK_RV CK _ENTRY C Fi ndQnj ectslnit(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount

)

C_FindObjectslnit initializes a search for token and session objects that match a template. hSession is the
session’s handle; pTemplate points to a search template that specifies the attribute values to match; and
usCount is the number of attributes in the search template. The matching criterion is an exact byte-for-byte
match with all attributes in the template. To find all objects, set usCount is 0.

Copyright © 1994-5 RSA Laboratories

Page 70 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After calling C_FindObijectsInit, the application may call C_FindObjects one or more times to obtain the
handles of the objects matching the template. At most one search operation may be active at a given time
in a given session.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_FindObjects.

¢ C_FindObjects

CK_RV CK _ENTRY C _Fi ndhj ect s(
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phObj ect,
CK_USHORT usMaxOhj ect Count
CK_USHORT_PTR pusObj ect Count

)

C_FindObjects continues a search for token and session objects that match a template, obtaining
additional object handles. hSession is the session’s handle; phObject points to the location that receives the
list (array) of additional object handles; usMaxObjectCount is the maximum number of object handles to be
returned; and pusObjectCount points to the location that receives the actual number of object handles
returned. If there are no more objects matching the template, then the location that pusObjectCount points
to receives 0.

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;
CK_USHORT usObj ect Count ;
CK_RV ryv;

rv = C _Findojectslnit(hSession, NULL PTR, 0);
if(rv == CKR_.COK){
while (1) {
rv = C_Fi ndoj ects(hSession, &Object, 1, &usObject Count);
if (rv != CKR K || usObjectCount == 0)
br eak;

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 71

9.5 Encryption and decryption
Cryptoki provides the following functions for encrypting and decrypting data. All these functions run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE
and the token supports parallel execution.

¢ C_Encryptlnit

CK_RV CK _ENTRY C Encryptlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_EncryptInit initializes an encryption operation. hSession is the session’s handle; pMechanism points to
the encryption mechanism; and /iKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, must be TRUE.

After calling C_EncryptInit, the application may call C_Encrypt to encrypt data in a single part, or
C_EncryptUpdate one or more times followed by C_EncryptFinal to encrypt data in multiple parts. The
encryption operation is “active” until the application calls C_Encrypt or C_EncryptFinal. To process
additional data (in single or multiple parts), the application must call C_EncryptInit again. At most one
cryptographic operation may be active at a given time in a given session. C_EncryptInit cannot initialize
a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-2, Encryption Mechanisms

Mechanism Key type

PKCS #1 RSA! RSA public

X.509 (raw) RSA! RSA public

RC2 (ECB and CBC mode) RC2

RC4 RC4

DES (ECB and CBC mode) DES

triple-DES (ECB and CBC mode) double or triple-length DES

1 Single-part only.

Section 0 provides more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Encrypt.

Copyright © 1994-5 RSA Laboratories

Page 72 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_Encrypt

CK_RV CK _ENTRY C Encrypt (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_USHORT usDat aLen,
CK_BYTE_PTR pEncrypt edDat a,
CK_USHORT_PTR pusEncrypt edDat aLen

)

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data; usDataLen
is the length in bytes of the data; pEncryptedData points to the location that receives the encrypted data;
and pusEncryptedData points to the location that receives the length in bytes of the encrypted data.

The encryption operation must have been initialized with C_EncryptInit.
For constraints on data length, refer to the description of the encryption mechanism.
C_Encrypt is equivalent to a sequence of C_EncryptUpdate and C_EncryptFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES _ECB, NULL_PTR, O
1

CK _BYTE encrypt edDat a[8] ;
CK_USHORT usEncr ypt edDat aLen;
CK _BYTE dat a[8] ;

CK_RV ryv;

nenset (data, ‘A, sizeof(data));
rv = C Encryptlnit(hSession, &rechanism hKey);
if(rv == CKR_.COK){
rv = C Encrypt (hSessi on, data, sizeof(data), encryptedData,
&usEncr ypt edDat aLen) ;

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 73

¢ C_EncryptUpdate

CK_RV CK_ENTRY C _Encrypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_USHORT usPart Len,
CK _BYTE_PTR pEncrypt edPart,
CK_USHORT_PTR pusEncrypt edPart Len

)

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part. hSession
is the session’s handle; pPart points to the data part; usPartLen is the length of the data part;
pEncryptedPart points to the location that receives the encrypted data part; and pusEncryptedPart points to
the location that receives the length of the encrypted data part.

The encryption operation must have been initialized with C_EncryptInit. This function may be called any
number of times in succession.

For constraints on data length, refer to the description of the encryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_EncryptFinal.

¢ C_EncryptFinal

CK_RV CK _ENTRY C _Encrypt Fi nal (
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR plLast Encrypt edPart,
CK_USHORT_PTR pusEncrypt edPart Len

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any; and
pusLastEncryptedPartLen points to the location that receives the length of the last encrypted data part.

The encryption operation must have been initialized with C_EncryptInit.

For constraints on data length, refer to the description of the encryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:
#defi ne BUF_SZ 512

Copyright © 1994-5 RSA Laboratories

Page 74 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK BYTE iv][8];
CK_MECHANI SM nmechani sm = {

CKM DES CBC, iv, sizeof(iv)
1

CK_BYTE encrypt edDat a[BUF_SZ] ;
CK_USHORT usEncr ypt edDat aLen;
CK_BYTE dat a[2* BUF_SZ] ;

CK_RV ryv;

nmenset (iv, 0, sizeof(iv));
nenset (data, ‘A, 2*BUF_SZ2);
rv = C Encryptlnit(hSession, &rechanism hKey);
if(rv == CKR_.OK){
C Encrypt Updat e(hSessi on, &data[0], BUF_SZ, encryptedData,
&usEncr ypt edDat aLen) ;

C_Encrypt Updat e(hSessi on, &data[BUF_SZ], BUF_SZ, encryptedDat a,
&usEncr ypt edDat aLen) ;

C_Encrypt Fi nal (hSessi on, encryptedData, &usEncryptedDatalen);
}

¢ C_Decryptlnit

CK_RV CK _ENTRY C Decryptlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_DecryptInit initializes a decryption operation. hSession is the session’s handle; pMechanism points to the
decryption mechanism; and hiKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, must be TRUE.

After calling C_Decryptlnit, the application may call C_Decrypt to encrypt data in a single part, or
C_DecryptUpdate one or more times followed by C_DecryptFinal to encrypt data in multiple parts. The
decryption operation is “active” until the application calls C_Decrypt or C_DecryptFinal. To process
additional data (in single or multiple parts), the application must call C_DecryptInit again. At most one
cryptographic operation may be active at a given time in a given session. C_DecryptInit cannot initialize
a new operation if another is already active.

The following mechanisms are supported in this version:

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 75

Table 9-3, Decryption Mechanisms

Mechanism Key type

PKCS #1 RSA! RSA public

X.509 (raw) RSA! RSA public

RC2 (ECB and CBC mode) RC2

RC4 RC4

DES (ECB and CBC mode) DES

triple-DES (ECB and CBC mode) | double or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Decrypt.

¢ C_Decrypt

CK_RV CK_ENTRY C Decrypt (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edDat a,
CK_USHORT usEncr ypt edDat aLen,
CK_BYTE_PTR pbDat a,
CK_USHORT_PTR pusDat aLen

)

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle; pEncryptedData
points to the encrypted data; usEncryptedDataLen is the length of the encrypted data; pData points to the
location that receives the recovered data; and pusDataLen points to the location that receives the length of
the recovered data.

The decryption operation must have been initialized with C_DecryptInit.

For constraints on data length, refer to the description of the decryption mechanism.
C_Decrypt is equivalent to a sequence of C_DecryptUpdate and C_DecryptFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

Copyright © 1994-5 RSA Laboratories

Page 76 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES _ECB, NULL_PTR, O
1

CK _BYTE encrypt edDat a[8] ;
CK _BYTE dat a[8] ;
CK_USHORT usDat aLen;
CK_RV ryv;

nenset (encryptedData, ‘A, sizeof(encryptedData));
rv = C Decryptlnit(hSession, &rechanism hKey);
if(rv == CKR_.OK){
rv = C Decrypt (hSessi on, encryptedData, sizeof(encryptedData), data,
&usDat alLen);

¢ C_DecryptUpdate

CK_RV CK_ENTRY C Decrypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR pEncrypt edPart,
CK_USHORT usEncrypt edPart Len,
CK_BYTE_PTR pPart,
CK_USHORT_PTR pusPart Len

)

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted data
part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part; usEncryptedPartLen
is the length of the encrypted data part; pPart points to the location that receives the recovered data part;
and pusPartLen points to the location that receives the length of the recovered data part.

