

Copyright International Business Machines Corporation 2006–2007. ∗ Policy revision 117

IBM CryptoLite for C
Version 4.5

(Non-proprietary)

Security Policy∗

IBM Crypto Competence Center
Copenhagen

In collaboration with
IBM Research

Zürich Research Lab

December 03, 2007

http://www.ibm.com/security/products/cryptotools.shtml

This document may be reproduced only in its original entirety without revision.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 2 of 21

Contents
1. Scope of Document ... 3

2. Cryptographic Module Specification .. 4

3. Cryptographic Module Security Level .. 6

4. Ports and Interfaces ... 7

5. Roles, Services, and Authentication.. 8

5.1 Roles .. 8

5.2 Services .. 8

6. Operational Environment .. 13

6.1 Key Management ... 13

6.2 Physical Security.. 14

6.3 EMI/EMC .. 14

7. Self-tests .. 15

8. Operational recommendations (Officer/User guidance) ... 16

8.1 Module Configuration for FIPS Pub 140–2 Compliance .. 16

8.2 Determining Mode of Operation.. 16

8.3 Testing/Physical Security Inspection Recommendations .. 17

Function listing.. 18

Glossary... 20

References ... 21

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 3 of 21

1. Scope of Document
This document describes the services that the IBM CryptoLite for C library (“CLiC”, or just “module”)

provides to security officers and end users, and the policy governing access to those services.

Descriptions in this policy are specifically applicable to the module version being validated (4.5). Other

versions of the module have been released, including a previously FIPS-validated one; where applicable,

references are made to differences.
There is a single, non-proprietary version of the security policy (i.e., this document).

Module Description The IBM CryptoLite for C library in its FIPS configuration consists of a single

loadable module, a shared library.

This validation targeted the following builds: x86/Linux (“Lintel”) (tested by laboratory), Windows Vista
(tested by laboratory), AIX (vendor affirmed).

The CLiC API represents the logical boundary of the module. The physical cryptographic boundary for the

module is defined as the enclosure of the host on which the cryptographic module is to be executed.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 4 of 21

2. Cryptographic Module Specification
The IBM CryptoLite for C module is classified as a multi-chip standalone module for FIPS Pub 140–2

purposes. As such, the module must be validated upon particular operating systems and computer

platforms. The actual cryptographic boundary for this FIPS validation thus includes the CLiC module

running in the following configurations:

1. IBM-compatible PC running Red Hat Enterprise Linux ES release 4 (Nahant Update 4) x86
2. IBM-compatible PC running Windows Vista Ultimate x86

The exact module configuration is implicitly described by the cryptographic hashes of the validated

configuration:

1. Lintel DLL:
 SHA-1 hash 89be10472 ae53fbdb7 18f40f154 ebac1753d 9145,
 SHA-256 hash eb9782a0b 575d4ec4e 61777a39d b2f9fd686 1fded7731 36f53b6a3 319a34271e.

2. Windows DLL:
 SHA-1 hash 17608b584 fe03e5c22 048d577de b752faaad 70ec,
 SHA-256 hash 75c3b503d baf3a7b22 38103da36 4200c1583 298bb930d 2fba6c892 dffc872cfd.

3. AIX (vendor affirmed) object file:
 SHA-1 hash 205b6ec73 e25b66d3f 2930b988c b124edba3 f451,
 SHA-256 hash 5e02cb791 dfd26ad83 f836db9e9 486c25c09 e9fd4a190 2b8dafc59 c74ea33114.

The module running on the above platforms was validated as meeting all FIPS Pub 140–2 Level 1

security requirements. The CLiC module is packaged in a single DLL which contains all the code for the

module. The library is accompanied by its primary header file, clic.h. (Other support files, such as

auxiliary headers or link files, may also be included in the distribution.) Actual DLL name is system-

specific; some of the possible names are libclic.a, libclic.so (possibly as libclic.so.NNN),
or clic.dll.

In addition to configurations tested by the laboratory, IBM tested library instances on the following
platforms (all vendor affirmed):

1. IBM-compatible PC with Red Hat Enterprise Linux ES release 4 (Nahant Update 4) x86-64

2. IBM System p running Red Hat Enterprise Linux ES release 4 (Nahant Update 4) PPC32

3. IBM System p running Red Hat Enterprise Linux ES release 4 (Nahant Update 4) PPC64

4. IBM System p running AIX 5L 5.2 PPC32

5. IBM System p running AIX 5L 5.2 PPC64

6. IBM System z running SUSE Linux Enterprise Server (SLES) 9 s390x

IBM vendor affirms that binaries on these platforms operate correctly, and thus maintains their FIPS

compliance.

