
© Security First Corp. 2007. May be reproduced only in its original entirety (without revision).

SecureParser®
Cryptographic Module

Security Policy

Versions 4.5.0 & 4.5.1
Revision 1.05

31 January 2008

© Security First Corp. 2007
All Rights Reserved.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 2

Revision History
Revision History

Version Date Author Notes

0.01 01/11/2007 Infogard,
Security First
Corp.

Documentation Workshop (Infogard template)

0.02 02/26/2007 Security First
Corp.

Accumulated changes to date after
Documentation Workshop.

0.03 03/20/2007 Security First
Corp.

Added key sizes for DSA & RSA keys in
Section 3 Modes of Operation

0.04 03/22/2007 Security First
Corp.

Added power-on self-test
RSA encrypt/decrypt

0.05 04/20/2007 Security First
Corp.

Corrected Security Rule 25 to reflect PRNG is
based on AES Encrypt, not AES Decrypt

0.06 05/22/2007 Security First
Corp.

Clarified that the same HMAC key is used for
Data & Share authentication/integrity

0.07 06/07/2007 Security First
Corp.

Added Algorithm certificate numbers

0.08 06/12/2007 Security First
Corp.

Added entropy assessment details

0.09 07/11/2007 Security First
Corp.

Updates after Operational Testing.
ECDSA added. Overview updated.

1.00 08/07/2007 Security First
Corp.

Final edit before submission

1.01 11/5/2007 Security First
Corp.

(ISE input)

V4.5.1 revision for submission.

Updated API section, removed references to
single-threaded requirement.

1.02 12/16/2007 Security First
Corp.

Title page updated.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 3

(ISE input)

1.03 01/07/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments.

Additional V4.5.1 changes for clarity regarding
Multi-threading and Kernel mode.

1.04 01/18/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments round 2.

All references to MS RSAENH.dll removed.
Standard platform services are providing
entropy.

Security Rule 24:3 corrected.

1.05 01/31/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments round 3.
Clarification: Key entry/output is always
encrypted.
PRNG_Seed_Value rationale of strength
modified as per CMVP suggestion.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 4

TABLE OF CONTENTS

SECUREPARSER®..1

CRYPTOGRAPHIC MODULE ..1

SECURITY POLICY..1

VERSIONS 4.5.0 & 4.5.1 ..1

REVISION 1.04 ...1

REVISION HISTORY..2

1. MODULE OVERVIEW ...5

2. SECURITY LEVEL..7

3. MODES OF OPERATION...8

4. IDENTIFICATION AND AUTHENTICATION POLICY..9

5. ACCESS CONTROL POLICY..10
ROLES AND SERVICES..10
DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPS)..14
DEFINITION OF CSPS MODES OF ACCESS ..15

6. OPERATIONAL ENVIRONMENT..17

7. SECURITY RULES ...17

8. PHYSICAL SECURITY...19

9. MITIGATION OF OTHER ATTACKS POLICY...20

10. DEFINITIONS AND ACRONYMS...20

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 5

1. Module Overview
The SecureParser® Encryption module is a software only module that is installed on a multi-chip
standalone device such as a General Purpose Computer (GPC). The SecureParser module is a
security and high data availability architecture delivered in the form of a toolkit that provides
cryptographic data splitting (data encryption, random or deterministic distribution to multiple
shares including additional fault tolerant bits, key splitting, authentication, integrity, share
reassembly, key restoration and decryption) of arbitrary data. The SecureParser accepts any type
of digital data and cryptographically splits it into shares so that no discernible data is transmitted
across a network or lands on a single storage device. During the split process, additional
redundant data may be optionally written to each share enabling the capability of restoring the
original data when all shares are not available. Transmission of smaller shares improves
performance over multiple network paths or I/O channels. The shares can be stored in
geographically disbursed nodes providing for continuous access to online information. Each
share contains an integrity check that prevents tampering with the stored data and is immediately
recognized by the other shares. Any change to the data in a share would preclude that share
from being used in the data rebuild process. The encryption keys are encrypted with a
Workgroup key, split and stored with the data which effectively eliminates file level key
management. Data availability and survivability will be greatly improved and allow for a return
to operations (RTO) of zero loss time when faced with environmental, hostile or accidental
catastrophes. The SecureParser module is designed to be integrated at any point where data is
written, retrieved, sent or received.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 6