The decryption operation must have been initialized with C_DecryptInit. This function may be called any
number of times in succession.

For constraints on data length, refer to the description of the decryption mechanism.
Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_DecryptFinal.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 77

¢ C_DecryptFinal

CK_RV CK _ENTRY C Decrypt Final (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_USHORT_PTR uslLast Part Len

)

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle; pLastPart
points to the location that receives the last recovered data part, if any; and pusLastPartLen points to the
location that receives the length of the last recovered data part.

The decryption operation must have been initialized with C_DecryptInit.
For constraints on data length, refer to the description of the decryption mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_ENCRYPTED_DATA_INVALID, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:
#defi ne BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK BYTE iv][8];
CK_MECHANI SM nmechani sm = {

CKM DES CBC, iv, sizeof(iv)
1

CK _BYTE encrypt edDat a[2* BUF_SZ] ;
CK_BYTE dat a[BUF_SZ] ;

CK_USHORT usDat aLen;

CK_RV ryv;

nmenset (iv, 0, sizeof(iv));
nenset (encryptedData, ‘A, 2*BUF_SZ);
rv = C Decryptlnit(hSession, &rechanism hKey);
if(rv == CKR_.OK){
C Decrypt Updat e(hSessi on, &encryptedData[0], BUF_SZ, data, &usDatalen);

C_Decrypt Updat e(hSessi on, &encryptedDat a[BUF_SZ], BUF_SZ, data,
&usDat alLen);

C_Decrypt Fi nal (hSessi on, data, &usDatalen);

Copyright © 1994-5 RSA Laboratories

Page 78 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9.6 Message digesting
Cryptoki provides the following functions for digesting data. All these functions run in parallel with the

application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the token
supports parallel execution.

¢ C_Digestlnit

CK_RV CK ENTRY C Digestlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm

)

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle; and pMechanism
points to the digesting mechanism.

After calling C_Digestlnit, the application may call C_Digest to digest in a single part, or
C_DigestUpdate one or more times followed by C_DigestFinal to digest data in multiple parts. The
message-digesting operation is “active” until the application calls C_Digest or C_DigestFinal. To process
additional data (in single or multiple parts), the application must call C_DigestInit again. At most one
cryptographic operation may be active at a given time in a given session. C_DigestInit cannot initialize a
new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-4, Digesting Mechanisms

Mechanism
MD2

MD5
SHA-1

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Digest.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 79

¢ C_Digest

CK_RV CK_ENTRY C Di gest (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_USHORT usDat aLen,
CK_BYTE_PTR pDi gest,
CK_USHORT_PTR pusDi gest Len

)

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data; usDataLen
is the length of the data; pDigest points to the location that receives the message digest; and pusDigestLen
points to the location that receives the length of the message digest.

The digest operation must have been initialized with C_DigestInit.
For constraints on data length, refer to the description of the message-digesting mechanism.
C_Digest is equivalent to a sequence of C_DigestUpdate and C_DigestFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM nmechani sm = {
CKM MD2, NULL_PTR, O

1

CK BYTE data[] ={...};
CK _BYTE di gest[16];
CK_USHORT usDi gest Len;
CK_RV ryv;

rv = C Digestlnit(hSession, &rechanism;

if(rv == CKR_.OK){
rv = C Digest(hSession, data, sizeof(data), digest, &usDigestlLen);
}

¢ C _DigestUpdate

CK_RV CK _ENTRY C _Di gest Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; and usPartLen is the length of the data part.

The message-digesting operation must have been initialized with C_DigestInit. This function may be
called any number of times in succession.

Copyright © 1994-5 RSA Laboratories

Page 80 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For constraints on data length, refer to the description of the message-digesting mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_DigestFinal.

¢ C_DigestFinal

CK_RV CK _ENTRY C Di gest Fi nal (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_USHORT_PTR pusDi gest Len

)

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message digest.
hSession is the session’s handle; pDigest points to the location that receives the message digest; and
pusDigestLen points to the location that receives the length of the message digest.

The message-digesting operation must have been initialized with C_DigestInit.
For constraints on data length, refer to the description of the message-digesting mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Cryptoki provides the following functions for digesting data.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM nmechani sm = {
CKM MD2, NULL_PTR, O

1

CK BYTE data[] ={...};
CK_BYTE di gest[16];
CK_USHORT usDi gest Len;
CK_RV ryv;

rv = C Digestlnit(hSession, &rechanism;
if(rv == CKR_.OK) {
rv = C_Di gest Update(hSessi on, data, sizeof(data));

'rv = C_Di gest Fi nal (hSessi on, digest, &usDi gestLen);

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 81

9.7 Signature and verification

Cryptoki provides the following functions for signing data and verifying signatures. (For the purposes of
Cryptoki, these operations also encompass data authentication codes.) All these functions run in parallel
with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the
token supports parallel execution.

¢ C_Signlnit

CK_RV CK_ENTRY C Signlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_SignlInit initializes a signature operation, where the signature is an appendix to the data. hSession is the
session’s handle; pMechanism points to the signature mechanism; and hKey is the handle of the signature
key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports signatures with
appendix, must be TRUE.

After calling C_SignlInit, the application may call C_Sign to sign in a single part, or C_SignUpdate one
or more times followed by C_SignFinal to sign data in multiple parts. The signature operation is “active”
until the application calls C_Sign or C_SignFinal. To process additional data (in single or multiple parts),
the application must call C_SignInit again. At most one cryptographic operation may be active at a given
time in a given session. C_SignlInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-5, Signature Mechanisms

Mechanism Key type

PKCS #1 RSA! RSA private
ISO/IEC 9796 RSA! | RSA private
X.509 (raw) RSA! RSA private

DSA1 DSA private
RC2-MAC RC2
DES-MAC DES

triple-DES-MAC double-length or triple-length DES

1 Single-part only.
Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Copyright © 1994-5 RSA Laboratories

Page 82 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Example: See C_Sign.

¢ C_Sign

CK_RV CK_ENTRY C_Si gn(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_USHORT usDat aLen,
CK BYTE_PTR pSi gnature,
CK_USHORT_PTR pusSi gnat ur eLen
)

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the session’s
handle; pData points to the data; usDataLen is the length of the data; pSignature points to the location that
receives the signature; and pusSignatureLen points to the location that receives the length of the signature.

The signature operation must have been initialized with C_SignlInit.
For constraints on data length, refer to the description of the signature mechanism.
C_Sign is equivalent to a sequence of C_SignUpdate and C_SignFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_DSA, NULL_PTR, O

1

CK BYTE data[20] = {...};
CK_BYTE si gnat ure[40];
CK_USHORT usSi gnat ur eLen;
CK_RV ryv;

rv = C Signlnit(hSession, &rechani sm hKey);

if(rv == CKR_.OK){
rv = C Sign(hSession, data, sizeof(data), signature, &usSignaturelLen);
}

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 83

¢ C_SignUpdate

CK_RV CK_ENTRY C_Si gnUpdat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

)

C_SignUpdate continues a multiple-part signature operation, processing another data part. hSession is the
session’s handle, pPart points to the data part; and usPartLen is the length of the data part.

The signature operation must have been initialized with C_SignlInit. This function may be called any
number of times in succession.

For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_SignFinal.

¢ C_SignFinal

CK_RV CK_ENTRY C_Si gnFi nal (
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnat ure,
CK_USHORT_PTR pusSi gnat ur eLen
)

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the session’s
handle; pSignature points to the location that receives the signature; and pusSignatureLen points to the
location that receives the length of the signature.