The CLiC library also runs on many other platforms, including other AIX versions, MVS and USS32 (on

mainframes), Solaris, other Windows variants, HP-UX, and PalmOS. Validation testing did not cover

these platforms.

Security level This document describes the security policy for the IBM CryptoLite for C with Level 1

overall security as defined in FIPS Pub 140-2[5].

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 5 of 21

Module components

Type Name Release Date SHA-256 hash

Linux versions
Software (DLL) libclic.so.4 4.5 2007.04.01 see above

Documentation CLiC User Guide 4.5 2007.04.01 N/A

Windows
Software (DLL) clic.dll 4.5 2007.04.01 see above

Documentation CLiC User Guide 4.5 2007.04.01 N/A

AIX configurations (vendor affirmed)
Software (DLL) libclic.so 4.5 2007.04.01 see above

Documentation CLiC User Guide 4.5 2007.04.01 N/A

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 6 of 21

3. Cryptographic Module Security Level
The module is intended to meet requirements of Security Level 1 overall, with certain categories of

security requirements not applicable (Table 1).

Security Requirements Section Level

Cryptographic Module Specification 3

Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC (1)

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks N/A

Table 1: Module Security Level Specification.

EMI/EMC properties of the IBM CryptoLite for C are not meaningful for the library itself. System utilizing

CLiC library services have their overall EMI/EMC ratings determined by the host system. Validation
environments have FCC Class A ratings.

Physical security parameters are inherited from the host system. The library itself has no physical security

characteristics.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 7 of 21

4. Ports and Interfaces
As a multi-chip standalone module, the CLiC physical interfaces are the boundaries of the host running

CLiC library code. The underlying logical interface of the module is C language Application Program
Interface (API), documented in the CLiC Library Reference Manual.

Control inputs are provided through dedicated functions of the public API. Generally, for most security

functions, a setup function performs initialization tasks (key import, key expansion, object initialization,

etc.). Such control functions provide no cryptographic services themselves, but they are prerequisites of
cryptographic operations.

Data input and data output are provided in the variables passed with API calls, generally through user-

supplied buffers. The module does not manage memory itself; all input and output is constrained in user-

supplied data regions. Special-purpose code tracks that the library operations do not influence memory
beyond the limitations described by the user.

Status output is provided in return values documented for each call. Dedicated diagnostics functions

generally return more detailed information than cryptographic functions, which primarily indicate success
or type of failure.

The module is accessed from C/C++-language programs using the same method as the CLiC static

toolkit, via the inclusion of the include file clic.h. A companion header, clic.hpp, provides a wrapper

for pure C++ compilers.

Module Status The CLiC communicates any error status asynchronously through the use of its

documented return codes. It is the responsibility of the calling application to handle exceptions in a FIPS
140 appropriate manner.

In addition to failures producing error codes, the module is equipped with internal consistency checks

(“assertions”) along its control path, monitoring the consistency of module internals. Failure of internal

checks is reported as an unexpected error condition, and terminates the CLiC instance. These exceptions

provide system-level failure notification, not just CLiC errors.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 8 of 21

5. Roles, Services, and Authentication

5.1 Roles

The module supports two roles, a cryptographic officer role and a user role (Table 2). Roles are not

explicitly authenticated; the capability to invoke the corresponding instructions implicitly authenticates
users (i.e., callers).

The officer role is a purely an administrative role that does not involve the use of cryptographic services.

The role is not explicitly authenticated but assumed implicitly on implementation of the modules
installation and usage sections defined in the security rules section.

The user role has access to all of the modules services. The role is not explicitly authenticated but

assumed implicitly on access of any of the non-officer services.

Role Type of Authentication Authentication Data Strength of mechanism

Officer None (automatic) None N/A

User None (automatic) None N/A

Table 2: Roles and Authentication mechanisms.

5.2 Services

The module provides queries and commands (Table 6 and 5). Queries return status of commands or
command groups; commands exercise cryptographic functions. The officer performs queries; users may
access both queries and commands. Certain test queries are executed automatically or usually not as
part of regular operations; these special cases are parenthesized as “(yes)” in Table 6.

Module services are accessed through documented API interfaces from the calling application.

All algorithms support all combinations of key sizes and modes, where applicable. Algorithms labelled
“legacy” are supported only for backwards compatibility with existing applications. Elliptic curve (EC)
support is limited to prime fields (FP), using curves in Table 7. The supported NIST P-curves have
corresponding SECG or ANSI equivalents [1, 2, 4].

