Decru DataFort™

LKM SEP v1.0

HW PN/Rev: 60-000388/A FW PN: dccn_1_7_10_secure AT PN: 40.3, 40.4

Security Policy

December 3, 2007

DocID: 28424-r3-2 Copyright 2006, Decru, Inc. May be reproduced in its entirety.

Page 2 of 32

Changes:

Revision	Change Description
r3	Change "SEP" to "LKM SEP" in the: Page Headers, 1. Introduction, 1.1 Purpose of the Crypto Module, 1.2.1 Crypto Module Configuration
r3	Section 1.2.1: replaced "At" with "AT".
r3	Sec 2.2 & Table 3.1: updated description of "Cluster Officer Identity"
r3	Sec 3.2: changed "Firmware Upgrade role" to "Upgrade Firmware role"
r3	Reworded Rule 17 to include what section it is referring to and FIPS operating environment
r3-1	Updated Sec 2.4 to be consistent with all products
r3-1	Updated Rule 16
r3-2	Added entry, AT PN: 40.4 to the Security Policy

Table of Contents

1 Introduction 5
1.1 Purpose of the Crypto Module5
1.2 Physical Embodiment
1.3 Security Level
2 Identification and Authentication Policy9
2.1 The System User Identity9
2.2 Cluster Officer Identity
2.3 Decru Identity 10
2.4 Strength of Authentication11
3 Access Control Policy 12
3.1 Roles 12
3.2 Services and role access rights14
3.3 Keys and CSP Access Rights 19
3.4 CSPs
3.5 Public Keys and public nonces 24
3.6 FIPS Approved Crypto Algorithm Engines 24
3.7 Non-approved Crypto Algorithm Engines25
3.8 Security Rules
4 Physical Security 29
5 Mitigation of Other Attacks
6 Definitions and Acronyms 30
7 References

Index of Tables

Table 1.1: Interface Classification (PCI-X removed)	7
Table 1.2: Security Level	7
Table 2.1: Roles and Required Identification and Authentication	8
Table 2.2: Strengths of Authentication Mechanisms	10
Table 3.1: Roles	11
Table 3.2: Services Authorized for Roles	13
Table 3.3: Access Rights within Services	18
Table 3.4: Cryptographic Keys and CSPs	21
Table 3.5: Approved cryptographic algorithm implementations	22
Table 3.6: Non-Approved Algorithms	22
Table 4.1: Inspection/Testing of physical security mechanisms	27
Table 5.1: Mitigation of other attacks	28

1 INTRODUCTION

The LKM DataFort[™] Storage Encryption Processor (SEP) is a multi-chip embedded module that is the main cryptographic service provider for Decru DataFort storage encryption product.

Decru DataFort is an appliance that intercepts data sent between a client machine and storage device; DataFort transparently encrypts data sent to storage, and decrypts data served to the client. Software running on the DataFort platform manages encrypted keys, performs client authentication, access control, and requests cryptographic services from the SEP.

1.1 Purpose of the Crypto Module

The purpose of the LKM SEP is to support the security functional requirements of the Decru DataFort. These are summarized below:

- Encrypt/decrypt client data using a hardware AES-256 ECB engine.
- Generate keys from an Approved FIPS 186-2 change notice 1 Appendix 3.1 Deterministic RNG system that includes a commercial "true" random number generator for seeding.
- Establish keys using commercially available key establishment protocols as allowed by FIPS PUB 140-2 Annex D.
- The SEP physically protects plaintext cryptographic keys and CSPs with FIPS 140-2 level 3 physical security requirements.
- The DataFort platform contains a chassis intrusion detector that can force a an SEP zeroization (c.f. "Tamper Notification" service).
- Authentication and role enforcement, allowing the platform ("System User") to escalate or deescalate privileges depending on the amount of key material provided to it. In particular, key access rights are restricted, depending on the role that the platform is in.

Page 6 of 32

1.2 Physical Embodiment

The SEP is embedded into the Decru Crypto Card (DCC) and the SEP cryptographic boundary is defined as the outer perimeter of the potted portion of the printed circuit board. The DCC is a PCI Card conformant to the PCI bus 2.0 standard. The DCC also contains additional (non cryptographic) hardware components that are outside of the physically contiguous cryptographic boundary. These components serve as custom add ons for the DataFort platform (for example, battery backed RAM) outside of the cryptographic boundary.

Figure 1 and Figure 2 depict the primary and secondary sides of the DCC including the SEP cryptographic module. The SEP is the potted portion of the card included within the (superimposed) dotted red border. Note that the DCC contains other components that are outside of the cryptographic boundary.