Boundaries

Figure 1 – Image of the Cryptographic Module

Physical Boundary (case of general purpose computer)
 Logical Boundary

Logical Boundary v4.5.0
When operating on Microsoft Windows operating system platforms Windows XP and Windows
Server 2003, the SecureParser module cryptographic logical boundary is defined as containing a
single executable, the SecureParser libparser4.dll. Seed values for the SecureParser’s random
number generator will be imported from standard operating system services within the physical
boundary of the general purpose computer.

When operating on Linux operating system platforms Red Hat Enterprise v4, and SUSE
Enterprise v10, the SecureParser module cryptographic logical boundary is defined as containing
a single executable, the SecureParser libparser4.so. Seed values for the SecureParser’s random
number generator will be imported from standard operating system services within the physical
boundary of the general purpose computer.

Logical Boundary v4.5.1
Version 4.5.1 adds Multi-threading capabilities on all the tested operating systems, and the
additional option to execute the module in Kernel mode on Windows XP and Windows Server
2003.

When operating on Microsoft Windows operating system platforms Windows XP and Windows
Server 2003, the SecureParser module cryptographic logical boundary is defined as containing a
single executable, either the SecureParser libparser4.dll or the SecureParser libparser4.sys
(libparser4.sys operates in Kernel mode). Seed values for the SecureParser’s random number
generator will be imported from standard operating system services within the physical boundary

4.5.0 SecureParser module toolkit:
libparser4.dll, Windows XP &

 Windows Server 2003
libparser4.so, Red Hat & SUSE Linux

4.5.1 SecureParser module toolkit. Multi-
threading. Kernel mode for Windows:
libparser4.dll, Windows XP &

 Windows Server 2003
libparser4.sys, Windows XP &

 Windows Server 2003
libparser4.so, Red Hat & SUSE Linux

Module’s
exposed
 API

Application
that uses
the module
toolkit
library

Data Input
Data Output
Control Input
Status Output

 Persistent Keystore

 Volatile Keystore

All Secret & Private
Key Entry/Output is
encrypted.

Entropy from
standard platform
services

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 7

of the general purpose computer.

When operating on Linux operating system platforms Red Hat Enterprise v4, and SUSE
Enterprise v10, the SecureParser module cryptographic logical boundary is defined as containing
a single executable, the SecureParser libparser4.so. Seed values for the SecureParser’s random
number generator will be imported from standard operating system services within the physical
boundary of the general purpose computer.

Physical Boundary
The SecureParser cryptographic physical boundary is the case of the General Purpose Computer
(GPC) on which the libparser4 executable is instantiated. Ports at the physical boundary of the
GPC are those typical of a GPC for connecting external devices such as keyboards, monitors,
mice, and printers. These devices are outside the physical boundary of the cryptographic module
and are excluded from the validation.

Operating Systems & Platforms

The SecureParser module has been tested on and found to be conformant with the requirements
of FIPS 140-2 overall level 1 on the following GPC operating systems: Windows XP; Windows
Server 2003; Red Hat Linux Enterprise v4; SUSE Linux Enterprise v10.

Operational testing was performed on all the above operating systems on a Dell Optiplex 210L
Model DCSM.

Additionally, the module runs without recompilation on other GPC’s equipped with x86
compatible processors running Microsoft Windows 2000, and Microsoft Windows 2000 Server.
The module also runs without recompilation on other GPC’s equipped with x86 compatible
processors running kernels compatible with RedHat Linux Enterprise v4 and SUSE Linux
Enterprise v10.

2. Security Level
The cryptographic module meets the overall requirements applicable to Level 1 security of
FIPS 140-2.

 Table 1 - Module Security Level Specification

 Security Requirements Section Level

Cryptographic Module Specification 3

Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 3

EMI/EMC 3

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 8

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks N/A

3. Modes of Operation
Approved Algorithms

In FIPS mode, the SecureParser module supports FIPS Approved algorithms as follows. The
certificate #’s sited below have all been obtained by SecureParser module algorithm testing with
the CAVP.