The signature operation must have been initialized with C_SignlInit.
For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

}E:i(_BYTE data[] ={...};

Copyright © 1994-5 RSA Laboratories

Page 84 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE nmc| 4] ;
CK_USHORT usMacLen;
CK_RV ryv;

rv = C Signlnit(hSession, &rechani sm hKey);
if(rv == CKR_.OK){
rv = C_SignUpdat e(hSession, data, sizeof(data));

'rv = C_Si gnFi nal (hSessi on, mac, &ushMaclen);

¢ C_SignRecoverlnit

CK_RV CK _ENTRY C _Si gnRecoverlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_SignRecoverlnit initializes a signature operation, where the data can be recovered from the signature.
hSession is the session’s handle; pMechanism points to the structure that specifies the signature mechanism;
and hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key supports
signatures where the data can be recovered from the signature, must be TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a single part. The
signature operation is “active” until the application calls C_SignRecover. At most one cryptographic
operation may be active at a given time in a given session. C_SignRecoverInit cannot initialize a new
operation if another is already active.

The following mechanisms are supported in this version:

Table 9-6, Signature With Recovery Mechanisms

Mechanism Key type

PKCS #1 RSA RSA private
ISO/IEC 9796 RSA | RSA private
X.509 (raw) RSA RSA private

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example: See C_SignRecover.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 85

¢ C_SignRecover

CK_RV CK _ENTRY C_Si gnRecover (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_USHORT usDat aLen,

CK BYTE_PTR pSi gnat ure,

CK_USHORT_PTR pusSi gnat ur eLen
)

C_SignRecover signs data in a single operation, where the data can be recovered from the signature.
hSession is the session’s handle; pData points to the data; usDataLen is the length of the data; pSignature
points to the location that receives the signature; and pusSignatureLen points to the location that receives
the length of the signature.

The signature operation must have been initialized with C_SignRecoverInit.
For constraints on data length, refer to the description of the signature mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM_RSA 9796, NULL_PTR, 0
1

CK BYTE data[] ={...};
CK _BYTE si gnature[128];
CK_USHORT usSi gnat ur eLen;
CK_RV ryv;

rv = C _SignRecoverlnit(hSession, &mechani sm hKey);
if(rv == CKR_.OK){
rv = C_SignRecover (hSessi on, data, sizeof(data), signature,
&usSi gnat ur eLen) ;

¢ C Verifylnit

CK_ RV CK ENTRY C Verifylnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Verifylnit initializes a verification operation, where the signature is an appendix to the data. hSession is
the session’s handle; pMechanism points to the structure that specifies the verification mechanism; and
hKey is the handle of the verification key.

Copyright © 1994-5 RSA Laboratories

Page 86 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports verification
where the signature is an appendix to the data, must be TRUE.

After calling C_Verifylnit, the application may call C_Verify to verify a signature on data in a single
part, or C_VerifyUpdate one or more times followed by C_VerifyFinal to verify a signature on data in
multiple parts. The verification operation is “active” until the application calls C_Verify or
C_VerifyFinal. To process additional data (in single or multiple parts), the application must call
C_Verifylnit again. At most one cryptographic operation may be active at a given time in a given
session. C_VerifylInit cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-7, Verification Mechanisms

Mechanism Key type

PKCS #1 RSA! RSA public
ISO/IEC 9796 RSA! | RSA public
X.509 (raw) RSA? RSA public

DSA! DSA public
RC2-MAC RC2
DES-MAC DES

triple-DES-MAC double-length or triple-length DES

1 Single-part only.

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_Verify.

¢ C Verify

CK_RV CK_ENTRY C Verify(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_USHORT usDat aLen,

CK BYTE_PTR pSi gnature,
CK_USHORT usSi gnat ureLen
)

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; usDataLen is the length of the data; pSignature
points to the signature; and usSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 87

For constraints on data length, refer to the description of the verification mechanism.
C_Verify is equivalent to a sequence of C_VerifyUpdate and C_VerifyFinal.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_DSA, NULL_PTR, 0

1

CK _BYTE data[20] = {...};
CK_BYTE si gnat ure[40];
CK_RV ryv;

rv = C Verifylnit(hSession, &rechanism hKey);
if(rv == CKR_.OK){
rv = C Verify(hSession, data, sizeof(data), signature,
si zeof (signature));

¢ C _VerifyUpdate

CK_RV CK _ENTRY C Veri fyUpdat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_USHORT usPartLen

)

C_VerifyUpdate continues a multiple-part verification operation, processing another data part. hSession is
the session’s handle, pPart points to the data part; and usPartLen is the length of the data part.

The verification operation must have been initialized with C_VerifyInit. This function may be called any
number of times in succession.

For constraints on data length, refer to the description of the verification mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: See C_VerifyFinal.

Copyright © 1994-5 RSA Laboratories

Page 88 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C VerifyFinal

CK_RV CK _ENTRY C VerifyFinal (
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnature,
CK_USHORT usSi gnat ureLen

)

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is the
session’s handle; pSignature points to the signature; and usSignatureLen is the length of the signature.

The verification operation must have been initialized with C_VerifyInit.
For constraints on data length, refer to the description of the verification mechanism.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_HOST_MEMORY, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES_MAC, NULL_PTR, O

1

CK BYTE data[] ={...};

CK_BYTE nmc| 4] ;

CK_RV ryv;

rv = C Verifylnit(hSession, &rechanism hKey);

if(rv == CKR_.COK){
rv = C VerifyUpdate(hSession, data, sizeof(data));

'rv = C VerifyFinal (hSession, mac, sizeof(nmac));

¢ C_VerifyRecoverlnit

CK_RV CK ENTRY C VerifyRecoverlnit(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VerifyRecoverlnit initializes a signature verification operation, where the data is recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the verification
mechanism; and hKey is the handle of the verification key.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 89

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key supports
verification where the data is recovered from the signature, must be TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify a signature on
data in a single part. The verification operation is “active” until the application calls C_VerifyRecover. At
most one cryptographic operation may be active at a given time in a given session. C_VerifyRecoverInit
cannot initialize a new operation if another is already active.

The following mechanisms are supported in this version:

Table 9-8, Verification With Recovery Mechanisms

Mechanism Key type

PKCS #1 RSA RSA public
ISO/IEC 9796 RSA | RSA public
X.509 (raw) RSA RSA public

Section 10 gives more details on the mechanisms.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_KEY_HANDLE_INVALID,
CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example: See C_VerifyRecover.

¢ C _VerifyRecover

CK_RV CK _ENTRY C VerifyRecover (
CK_SESSI ON_HANDLE hSessi on,
CK BYTE_PTR pSi gnature,
CK_USHORT usSi gnat ur eLen,
CK_BYTE_PTR pbDat a,
CK_USHORT_PTR pusDat aLen

)

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from the
signature. hSession is the session’s handle; pSignature points to the signature; usSignatureLen is the length
of the signature; pData points to the location that receives the recovered data; and pusDataLen points to the
location that receives the length of the recovered data.

The verification operation must have been initialized with C_VerifyRecoverlnit.
For constraints on data length, refer to the description of the verification mechanism.
Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,

CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_OPERATION_NOT_INITIALIZED, CKR_DATA_LEN_RANGE, CKR_DATA_INVALID,

Copyright © 1994-5 RSA Laboratories

Page 90 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_SIGNATURE_LEN_RANGE, CKR_SIGNATURE_INVALID, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O

1

CK BYTE data[] ={...};
CK_USHORT usDat aLen;
CK _BYTE si gnature[128];
CK_RV ryv;

rv = C VerifyRecoverlnit(hSession, &rechanism hKey);
if(rv == CKR_.OK){
rv = C VerifyRecover (hSession, signature, sizeof(signature), data,
&usDat alLen);

9.8 Key management
Cryptoki provides the following functions for key management. All these functions run in parallel with

the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE and the
token supports parallel execution.

¢ C_GenerateKey

CK_RV CK _ENTRY C_Gener at eKey(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usCount,
CK_OBJECT_HANDLE _PTR phKey

);

C_GenerateKey generates a secret key, creating a new key object. hSession is the session’s handle;
pMechanism points to the key generation mechanism; pTemplate points to the template for the new key;
usCount is the number of attributes in the template; and phKey points to the location that receives the
handle of the new key.

The following mechanisms are supported in this version:

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 91

Table 9-9, Key Generation Mechanisms

Mechanism Key type
RC2 key generation RC2

RC4 key generation RC4
DES key generation DES!

double-length DES key generation | double-length DES!
triple-length DES key generation triple-length DES!