Figure 1: DCC primary side

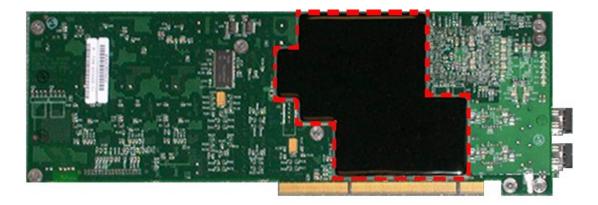


Figure 2: DCC secondary side

1.2.1 Crypto Module Configuration

The LKM SEP as validated has the following configuration:

HW PN/Rev:	60-000388/A
FW PN:	dccn_1_7_10_secure
AT PN:	40.3, 40.4

The module is labeled with its configuration in two ways:

- The HW PN/Rev is visible from a label attached to the module. Moreover, the HW PN/Rev, FW PN, and AT PN are reported by the module on every boot via the status output interface.
- DataFort platform administrators can issue the "sys ver" CLI command to obtain all part numbers, or they can obtain this information from the WebUI as well. Please consult the *Decru DataFort Administration Guide* for more information about administrative interfaces.

1.2.2 Ports and Interfaces

The following table maps the module's physical ports to the FIPS interface classification.

Physical Port(s)	FIPS Interface(s)
PCI	Status Output, Control Input, Data Input, Data Output Power
DDR bus	Data Input, Data Output
LCD line	Data Input, Data Output
Tamper line	Control Input
I2C	Control Input, Data Output
LED bus	Data Output
TestPoint bus	Control Input, Status Output
Voltage bus	Control Input

Table 1.1: Interface Classification

Physical Port(s)	FIPS Interface(s)
Backup power	Power

1.3 Security Level

The SEP meets the overall requirements applicable to Level 3 security of FIPS PUB 140-2. The following table lists the compliance level of each section:

Security Requirements Section	Level
Cryptographic Module Specification	3
Cryptographic Module, Ports and Interfaces	3
Roles, Services, and Authentication	3
Finite State Model	3
Physical Security	3
Operational Environment	N/A
Cryptographic Key Management	3
EMI/EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of other attacks	N/A

Table 1.2: Security Level

2 IDENTIFICATION AND AUTHENTICATION POLICY

The SEP supports five authenticated operator roles, listed in Table 2.1.

Identity	Role	Type of Authentication	Authentication Data
System User	User	Identity-based	Message authentication key (20 octet HMAC- SHA-1) used in an AKEP2 protocol
Identity	Primary Cryptogra phic Officer	operator authentication	SHA-I) used in an AKEI 2 protocol
	Recovery Officer	Identity-based operator	Message authentication key (20 octet HMAC- SHA-1) used in an AKEP2 protocol
		authentication	AND secret share key RO.SSAK (32 octet AES-256) used in an OTP (one time password) protocol.
Cluster Officer Identity	Cluster Officer	Identity-based operator authentication	Message authentication key (20 octet HMAC- SHA-1) used in an AKEP2 protocol
Decru		Identity-based	ECC-521 ECDSA signature verification key,
Identity	Firmware	operator authentication	AND the ECDSA signature (using SHA-512) of a firmware upgrade package

Table 2.1: Roles and Required Identification and Authentication

2.1 The System User Identity

The System User corresponds to the entity controlling the DataFort platform in which the DCC (with embedded module) is inserted. The System User assumes the roles of User, Primary Cryptographic Officer, and Recovery Officer. There may be only a single System User per module. Each role corresponding to an escalation of privileges.

The System User must authenticate to the module via an AKEP2 protocol. Successful authentication places this user into the Primary Cryptographic Officer role. In this role, the System User may choose to either escalate privileges by completing the OTP (One Time Password) service, or the System User may elect to reduce privileges by assuming the user role. From the user role, an AKEP2 re-authentication is required in order to re-assume the Primary Cryptographic Officer role. From the Recovery Officer role, the System User is transitioned by the module back to Primary Cryptographic Officer role after the completion of any service reserved exclusively for the Recovery Officer role.

2.2 Cluster Officer Identity

Multiple Decru DataFort appliances (each with its own LKM SEP module inside it) may be joined together in a cluster configuration for purposes of high availability and load balancing. In this configuration the LKM SEP modules within each clustered DataFort serve as cluster officers to each other. The Cluster Officer Identity is a superset of all Dataforts performing Cluster Officer roles as found in Table 3.1 Roles.

The SEP supports up to 31 Cluster Officers. Each Cluster Officer is identified by a unique ID and an HMAC-SHA-1 authentication key. Cluster officer authentication is through the commercially available AKEP2 protocol.

Cluster Officers are remote operators of the module. The module supports only a single concurrent Cluster Officer login. Successful authentication of a second Cluster Officer automatically logs out the previous Cluster Officer. When a Cluster Officer is logged into the module, the module is in a state of two concurrent users (System User and Cluster Officer). The module differentiates between the remote and local user by providing distinct services to each, issued through separate interfaces. Cluster Officer services are provided through a secure AKEP2 channel with the Cluster Officer.

Cluster Officers may not log into the module unless the platform is in authenticated state (i.e. the System User is in one of the three authenticated roles.) If the System user logs out of the module, any remote Cluster Officer is also logged out by the module.

2.3 Decru Identity

The Decru identity is authorized to assume the Upgrade Firmware Role. Decru's identity is bound to an ECC-521 key pair, used for ECDSA signatures. The verification key is embedded in the module, and the Decru identity is authenticated via an ECDSA signature verification process, which is part of the upgrade service. Requesting the upgrade service places the SEP in a special state, during which no other authenticated users may access the module.