In addition to low-level primitives (such as “AES in elementary modes (ECB/CBC)”), the library offers
abstract access to encryption and digest functions. The CLiC cipher NNN functions provide
transparent access to encryption, specifying type indirectly (i.e., creating a cipher object of type CLiC T
AES). (A similar abstraction is possible for digesting through CLiC digest NNN functions.)

Functions in generic cipher and digest operations observe low-level restrictions indirectly, as they access
the corresponding primitives internally. The generic operations themselves enforce certain restrictions
that the algorithm primitives do not allow (such as rejecting non-approved modes of operation, where
applicable).

Similar to encryption and digesting, public-key operations have similar abstractions. Generic public-key
operations (such as functions in the CLiC pk NNN group) perform basic operations (encrypt, decrypt,
sign, verify) without requiring direct access to low-level primitives (such as CLiC rsaSign). These
functions restrict non-approved algorithms; the underlying functions provide further restrictions (such as
checking padding modes).

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 9 of 21

Authorized service Officer User

Officer services
Invoke FIPS self-tests Yes No

User services
AES encryption/decryption No Yes

TDES encryption/decryption No Yes

DES encryption/decryption (single-DES, for compatibility with legacy
applications)

No Yes

CAST-5 (CAST-128) encryption/decryption No Yes

CAST-6 (CAST-256) encryption/decryption No Yes

RC2 encryption/decryption (legacy algorithm) No Yes

“ArcFour” encryption/decryption No Yes

Blowfish encryption/decryption No Yes

DSA parameter/key generation No Yes

DSA signature generation and verification No Yes

RSA signature generation and verification No Yes

RSA key generation (ANSI X9.31) No Yes

Elliptic Curve (EC) signature generation and verification (ECDSA) No Yes

EC key generation No Yes

EC Diffie-Hellmann (ECDH) key agreement No Yes

Diffie-Hellmann (DH) key agreement (incl. parameter generation) No Yes

RSA sign/verify (non-approved schemes) No Yes

RSA encrypt/decrypt No Yes

SHA-1 hash No Yes

SHA-224 hash No Yes

SHA-256 hash No Yes

SHA-384 hash No Yes

SHA-512 hash No Yes

MD5 hash (legacy algorithm) No Yes

Whirlpool hash (ISO and non-ISO) No Yes

MD2 hash (legacy algorithm) No Yes

HMAC-SHA message authentication (all supported SHA versions) No Yes

CMAC message authentication (utilizing AES or TDES) No Yes

HMAC (non-SHA) message authentication No Yes

DRNG, obtain random number (FIPS 186-2/ANSI X9.31 generator) No Yes

TRNG, generate random seed (internal TRNG) No Yes

Generic functional calls (encrypt, digest, public-key, PKI) No Yes

Format conversions (non-cryptographic) No Yes

Other auxiliary functions No Yes

Table 3: Services by role

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 10 of 21

Role Service Notes Modes
Approved?

Officer User

Symmetric encryption and decryption
128, 192, or 256 bit keys
(FIPS 197)

ECB, CBC, CCM,
CTR

yes no yes

128, 192, or 256 bit keys GCM, CTS no no yes

AES

TDES 112 or 168 bit keys ECB, CBC, CTR yes no yes

56 bit keys (legacy) ECB, CBC, CTR no no yes

40 to 128 bit keys ECB, CBC no no yes

128 to 256 bit keys ECB, CBC no no yes

up to 128 bit keys ECB, CBC no no yes

up to 256 bit keys N/A (stream) no no yes

DES (single-DES)
CAST-5 (CAST-128)
CAST-6 (CAST-256)
RC2
“ArcFour”
Blowfish

N/A N/A no no yes

Public-key algorithms
1024 bit modulus
(FIPS 186-2 key size)

N/A
yes no yes

N/A N/A yes no yes

ANSI X9.31, PKCS #1 N/A yes no yes

ANSI X9.31 N/A yes no yes

NIST P-192 to P-521 N/A yes no yes

NIST P-192 to P-521 N/A yes no yes

NIST P-192 to P-521 N/A yes no yes

DSA key/prm
generation
DSA sign/verify
RSA sign/verify
RSA key generation
EC key generation
ECDSA sign/verify
ECDH key agreement
Diffie-Hellmann (DH)

1024 or 2048 bits modulus key agreement yes no yes

Diffie-Hellmann (DH)
512 bits (legacy
compatibility)

key agreement no no yes

ISO 9796 N/A no no yes RSA sig/ver (non-appr)
RSA encrypt/decrypt PKCS 1, OAEP N/A no no yes

Hash functions
FIPS 180–1 N/A yes no yes

FIPS 180–2 (2004.02
change notice)