1 No known “weak” or “semi-weak” DES keys are generated (see FIPS PUB 74).
Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nmechani sm = {

CKM DES_KEY_CGEN, NULL_PTR, 0
1

CK_RV ryv;

rv = C _Cenerat eKey(hSessi on, &rechanism NULL PTR, 0, &hKey);
if(rv == CKR_.OK){

¢ C_GenerateKeyPair

CK_RV CK _ENTRY C Cener at eKeyPai r (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_USHORT usPubl i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_USHORT usPri vat eKeyAttri but eCount,
CK_OBJECT_HANDLE PTR phPri vat eKey,
CK_OBJECT_HANDLE_PTR phPubl i cKey

)

C_GenerateKeyPair generates a public-key/private-key pair, creating new key objects. On input, hSession
is the session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points to

Copyright © 1994-5 RSA Laboratories

Page 92 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

the template for the public key; usPublicKeyAttributeCount is the number of attributes in the public-key
template; pPrivateKeyTemplate points to the template for the private key; usPrivateKeyAttributeCount is the
number of attributes in the private-key template; phPublicKey points to the location that receives the
handle of the new public key; and phPrivateKey points to the location that receives the handle of the new
private key.

The following mechanisms are supported in this version:

Table 9-10, Key Pair Generation Mechanisms

Mechanism Key types

PKCS #1 RSA key pair generation RSA public and private
DSA key pair generation DSA public and private
PKCS #3 Diffie-Hellman key pair generation | DH public and private

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;
CK_MECHANI SM nmechani sm = {

CKM_RSA PKCS_KEY_PAI R_GEN, NULL_PTR, 0
1

CK_USHORT nodul usBits = 768;
CK_BYTE publ i cExponent[] = { 3 };
CK_BYTE subj ect[] ={...};
CK_BYTE i d[] {123};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenmpl ate[] = {
{ CKA_ENCRYPT, &true, 1},
{CKA_VERI FY, &true, 1},
{ CKA_VRAP, &tr ue, 1}
{ CKA_MODULUS_BI TS, &nmodul usBits, sizeof (nmodul usBits)},
{ CKA_PUBLI C_EXPONENT, publ i cExponent, sizeof (publicExponent)}
1
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA_TOKEN, &true, 1},
{ CKA_PRI VATE, &true, 1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, S|zeof(|d)}
{CKA_SENSI TI VE, &true, 1},
{ CKA_DECRYPT, &true, 1},
{CKA_SIGN, &true, 1},
{ CKA_UNVRAP, &true, 1}
1
CK_RV ryv;

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 93

rv = C _Cenerat eKeyPai r (hSessi on, &rechani sm publicKeyTenpl ate, 5,
privat eKeyTenpl ate, 8, &hPublicKey, &hPrivateKey);
if(rv == CKR_.OK){

¢ C_WrapKey

CK_RV CK_ENTRY C W apKey/(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pW appedKey,
CK_USHORT_PTR pusW appedKeyLen

)

C_WrapKey wraps (i.e., encrypts) a key. hSession is the session’s handle; pMechanism points to the
wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey is the handle of the key to be
wrapped; pWrappedKey points to the location that receives the wrapped key; and pusWrappedKeyLen
points to the location that receives the length of the wrapped key.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
must be TRUE.

The following mechanisms are supported in this version:

Table 9-11, Wrapping Mechanisms

Mechanism Wrapping key type | Type of key to be wrapped

PKCS #1 RSA RSA public RC2, RC4, DES, double or triple-length DES

X.509 (raw) RSA RSA public RC2, RC4, DES, double or triple-length DES

RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-length DES

DES (ECB mode) DES RC2, RC4, DES

triple-DES (ECB mode) | double or triple- RC2, RC4, DES, double or triple-length DES
length DES

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Return Values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_WRAPPING_KEY_HANDLE INVALID,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_KEY_SENSITIVE, CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT,
CKR_KEY_SIZE RANGE, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:
CK_SESSI ON_HANDLE hSessi on;

Copyright © 1994-5 RSA Laboratories

Page 94 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM DES3_ECB, NULL_PTR, O
1

CK_BYTE wr appedKey[8] ;
CK_USHORT usW appedKeylLen;
CK_RV ryv;

rv = C_ WapKey(hSessi on, &mechani sm hW appi ngKey, hKey, w appedKey,

&usW appedKeyLen) ;
if(rv == CKR.OK){

¢ C_UnwrapKey

CK_RV CK_ENTRY C_Unw apKey(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_USHORT usW appedKeylLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usAttri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new key object. hSession is the session’s
handle; pMechanism points to the unwrapping mechanism; hUnwrappingKey is the handle of the
unwrapping key; pWrappedKey points to the wrapped key; usWrappedKeyLen is the length of the wrapped
key; pTemplate points to the template for the new key; usAttributeCount is the number of attributes in the
template; and phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, must be TRUE.

The following mechanisms are supported in this version:

Table 9-12, Unwrapping Mechanisms

Mechanism Unwrapping key type Recovered key type

PKCS #1 RSA RSA private RC2, RC4, DES, double or triple-
length DES

X.509 (raw) RSA RSA private RC2, RC4, DES, double or triple-
length DES

RC2 (ECB mode) RC2 RC2, RC4, DES, double or triple-
length DES

DES (ECB mode) DES RC2, RC4, DES

triple-DES (ECB mode) | double or triple-length DES | RC2, RC4, DES, double or triple-
length DES

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 95

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_UNWRAPPING_KEY_SIZE RANGE, CKR_WRAPPED_KEY_LEN_RANGE,
CKR_WRAPPED_KEY_INVALID, CKR_OBJECT_CLASS_INVALID,
CKR_OBJECT_CLASS_INCONSISTENT, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM DES3_ECB, NULL_PTR, 0
1

CK_BYTE wr appedKey[8] = {...};
CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, 1},
{ CKA_DECRYPT, &true, 1}
1
CK_RV ryv;

rv = C _Unw apKey(hSession, &nmrechani sm hUnw appi ngKey, w appedKey,

si zeof (wr appedKey), tenplate, 4, &hKey);
if(rv == CKR OK){

¢ C_DeriveKey

CK_RV CK _ENTRY C Deri veKey(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_USHORT usAttri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s handle;
pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is the handle of
the base key; pTemplate points to the template for the new key; usAttributeCount is the number of
attributes in the template; and phKey points to the location that receives the handle of the derived key.

Copyright © 1994-5 RSA Laboratories

Page 96 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following mechanisms are supported in this version:

Table 9-13, Key Derivation Mechanisms

Mechanism Base key type | Derived key type

Diffie-Hellman key derivation | DH private RC2, RC4, DES, double or triple-length
DES, or generic

Section 10 provides more details on the mechanisms and on which attributes the template must specify.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY CKR_SESSION_CLOSED,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,
CKR_OBJECT_CLASS_INVALID, CKR_OBJECT_CLASS_INCONSISTENT,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_TOKEN_WRITE_PROTECTED, CKR_OPERATION_ACTIVE,
CKR_HOST_MEMORY, CKR_DEVICE_MEMORY, CKR_DEVICE _REMOVED, CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hPubI|cKey, hPri vat eKey, hKey;

CK_MECHANI SM keyPai r Mechani sm = {
CKM_DH_PKCS_KEY_PAI R_CGEN, NULL_PTR, 0

1

CK BYTE prinme[] ={...};
CK_BYTE base[] = {...}:
CK_BYTE publ|cVaIue[128]
CK_BYTE otherPubI|cVaIue[128];
CK_MECHANI SM nmechani sm = {
CKM DH _PKCS _DERI VE, ot her PublicVal ue, sizeof (otherPublicVal ue)
1

CK_ATTRI BUTE pTenpl ate[] = {
CKA VALUE, &publicVal ue, sizeof (publicVval ue)}
1

CK_OBJECT_CLASS keyCd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenmpl ate[] = {
{CKA PRI ME, prinme, sizeof(prinme)},
{CKA BASE, base, sizeof(base)}

1
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA_DERI VE, &true, 1}

1

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &keyd ass, sizeof(keyCd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, 1},
{ CKA_DECRYPT, &true, 1}

1

CK_RV ryv;

rv = C _Cener at eKeyPai r (hSessi on, &keyPai r Mechani sm publicKeyTenpl ate, 2,
privat eKeyTenpl ate, 1, &hPublicKey, &hPrivateKey);

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 97

if(rv == CKR_.OK){
rv = C GetAttributeVal ue(hSession, hPublicKey, &pTenplate, 1);
if(rv == CKR_.OK){

)* exchange public val ues */
'rv = C DeriveKey(hSessi on, &mechani sm hPrivateKey, tenplate, 4,

&hKey) ;
if(rv == CKR_.OK){

9.9 Random number generation
Cryptoki provides the following functions for generating random numbers. All these functions run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE
and the token supports parallel execution.