2.4 Strength of Authentication

Table 2.2 summarizes the strengths of the authentication and authorization protocols.

Mechanism	Strength of Mechanism
AKEP2	The odds of successful random authentication are 1 in 2^80. The odds of successful authentication after multiple random attempts in one minute are less than one in 2^66.
AKEP2 + OTP	The odds of successful random authorization attempts are less than 1 in 2^256 . The odds of successful authorization after multiple random attempts in one minute are less than one in 2^2242 .
Firmware signature verification (SHA-512/ECDSA)	The odds of a successful random authentication is less than 1 in 2^2256 . The odds of successful authentication after multiple random attempts in one minute are less than 1 in 2^2253 .

Table 2.2: Strengths of Authentication Mechanisms

All probabilities for AKEP2 are derived from an upper bound on the data transfer speed between the module's authentication engine and the platform (19.2 kB/sec), combined with a lower bound on the amount of data that must be transferred during an authentication attempt. At least 32 bytes must be transferred for an AKEP2 protocol attempt.

The probability for successful random authentication for firmware signature verification are based on the length of the SHA-512 hash (ECDSA uses the P 521 curve). Each signature verification attempt requires more than 10 seconds to complete; therefore the odds of successful authentication as a result of multiple random attempts within one minute are less than 1 in 2^253.

3 ACCESS CONTROL POLICY

3.1 Roles

Role	Description	
Recovery Officer Role	The main services available to the Recovery Officer role are:	
	 request that key data be backed up and exported via a secret sharing process 	
	Load (previously backed up) key material into the module	
	Load Cluster Officer authentication key material into the module	
	• establish a key transfer channel, or "link" corresponding to a specially typed Domain Key (Link Domain Key). This key may be used to wrap and unwrap shareable Cryptainer Keys, allowing, for example, two SEPs to share a specific Cryptainer Key, without being in a cluster (and consequently sharing all Cryptainer Keys.)	
Primary Cryptographic Officer Role	The Primary Cryptographic Officer manages one type of wrapping key (the "Domain Keys") used to protect client data encryption keys ("Cryptainer Keys".) The Primary Cryptographic Officer may load and unload Domain Keys, and request that the module generate Master Keys.	
	Additionally, the Primary Cryptographic Officer may create and delete Cluster Officer accounts by requesting the "add/remove Cluster Officer" service. The Primary Cryptographic Officer may directly access RNG output, and load authentication key data into the module.	
	Finally, the Primary Cryptographic Officer may perform all services available to the user and to the unauthenticated platform user.	

Table 3.1: Roles

Role	Description	
User Role	The user may load and store key context items, request that the module generate key context items, and encrypt/decrypt client data.	
	A key context is the set of parameters required to encrypt and decrypt client data. It consists of a data encryption key ("Cryptainer Key"), and non-security relevant items (a block identifier, and two R-strings). The module stores a single key context at any time. Therefore the user is allowed to load and store key context items into the module, and then load data into the module, requesting encryption/decryption with the current key context.	
	The user does not have access to plaintext Cryptainer Keys, nor to R- strings. These are loaded and stored in encrypted form. A wrapping key and an unwrapping key must first be loaded by a cryptographic officer.	
Cluster Officer Role	Cluster Officers are instances of the Cluster Officer Identity, they are individual LKM SEP modules within clustered Decru Dataforts servings as Cluster Officers to each other (see 2.2 Cluster Officer Identity above). The Cluster Officer may authenticate to the module and agree on a Cluster Key (this is a shared wrapping key). Authentication and key agreement is combined into a single service.	
Upgrade Firmware Role	The Decru identity can perform the Upgrade service. The Upgrade service consists of loading a new firmware package into the SEP, which verifies the ECDSA signature on the package (external load test.) Authentication and firmware replacement are combined into a single service. This service ends in a mandatory reboot. No other cryptographic operations may be performed during the execution of this service.	
Unauthenticated System User Role	n The unauthenticated system user represents the platform prior to authentication (the untrusted platform). In practice, this role is performed by a software driver as part of its power on configuration of module. With the exception of zeroization, these services do not disclos modify, substitute CSPs or use Approved security functions.	
	Services are made available prior to authentication for the following reasons:	
	• The platform must configure the SEP during the module's power on process in order to communicate with the module (for example, the platform must assign memory addresses to the module's registers, exercise physical interfaces, and set an interrupt policy for the device.)	
	• It is desirable to have a facility to zeroize key material in both the platform and the embedded module in any state. This is because the Decru platform features a chassis intrusion detector that may issue a tamper alert even when the module is in a low power state (in which no user is authenticated.)	