Version 4.5.0:
 AES-CBC/ECB - 128/192/256 bit key Cert. #594
 AES-CTR - 128/192/256 bit key Cert. #594
 HMAC-SHA1 & HMAC-SHA256 Cert. #302
 SHA-1 SHA-256 hashing Cert. #631
 DSA sign/verify – 1024 bit key Cert. #229
 RSA sign/verify – 1024/2048/4096 bit key Cert. #262
 PRNG Key Generation ANSI X9.31 with AES Cert. #330
 ECDSA sign/verify – 521 bit key Cert. #63

Version 4.5.1:

 AES-CBC/ECB - 128/192/256 bit key Cert. #687
 AES-CTR - 128/192/256 bit key Cert. #687
 HMAC-SHA1 & HMAC-SHA256 Cert. #366
 SHA-1 SHA-256 hashing Cert. #716
 DSA sign/verify – 1024 bit key Cert. #260
 RSA sign/verify NIST Key Wrapping– 1024/2048/4096 bit key Cert. #321
 PRNG Key Generation ANSI X9.31 with AES Cert. #401
 ECDSA sign/verify – 521 bit key Cert. #77

Key Entry and Output
All Key Entry and Output in FIPS mode must be in encrypted form. Plaintext keys are never
entered or output from the module.

NIST Key Wrapping per FIPS 140-2 Annex D using 128/192/256 bit keys.

RSA Key Wrapping per FIPS 140-2 IG 7.1 Acceptable Key Establishment Protocols, Key
Transport using asymmetric keys [key wrapping] using k = 4096. (RSA key wrapping, key
establishment methodology provides 128 bits of encryption strength).

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 9

Configuring the module for FIPS mode

The SecureParser module may be configured for FIPS mode by calling the module’s exposed
module_initialize() API function with the calling parameter “fipsEnabled” set to true.
Subsequent SecureParser module API calls that are used to further configure the SecureParser
will have their calling parameters checked by the SecureParser based on the value of the
“fipsEnabled” calling parameter used in the original module_initialize() API function call.
These subsequent checks are used to insure that all FIPS mode configuration values are set
properly.

Operators can determine if the cryptographic module is running in FIPS versus non-FIPS mode
via execution of the module’s module_getstatus() API function call, which is used to meet the
FIPS area 1 requirements to achieve level 3. The module_getstatus() API function call equates
to the FIPS “show status” service and will indicate if a FIPS mode of operation has been
selected. The module_getstatus() API call returns two items. (These items are returned as
known/documented values to memory locations passed into module_getstatus() as pointers):

• Whether the module is in FIPS mode (value set = 1), or non-FIPS mode (value set = 0)

• The current FSM state of the module (MODULE_STATE enum)

Once a FIPS mode of operation has been selected the module cannot transition into a non-FIPS
mode of operation during the lifetime of the module instantiation in executable memory.
Similarly once a non-FIPS mode of operation has been selected the module cannot transition into
a FIPS mode of operation during the lifetime of the module instantiation in executable memory.

Non-FIPS mode of operation

The SecureParser module can be initialized into a non-FIPS Approved mode of operation by
setting the “fipsEnabled” flag to 0 during the first call to the API function module_initialize.
Additionally in v4.5.0 external applications (outside of the logical boundary of the SecureParser
module) are not allowed multi-threaded use of the SecureParser module toolkit library in FIPS
mode. The v4.5.0 restriction against multi-threaded use is stated in documentation for external
application developers.

Applications cannot transition their use of the module toolkit library to/from FIPS mode and
non-FIPS mode while the module is instantiated. The module must be shut down by the calling
application and then restarted to transition to/from FIPS mode and non-FIPS mode.