¢ C_SeedRandom

CK_RV CK_ENTRY C_SeedRandom(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,
CK_USHORT usSeedLen

)

C_SeedRandom mixes additional seed material into the token’s random number generator. hSession is the
session’s handle; pSeed points to the seed material; and usSeedLen is the length in bytes of the seed
material.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_BYTE seed[] = {...};
CK RV rv;

rv = C _SeedRandom(hSessi on, seed, sizeof(seed));

Copyright © 1994-5 RSA Laboratories

Page 98 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

if(rv == CKR.OK){

¢ C_GenerateRandom

CK_RV CK_ENTRY C_Gener at eRandon
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR pRandonDat a,
CK_USHORT usRandonien

)

C_GenerateRandom generates random data. hSession is the session’s handle; pRandomData points to the
location that receives the random data; and usRandomLen is the length in bytes of the random data to be
generated.

Return values: CKR_OK, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED, CKR_HOST_MEMORY,
CKR_DEVICE_MEMORY, CKR_OPERATION_ACTIVE, CKR_DEVICE_REMOVED,
CKR_DEVICE_ERROR

Example:

CK_SESSI ON_HANDLE hSessi on;
CK BYTE randonData[] = {...};
CK_RV ryv;

rv = C _Generat eRandom(hSessi on, randonData, sizeof (randonData));
if(rv == CKR_.OK){

9.10 Parallel function management

Cryptoki provides the following functions for managing parallel execution of cryptographic functions.

¢ C_GetFunctionStatus

CK_RV CK _ENTRY C_Get Functi onSt at us(
CK_SESSI ON_HANDLE hSessi on
);

C_GetFunctionStatus obtains an updated status of a function running in parallel with an application.
hSession is the session’s handle.

An application should call this function repeatedly until the return value is no longer
CKR_FUNCTION_NOT_PARALLEL.

Copyright © 1994-5 RSA Laboratories

FUNCTIONS Page 99

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_FUNCTION_NOT_PARALLEL, CKR_FUNCTION_PARALLEL, CKR_FUNCTION_CANCELED,
CKR_HOST_MEMORY, CKR_DEVICE_REMOVED, CKR_DEVICE_ERROR

Example: see C_CancelFunction.

¢ C_CancelFunction

CK_RV CK_ENTRY C _Cancel Functi on(
CK_SESSI ON_HANDLE hSessi on
)

C_CancelFunction cancels a function running in parallel with an application. hSession is the session’s
handle.

Return values: CKR_OK, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_FUNCTION_NOT_PARALLEL, CKR_HOST_MEMORY

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPri vat eKey;
CK_MECHANI SM nmechani sm = {

CKM_RSA PKCS_KEY_PAI R_CGEN, NULL_PTR, 0
1

CK_USHORT nodul usBits = 768;
CK_BYTE publ i cExponent[] = {...};
CK_BYTE subj ect[] ={...};
CK_BYTE i d[] {123}
CK_BBOOL true = TRUE;
CK_ATTRI BUTE pubI i cKeyTenplate[] = {
{ CKA_ENCRYPT, &true, 1},
{CKA_VERI FY, &true, 1},
{ CKA_VRAP, &tr ue, 1}
{ CKA_MODULUS_BI TS, &nmodul usBits, sizeof (nmodul usBits)},
{ CKA_PUBLI C_EXPONENT, publ i cExponent, si zeof (publicExponent)}
1
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA_TOKEN, &true, 1},
{ CKA_PRI VATE, &true, 1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(i d)}
{CKA_SENSI TI VE, &true, 1},
{ CKA_DECRYPT, &true, 1},
{CKA _SIGN, &true, 1},
{ CKA_UNVRAP, &true, 1}

9#

rv C Generat eKeyPai r (hSessi on, &nmechani sm publicKeyTenpl ate, 5,
privat eKeyTenpl ate, 8, &hPublicKey, &hPrivateKey);

Copyright © 1994-5 RSA Laboratories

Page 100 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

while (rv == CKR_FUNCTI ON_PARALLEL) {
/* Check if user want to cancel function */
if(kbhit()){
if(getch() == 27){ /* If user hit ESCape key */
C Cancel Functi on(hSessi on);
br eak;

}

/* Performother tasks or delay */

'rv = C_Get Functi onSt at us(hSessi on) ;

9.11 Callback function

Cryptoki uses the following callback function to notify the application of certain events.

¢ Notify

CK_RV CK _ENTRY Not i fy(
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VO D_PTR pApplication

);

Notify is an application callback that processes events. hSession is the session’s handle; event is the event;
and pApplication is an application-defined value (the same as passed to C_OpenSession).

When event is CKN_SURRENDER, the callback may return CKR_CANCEL to cancel the operation that is
currently active. If the callback returns CKR_OK, Cryptoki continues the operation. For other events, the
callback should return CKR_OK.

Return values: CKR_OK, CKR_CANCEL.

Copyright © 1994-5 RSA Laboratories

MECHANISMS

10. Mechanisms

Page 101

This section describes the mechanisms that this version of Cryptoki supports for cryptographic
operations. The following table summarizes the mechanisms and their uses.

Table 10-1, Mechanisms vs. Functions

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Digest

Generate?

Wrap

Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

v

CKM_RSA_PKCS

/3

CKM_RSA_9796

CMK_RSA_X_509

CKM_DSA_KEY_PAIR_GEN

CKM_DSA

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

CKM_RC2_MAC

CKM_RC4_KEY_GEN

CKM_RC4

CKM_DES_KEY_GEN

CKM_DES_ECB

CKM_DES_CBC

CKM_DES_MAC

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_MAC

CKM_MD2

CKM_MD5

CKM_SHA_1

1 SR = SignRecover, VR = VerifyRecover. 2 Generate includes GenerateKey and GenerateKeyPair.

Single-part operations only.

10.1 PKCS #1 RSA key pair generation

3

The PKCS #1 RSA key pair generation mechanism, denoted CKM_RSA_PKCS_KEY_PAIR_GEN, is a
key generation mechanism based on the RSA public-key cryptosystem as defined in PKCS #1.

It does not have a parameter.

Copyright © 1994-5 RSA Laboratories

Page 102 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The mechanism generates RSA public/private key pairs with a particular modulus length in bits and
public exponent, as specified in the CKA_MODULUS_BITS and CKA_EXPONENT attributes of the
template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_MODULUS attributes to the
new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, CKA_PUBLIC_EXPONENT,
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1,
CKA_EXPONENT_2, and CKA_COEFFICIENT attributes to the new private key. Other attributes
supported by the RSA public and private key types (specifically the flags indicating which functions the
keys support) may also be specified in the templates for the keys or else are assigned default initial
values.

Keys generated with this mechanism are compatible with the PKCS #1 RSA, ISO/IEC 9796 RSA, and
X.509 (raw) RSA mechanisms.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

10.2 PKCS #1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA_PKCS, is a multi-purpose mechanism based on the
RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports single-part
encryption and decryption, single-part signatures and verification with and without message recovery,
key wrapping, and key unwrapping. This mechanism corresponds only to the part of PKCS #1 that
involves RSA; it does not compute a message digest or a DigestInfo encoding as specified for the
md2wi t hRSAEncr ypt i on and nd5wi t hRSAEncr ypt i on algorithms in PKCS #1.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES keys. For
wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key
that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type or any other
information about the key, except the key length; the application must convey these separately. In
particular, the mechanism contributes only the CKA_VALUE attribute to the recovered key during
unwrapping; other attributes, including the CKA_CLASS attribute, must be specified in the template
since the mechanism does preserve the key length.