N/A
yes no yes

FIPS 180–2 N/A yes no yes

FIPS 180–2 N/A yes no yes

SHA-1
SHA-224

SHA-256
SHA-384
SHA-512

FIPS 180–2 N/A yes no yes

RFC 1321 (legacy) N/A no no yes

ISO and NESSIE variants N/A no no yes

MD5
Whirlpool
MD2 RFC 1319 (legacy) N/A no no yes

Message Authentication Codes (MACs)
with SHA-1, SHA-224, SHA-
256, SHA-384, or SHA-512

N/A
yes no yes

HMAC-SHA

CMAC with AES or TDES (CMAC) yes no yes

HMAC (non-SHA) with MD5 N/A no no yes

Random number generation
DRNG FIPS 186-2, ANSI X9.31 N/A yes no yes

TRNG entropy extractor N/A no no yes

Other functions
Generic functional calls encrypt, digest, PK, PKI N/A N/A no yes

Format conversions
non-cryptographic
conversion

N/A N/A no yes

Other functions (see documentation) N/A N/A no yes

Table 5: Commands, grouped by functionality

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 11 of 21

Role Service Notes

Officer User

Module status
Query mode Check if module is still in FIPS mode.

(CLiC fips140 status)
yes no

Integrity checks
Power-up test automatic before first use

includes CLiC fips140 checkIntegrity
(yes) no

Self-tests CLiC fips140 selftest yes no

Operational correctness checks
RNG tests continuously performed

(automatic)
N/A N/A

Comprehensive test application
test-clic application generated at CLiC build time

very high coverage
(external utility)

(yes) no

Table 6: Queries

Curve
Key length
(bits)

Strength (bits) Notes

NIST P-192 192 80 SEC2 secp192r1, ANSI X9.62 prime192v1

NIST P-224 224 112 SEC2 secp224r1

NIST P-256 256 128 SEC2 secp256r1, ANSI X9.62 prime256v1

NIST P-384 384 192 SEC2 secp384r1

NIST P-521 521 256 SEC2 secp521r1

Table 7: EC curve support

In addition to generic public-key operations, a related set of higher-level functions provide generic PKI
integration services. PKI services are abstractions over the level of algorithm approval, and only verify
algorithm permissions indirectly. PKI services rely on ASN.1/BER format conversions, which are also
generally outside algorithm approval.

Single DES is optionally available, labelled as non-approved, for legacy compatibility purposes. A
dedicated build option enables CLiC builds to specifically include single-DES, as a non-approved
algorithm. The module under validation includes single-DES, flagging it as non-approved.

Format conversions, labelled as “other operations”, are non-cryptographic commands that change the
representation of data. Format converters read and write, among others, the following formats:

� Various protocols based on ASN.1/BER encoded data (PKI-related and similar standard formats)
Custom BER/DER encodings may be supported through direct access to two direct ASN.1-
encoding functions.

� Conversions between industry-standard object identifiers and CLiC internal symbolic constants

� Base-64 encoding (“ASCII armor”), generating and reading printable representation of binary data

� Multibyte encoding of text, such as UTF-8 and Unicode subsets

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 12 of 21

� Conversions between ASCII and non-ASCII data (such as EBCDIC).
Note: most relevant operations tolerate both ASCII and EBCDIC input. Explicit conversion
functions are also available.

Format conversion services do not provide cryptographic functionality, but may use other services, if the
transport mechanism requires them. As an example, if signed data is represented as a standard ASN.1
structure, it uses one of the sign or verify calls, implicitly.

A few services, such as those related to internal token manipulation, are also grouped under “other

functions”. All such functions are described in the product documentation, but they are not discussed in
this document.

The module does not explicitly identify or authenticate users for any of the roles.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 13 of 21

6. Operational Environment
The CLiC security module is written mostly in C, and has been extensively reviewed to confirm security.

Extensive internal consistency checks verify both user input and library configuration, terminating early if

errors are encountered. Buffer handling, one of the most problematic parts of C development, is kept out
of CLiC scope, since all persistent storage is managed by callers.

The module implements both approved and non-approved services. The calling application controls the

cryptographic material as well as the services that use them. It is the applications responsibility to ensure

that when in a FIPS compliant mode, only those approved algorithms are used. The FIPS configuration

automatically inhibits parameter combinations that are technically possible but outside the standardized

range (such as DSA keys over 1024 bits, very short HMAC keys, etc.). If non-approved algorithms are
used, the module will switch to non-FIPS mode and stay there until re-initialized.

CLiC is developed and maintained according to IBM internal development standards. Industry-standard

tools, including CVS (Version 1.11.21 as of this writing) are used for configuration management. Version

control covers source code, test data, and support documentation.