3.2 Services and role access rights

Table 3.2 gives a high level description of all services provided by the module and lists the roles allowed to invoke each service. Because the module is controlled by a low level driver interface, most services encapsulate a set of commands. The following abbreviations are used for roles:

U – unauthenticated System User role	RO – Recovery Officer role
AU – User role	ClO – Cluster Officer role
CrO – Primary Cryptographic Officer role	FU – Upgrade Firmware role

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
x	X	X	KU		ru	Authenticate System User	Performs an AKEP2 protocol with the operator. This service may also be used to
							re-authenticate the System User in order to transition from User role to Primary Cryptographic Officer role.
Х	Х	Х				Configure module	This service is performed every boot, and sets the register address spaces, interrupt policy, latency settings, and other PCI bus configuration parameters
Х	Х	Х				Logout all users	Zeroizes all CSPs in the module's RAM, and logs out all users
Х	Х	Х				Perform power on self-tests	Performed automatically as a result of booting the device.
X	Х	Х				Read/write to flash	The operator may read from any flash address, and may write to allowed flash addresses.
X	Х	Х				Read/write to SDRAM	The module provides a battery-backed, physically protected RAM store for the platform's use. The platform may access this store at any time – no cryptographic processing occurs through this interface.
Х	Х	Х				Reset	Allows the operator to reset a user-specified number of the module's internal states to their initial value.

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
X	Х	Х				Show status	This service corresponds to a suite of commands which return the module's status:
							• the value of the module's internal state machines
							• PCI status register values
Х	Х	Х				Tamper Notification	The operator may issue a tamper alert to the SEP with this service. The alert results in a zeroization and logout of all operators.
Х	Х	Х				Zeroize	The operator may specify whether all CSPs, or only those in RAM are to be destroyed.
	Х	Х	Х			Authenticate Cluster Officer	Performs an AKEP2 protocol with the Cluster Identity. The service may only be invoked by one of the three authenticated System User roles. Note that Cluster Officer authentication is revoked if the System User transitions to the unauthenticated role.
	Х	Х				Decrypt data	The module imports ciphertext client data from the operator, and decrypts the data with the AES-256 ECB using the currently loaded key context. The module outputs the plaintext.
	Х	Х				Disable user services	Suspends user data encryption and decryption.
	Х	Х				Encrypt data	The module imports plaintext client data from the operator, and encrypts the data with the AES-256 ECB using the currently loaded key context. The module outputs the ciphertext.
	Х	Х				Enter Data Domain Key	The operator loads an encrypted Data Domain Key into the module. The Data Domain Key may only be used for encrypting Key Context items.
	Х	Х				Enter Key Context item	The module loads key context item(s) into the Key Unit. The Cryptainer Key must be wrapped with a Data Domain Key.
	Х	Х				Enter Link Key	The operator loads an encrypted link key into the module, allowing the module to output exportable Cryptainer Keys by wrapping them with the link key.

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
	Х	Х				Fill SEP FIFO	The platform must ensure that the SEP has sufficient PRNG input stored in its FIFO. No data is output and no keys are created as a result of this service.
	Х	Х				Generate Key Context item	The operator specifies the item(s) to be generated.
	Х	Х				Output Data Domain Key	The module output an encrypted Data Domain Key that is used to encrypt Cryptainer Keys or Link Keys.
	Х	Х				Output Key Context item	The module exports the current key (encrypted) context item(s) to the operator. The operator specifies which entries are to be exported. The wrapping key must be loaded into the unit as a result of an "Enter Data Domain Key" or "Receive Data Domain Key from Cluster Officer" service invocation.
	Х	Х				Output Link Key	The module outputs an encrypted key used to wrap exportable Cryptainer Keys.
		Х				Assume user role	This command restricts the operator's privileges to only those available to the user or to the unauthenticated system user. If user services have not been enabled, then the operator is logged out of the unit.
		Х				Enable user services	This command enables user data encryption and decryption.
		Х				Establish Platform Key	The module establishes a platform key via the ECCDH protocol.
		Х				Enter CLU.AKS	The operator loads the encrypted authentication data for Cluster Officers into the module, effectively signifying that the module may attempt to authenticate to the corresponding Cluster Officer user.
		Х				Enter Master Key	The operator loads the Master Key encrypted with the Ignition Key into the module, through the secure channel.
		Х				Enter Module Domain Key	The operator loads the Module Domain Key encrypted with the Recovery Policy Key into the unit. The Module Domain Key is used to encrypt module secrets, such as secret share keys.
		Х				Enter Recovery Policy Key	The operator loads the Recovery Policy Key encrypted with the Master Key into the module.

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
		Х				Enter Sys.AKS	The operator enters new authentication key data into the module for use in authenticating the System User. The old AKS values are no longer used.
		Х				Establish Ignition Key	The module establishes an ignition key via the ECCDH protocol.
		Х				Generate Domain Key	The module generates a Domain Key (consisting of an encryption and HMAC component) together with an ID and type information.
		Х				Generate Initial CLU.AKS	The module generates initial authentication key data for the AKEP2 protocol to be run with a Cluster Officer.
		Х				Generate Master Key	The module generates a Master Key. If the Ignition Key are not already in the module, they are generated as a result of this command. No data is output.
		Х				Generate Recovery Policy Key	The module generates a Recovery Policy Key, with the policy specified by the operator. The policies determine which interfaces may be used to import the key during a secret recovery operation.
		Х				Output CLU.AKS	The module outputs an encrypted Cluster Officer authentication Key Set.
		Х				Output Master Key	The module sends a Master Key to the operator through the secure channel. The key is wrapped with the SEP's ignition key.
		Х				Output Module Domain Key	The module outputs an encrypted Module Domain Key that is used to encrypt module secrets.
		Х				Output random value	The module exports PRNG output to the System User through the established secure channel encrypted with the Platform key.
		Х				Output Recovery Policy Key	The module outputs an encrypted Recovery Policy Key to the operator.
		Х				Receive CLU.AKS	The module receives a CLU.AKS replacement from a Cluster Officer, through the channel with the officer encrypted with the Platform Key.
		Х				Secret Share Recovery Policy Key	The module subdivides an internally stored Recovery Policy Key into secret shares with a specified recovery threshold, encrypts the shares, and exports them to the operator.