Constraints on key types and the length of the data are summarized in the following table. For

encryption, decryption, signatures and signature verification, the input and output data may begin at the
same location in memory. In the table, k is the length in bytes of the RSA modulus.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 103

Table 10-2, PKCS #1 RSA Key And Data Length Constraints

Function Key type Input length | Output length | Comments

C_Encrypt! RSA public key <k-11 k block type 02
C_Decrypt! RSA private key k <k-11 block type 01
C_Sign! RSA private key <k-11 k block type 01
C_SignRecover RSA private key <k-11 k block type 01
C_Verify! RSA public key <k-11,k® N/A block type 02
C_VerifyRecover | RSA public key k <k-11 block type 02
C_WrapKey RSA public key <k-11 k block type 01
C_UnwrapKey RSA private key k <k-11 block type 01

1 Single-part operations only. 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

10.3 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_9796, is a mechanism for single-part signatures
and verification with and without message recovery based on the RSA public-key cryptosystem and the
block formats defined in ISO/IEC 9796 and its annex A. This mechanism is compatible with the draft
ANSI X9.31 (assuming the length in bits of the X9.31 hash value is a multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings. Accordingly,
the following transformations are performed:

e data is converted between byte and bit string formats by interpreting the most significant bit of the
leading byte of the byte string as the leftmost bit of the bit string, and the least significant bit of the
trailing byte of the byte string as the rightmost bit of the bit string (this assumes the length in bits of
the data is a multiple of 8)

e asignature is converted from a bit string to a byte string by padding the bit string on the left with 0 to
7 zero bits so that the resulting length in bits is a multiple of 8, and converting the resulting bit string
as above; is it converted from a byte string to a bit string by converting the byte string as above, and
removing bits from the left so that the resulting length in bits is the same as that of the RSA modulus

It does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table.

The input and output data may begin at the same location in memory. In the table, k is the length in bytes
of the RSA modulus.

Copyright © 1994-5 RSA Laboratories

Page 104 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 10-3, ISO/IEC 9796 RSA Key And Data Length Constraints

Function Key type Input length | Output length
C_Sign! RSA private key <lk/2] k
C_SignRecover? RSA private key <[k/2] k
C_Verify! RSA public key <lk/2], k@ N/A
C_VerifyRecover! | RSA public key k <lk/2]

1 Single-part operations only. 2 Data length, signature length.

10.4 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X_509, is a multi-purpose mechanism based on
the RSA public-key cryptosystem. It supports single-part encryption and decryption, single-part
signatures and verification with and without message recovery, key wrapping, and key unwrapping
based on the so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most significant byte
first, applying “raw” RSA exponentiation, and converting the result to a byte string, most significant byte
first. The input string, considered as an integer, must be less than the modulus; the output string is also
less than the modulus.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES keys. For
wrapping, the “input” to the encryption operation is the value of the CKA_VALUE attribute of the key
that is wrapped; similarly for unwrapping. The mechanism does not wrap the key type, key length, or
any other information about the key; the application must convey these separately.

Constraints on key types and the length of input and output data are summarized in the following table.
For encryption, decryption, signatures and signature verification, the input and output data may begin at

the same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 10-4, X.509 (Raw) RSA Key And Data Length Constraints

Function Key type Input length | Output length
C_Encrypt! RSA public key <k k
C_Decrypt! RSA private key k <k
C_Sign! RSA private key <k k
C_SignRecover! RSA private key <k k
C_Verify?! RSA public key <kk@ N/A
C_VerifyRecover! | RSA public key k <k
C_WrapKey RSA public key <k k
C_UnwrapKey RSA private key k <k

1 Single-part operations only. 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RSA modulus sizes, in bits.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 105

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or
ISO/IEC 9796 block formats.

10.5 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY PAIR _GEN, is a key pair
generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186.

It does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and base, as
specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public
key. (Note that this version of Cryptoki does not include a mechanism for generating these DSA
parameters.)

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and
CKA_VALUE attributes to the new private key. Other attributes supported by the DSA public and
private key types (specifically the flags indicating which functions the keys support) may also be specified
in the templates for the keys or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

10.6 DSA

The DSA mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and verification
based on the Digital Signature Algorithm defined in FIPS PUB 186. (This mechanism corresponds only to
the part of DSA that processes the 20-byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most significant byte first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table. The input and
output data may begin at the same location in memory.

Table 10-5, DSA Key And Data Length Constraints

Function Key type Input Output
length length

C_Sign! DSA private key 20 40

C_Verify?! DSA public key 20,402 N/A

1 Single-part operations only. 2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of DSA prime sizes, in bits.

Copyright © 1994-5 RSA Laboratories

Page 106 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.7 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-Hellman key
agreement, as defined in PKCS #3. (This is analogous to what PKCS #3 calls “phase 1.”)

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime and base, as
specified in the CKA_PRIME and CKA_BASE attributes of the template for the public key. If the
CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the length in bits of the
private value, as described in PKCS #3. (Note that this version of Cryptoki does not include a mechanism
for generating a prime and base.)

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and CKA_VALUE
attributes to the new private key; other attributes required by the Diffie-Hellman public and private key
types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.

10.8 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is a
mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3. (This is
analogous to what PKCS #3 calls “phase I1.”)

It has a parameter, which is the public value of the other party in the key agreement protocol, represented
most significant byte first.

The mechanism derives RC2, RC4, DES, double-length DES, triple-length DES and generic secret keys
from the public value of the other party and a Diffie-Hellman private key. It computes a Diffie-Hellman
secret value from the public value and private key according to PKCS #3, and truncates the result
according to the CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one and the
key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE
attribute of the new key; other attributes required by the key type must be specified in the template.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of Diffie-Hellman prime sizes, in bits.
10.9 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation mechanism for
RSA Data Security’s proprietary block cipher RC2.

It does not have a parameter.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 107

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key. Other attributes supported by the RC2 key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC2 key sizes, in bits.

10.10 RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption and
decryption, key wrapping, and key unwrapping based on RSA Data Security’s proprietary block cipher
RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a two-byte string that specifies the effective number of bits in the RC2 search space,
most significant byte first; the value must be between 1 and 1024.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES keys. For
wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight.
The output data is the same length as the padded input data. It does not wrap the key type, key length, or
any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an issue for RC2 and RC4 keys.)
The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For encryption and

decryption, the input and output data (parts) may begin at the same location in memory.

Table 10-6, RC2-ECB Key And Data Length Constraints

Function Key type | Inputlength Output length Comments
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to

multiple of 8
C_UnwrapKey RC2 any input length rounded up to

multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC2 effective number of bits.

Copyright © 1994-5 RSA Laboratories

Page 108 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.11 RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption and
decryption, based on RSA Data Security’s proprietary block cipher RC2 and cipher block chaining mode
as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the effective
number of bits in the RC2 search space, and the next field is the initialization vector for cipher block

chaining mode. The effective number of bits must be between 1 and 1024.

Constraints on key types and the length of data are summarized in the following table. The input and
output data (parts) may begin at the same location in memory.

Table 10-7, RC2-CBC Key And Data Length Constraints

Function Key type | Inputlength Output length Comments
C_Encrypt RC2 multiple of 8 | same as input length | no final part
C_Decrypt RC2 multiple of 8 | same as input length | no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC2 effective number of bits.

10.12 RC2-MAC

RC2-MAC, denoted CKM_RC2_MAC, is a mechanism for single- and multiple-part signatures (data
authentication) and verification, based on RSA Data Security’s proprietary block cipher RC2 and data
authentication as defined in FIPS PUB 113.

It has a parameter, a two-byte string that specifies the effective number of bits in the RC2 search space,
most significant byte first; the value must be between 1 and 1024.

Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For single-part

signing, the data and the signature may begin at the same location in memory.

Table 10-8, RC2-MAC Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign RC2 any 4
C_Verity RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC2 effective number of bits.

10.13 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key generation mechanism for
RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 109

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key. Other attributes supported by the RC4 key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key; other attributes required by the RC4 key type must be specified in the template.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC4 key sizes, in bits.

10.14 RC4

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and decryption based
on RSA Data Security’s proprietary stream cipher RC4.

It does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table.
(These constraints apply both to data supplied as a single part, and to each part of multiple-part data.)

The input and output data (parts) may begin at the same location in memory.

Table 10-9, RC4 Key And Data Length Constraints

Function Key type | Inputlength Output length Comments
C_Encrypt RC4 any same as input length | no final part
C_Decrypt RC4 any same as input length | no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of RC4 key sizes, in bits.

10.15 DES key generation

The DES key generation mechanism, denoted CKM_DES_KEY_GEN, is a key generation mechanism for
DES as defined in FIPS PUB 46-2.

