

Oracle Cryptographic Libraries for SSL

Version 10g, 10.1.0.5

FIPS 140-2 Non-Proprietary Security Policy

> Level 2 Validation Version 2.0

> > October 2007

© Copyright 2007 Oracle Corporation This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Table of Contents

INTRODUCTION	3
Purpose References	
DOCUMENT ORGANIZATION	3
ORACLE CRYPTOGRAPHIC LIBRARIES FOR SSL	5
	5
MODULE INTERFACES	6
Roles and Services	7
Crypto-Officer Role	8
User Role	
Authentication Mechanisms	
Physical Security	
OPERATIONAL ENVIRONMENT	
SELF-TESTS	
Power-Up Self-tests	
Conditional Self-tests	
DESIGN ASSURANCE MITIGATION OF OTHER ATTACKS	
SECURE OPERATION	. 13
INITIAL SETUP	. 13
CRYPTO-OFFICER GUIDANCE	
USER GUIDANCE	. 14
ACRONYMS	. 15
GLOSSARY	. 16

Introduction

Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Oracle Cryptographic Libraries for SSL from Oracle Corporation (Oracle). The applicable version is 10g, 10.1.0.5. This Security Policy describes how the Oracle Cryptographic Libraries for SSL meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module. FIPS 140-2 (Federal Information Processing Standards Publication 140-2 — *Security Requirements for Cryptographic Modules*) details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/cryptval/.

Oracle Cryptographic Libraries for SSL is referred to in this document as Cryptographic Library, Software Library, Cryptographic module, software module, or module.

References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Oracle Corporation website (<u>http://www.oracle.com</u>) contains information on the full line of products from Oracle.
- The CMVP website (<u>http://csrc.nist.gov/cryptval/</u>) contains contact information for answers to technical or sales-related questions for the module.

Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Machine
- Other supporting documentation as additional references

Corsec Security, Inc. under contract to Oracle Corporation produced this Security Policy and the other validation submission documents. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Oracle Corporation and is releasable only under appropriate non-

disclosure agreements. For access to these documents, please contact Oracle Corporation.

ORACLE CRYPTOGRAPHIC LIBRARIES FOR SSL

Overview

The Cryptographic Library for SSL is a generic module used by Oracle in a variety of its application suites. The module is used to provide support for cryptography, authentication, SSL cryptographic primitives (the module does not implement the SSL protocol), PKCS#11 and certificate management for applications like the Oracle Database (Server & Client) and Oracle Advanced Security Option, Oracle Applications Server and its components including Oracle Identity Management, Oracle Application Server Web Cache and Oracle HTTP Server. It provides a rich set of functionalities and uses PKCS based wallet structures for managing identities and trust points.

The boundary consists of a single shared library (libnnz10.so), which is linked with different Oracle applications, Certicom SSL layer, and data/log files. The libnnz10.so shared library comprises four components given below:

- NZ library: This is the interface available to the oracle products for SSL protocol implementation and the cryptographic support required for it. It is a wrapper on top of Certicom, Crypto-C, and CertC toolkits.
- Crypto-C library: The Crypto-C library is the cryptographic library used by the module. The algorithms and the RNG implementation are in this library.
- CertC: The CertC library is used for certificate processing and management.
- Certicom SSL Toolkit's PKCS#12: This is used for the PKCS#12 structure. For the cryptographic functionality, the Crypto-C library is used.

The logical cryptographic boundary is depicted in the figure below.

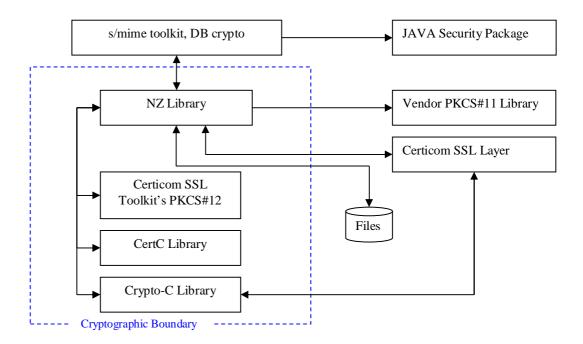


Figure 1 - Logical Cryptographic Boundary

The module meets overall level 2 requirements for FIPS 140-2, and Table 1 describes the level achieved by the module in each of the eleven sections of FIPS 140-2 requirements.