6.1 Key Management

Key Storage The CLiC library does not provide internal long-term cryptographic key storage; all

persistent storage is managed by applications. It is the responsibility of the application program
developers to ensure FIPS Pub 140–2 compliance of key storing techniques they implement.

The module provides applications key import and export routines such that key material can be used in
conjunction with cryptographic services. It is the responsibility of applications using library services to

ensure that these services are used in a FIPS compliant manner. Keys so managed or generated by

applications or libraries may be passed from application to the module in the clear, provided that the

sending application or library exists within the physical boundary of the host computer.

Key Generation Key Generation uses an approved RNG (specified both in FIPS Pub 186–2 and ANSI

X9.31) algorithm which is based on SHA-1. The DRNG has a maximum number of internal states of 2
160

,

this being limited by the compression function in SHA-1. RSA and DH key generation algorithms use the

DRNG engine seeded with 20 bytes of true random data. This true random generator is based on IBM

patented technology where statistical analysis used to estimate the entropy of clock jitter. The internal

TRNG engine defaults to an automatic reseeding policy that adds a true random byte every 128 bytes of

output, or if a given number of seconds has passed since the last seeding. Applications can additionally
provide their own seeding data and also increase the automatic reseeding frequency of the internal RNG.

DSA key generation is compliant with FIPS Pub 186–2. In FIPS mode, RSA key generation only

implements the ANSI X9.31 key generation method [3]. A non-compliant RSA key generation method

may also be present in non-FIPS versions of CLiC, for RSA keys shorter than 1024 bits (ANSI X9.31

does not permit generation of shorter keys), but the FIPS configuration does not permit the generation of

such short keys. (This non-approved key generation method, superseded by the ANSI X9.31 algorithm, is

retained for compatibility with previous releases, but it is not generally available in recent builds.)

Key Establishment Using Diffie-Hellmann (DH) key establishment, predefined DH constants are

available, 1024 or 2048 bit moduluses in approved mode (80 and 112 bits strength, respectively). The

legacy, non-approved 512 bit mode of DH key establishment provides 56 bits of encryption strength.

Using ECDH, standard NIST P-curves are used (P-192 to P-521, see Table 7). ECDH key establishment
provides strength from 80 to 256 bits.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 14 of 21

RSA-based key establishment has no fixed upper limit on modulus size. The approved mode provides 80-
bits of security strength and since it has no upper bound it can protect a symmetric key up to 256-bits,
which provides coverage for all symmetric key sizes. The non-approved security mode provides less
than 80-bits of security when RSA key sizes less than 1024-bits are used.

Key Protection To enforce compliance with FIPS 140–2 key management requirements on the CLiC

library itself, code issuing CLiC calls must manage keys in a FIPS 140–2-compliant method. Keys so

managed or generated by applications may be passed from the application to the in the clear in the FIPS
validated configuration.

The management and allocation of memory is the responsibility of the operating system. It is assumed

that a unique process space is allocated for each request, and that the operating system and the

underlying hardware control access to that space. Each instance of the cryptographic module is self-

contained within a process space; the library relies on such process separation to maintain confidentiality
of secrets. All platforms used during FIPS validation provide per-process protection for user data.

All keys are associated with the User role. It is the responsibility of application program developers to

protect keys exported from the CLiC module.

Key Destruction Applications must destroy persistent key objects and similar sensitive information

through FIPS Pub 140–2 compliant procedures. The CLiC library itself does not destroy keys and

secrets, as it does not own or discard persistent objects. Objects, when released on behalf of a caller, are

wiped before they are released.

6.2 Physical Security

The CLiC installation inherits the physical characteristics of the host running it.

6.3 EMI/EMC

EMI/EMC properties of the CLiC deployment are identical to those of the host server or client.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 15 of 21

7. Self-tests

The CLiC library implements a number of self-tests to check the proper functioning of the module. This in-
cludes power-up self-tests and conditional self-tests. Conditional tests are performed when symmetric or
asymmetric keys are generated. These tests include a continuous random number generator test (see
details below) and pair-wise consistency tests of the generated DSA or RSA keys.

Startup Self-Tests “Power-up” self-tests are performed automatically when the CLiC library starts loa-
ding. (See the Finite State Machine for more details). These tests comprise of the software integrity test
and the known answer tests of cryptographic algorithms. Should any of these tests fail; the CLiC module
will terminate the loading process. The module cannot be used in this state.