4. Identification and Authentication Policy
Assumption of roles

The SecureParser module has two distinct operator roles - governed by a single operator (the
operating system): Cryptographic-Officer role; User role. Operators of the cryptographic
module implicitly assume roles each time they call into the SecureParser module via exposed
SecureParser API function calls. Each API call into the SecureParser module performs a module
service. Consistent with FIPS 140-2 area 3 level 1 requirements, the operators of the
SecureParser cryptographic module are not authenticated to the module. Note that the operating
systems the module is run on provide functionality to require an operator to be successfully
authenticated prior to using any service provided by the module.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 10

Table 2 - Roles and Required Identification and Authentication

Role Type of Authentication Authentication Data

Cryptographic-Officer None None

User None None

Table 3 – Strengths of Authentication Mechanisms

Authentication Mechanism Strength of Mechanism

None None

5. Access Control Policy
Roles and Services

Table 4 – Services Authorized for Roles

Role Authorized Services

Cryptographic-Officer:

The Cryptographic Officer
role is assumed when
applications call the
module’s exposed API
functions that perform
initialization,
configuration, and
administrative services.

• module_initialize. Initializes the module, sets FIPS mode or
non-FIPS mode, performs self tests, and moves the module
into an operational state.

• parser_create. Allocates the memory for a Parser structure.
There can be multiple parser instances within the module –
they are all either in FIPS mode, or they are all in non-FIPS
mode (determined by the module_initialize service).

• parser_destroy. Deallocates the memory of a Parser
structure.

• parser_generateHeaders. Configures parser context and
generates headers.

• parser_restoreHeaders. Configures parser context based
on headers with optional modifications.

• keystore_getImportKey: This service provides the RSA
public key needed for asymmetric key wrapping for all key
entry into the specified keystore of the module (note that
each keystore will have its own public/private keypair).

• keystore_create. Allocates memory for a volatile KeyStore
structure, and creates a non-persistent RSA public/private

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 11

Role Authorized Services

encryption keypair to be used for key import (note that each
keystore will have its own public/private keypair).

• keystore_destroy. Deallocates the memory of a volatile
KeyStore structure.

• keystore_addKeyFromBuffer. Imports a key into the
specified volatile keystore structure. All imported keys will
be RSA key wrapped and will need to be unwrapped by the
module. Note: x509 certificates can be in the buffer, their
public keys will be imported.

• keystore_removeKey. Removes a key from the volatile
keystore.

• keystore_getKeyType. Returns the key type for the
requested key.

• keystore_getkeylength. Returns the key length for the
requested key.

• keystore_keyexists. True or False, the requested key exists
or does not exist within the specified volatile keystore.

• module_getstatus: This service provides the current status
of the cryptographic module including whether or not a
FIPS Approved mode of operation has been selected.

• module_destroy: Zeroization, called by the application
prior to (graceful) application termination. Zeroizes non-
persistent CSPs including the RSA import public/private
keypair, and the volatile Keystores. ALL keystores and ALL
parsers in memory are zeroized.

• Self tests: Power cycle
User:

The User role is assumed
when applications call the
module’s exposed API
functions that perform
general cryptographic
services.

• parser_parseData. Parses data from the input buffer gather
list into the output buffers.

• parser_restoreData. Restores data from the output buffers
into the input buffers.

• parser_getHeaderInfo. Processes the header and returns
information about specific header fields.

• parser_getParsedLength. Returns the number of bytes
needed for each output share when parsing.

• parser_getRestoredLength. Returns the number of bytes
needed for the original share when restoring.

• module_getstatus: This service provides the current status
of the cryptographic module including whether or not a
FIPS Approved mode of operation has been selected.

• Self tests: Power cycle

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 12

Table 5 - Specification of Service Inputs & Outputs

Service Control Input Data Input Data Output Status Output

module_initialize int fipsEnabled

N/A N/A Success or
ERROR_TYPE

parser_create Parser **ret N/A Parser **ret Success or
ERROR_TYPE

parser_destroy Parser *p N/A N/A Success or
ERROR_TYPE

parser_
generateHeaders

Parser *p
KeyStore *ks
int L
int M
int N
IDA_TYPE idaMode
ENC_TYPE encMode
HASH_TYPE hashMode
char *workgroupKeyId
size_t workgroupKeyIdMem
size_t workgroupKeyIdSize,
AUTH_TYPE postAuthMode
char *postAuthKeyId
size_t postAuthKeyIdMem
size_t postAuthKeyIdSize
uint8 **outputBuffers
size_t *outputBufferLengths
size_t *outputBufferMems