It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key. Other attributes supported by the DES key type (specifically, the flags indicating which functions the

key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.16 DES-ECB

DES-ECB, denoted CKM_DES_ECB, is a mechanism for single- and multiple-part encryption and
decryption, key wrapping and key unwrapping following DES as defined in FIPS PUB 46-2 and electronic
codebook mode as defined in FIPS PUB 81. It does not have a parameter.

Copyright © 1994-5 RSA Laboratories

Page 110 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism wraps and unwraps RC2, RC4, and single-length DES keys. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the
trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The output data
is the same length as the padded input data. It does not wrap the key type, key length or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an issue for RC2 and RC4 keys.)
The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For encryption and

decryption, the input and output data may begin at the same location in memory.

Table 10-10, DES-ECB Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt DES multiple of 8 same as input length no final part
C_Decrypt DES multiple of 8 same as input length no final part
C_WrapKey DES any input length rounded up to

multiple of 8
C_UnwrapKey DES any input length rounded up to

multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.17 DES-CBC

DES-CBC, denoted CKM_DES_CBC, is a mechanism for single- and multiple-part encryption and
decryption, following DES as defined in FIPS PUB 46-2 and cipher block chaining mode as defined in
FIPS PUB 81.

It has a parameter, an eight-byte initialization vector for cipher block chaining mode.
Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) The input and output

data (parts) may begin at the same location in memory.

Table 10-11, DES-CBC Key And Data Length Constraints

Function Key type | Inputlength Output length Comments
C_Encrypt DES multiple of 8 | same as input length | no final part
C_Decrypt DES multiple of 8 | same as input length | no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 111

10.18 DES-MAC

DES-MAC, denoted CKM_DES_MAGC, is a mechanism for single- and multiple-part signatures (data
authentication) and verification, following DES as defined in FIPS PUB 46-2 and data authentication as
defined in ANSI X9.9 (binary option) and FIPS PUB 113.

It does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table.
(These constraints apply both to data supplied as a single part, and to each part of multiple-part data.) For

single-part signing, the data and signature may begin at the same location in memory.

Table 10-12, DES-MAC Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign DES any 4
C_Verify DES any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.19 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2_KEY_GEN, is a key generation
mechanism for double-length DES keys.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key. Other attributes supported by the DES key type (specifically, the flags indicating which functions the
key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.20 Triple-length DES key generation

The triple-length DES key generation mechanism, denoted CKM_DES3_KEY_GEN, is a key generation
mechanism for triple-length DES keys.

It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new
key. Other attributes supported by the DES key type (specifically, the flags indicating which functions the

key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

Copyright © 1994-5 RSA Laboratories

Page 112 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.21 Triple-DES-ECB

Triple-DES-ECB, denoted CKM_DES3_ECB, is a mechanism for single- and multiple-part encryption and
decryption, key wrapping, and key unwrapping based on so-called “triple-DES” and electronic codebook
mode as defined in FIPS PUB 81.

Triple-DES as defined here follows the “EDE” convention, operating on either double-length or triple-
length DES keys. With a double-length DES key, the mechanism encrypts each block with the first DES
key, decrypts with the second DES key, then encrypts again with the first DES key. With a triple-length
DES keys, the mechanism encrypts each block with the first DES key, decrypts with the second DES key,
then encrypts with the third DES key.

It does not have a parameter.

This mechanism wraps and unwraps RC2, RC4, DES, double-length DES and triple-length DES keys. For
wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight.
The output data is the same length as the padded input data. It does not wrap the key type, key length, or
any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the
CKA_CLASS and CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (Truncation is mainly an issue for RC2 and RC4 keys.)
The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For encryption and

decryption, the input and output data (parts) may begin at the same location in memory.

Table 10-13, Triple-DES-ECB Key And Data Length Constraints

Function Key type Input length | Output length Comments

C_Encrypt double-length or | multiple of 8 | same as input length no final part
triple-length DES

C_Decrypt (same as above) | multiple of 8 | same as input length no final part

C_WrapKey (same as above) any input length rounded up

to multiple of 8

C_UnwrapKey (same as above) any input length rounded up
to multiple of 8

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.22 Triple-DES-CBC

Triple-DES-CBC, denoted CKM_DES3_CBC, is a mechanism for encryption and decryption, based on so-

called “triple-DES” and cipher block chaining mode as defined in FIPS PUB 81. It has a parameter, an
eight-byte initialization vector for cipher block chaining mode.

Copyright © 1994-5 RSA Laboratories

MECHANISMS Page 113

Constraints on key types and the length of input and output data are summarized in the following table.
The input and output data (parts) may begin at the same location in memory.

Table 10-14, Triple-DES-CBC Key And Data Length Constraints

Function Key type Input length Output length Comments

C_Encrypt | double-length or multiple of 8 same as input length | no final part
triple-length DES

C_Decrypt | double-length or multiple of 8 same as input length | no final part
triple-length DES

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.23 Triple-DES-MAC

Triple-DES-MAC, denoted CKM_DES3_MAC, is a mechanism for single- and multiple-part signatures
(data authentication) and verification, based on so-called “triple-DES” and data authentication as defined
in FIPS PUB 113.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table. (These constraints
apply both to data supplied as a single part, and to each part of multiple-part data.) For single-part

signing, the data and the signature may begin at the same location in memory.

Table 10-15, Triple-DES-MAC Key And Data Length Constraints

Function | Key type Data length | Signature length

C_Sign double-length or any 4
triple-length DES

C_Verity | double-length or any 4
triple-length DES

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.24 MD2

The MD2 mechanism, denoted CKM_MD?2, is a mechanism for message digesting, following the MD2
message-digest algorithm defined in RFC 13109.

It does not have a parameter.
Constraints on the length of data are summarized in the following table. (These constraints apply both to

data supplied as a single part, and to each part of multiple-part data.) For single-part digesting, the data
and the digest may begin at the same location in memory.

Copyright © 1994-5 RSA Laboratories

Page 114 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 10-16, MD2 Data Length Constraints

Function Data length | Digest length
C_Digest any 16

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.25 MD5

The MD5 mechanism, denoted CKM_MDS5, is a mechanism for message digesting, following the MD5
message-digest algorithm defined in RFC 1321.

It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.) For

single-part digesting, the data and the digest may begin at the same location in memory.

Table 10-17, MD5 Data Length Constraints

Function Data length | Digest length
C_Digest any 16

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

10.26 SHA-1

The SHA-1 mechanism, denoted CKM_SHA_1, is a mechanism for message digesting, following the
Secure Hash Algorithm defined in FIPS PUB 180, as subsequently amended by NIST.

It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. (These
constraints apply both to data supplied as a single part, and to each part of multiple-part data.) For

single-part digesting, the data and the digest may begin at the same location in memory.

Table 10-18, SHA-1 Data Length Constraints

Function Input length | Digest length
C_Digest any 20

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
are not used.

Copyright © 1994-5 RSA Laboratories

APPENDIX A

Appendix A, Token profiles

Page 115

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should support for various
common types of application. It is expected that these sets would be standardized as parts of the various
applications, for instance within a list of requirements on the module that provides cryptographic services
to the application (which may be a Cryptoki token in some cases). Thus, these profiles are intended for
reference only at this point, and are not part of this standard.

The following table summarizes the mechanisms relevant to three common types of application.

Table A-1, Mechanisms vs. profiles

Mechanism

Application

Privacy-Enhanced
Mail

Government

Authentication-only Packet Data

Cellular Digital

CKM_RSA_PKCS_KEY_PAIR_GEN

v

CKM_RSA_PKCS

v

CKM_RSA_9796

CMK_RSA_X_509

CKM_DSA_KEY_PAIR_GEN

CKM_DSA

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

CKM_RC2_MAC

CKM_RC4_KEY_GEN

CKM_RC4

CKM_DES_KEY_GEN

CKM_DES_ECB

<

CKM_DES_CBC

CKM_DES_MAC

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_MAC

CKM_MD2

CKM_MD5

CKM_SHA_1

CKM_SHA_1_DERIVE

Copyright © 1994-5 RSA Laboratories

Page 116 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

A.1 Privacy-Enhanced Mail

Privacy-Enhanced Mail is a set of protocols and mechanisms providing confidentiality and authentication
for Internet electronic mail. Relevant mechanisms include the following (see RFC 1423 for details):

PKCS #1 RSA key pair generation (508-1024 bits)

PKCS #1 RSA (508-1024 bits)

DES key generation

DES-CBC

DES-ECB

double-length DES key generation

triple-DES-ECB

MD2

MD5
Variations on this set are certainly possible. For instance, PEM applications which make use only of
asymmetric key management do not need the DES-ECB or triple-DES-ECB mechanisms, or the double-
length DES key generation mechanism. Similarly, those which make use only of symmetric key

management do not need the PKCS #1 RSA or RSA key pair generation mechanisms.