The integrity of the module is verified by checking a SHA-256-based HMAC of the module binary. This
256 bits HMAC SHA-256 key is included in the module binary (DLL) in clear text and is loaded with the
module. The HMAC field is prepared during shared library (DLL) generation, during the last step of
building. Initialization will only succeed if this HMAC is valid. (Integrity verification is contained in
CLiC_fips140_checkIntegrity.) The Crypto-Officer can remove this key by uninstalling the
module from the host computer

The module tests the following cryptographic algorithms: AES, TDES, DES, DSA (sign/verify), ECDSA
(sign/verify), RSA (sign/verify, encrypt/decrypt), ECDH (key agreement), SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, CMAC (AES or TDES), HMAC (all SHA-based variants), and the DRNG.

Self tests are performed in logical order, verifying library integrity incrementally:

1 Known-answer test on SHA-256.

2 Known-answer test on HMAC/SHA-256.

3 Integrity test on library, using HMAC/SHA-256.

4 Known-answer tests on remaining algorithms, from integrity-verified binary.

Startup recovery Should the startup self tests fail during module initialization the crypto officer should
re-initialize the complete application. The library will reject calls in this state, since it will verify that self-
tests have passed before performing cryptographic functions.

Conditional Self-Testing This includes continuous DRNG testing. The DRNG generates output in 160-
bit blocks, as it is based on a SHA-1 core. Each newly generated block is compared to the previous one.
If the DRNG outputs identical blocks, the Module enters the “Conditional Error” state, ceases
cryptographic processing, inhibits all data output, and returns an error indicator. It is the responsibility of
the calling application to handle the exception in a FIPS-140 appropriate manner, for example by
reinitializing the RNG object.

Similar to the DRNG, high-entropy seed extracted by the TRNG is checked for repeated blocks, before
seeding the DRNG. If 160-bit blocks of entropy repeat, the TRNG reports a failure, which caller
applications must also handle as an exception.

Pair-wise Consistency Checks The test is run whenever the module generates a private key. The
private key structure of the module always contains either the data of the corresponding public key or
information sufficient for computing the corresponding public key.

Invoking FIPS self-tests on demand If a user can access CLiC services, the library must have passed
its HMAC-based integrity check at startup (a prerequisite of successful loading). During regular
operations, once the library has become operational, one can always invoke the CLiC fips140

selftest function to repeat the required KATs on demand. If these checks pass, the module is working
properly.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 16 of 21

8. Operational recommendations (Officer/User guidance)

8.1 Module Configuration for FIPS Pub 140–2 Compliance

To verify FIPS-compliant usage, the following requirements must be observed:

� Administrators and users of CLiC should verify the SHA-256 hash of the executable image. If the
hash matches the expected value, and the module passes its startup integrity tests, one must
verify that the module is still in FIPS mode (through the CLiC fips140 status query).

Note that the HMAC-based integrity check effectively tests the integrity of a different SHA-256
hash over the entire binary. Checking the hash of the library itself verifies that the validated
configuration of CLiC is present. (For legacy systems without a sha256sum utility, a SHA-1 hash
is provided for sha1sum use.)

� Applications and libraries using CLiC features must observe FIPS rules for key management and
provide their own self-tests.
For proper operations, one must verify that applications comply with this requirement. While details
of these application requirements are outside the scope of this policy, they are mentioned here for
completeness.

� The operating system hosting the CLiC library must be set up in accordance with FIPS Pub 140–2
rules. It must provide sufficient separation between processes to prevent inadvertent access to
data of different processes. (This requirement is met for all platforms tested during validation.)

The module must not be used by multiple callers simultaneously such that they may interfere with
each other. Note that since CLiC operates entirely in caller-provided storage, this requirement is
automatically met if the OS provides sufficient process separation (since each memory region’s,
i.e., object ownership is uniquely determined).

� Applications using CLiC services must verify that ownership of keys is not compromised, and keys
are not shared between different users of the calling application.

Note that this requirement may not be enforced by the CLiC library itself, just the application
providing the keys to CLiC. It is noted here for the sake of completeness.

� Applications utilizing CLiC services must avoid using non-approved algorithms or modes of
operation, if possible. If this is not feasible, the applications must indicate that they utilize non-
approved cryptographic services.

� To be in FIPS mode, the CLiC installation must run on a host with commercial grade components,
and must be physically protected as prudent in an enterprise environment.

8.2 Determining Mode of Operation

The module provides a dedicated status query in its FIPS builds, the CLiC fips140 status function.
This function will start indicating FIPS mode after all selftests are successfully completed. After

performing the first operation with a non-approved algorithm or mode of operation, the module leaves

FIPS mode, and stays so. To get the module back to FIPS mode, one must re-instantiate the library (i.e.,

reload it). Note that importing keys or initializing objects of non-approved services does not switch to non-
FIPS mode; only actual data operations do.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 17 of 21

Applications utilizing CLiC services must enforce key management compliant with FIPS 140–2

requirements. This should be indicated in an application-specific way that is directly observable by

administrators and end-users.