N/A uint8 **outputBuffers
size_t
*outputBufferLengths

Success or
ERROR_TYPE

parser_restoreHeaders Parser *p
KeyStore *ks
HASH_TYPE hashMode
char *workgroupKeyId
size_t workgroupKeyIdMem
size_t workgroupKeyIdSize
AUTH_TYPE postAuthMode
HASH_TYPE postHashMode
char *postAuthKeyId
size_t postAuthKeyIdMem
size_t postAuthKeyIdSize
uint8 **inputBuffers
size_t * inputBufferLengths
size_t * inputBufferMems
int inputBuffersCount
int trustedShareNumber

uint8
**inputBuffers

N/A Success or
ERROR_TYPE

keystore_
getImportKey

KeyStore *ks
size_t bufferMem
size_t *bufferLength

N/A uint8 *buffer
size_t *bufferLength

Success or
ERROR_TYPE

keystore_create KeyStore **ret
int minimumKeyCount

N/A KeyStore **ret Success or
ERROR_TYPE

keystore_destroy KeyStore *ks

N/A N/A Success or
ERROR_TYPE

keystore_ KeyStore *ks uint8* buffer N/A Success or

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 13

Service Control Input Data Input Data Output Status Output

addKeyFromBuffer

uint8 *buffer
size_t bufferMem
size_t bufferLength
char *id
size_t idMem
size_t idLength
char *passphrase
size_t passphraseMem
size_t passphraseLength
IMPORT_TYPE importType

ERROR_TYPE

keystore_removeKey KeyStore *ks
char *id
size_t idMem
size_t idLength

N/A N/A Success or
ERROR_TYPE

keystore_getKeyType KeyStore *ks
char *id
size_t idMem
size_t idLength
KEY_TYPE *keyType

N/A KEY_TYPE *keyType Success or
ERROR_TYPE

keystore_
getKeyLength

KeyStore *ks
char *id
size_t idMem
size_t idLength
size_t *keyLength

N/A size_t *keyLength Success or
ERROR_TYPE

keystore_keyExists KeyStore *ks
char *id
size_t idMem
size_t idLength
int *keyExists

N/A int *keyExists Success or
ERROR_TYPE

parser_parseData Parser *p
uint8*inputBuffer
size_t inputBufferLength
size_t inputBufferMem
uint8 **outputBuffers
size_t *outputBufferLengths
size_t *outputBufferMems
int outputBuffersCount

uint8 *inputBuffer uint8**outputBuffers
size_t
*outputBufferLengths

Success or
ERROR_TYPE

parser_restoreData Parser *p
uint8 *outputBuffer
size_t *outputBufferLength
size_t outputBufferMem
uint8 **inputBuffers
size_t *inputBufferLengths
size_t *inputBufferMems
int inputBuffersCount
int trustedShareNumber

uint8
**inputBuffers

uint8 *outputBuffer
size_t
*outputBufferLength

Success or
ERROR_TYPE

parser_getHeaderInfo DATAFIELD_TYPE t
uint8 *header
size_t headerMem
size_t headerLength
uint8 *ret
size_t retMem

uint8 *headerbuffer uint8 *ret
size_t *retLength

Success or
ERROR_TYPE

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 14

Service Control Input Data Input Data Output Status Output

size_t *retLength
parser_
getParsedLength

Parser *p
size_t inputLength
size_t *ret

size t inputLength

size t *ret

Success or
ERROR_TYPE

parser_
getRestoredLength

Parser *p
size t inputLength
size_t *ret

size_t inputLength size t *ret

Success or
ERROR_TYPE

module_getStatus int *fipsEnabled
MODULE_STATE *state

N/A int *fipsEnabled
MODULE_STATE
*state

Success or
ERROR_TYPE

module_destroy
(Zeroization)

N/A N/A N/A Success or
ERROR_TYPE

Self-Tests (Power
cycle)

N/A N/A N/A

Definition of Critical Security Parameters (CSPs)

The following are CSPs contained within the module:

• Private_Import_Key_RSA_Unwrap: Used by the SecureParser module to unwrap
encrypted keys sent to it by applications. All keys sent to the SecureParser will be RSA
key wrapped by applications with CSP Public_Import_Key_RSA_Wrap. Note that
each SecureParser keystore will have its own associated RSA public/private import
keypair.