Section	Section Title	Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	2
4	Finite State Model	2
5	Physical Security	N/A
6	Operational Environment	2
7	Cryptographic Key Management	2
8	EMI/EMC	2
9	Self-tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A

 Table 1 – Security Level per FIPS 140-2 Section

Module Interfaces

The Oracle Cryptographic Library for SSL is a multi-chip standalone module that meets overall level 2 FIPS 140-2 requirements. The software cryptographic module is a shared library and is tested for use on a Sun workstation running the Common Criteria (CC) Evaluated Assurance Level (EAL) 4 Solaris Operating

System (OS) version 8 with Admin Suite 3.0.1¹. In addition to the software binary and OS, the module physically consists of a Sun workstation, including the integrated circuits of the motherboard, the central processing unit (CPU), random access memory (RAM), read only memory (ROM), PC case, keyboard, mouse, video interfaces, expansion cards, and other hardware components included in the PC such as hard disk, floppy disk, CD-ROM drive, power supply, and fans.

Logically, the cryptographic boundary of the module is the shared library software running on the operating system. Physically, the cryptographic boundary is defined by the metal enclosure over the Sun workstation (SPARC architecture).

The module's logical interfaces exist as the public API of the shared library. Additionally, the operating system's file system is used to interface with the module though data and configuration files. These interfaces mapped to the following FIPS 140-2 logical interfaces as described in the following table.

FIPS 140-2 Logical	Module Logical Interface	Physical Port
Interface Data Input Interface	Arguments for a NZ library that specify data to be used or processed by the module.	Keyboard, mouse, CD-ROM, floppy disk, and serial/USB/parallel/network ports
Data Output Interface	Arguments for a NZ library function that specify where the result of the function is stored. Output data is also stored in a file.	Hard Disk, monitor, and serial/USB/parallel/network ports
Control Input Interface	Function calls to the NZ library. The Operating system's file system and configuration files.	Keyboard, CD-ROM, floppy disk, mouse, and serial/USB/parallel/network port
Status Output Interface	Return values for function calls and log files are the interfaces for status output. The error messages are also logged into files in the OS.	Hard Disk, monitor, and serial/USB/parallel/network ports, error log files
PC Power Interface	Not Applicable	Power Interface

 Table 2 – FIPS 140-2 Logical Interfaces

Roles and Services

The module implements cryptographic algorithms including AES, Triple-DES, SHA-1, RSA, PRNG, HMAC, Diffie-Hellman, RC4, RSA-MD5, and HMAC-MD5. The latter three are not available in FIPS mode.

The module supports role-based authentication. There are two roles that operators may assume: a Crypto-Officer role and User role. They are the operators of the Solaris Operating System on which the module is tested. The root user on the Solaris platform and the user that installs the module are the Crypto-Officers; other users of

¹ The Certification Report is located at <u>http://www.commoncriteriaportal.org/public/files/epfiles/CRP148.pdf</u> © Copyright 2007 Oracle Corporation Page 7 of 16

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

the module are classified as Users. The module supports multiple concurrent operators.

Crypto-Officer Role

The Crypto-Officer role is responsible for initializing and maintaining the module. Descriptions of the services available to the Crypto-Officer role are provided in the table below.

Service	Description	Input	Output	CSP	Type of Access to CSP
Installation	Installing the software	Command	Result of		
	module		installation		
Uninstall	Uninstall the	Command	Module		
	cryptographic Library		uninstalled		

Table 3 – Crypto-Officer Services

User Role

The User role is able to access the general services provided by the module, through the NZ API provided by the module. Descriptions of the services available to the User role are provided in the table below.

Service	Description	Input	Output	Accessed CSPs	Access Type
NZ layer operation	Start, close a NZ session	API call	Status output		
Operation on	Create, delete,	API calls with	Status output,	RSA key pair	Read/Write
Oracle wallet	open, close, and copy a wallet	wallet information	result of command	Wallet Password	Read/Write
Manipulate information stored	Store or retrieve RSA key pairs, CA	API calls with wallet	Status output, result of	RSA key pair	Read/Write
in a wallet	or any other information to/from a wallet	information	command	CA, Trustpoint	Read/Write
				Wallet Password	Read/Write
				Session key	Read
				Symmetric key	Read
Choose Cipher Suite	User may choose a cipher suite for the SSL layer from given options.	API calls	Status output		
Cipher operation	Encrypt/decrypt of data	API calls	Status output, result of command	Symmetric key	Read
Sign/verify	Sign and verify of data	API calls with RSA key pair	Status output, result of command	RSA key pair	Read
Key pair operation	Generate, delete, copy RSA key pair; set or get info	API calls with RSA key pair	Status output, result of command	RSA key pair	Read/Write