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
		Х				Send CLU.AKS	The module sends the CLU.AKS key to a Cluster Officer by encrypting it with the Platform key.
		Х				Set Crypto Shred Mode	The operator specifies the type of CSPs that are zeroized as part of the tamper notification service.
		Х				Set Quorum Requirements	The operator specifies the requirements for a quorum (secret recovery threshold).
			Х			Enter Recovery Key Set	The operator loads the encrypted Recovery Key set into the module. Two interfaces are available for the key load: the recovery key set may be encrypted with the SEP.PK and loaded through a channel based on Sys.SKS, or the recovery key set may be encrypted and authenticated with the SEP.ModDK.
			Х			Assume Crypto Officer role	Transitions the System User from Recovery Officer role to Primary Cryptographic Officer role.
			Х			Establish Link Key	The module performs an ECCDH key agreement protocol with data supplied by the operator to establish a link key.
			Х			OTP	The module attempts to authenticate the operator (in Primary Cryptographic Officer role) with a One Time Password protocol. Successful completion of the OTP protocol places the operator in Recovery Officer role.
			Х			Recover Recovery Policy Key	The operator loads secret shares containing the Recovery Policy Key into the SEP. The shares are encrypted with secret share key RO.SSEK. The module reconstructs the Recovery Policy Key.
				Х		Receive Data Domain Key from Cluster Officer	The module imports the Data Domain Key with a Cluster Officer encrypted with the platform key. The Data Domain Key is used to encrypt client data, not module secrets.
				Х		Receive Module Domain Key from Cluster Officer	The module imports the Module Domain Key encrypted with platform key from a Cluster Officer.
				Х		Send Data Domain Key to Cluster Officer	The module sends the Data Domain Key encrypted with the platform key to a Cluster Officer.
				Х		Send Module Domain Key to Cluster Officer	The module sends the Module Domain Key encrypted with the Platform Key to a Cluster Officer.

U	AU	CrO	RO	ClO	FU	Service Name	Service Description
					Х	Upgrade	Loads new firmware into the module. This service includes performing the external load test.

3.3 Keys and CSP Access Rights

Table 3.3 defines the relationship between services and CSP accesses. The following access mode abbreviations are used:

READ – the item is read by the service

WRITE - the item is written or updated by the service (including zeroization)

EXECUTE – the item is used as part of a cryptographic function by the service

Service	Description	Keys and CSPs	Access Type(s)
Assume Crypto Officer role	Clear the OTP nonce	OTP.N	W
Assume user role	Logout the System User by clearing the System User session key set	Sys.SKS	W
Authenticate Cluster	Clu.AKS is used for authentication of the	Clu.AKS	Е
Officer	Cluster Officer and establishment of the Clu.SKS (session key set). AKEP2.DH1 is	AKEP2.DH1	WE
	an ephemeral parameter to the operation.	Clu.SKS	W
Authenticate System	Sys.AKS is used for authentication of the	Sys.AKS	E
User	System User and establishment of the Sys.SKS (session key set). AKEP2.DH1 is	AKEP2.DH1	WE
	an ephemeral parameter to the operation.	Sys.SKS	W
Decrypt data	User data is decrypted with SEP.CK	SEP.CK	E
Encrypt data	User data is encrypted with SEP.CK	SEP.CK	E
Establish Platform	SEP.PK is established based on	SEP.ECCDHSecret	E
Key	SEP.ECCDHSecret	SEP.PK	W
Enter CLU.AKS	Clu.AKS is verified and decrypted with	SEP.ModDK	Е
	SEP.ModDK	Clu.AKS	W