While such application-specific details are outside the scope of the CLiC validation, they are mentioned
here for completeness.

The CLiC module implements both approved and non-approved services. The calling application controls

the cryptographic material as well as the services that use them. It is an application responsibility to

ensure that when in a FIPS compliant mode, only those approved algorithms are used. Non-approved
modes of operation are also indicated in the global FIPS mode indicator.

While the underlying library routines are highly configurable, the FIPS configuration automatically inhibits

parameter combinations that are technically legal but outside standardized range (such as DSA keys over

1024 bits, very short HMAC keys, etc.). Product documentation describes these additional limitations,

recommending to stay within FIPS limits, even if they may be violated without losing cryptographic

functionality.

8.3 Testing/Physical Security Inspection Recommendations

In addition to automatic tests, described elsewhere in this document, CLiC users may invoke FIPS mode

self-tests at any time. This is initiated through a dedicated function (CLiC fips140 checkIntegrity),
which gets invoked automatically at startup. Continuous tests are part of the corresponding functions, are

implicitly enabled in FIPS builds, and are otherwise not observable (unless, of course, when a failure is
detected).

For maximal test coverage, one may also use the test-clic auxiliary application. This extension is

customized to each CLiC instance, providing extensive test coverage of the generated library, beyond
FIPS Pub 140–2 requirements. The test application links against the FIPS library, and exercises the

same instance which is used by application using the CLiC library. (Note that comprehensive testing
requires considerable time and processor resources.)

Apart from prudent security practice of server applications, and those of security-critical embedded

systems (such as PDAs), no further restrictions are placed on hosts utilizing CLiC services.

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 18 of 21

Function listing
Public functions

CLiC_aes CLiC_getRefCount CLiC_rng_seed
CLiC_aesKey CLiC_getType CLiC_rsaDecrypt

CLiC_arcfour CLiC_hmac CLiC_rsaEncrypt
CLiC_arcfourKey CLiC_hmac_clearKeyMaterial CLiC_rsaKeyGen

CLiC_attr CLiC_hmac_getComp CLiC_rsaSign
CLiC_base64_decode CLiC_hmac_new CLiC_rsaVerify

CLiC_base64_encode CLiC_hmac_reset CLiC_setMutex
CLiC_blob CLiC_hmac_update CLiC_sha
CLiC_cast5 CLiC_krb5_deriveKeyMaterial CLiC_sha224
CLiC_cast5Key CLiC_krb5_deriveRandom CLiC_sha224Init
CLiC_cast6 CLiC_krb5_nfold CLiC_sha256
CLiC_cast6Key CLiC_link CLiC_sha256Init
CLiC_cert CLiC_lock CLiC_sha384
CLiC_cert_decrypt CLiC_md2 CLiC_sha384Init
CLiC_cert_isSignerOf CLiC_md2Init CLiC_sha512
CLiC_cert_verify CLiC_md5 CLiC_sha512Init
CLiC_cipher CLiC_md5Init CLiC_shaInit
CLiC_cipher_clearKeyMaterial CLiC_p10 CLiC_token
CLiC_cipher_encode CLiC_p12 CLiC_token_add
CLiC_cipher_final CLiC_p12_add CLiC_token_decrypt
CLiC_cipher_getComp CLiC_p12_encode CLiC_token_verify
CLiC_cipher_getSize CLiC_p12_new CLiC_unlock
CLiC_cipher_new CLiC_p7 CLiC_x500name_utf8
CLiC_cipher_reset CLiC_p7_add CLiC_x500name_writef
CLiC_cipher_setComp CLiC_p7_detachContent
CLiC_cipher_update CLiC_p7_digest
CLiC_cmac CLiC_p7_encode
CLiC_cmac_clearKeyMaterial CLiC_p7_envelop
CLiC_cmac_getComp CLiC_p7_new
CLiC_cmac_new CLiC_p7_sign
CLiC_cmac_reset CLiC_pbCipher
CLiC_cmac_update CLiC_pbCipher_new
CLiC_compare CLiC_pbHmac
CLiC_context CLiC_pbHmac_new
CLiC_context_getComp CLiC_pb_keyDerivation
CLiC_context_new CLiC_pk
CLiC_context_objCount CLiC_pk_decrypt
CLiC_context_setMutex CLiC_pk_dh
CLiC_copy CLiC_pk_encode
CLiC_crl CLiC_pk_encrypt
CLiC_crl_revokes CLiC_pk_gen
CLiC_des CLiC_pk_getComp
CLiC_desKey CLiC_pk_getMaterial
CLiC_des_checkKeyMaterial CLiC_pk_new
CLiC_dh CLiC_pk_setMaterial
CLiC_dhKeyGen CLiC_pk_sign
CLiC_dhParamGen CLiC_pk_validate
CLiC_digest CLiC_pk_verify
CLiC_digest_getComp CLiC_pkikey
CLiC_digest_new CLiC_pkikey_encode
CLiC_digest_reset CLiC_pkikey_gen
CLiC_digest_typeComp CLiC_pkikey_new
CLiC_digest_update CLiC_pkiobj_addAttr
CLiC_dispose CLiC_pkiobj_fingerprint
CLiC_dsaKeyGen CLiC_pkiobj_getComp
CLiC_dsaParamGen CLiC_pkiobj_getNext
CLiC_dsaSign CLiC_pkiobj_scanf
CLiC_dsaVerify CLiC_pkiobj_setComp
CLiC_errnoInfo CLiC_pkiobj_unlink
CLiC_fips140_checkFileIntegrity CLiC_pkiobj_writef
CLiC_fips140_checkIntegrity CLiC_rc2
CLiC_fips140_initFileIntegrity CLiC_rc2Key
CLiC_fips140_initIntegrity CLiC_rng
CLiC_fips140_policy CLiC_rng_byte
CLiC_fips140_selftest CLiC_rng_new
CLiC_fips140_status CLiC_rng_policy