© Copyright 2007 Oracle Corporation

Service	Description	Input	Output	Accessed CSPs	Access Type
	from a key pair				
	Status output, DH key agreement	DH key pairs	Read/Write		
	protocol in different phases	Secret	key agreement	Shared Secret	Read/Write

Table 4 - User Services

Authentication Mechanisms

The module supports a username/password based authentication mechanism. Each valid username has an associated role, and the username can only be used to gain access to the module with the associated password.

The implementation is the one that is used by the CC EAL 4 certified Solaris operating system of the module. The minimum length of the password is 8 and the module requires the password to be alpha numeric. Assuming only 36 characters (A-Z, a-z, and 0-9) with repetition, the chance of a random attempt falsely succeeding is 1 in 2821109907456. A typical workstation will process 20000 requests per minute. So the probability of a successful random attempt will be around 20000/2821109907456 which is less than 1 in 100000.

Physical Security

Physical security requirements do not apply to this module. The Oracle software library is a software module and does not implement any physical security mechanisms.

While purely a software module, the FIPS 140-2 tested platform must be a Solaris PC (SPARC architecture) that has been tested for and meets applicable FCC EMI and EMC requirements for business use as defined by 47 Code of Federal Regulations, Part15, Subpart B.

Operational Environment

The Oracle Cryptographic Library is a software cryptographic module running on the CC EAL 4 certified Sun Solaris operating system version 8 with Admin Suite $3.0.1^2$, and the module's software is entirely encapsulated by the cryptographic boundary shown in Figure 1.

Cryptographic Key Management

The module implements the following FIPS-approved algorithms using the underlying Crypto-C 6.0.2 library:

² The Security Target is located at <u>http://www.commoncriteriaportal.org/public/files/epfiles/solaris8.pdf</u> © Copyright 2007 Oracle Corporation Pag

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

- AES CBC mode (certificate #608)
- Triple-DES CBC mode (certificate #573)
- SHA-1 Byte oriented (certificate #657)
- RSA signature generation/verification (PKCS#1) (certificate #281)
- PRNG FIPS 186-2 Appendix 3.1 (certificate #347)
- HMAC-SHA-1 (certificate #314).

Additionally, the module implements the following non-FIPS-approved algorithms that can be used in the FIPS mode:

- RSA key wrapping, 1024, 2048, and 4096 bits, providing 80, 112, and 150 bits of security, respectively
- Diffie-Hellman (Diffie-Hellman provides 80-bits of security).

And the following non-FIPS-approved algorithms that can not be used in FIPS mode:

- RC4
- RSA-MD5
- HMAC-MD5.

The module supports the following critical security parameters:

Key or CSP	Key type	Generation	Storage	Use
RSA private key	1024, 2048 or 4096	Generated internally	Encrypted or plaintext	S/MIME sign and
	bit keys	and externally	in hard drive	encrypt and key
				agreement
RSA public key	1024, 2048 or 4096	Generated internally	Encrypted or plaintext	S/MIME verify and
	bit keys	and externally	in hard drive	decrypt and key
				agreement
Diffie-Hellman private	1024 bits Diffie-	Generated internally	Plaintext in volatile	Used for key in key
key	Hellman private	and externally	memory	establishment with
	key			external application
Diffie-Hellman public	1024 bits Diffie-	Generated internally	Plaintext in volatile	Used for key in key
key	Hellman public key	and externally	memory	establishment with
				external application
Shared Secret	512, 768, 1024,	Generated internally	Plaintext in volatile	Used in Certicom
	2048 or 4096 bit		memory	SSL layer (out of
				Cryptographic
				Boundary)
Session Key	64 bits	Generated externally	Plaintext in volatile	Used in Certicom
			memory	SSL layer (out of
				Cryptographic
				Boundary)
TDES CBC	192 bits	Generated internally	Plaintext in volatile	Used in external
			memory	application
AES CBC	128, 256 bits	Generated internally	Plaintext in volatile	Used in external
			memory	application