Table 3.3: Access Rights within Services

Service	Description	Keys and CSPs	Access Type(s)
Enter Data Domain	SEP.DataDK is verified and decrypted	SEP.RPK	Е
Key	with SEP.RPK	SEP.DataDK	W
Enter Key Context	SEP.CK is verified and decrypted with	SEP.DataDK	Е
item	SEP.DataDK	SEP.CK	W
Enter Link Key	SEP.LK is verified and decrypted with	SEP.ModDK	Е
	SEP.ModDK	SEP.LK	W
Enter Master Key	SEP.MK is verified and decrypted with	SEP.IK	Е
	SEP.IK. This service is executed through the Sys.SKS channel.	Sys.SKS	Е
		SEP.MK	W
Enter Module	SEP.ModDK is verified and decrypted	SEP.RPK	Е
Domain Key	with SEP.RPK	SEP.ModDK	W
Enter Recovery	SEP.RPK is verified and decrypted with	SEP.MK	Е
Policy Key	SEP.MK	SEP.RPK	W
Enter Sys.AKS	Sys.AKS is decrypted with SEP.PK. This	Sys.SKS	Е
	service is executed through the Sys.SKS channel.	SEP.PK	Е
		Sys.AKS	W
Establish Ignition	SEP.IK is established based on	SEP.ECCDHSecret	E
Key	SEP.ECCDHSecret	SEP.IK	W
Establish Link Key	Link key is established based on	SEP.ECCDHSecret	E
	SEP.ECCDHSecret	SEP.LK	W
Generate Data Domain Key	Generation from PRNG output	SEP.DataDK	W
Generate Initial CLU.AKS	Generation from PRNG output	Clu.AKS	W
Generate Key Context item	Generation from PRNG output	SEP.CK	W
Generate Master Key	Generation from PRNG output	SEP.MK	W
		SEP.IK	W
Generate Module Domain Key	Generation from PRNG output	SEP.ModDK	W
Generate Recovery Policy Key	Generation from PRNG output	SEP.RPK	W
Logout all users	Zeroize all runtime CSPs (see Table 3.4)	All run-time CSPs	W

Service	Description	Keys and CSPs	Access Type(s)
OTP	Run One Time Password protocol. The	OTP.N	RWE
	RO.SSAK key is used to encrypt the challenge. The response data to this	RO.SSAK	E
	service is sent through the Sys.SKS channel.	Sys.SKS	E
Output CLU.AKS	Clu.AKS is encrypted and authenticated	Clu.AKS	R
	with SEP.ModDK	SEP.ModDK	Е
Output Data Domain	SEP.DataDK is encrypted and	SEP.RPK	Е
Key	authenticated with SEP.RPK	SEP.DataDK	R
Output Key Context	SEP.CK is encrypted and authenticated	SEP.DataDK	Е
item	with SEP.DataDK	SEP.CK	R
Output Link Key	SEP.LK is encrypted and authenticated	SEP.ModDK	Е
	with SEP.ModDK	SEP.LK	R
Output Master Key	SEP.MK is encrypted and authenticated	SEP.IK	Е
	with SEP.IK, and output through the Sys.SKS channel.	Sys.SKS	Е
		SEP.MK	R
Output Module	SEP.ModDK is encrypted and signed	SEP.RPK	Е
Domain Key	with SEP.RPK	SEP.ModDK	R
Output random value	PRNG output is output via the Sys.SKS channel	Sys.SKS	E
Output Recovery	SEP.RPK is encrypted and signed with	SEP.MK	Е
Policy Key	SEP.MK	SEP.RPK	R
Receive CLU.AKS	Clu.AKS is decrypted with the SEP.PK.	Clu.SKS	Е
	The service is executed through the Clu.SKS channel.	SEP.PK	Е
		Clu.AKS	W
Receive Data Domain		Clu.SKS	Е
Key from Cluster Officer	SEP.PK. The service is executed through the Clu.SKS channel.	SEP.PK	Е
		SEP.DataDK	W
Receive Module	SEP.ModDK is decrypted with the	Clu.SKS	Е
Domain Key from Cluster Officer	SEP.PK. The service is executed through the Clu.SKS channel.	SEP.PK	Е
		SEP.ModDK	W
Recover Recovery	Sys.RPK is entered into the module	RO.SSEK	E
Policy Key	encrypted with RO.SSEK	SEP.RPK	W
Secret Share	SEP.RPK is encrypted with RO.SSEK	RO.SSEK	Е
Recovery Policy Key		SEP.RPK	R

Service	Description	Keys and CSPs	Access Type(s)
Send CLU.AKS	Clu.AKS is encrypted with SEP.PK, and	Clu.SKS	Е
	exported. This sservice is executed through the Clu.SKS channel.	SEP.PK	Е
		Clu.AKS	R
Enter Recovery Key	Loads, RO.SSEK and RO.SSAK,	SEP.PK	R
Set	encrypted with the SEP.PK,executed through the Sys.SKS channel, or loads	Sys.SKS	Е
	RO.SSAK decrypted and verified with	SEP.ModDK	Е
	SEP.ModDK	RO.SSEK	W
		RO.SSAK	W
Send Data Domain	SEP.DataDK is encrypted with SEP.PK,	Clu.SKS	Е
Key to Cluster Officer	and output through the Clu.SKS channel.	SEP.PK	Е
		SEP.DataDK	R
Send Module Domain		Clu.SKS	Е
Key to Cluster Officer	and output through the Clu.SKS channel.	SEP.PK	Е
		SEP.ModDK	R
Tamper Notification	If crypto shred policy set to 2 or 3, zeroize all runtime CSPs (see Table 3.4). If crypto shred policy set to 1, zeroize all CSPs, except Decru.IDK, SEP.IK, SEP.PK and Sys.AKS.	*	W
Upgrade	Decru signature on upgrade code verified with Decru.pubKey	Decru.pubKey	E
Zeroize	Zeroize all CSPs, except Decru.IDK	*	W