• Workgroup_Key_AES: Used to NIST key wrap internally generated Session keys
(Session_Key_AES, Session_Data_Integrity_Key_HMAC) before they are split and
output into shares, also used to unwrap key shares in headers being restored.

• Session_Key_AES: Used to encrypt all plaintext data prior to data splitting. Encrypted
with Workgroup_Key_AES during NIST Key wrapping and then placed into share
headers.

• Session_Data_Integrity_ Key_HMAC: SHA1 or SHA 256 used for ciphertext data
integrity prior to data splitting, and also for the first share data integrity after data
splitting. Encrypted with Workgroup_Key_AES during NIST Key wrapping and then
placed into share headers.

• Share_Integrity_Key_HMAC: Optional HMAC-SHA1 or HMAC-SHA256 key used
for additional ciphertext share data integrity after data splitting + the first share data
integrity. Never output.

• Share_Integrity_Key_ DSA_Sign: Optional DSA Private Key (PEM or ANSI) used to
sign ciphertext share data after the data splitting process. Never output.

• Share_Integrity_Key_ RSA_Sign: Optional RSA Private Key used to sign ciphertext
share data after the data splitting process. Never output.

• Share_Integrity_Key_ ECDSA_Sign: Optional ECDSA Private Key (PEM or ANSI)
used to sign ciphertext share data after the data splitting process. Never output.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 15

• PRNG_Seed_Key: Imported from standard operating system services within the physical
boundary of the general purpose computer.. Used to seed the module’s own FIPS ANSI
X9.31 pseudo random number generator. Rationale of strength follows
PRNG_Seed_Value description.

• PRNG_Seed_Value: Imported from standard operating system services within the
physical boundary of the general purpose computer.. Used to seed the module’s own
FIPS ANSI X9.31 pseudo random number generator. Must not be identical to
PRNG_Seed_Key. Since the PRNG seed comes from the operating system, which is
outside the logical boundary of the module, for the purposes of FIPS 140-2, the
entropy of this seed may be assumed to be equal to the length of the seed. The seed
length is 128 bits.

• SecureParser PRNG_State: Internal state of the SecureParser’s PRNG (v4.5.0 Cert.
#330, v4.5.1 Cert. #401).

Definition of Public Keys

The following are the public keys contained in the module:

• Public_Import_Key_RSA_Wrap: Used by applications to wrap keys they are sending
to the SecureParser module. All keys sent to the SecureParser must be RSA wrapped.
Note that each SecureParser keystore will have its own public/private keypair.

• SW_Integrity_Key_DSA_Verify: Used for verification of the signed module executable
during power-on self-tests. Hard coded in the module.

• Share_Integrity_Key_DSA_Verify: Optional DSA Public Key (PEM or ANSI) used to
verify ciphertext share data during the restoration process. Can be imported into the
module from an X509 certificate.

• Share_Integrity_Key_RSA_Verify: Optional RSA Public Key used to verify ciphertext
share data during the restoration process. Can be imported into the module from an X509
certificate.

• Share_Integrity_Key_ECDSA_Verify: Optional ECDSA Public Key (PEM or ANSI)
used to verify ciphertext share data during the restoration process. Can be imported into
the module from an X509 certificate.