© Copyright 2007 Oracle Corporation

Page 10 of 16

Software Integrity test key	HMAC key	Hard Coded	Plaintext in hard drive and volatile memory	Software integrity test using HMAC- SHA-1
Password	Password for Oracle wallet	Entered electronically	Plaintext in file system	Encrypts/decrypts Oracle wallet
User password	Sun Solaris OS password	Entered electronically	Sun workstation registry in plaintext	Authenticate users to OS
PRNG seed	256 bits	Generated internally	Plaintext in volatile memory	Seeds PRNG

Table 5 – Listing of Key and Critical Security Parameters

The cryptographic module generates a RSA key pair using PRNG. The Oracle Cryptographic Library securely administers all of its CSPs, which include a RSA Public/Private key pair, Diffie-Hellman key pairs, ephemeral session and Shared Secret keys, Symmetric (TDES and AES) keys, HMAC, and the PRNG seed. Diffie-Hellman key pairs enter or exit the module in plaintext; they need not be encrypted as their strength relies on the underlying protocol. Session keys also enter or are output from the module in plaintext.

RSA key pairs cross the cryptographic boundary in plaintext. RSA key pairs can be zeroized using proper function calls. Diffie-Hellman key pairs are used for key establishment protocol with external application and zeroized after a session is established. Shared Secret is being generated internally and output in plaintext. The CSP is zeroized after use or by rebooting power cycle. Session Key is generated and entered in the module in clear. It is being zeroized after use or by rebooting power cycle. Symmetric keys (TDES and AES) are zeroized when the session with external application is over. The Integrity Test Key is a hard-coded key that is included with the module. The HMAC key is zeroized when the module is uninstalled. PRNG seed is overwritten when another block is generated and can be zeroized by rebooting.

Self-Tests

In order to prevent any secure data from being released, it is important to test the cryptographic components of a security module to ensure all components are functioning correctly. To confirm correct functionality, the software library performs the following self-tests:

Power-Up Self-tests

- Software integrity check: Verifying the integrity of the software binaries of the module with HMAC SHA-1.
- Triple-DES (CBC) KAT: Verifying the correct operation of the Triple-DES algorithm implementation.

- AES (CBC) KAT: Verifying the correct operation of the AES algorithm implementation.
- RSA encrypt/decrypt pair-wise consistency check: Verifying the correct operation of the RSA implementation.
- SHA-1 KAT: Verifying the correct operation of the SHA-1 algorithm implementation.
- FIPS 186-2 RNG KAT: Verifying the correct operation of the FIPS 186-2 RNG implementation.

Conditional Self-tests

- RSA encrypt/decrypt pair-wise consistency check: Verifying that a newly generated or stored RSA key pair works properly.
- RSA sign/verify pair-wise consistency check: Verifying the correct operation of the RSA implementation.
- FIPS 186-2 Continuous RNG: Verifying the RNG has not failed by producing a constant value.
- Continuous RNG: Verifying the non-approved RNG (used for seeding FIPS approved PRNG) does not generate the same value through repeated attempts.

The module provides any cryptographic functionality only after all the power-up self-tests are successful. Results of self-tests are logged in a trace file for the Crypto-Officer's review. If any of the self-tests fail, the module enters an error state that can be cleared by cycling the computer's power.

Design Assurance

Source code and associated documentation files are managed and recorded using an Oracle-developed content management system called the "Advanced Development Environment," or ADE. The ADE contains a database of files with full modification history. For every modification, the ADE assigns a new version number and records how, when and by who the file has been modified. In addition, a short comment is attached to the modified file by the developer.

Mitigation of Other Attacks

In a FIPS mode of operation, the module does not claim to mitigate any attacks.

SECURE OPERATION

The Oracle Cryptographic Library for SSL meets Level 2 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-approved mode of operation.

Initial Setup

The module is to be installed on a Sun Solaris operating system version 8 with Admin Suite 3.0.1. The operating system has to be installed and configured to meet the CC EAL 4 evaluated installation and configuration procedures. The secured configuration process for the OS can be found in the Security Target document³.