3.4 CSPs

The following keys, cryptographic key components and other critical security parameters are contained in the module. Each CSP is assigned a row in Table 3.4. The following interpretation applies to the persistence column:

persistent – the key/CSP persists until explicit zeroization

runtime – the key/CSP persists until explicit zeroization or power-cycle

ephemeral – the key/CSP is used for a single algorithm instance only (e.g. nonces)

CSP Symbol	CSP Name	Lifetime	Туре
Decru.IDK	Decru Initial Derivation Key	persistent	Authentication key (20 octets), Key derivation key (60 octets)
SEP.PK	SEP Platform Key	runtime	AES-256, HMAC-SHA-256
SEP.IK	SEP Ignition Key	persistent	AES-256, HMAC-SHA-256
Sys.AKS	System User Authentication Key Set	persistent	authentication key (20 octets), Key derivation key (60 bytes)
Sys.SKS	System User Session Key Set	runtime	AES-256, HMAC-SHA-1 1 byte channel sequence number
Clu.AKS	Cluster User Authentication Key Set	runtime	HMAC-SHA-256 (40 octets), Key derivation key (40 octets)
Clu.SKS	Cluster User Session Key Set	runtime	AES-256, HMAC-SHA-256, 1 byte channel sequence number
SEP.MK	SEP Master Key	runtime	AES-256 (32 octets) HMAC-SHA-256 (32 octets)
SEP.RPK	SEP Recovery Policy Key	runtime	AES-256 (32 octets) HMAC-SHA-256 (32 octets)
RO.SSEK	Recovery Secret Share Encryption Key	runtime	AES-256 (32 octets) HMAC-SHA-1 (20 octets)
RO.SSAK	Recovery Secret Share Authorization Key	runtime	AES-256 (32 octets) HMAC-SHA-1 (20 octets)
SEP.ModDK	SEP Module Domain Key	runtime	AES-256 (32 octets) HMAC-SHA-256 (32 octets)
SEP.DataDK	SEP Data Domain Key	runtime	AES-256 (32 octets) HMAC-SHA-512 (32 octets)
SEP.CK	SEP Cryptainer Key	runtime	AES-256 (32 octets) HMAC-SHA-512 (32 octets)
SEP.LK	SEP Link Key	runtime	AES-256 (32 octets) HMAC-SHA-512 (32 octets)
AKEP2.EDC	AKEP2 Ephemeral Derivation Key Component	ephemeral	20 octet key derivation component
AKEP2.DH1	AKEP2 Diffie-Hellman private key	ephemeral	Diffie-Hellman private value used for group exponentiation (128 octets)
SEP.ECCDHSecret	ECC Diffie-Hellman secret key	ephemeral	ECC-521 private key
OTP.N	One time password	ephemeral	AES-256 (32 octets)
	protocol nonce		HMAC-SHA-1 (20 octets)

Table 3.4: Cryptographic Keys and CSPs

3.5 Public Keys and public nonces

The following table lists public keys and public nonces.

CSP Symbol	CSP Name	Lifetime	Туре
Decru.PubKey	Decru Public Key	persistent	ECC521 ECDSA verification public key
AKEP2.N1 AKEP2.N2	AKEP2 initiator /receiver nonce	ephemeral	20 octet nonce (when used with Sys.AKS) 32 octet nonce (when used with Clu.AKS)

Table 3.5: Public Keys and Nonces

3.6 FIPS Approved Crypto Algorithm Engines

All approved crypto algorithm engines are assumed to implement critical security functions.

Algorithm Implementation	References	Certificate(s)
SHA-1	FIPS PUB 180-2	Cert #595
SHA-256	FIPS PUB 180-2	Cert #596
SHA-512	FIPS PUB 180-2	Cert #511
HMAC-SHA-1	FIPS PUB 198, uses SHA-1, Cert #595	Cert #273
HMAC-SHA-256	FIPS PUB 198, uses SHA-256, Cert #596	Cert #274
HMAC-SHA-512	FIPS PUB 198, uses SHA-512, Cert #511	Cert #212
AES-256-CBC	FIPS PUB 197	Cert #523
AES-256-ECB	FIPS PUB 197	Cert #445
ECDSA	FIPS PUB 186-2, change notice 1, Appendix 6.	Cert #53
PRNG	FIPS PUB 186-2, change notice 1, Appendix 3.1.	Cert #299

Table 3.6: Approved cryptographic algorithm implementations

3.7 Non-approved Crypto Algorithm Engines

The following non-approved crypto algorithms and protocols are in the SEP

Algorithm Implementation	Comments
TRNG	Hardware random number generator. Only used as a seeding mechanism for the Approved RNG and never used to generate keys directly.
AKEP2 protocol	Authentication and Key agreement protocol, conformant to AKEP2. The protocol makes use of a SHA-1 based publicly known non- reversible function conformant to ANSI X9.63 and Diffie-Hellman conformant to ANSI X9.42-2003. The module only relies on this protocol for authentication, it does not use the protocol for key agreement.
ECCDH	ECC Diffie-Hellman key agreement protocol conformant to ANSI X9.63. The protocol makes use of the SHA-256 based key derivation function conformant to ANSI X9.63. The ECCDH protocol provides 256 bits of strength. This is a commercially available key agreement protocol as allowed under FIPS PUB 140-2 Annex D.
Secret Sharing/ Secret Recovery	A threshold split knowledge scheme as defined in HAC. The scheme is not relied upon to protect CSPs, as the output shares are encrypted prior to export with an approved security function (AES-256).
KDF1	A supporting function for the AKEP2 protocol, conformant to to ANSI X9.63, and based on SHA-1.
KDF2	A supporting function for the ECCDH protocol, conformant to to ANSI X9.63, and based on SHA-256.