Definition of CSPs Modes of Access

Table 6 defines the relationship between access to CSPs and the different module services. The
modes of access shown in the table are defined as follows:

• G = Generate CSP
• R = Read CSP
• W = Write CSP
• Z = Zeroize CSP

Table 6 – CSP Access Rights within Roles & Services
Ref. SecureParser Specification: 4.4 Critical Security Parameters

 Role Service Cryptographic Keys and CSPs
Access Operation

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 16

C.O. User

X module_initialize PRNG_Seed_Key, G-Z

PRNG_Seed_Value, G-Z

PRNG_State, W
X parser_create N/A

X parser_destroy Session_Key_AES, Z

Session_Data_Integrity_
Key_HMAC, Z

X parser_generateHeaders Session_Key_AES, G-R-W

Session_Data_Integrity_
Key_HMAC, G-R-W

Workgroup_Key_AES, R

PRNG_State, R-W
X parser_restoreHeaders Session_Key_AES, R-W

Session_Data_Integrity_
Key_HMAC, R-W

Workgroup_Key_AES, R
X keystore_create Private_Import_Key_RSA_

Unwrap, G

Public_Import_Key_RSA_
Wrap, G

X keystore_destroy All CSPS in the keystore, Z

X keystore_addKeyFromBuffer All keys that are imported, R-W

Private_Import_Key_RSA_
Unwrap, R

X keystore_removeKey Specified key in volatile keystore
structure Z

X keystore_getKeyType Specified key in volatile keystore
structure R

X keystore_getkeylength Specified key in volatile keystore

structure R
X keystore_keyexists Specified key in volatile keystore

structure R

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 17

 Role

C.O. User

Service Cryptographic Keys and CSPs
Access Operation

 X parser_parseData Session_Key_AES, R

Session_Data_Integrity_
Key_HMAC, R

Workgroup_Key_AES, R

PRNG_State, R-W

 X parser_restoreData Session_Key_AES, R

Session_Data_Integrity_
Key_HMAC, R

Workgroup_Key_AES, R

 X parser_getHeaderInfo N/A

 X parser_getParsedLength N/A

 X parser_getRestoredLength N/A

X X module_getstatus N/A

X Zeroization:
module_destroy

All CSPs (includes imported
public keys and everything in the
volatile keystore), Z

 Self tests (power cycle) SW Integrity: Digital signature
using Security First Corp. public
DSA key SW_Integrity_Key_
DSA_Verify, R

6. Operational Environment
The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the
SecureParser module operates in a modifiable operational environment on a general purpose
computer. See the description of the operational environment in section “1. Module Overview”
above.

7. Security Rules
The SecureParser cryptographic module’s design corresponds to the module’s security rules.
This section documents the security rules enforced by the cryptographic module to implement
the security requirements of this FIPS 140-2 Level 1 software module.

1. The SecureParser module interfaces shall be logically distinct from each other as
defined by the SecureParser API for the following interfaces: Data Input; Data

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 18

Output; Control Input; Status Output.
2. Status information shall not contain CSPs or sensitive data that if misused could lead

to a compromise of the module.
3. Data output shall be inhibited during self-tests, and while in error states.
4. Data output shall be disconnected from the module processes that perform key

generation, and plaintext CSP zeroization (the module will not support manual key
entry).

5. Two independent internal actions will be required to output data via the output
interface through which sensitive restored plaintext share data is output.

6. Plaintext secret/private key output is not supported. No SecureParser API calls will
permit secret/private key output.

7. The SecureParser module shall provide two distinct operator roles. These are the
User role, and the Cryptographic-Officer role.

8. The SecureParser module shall not support concurrent operators.
9. The SecureParser module shall not support a maintenance role.
10. The SecureParser module shall not support a bypass capability.
11. The SecureParser module does not provide any operator authentication.
12. Explicit service API calls into the SecureParser module shall allow the implicit

assumption of operator roles.
13. The SecureParser module includes the following operational and error states: Power

on/off state; Crypto officer state; User state; Self-test state; Error state; Key/CSP
Entry state.

14. Recovery from error states shall be possible by power cycling the module.
15. Secret keys, private keys, and CSPs shall be protected within the cryptographic

module from unauthorized disclosure, modification, and substitution.
16. Public keys shall be protected within the cryptographic module against unauthorized

modification and substitution.
17. An Approved RNG (ANSIX9.31 with AES) shall be used for the generation of AES

cryptographic keys within the module.
18. An Approved RNG (ANSIX9.31 with AES) shall be used for the generation of RSA

cryptographic keypairs within the module.
19. The PRNG seed and seed key shall not have the same value.
20. Compromising the security of the key generation method (e.g., guessing the seed

value to initialize the deterministic RNG) shall require as least as many operations as
determining the value of the generated key.