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 19 of 21

Module code is mainly self contained. Apart from compiler-provided services, standard libc

requirements include basic string-handling functions and standard memory manipulation (memcpy,

memset, and related functionality). In certain instances, depending on host compiler, many of these basic
calls may be resolved at compile time, minimizing actual libc invocations.

In addition to basic string/buffer manipulation, the module depends on libc providing standard malloc

and free calls. Allocated storage belongs to the calling application, but allocation and release calls are

issued from within the library as part of object lifecycle management. Dynamic local allocation, possibly
including alloca, is handled at compile time and does not present a runtime requirement.

Logically, applications find all public symbols (prototypes, interface constants, predefined sizes etc.)

within clic.h. All function bodies are contained within the library object file; no code is instantiated from
the header file.

Module code is mainly OS-neutral, with specific exceptions related to startup activities: code to launch

automatic startup tests is OS-dependent. All other functionality is OS-neutral, with details hidden by

libc.

Figure 1: OS/libc dependencies

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 20 of 21

Glossary

DLL Dynamic Link Library, shared program library instantiated separately

from binaries using it. FIPS configurations of CLiC are DLLs, never

statically linked.

DRNG Deterministic Random Number Generator, a deterministic function expanding a “true random”

seed to a pseudorandom sequence.

FP Prime Field, an elliptic curve (EC) subtype supported by CLiC for key agreement and digital

signatures.

KAT Known Answer Test

MVS One of the operating environments used on IBM mainframes. The native MVS version of CLiC

was tested by IBM during this FIPS validation process.

OS Operating System

PDA Personal Digital Assistant. Certain ports of CLiC are used on PDAs (for example, Palm or

Windows Mobile).

TRNG True Random Number Generator, a service that extracts cryptographically useful random bits

from non-deterministic (physical) sources. These “random seed” bits are post-processed by a

DRNG.

USS UNIX System Services, a certified UNIX environment running under z/OS on mainframes. USS

provides a UNIX interface to native mainframe resources. (USS is independent of z/Linux.)

 © IBM Corporation 2007
IBM CryptoLite for C

version 4.5
Security policy

Document: CLIC v4.5 FIPS Security Policy v1.17.doc Date: 03.12.2007

Author: IBM Research Zürich Research Laboratory Status: Released

Subject: CLiC v4.5 FIPS Security Policy Page 21 of 21

References
[1] American Bankers Association. ANSI x9.62, The Elliptic Curve Digital Signature Algorithm (ECDSA),

1999.

[2] American Bankers Association. ANSI x9.63, Elliptic Curve Key Agreement and Key Transport
Protocols, 1999.

[3] American National Standards Institute. Digital Signatures Using Reversible Public Key Cryptography
for the Financial Services Industry (X9.31), 1998.

[4] National Institute of Standards and Technology. Recommended Elliptic Curves for Federal
Government Use, 1999.

[5] National Institute of Standards and Technology. Security Requirements for Cryptographic Modules

(FIPS 140-2), 2001.