An “authentication-only” version of PEM with asymmetric key management would not need DES-CBC or
DES key generation.

It is also possible to consider “exportable” variants of PEM which replace DES-CBC with RC2-CBC,
perhaps limited to 40 bits, and limit the RSA key size to 512 bits.
A.2 Government authentication-only
The U.S. government has standardized on the Digital Signature Algorithm as defined in FIPS PUB 186 for
signatures and the Secure Hash Algorithm as defined in FIPS PUB 180 and subsequently amended by
NIST for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1

Note that this version of Cryptoki does not have a mechanism for generating DSA parameters.

Copyright © 1994-5 RSA Laboratories

APPENDIX A Page 117

A.3 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication. The basic set of
mechanisms to support CDPD applications includes the following;:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256 bits, but has been
recommended that the size be increased to at least 512 bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-Hellman parameters.

Copyright © 1994-5 RSA Laboratories

Page 118 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-5 RSA Laboratories

APPENDIX B Page 119

Appendix B, Comparison of Cryptoki and Other API’s

This appendix compares Cryptoki with the following cryptographic APIs:

e ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An Application
Programing Interface, April 29, 1994

e FIPS PUB XXX - Standard for Cryptographic Service Calls (Draft), April 15, 1994

e X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 ANSI N13-1994

This proposed standard defines an API to the Tessera (now known as Fortezza) PCMCIA Crypto Card. It
is at a level similar to Cryptoki. The following table lists the ANSI N13-1994 functions with the equivalent

Cryptoki functions.

ANSI N13-1994 Equivalent Cryptoki
CI_ChangePIN C_InitPIN, C_SetPIN
CI_CheckPIN C_Login

CI_Close

C_CloseSession

CI_Decrypt

C_Decryptlnit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal

CI_DeleteCertificate

C_DestroyObject

CIL_DeleteKey

C_DestroyObject

CI_Encrypt

C_Encryptlnit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal

CI_ExtractX

C_WrapKey

CI_GeneratelV

C_GenerateRandom

CI_GenerateMEK

C_GenerateKey

CI_GenerateRa

C_GenerateRandom

CI_GenerateRandom

C_GenerateRandom

CI_GenerateTEK

C_GenerateKey

CI_GenerateX

C_GenerateKeyPair

CI_GetCertificate

C_FindObjects

CI_Configuration

C_GetTokenInfo

CI_GetHash

C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

CI_GetIV

No equivalent

CIL_GetPersonalityList

C_FindObjects

CI_GetState

C_GetSessionInfo

CI_GetStatus

C_GetTokenInfo

CI_GetTime

No equivalent

CI_Hash

C_DigestInit, C_Digest, C_DigestUpdate, and C_DigestFinal

Copyright © 1994-5 RSA Laboratories

Page 120

PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

ANSI N13-1994

Equivalent Cryptoki

CI_Initialize

C_Initialize

CI_InitializeHash

C_DigestInit

CI_InstallX

C_UnwrapKey

CI_LoadCertificate

C_CreateObject

CI_LoadInitValues

C_SeedRandom

CI_LoadIV C_Encryptlnit, C_DecryptInit
CI_LoadK C_SignInit
CI_LoadPublicKeyParameters | C_CreateObject

CI_LoadPIN C_SetPIN

CI_LoadX C_CreateObject

CI_Open C_OpenSession

CI_Relay C_WrapKey

CI_Reset C_CloseAllSessions
CI_Restore No equivalent

CI_Save No equivalent

CI_Select C_OpenSession

CI_SetKey C_Encryptlnit, C_DecryptInit
CI_SetMode C_Encryptlnit, C_DecryptInit
CI_SetPersonality C_CreateObject

CI_SetTime No equivalent

CL_Sign C_SignlInit, C_Sign

CI_Timestamp

No equivalent

CI_Terminate

C_CloseAllSessions

CI_UnwrapKey

C_UnwrapKey

CI_Verify C_Verifylnit, C_Verify
CI_VerifyTimestamp No equivalent
CI_WrapKey C_WrapKey
CI_Zeroize C_InitToken

B.2 FIPS PUB XXX

This proposed standard defines a set of generic cryptographic service calls for application programs. It is
at a level similar to Cryptoki. The following table lists the FIPS PUB XXX functions with the equivalent

Cryptoki functions.

FIPS PUB XXX Equivalent Cryptoki Functions
VerifyUser C_Login

CreateUser C_InitToken, C_InitPIN
ChangeAuthent C_SetPIN

Copyright © 1994-5 RSA Laboratories

APPENDIX B

Page 121

FIPS PUB XXX

Equivalent Cryptoki Functions

SetUserCommand No equivalent

ShowUserCommand | No equivalent

DeleteUser C_InitToken

Logout C_Logout

Encipher C_Encryptlnit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal
Decipher C_Decryptlnit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal
ComputeDAC C_Signlnit, C_Sign, C_SignUpdate, C_SignFinal

VerifyDAC C_Veritylnit, C_Verify, C_VerifyUpdate, C_VerifyFinal
GenRandNum C_SeedRandom, C_GenerateRandom

GenKey C_GenerateKey

DeleteKey C_DestroyObject

LoadKey C_CreateObject

ShowSecKey C_FindObjects

ExportKey C_WrapKey

ImportKey C_UnwrapKey

XorKeys No equivalent

SetCount No equivalent

ReadCount No equivalent

PubEncipher C_Encryptlnit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal
PubDecipher C_Decryptlnit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal
Hash C_DigestInit, C_Digest, C_DigestUpdate, C_DigestFinal
PreSign C_SignInit

SetPubParam C_GenerateKeyPair

ReadPubParam C_GetAttributeValue

Sign C_Sign

VerifySig C_Verifylnit, C_Verify

GenPubKey C_GenerateKeyPair

LoadPubKey C_CreateObject

ShowPubKey C_FindObjects

RetrvPubKey C_GetAttributeValue

DeletePubKey C_DestroyObject

LoadCert C_CreateObject

RetrvCert C_GetAttributeValue

PubExportKey C_WrapKey

PublmportKey C_UnwrapKey

Copyright © 1994-5 RSA Laboratories

Page 122 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

B.3 GCS-API

This proposed standard defines an API to high-level security services such as authentication of identities
and data-origin, non-repudiation, and separation and protection. It is at a higher level than Cryptoki. The
following table lists the GCS-API functions with the Cryptoki functions used to implement the functions.
Note that full support of GCS-AP1 is left for future versions of Cryptoki.

GCS-API Cryptoki implementation

retrieve_CC

release_CC

generate_hash C_DigestlInit, C_Digest

generate_random_number C_GenerateRandom

generate_checkvalue C_SignlInit, C_Sign, C_SignUpdate, C_SignFinal

verify_checkvalue C_Verifylnit, C_Verify, C_VerifyUpdate,
C_VerifyFinal

data_encipher C_Encryptlnit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data_decipher C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C_DecryptFinal

create_CC

derive_key C_DeriveKey

generate_key C_GenerateKey

store_CC

delete_CC

replicate_CC

export_key C_WrapKey

import_key C_UnwrapKey

archive_CC C_WrapKey

restore_CC C_UnwrapKey

set_key_state

generate_key_pattern

verify_key_pattern

derive_clear_key C_DeriveKey
generate_clear_key C_GenerateKey
load_key_parts

clear_key_encipher C_WrapKey
clear_key_decipher C_UnwrapKey

change_key_context

load_initial_key

generate_initial_key

set_current_master_key

protect_under_new_master_key

protect_under_current_master_key

Copyright © 1994-5 RSA Laboratories

APPENDIX B

Page 123

GCS-API

Cryptoki implementation

initialise_random_number_generator

C_SeedRandom

install_algorithm

de_install_algorithm

disable_algorithm

enable_algorithm

set_defaults

Copyright © 1994-5 RSA Laboratories