21. The SecureParser module shall associate all cryptographic keys (secret, private, or
public) stored within the module with the correct entity (KeyID) to which the key is
assigned.

22. The SecureParser module shall provide a method to zeroize all plaintext secret and
private cryptographic keys and CSPs within the module in a time that is not sufficient
to compromise the plaintext secret and private keys and CSPs (service:
module_destroy).

23. Power-on Self-tests will not require operator intervention, they will be performed
automatically when the module is initialized.

24. The cryptographic module shall perform the following self-tests:
a. Power up Self-Tests:

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 19

i. Cryptographic algorithm tests:
1. PRNG KAT, covers AES Encrypt
2. AES Decrypt KAT (ECB mode with 256-bit key)
3. HMAC KATS using SHA-256, covers SHA-256 hashing
4. DSA sign/verify using SHA-1, covers SHA-1 hashing.
5. RSA-PSS sign/verify
6. RSA encrypt/decrypt
7. ECDSA sign/verify

ii. Software Integrity Test – DSA public key verification of a private key
signature.

b. Conditional Self-Tests:
i. Continuous Random Number Generator (PRNG) test – performed on

each sample from the PRNG (each sample will be 128 AES bits).
ii. Pairwise consistency test – performed each time an RSA “import”

keypair is generated inside the module.
25. If the SecureParser module fails a self-test, the module shall enter an error state and

output an error indicator via the status output interface.
26. The SecureParser module shall not perform any cryptographic operations while in an

error state.
27. When the power-up tests are completed, the results (i.e., indications of success or

failure) shall be output via the “status output” interface.
28. The operator shall be capable of commanding the module to perform the power-up

self-tests at any time by power cycling the cryptographic module.

This section documents the security rules imposed by the vendor:

1. For v4.5.0 to run in a FIPS Approved mode external calling applications cannot use
the cryptographic module in a multi-threaded manner. (Note: v4.5.1 does allow multi-
threaded use in FIPS Approved mode.)

2. An approved encryption mode and an approved integrity mechanism must be
requested by calling applications to run the SecureParser module in FIPS Approved
mode.

3. Workgroup keys shall be mandatory for the SecureParser module to run in a FIPS
Approved mode.

4. Workgroup keys shall not be placed in data shares.
5. The SecureParser module shall encrypt all share data using AES session keys.
6. The SecureParser module shall provide for the integrity of encrypted data shares

using HMAC-SHA1 or HMAC-SHA256. In addition an optional configurable second
layer of integrity will be provided using either, HMAC-SHA1 or HMAC-SHA256,
DSA, ECDSA, or RSA.

7. All Secret & Private Key Entry/Output is encrypted using RSA key wrapping.

8. Physical Security
FIPS 140-2 Area 5 Physical Security requirements are not applicable because the SecureParser
cryptographic module is a software only module.

Security First Corp. SecureParser Security Policy Version 1.04 Revision 01/18/2008

Page 20

9. Mitigation of Other Attacks Policy
The SecureParser module has not been designed to mitigate any specific attacks.

10. Definitions and Acronyms
Share

A partition of data created after the SecureParser is enacted to parse data.

Mandatory Share

A mandatory share is a share that must be present for the proper recovery of data. In other words,
all mandatory shares must be available. The number of mandatory shares is denoted by L.

Non-mandatory Share

The SecureParser allows for the reconstruction of data with a subset of non-mandatory shares.
The number of non-mandatory shares is denoted by N and the number of non-mandatory shares
that must be available to restore is denoted by M.

M of N

In this document, we refer to M of N shares, which is intended to mean M of N non-mandatory
shares and L mandatory shares. For example, “without M of N shares...” means without at least
M non-mandatory shares and L mandatory shares.

Trusted

Something that is trusted is known to meet its security assumptions. For example, a trusted share
is known to be valid, untampered with, and otherwise uncompromised by any adversaries.

Workgroup key

This can be any encryption key that can be used to encrypt or decrypt data. Often it is a shared
key between users of the application working together.

Integrity Authentication key:

This can be any key used for generating or verifying a MAC or signature of data.