The module is delivered in a secure manner. The Crypto-Officer buys the CD for the module or the application it is linked to from Oracle. Oracle ships the module in a sealed box with Oracle's seal across the box. Upon receipt of the module, the Crypto-Officer must examine the package for evidence of tampering. Tamperevidence includes tears, scratches, and other irregularities in the packaging.

'sqlnet.ora' file is created during the network configuration tasks for authentication or encryption. Configuration parameters for network security are in the sqlnet.ora file and are different for each of the client and server processes. Only the Crypto-Officer has 'write' access to sqlnet.ora. The default location for sqlnet.ora is \$ORACLE_HOME/network/admin. However, the location can be specified by configuring the environment variable TNS_ADMIN.

Crypto-Officer Guidance

The Crypto-Officer is required to configure the module to run in a FIPS mode of operation. To do so, the Crypto-Officer sets the variable 'SQLNET.SSLFIPS_140' to TRUE in the 'sqlnet.ora' file. The default setting of the FIPS_140 parameter is FALSE. The crypto officer must set this parameter to TRUE in the client and server sqlnet.ora configuration files in order to be FIPS 140-2 compliant.

Configuration parameters defined in the sqlnet.ora file can enable or disable net tracing. Enabling tracing allows the module to log status of the self tests. Status messages of self tests would be logged in the tracing file indicated in the configuration parameter by the Crypto-Officer. Below is an example of how to set tracing file.

trace_level_owm=16 trace_directory=/private/oracle/server trace_file_server=svr.trc

Page 13 of 16

³ The Security Target is located at <u>http://www.commoncriteriaportal.org/public/files/epfiles/solaris8.pdf</u> © Copyright 2007 Oracle Corporation Page

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

User Guidance

The User accesses the module's functionality as a client. Although the User does not have any ability to modify the configuration of the module, care should be taken not to provide authentication information (Wallet Password) to other parties. The User is also responsible for selecting SSL cipher suites that use only FIPS approved cryptographic algorithms.

ACRONYMS

AH	Authentication Header
ANSI	American National Standards Institute
API	Application Programming Interface
CC	Common Criteria
CLI	Command Line Interface
CMVP	
CRC	Cryptographic Module Validation Program
CSE	Cyclic Redundancy Check
	Communications Security Establishment
CSP	Critical Security Parameter
DSA EAL	Digital Signature Algorithm Evaluated Assurance Level
EDC	Error Detection Code
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ESP	Encapsulating Security Payload
FCC	Federal Communication Commission
FIPS	Federal Information Processing Standard
HMAC	(Keyed-) Hash MAC
IKE	Internet Key Exchange
IP	Internet Protocol
IPSec .	IP Security
KAT	Known Answer Test
LED	Light Emitting Diode
MAC	Message Authentication Code
NIST	National Institute of Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation
	Program
OS	Operating System
OWM	Oracle Wallet Manager
PC	Personal Computer
RAM	Random Access Memory
RIP	Routing Information Protocol
RNG	Random Number Generator
RSA	Rivest Shamir and Adleman
SA	Security Association
SHA	Secure Hash Algorithm
SNMP	Simple Network Management Protocol
SP	Secure Platform
SSH	Secure SHell
SSL	Secure Socket Layer
TCP	Transmission Control Protocol
TLS	Transport Layer Security
VSS	Visual Source Safe
VPN	Virtual Private Network

© Copyright 2007 Oracle Corporation This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Page 15 of 16

GLOSSARY

PKCS #12

PKCS #12 is an industry standard for storing and transferring personal authentication credentials.

Trusted Certificate

A trusted certificate, sometimes called a root key certificate, is a third party identity that is qualified with a level of trust. The trusted certificate is used when an identity is being validated as the entity it claims to be. Typically, the certificate authorities you trust are called trusted certificates. If there are several levels of trusted certificates, a trusted certificate at a lower level in the certificate chain does not need to have all its higher level certificates reverified.

Trust Point

See trusted certificate.

Wallet

A wallet is a data structure used to store and manage security credentials for an individual entity. It implements the storage and retrieval of credentials for use with various cryptographic services. A **Wallet Resource Locator** (WRL) provides all the necessary information to locate the wallet.

Wallet Resource Locator

A wallet resource locator (WRL) provides all necessary information to locate a **wallet**. It is a path to an operating system directory that contains a wallet.

X.509

Public keys can be formed in various data formats. The X.509 v3 format is one such popular format.