Table 3.7: Non-Approved Algorithms

3.8 Security Rules

This section describes the security rules that the module must enforce. The rules are structured according to FIPS PUB 140-2; the security rules enforce the module's conformance to each of the FIPS PUB requirements.

The cryptographic module design corresponds to the following security rules:

- 1. The cryptographic module shall only support a FIPS mode of operation. The cryptographic module returns its version number through a status command to indicate the approved mode.
- 2. The SEP shall provide for six roles: unauthenticated System User, User, upgrade firmware, Cluster Officer, Primary Cryptographic Officer, and Recovery Officer. For purposes of the standard, the last three roles are considered crypto officer roles.
- 3. The SEP shall support multiple operators that may each assume the Cluster Officer role. Only a single operator (the System User) may assume the User, Cryptographic Officer, and Recovery Officer roles.
- 4. The SEP shall provide for identity-based authentication. The module shall also provide for zeroization as an unauthenticated service, and other unauthenticated services that do not disclose, modify, or substitute CSPs or use Approved security functions.
- 5. The module shall track successful authentication by means of an internal state machine. This state machine controls which services may be performed by the module. The state machine is reset on power off, or as a result of a logout command.
- 6. The module's error states shall consist of soft and hard errors. On encountering soft errors, the module shall note the error and automatically exit the error state after rejecting the data that has been input or is being processed. On encountering a hard error, the module shall disable interfaces used for cryptographic processing, disable the relevant cryptographic engine, issue an error, and discard any data that has been processed during the error state.
- 7. The module shall not support a bypass or maintenance state.
- 8. The module shall generate CSPs from the output of a FIPS approved PRNG. This PRNG shall be continuously reseeded by a TRNG. Both the TRNG and the PRNG shall undergo a continuous RNG self-test (see Rule #16).
- 9. All CSPs and public keys within the module shall be protected by the physical security of the device. No CSP shall be output from or entered into the module in plaintext.
- 10. Only the System User may enter keys into the module.

11. The module shall distinguish between *module* and *user* secrets:

module secrets are defined as any of the following:

- a. authentication data associated to one of the supported roles
- b. session keys between the module and a user of the module
- c. secret share keys
- d. platform key
- e. any key in the key hierarchy that encrypts/signs one of the CSPs listed previously in a,b,c.

user secrets are defined as any of the following:

- f. Encryption and signature Cryptainer Keys
- g. Those Domain Keys that are used to encrypt and sign Cryptainer Keys.
- 12. Module secrets may only be loaded into or out of the module when the operator is in one of the following roles:
 - a. Primary Cryptographic Officer role
 - b. Upgrade Firmware Role
 - c. Recovery Officer role
- 13. The module shall distinguish between the key material it makes available to the System User in Primary Cryptographic Officer role and Recovery Officer role:
 - a. In Primary Cryptographic Officer role, the module shall enforce a "black box" CSP access policy in which keys are not accessible to the System User in plaintext, given the key material exchanged by two parties (System User in Primary Cryptographic Officer role, SEP).
 - b. In Recovery Officer role, the module shall export keys in a hierarchy, at the top of which are secret share keys, that are accessible to the System User in Recovery Officer role (as this user provided the secret share keys to the module).

14. All CSPs except for

- · authentication data between the module and the System User
- The SEP's Ignition Key package
- The Upgrade firmware public key, Decru.PubKey

shall be stored only in RAM and shall be zeroized as a result of the logout all users service.

- 15. On power on, the SEP shall perform the following self-tests
 - a. AES-256 KATs
 - b. SHA-1 KAT
 - c. SHA-256 KAT
 - d. SHA-512 KAT
 - e. KDF1 KAT
 - f. HMAC-SHA-1 KAT
 - g. KDF2 KAT
 - h. HMAC-SHA-256 KAT
 - i. HMAC-SHA-512 KAT
 - j. Diffie-Hellman KAT
 - k. ECCDH KAT
 - l. ECDSA KAT (signature verification only)
 - m. PRNG KAT, in which the PRNG is initialized with a fixed seed value and internal state and the output of the PRNG is compared against a stored value.
 - n. Software/firmware integrity tests
 - o. Test to see if a tamper notice has been issued from the platform
 - p. SHA-1 attached to the keys stored in the EPROM shall be verified during the module's power on self-tests.
- 16. Conditional self tests

Both the TRNG and the PRNG shall perform the continuous RNG test. The TRNG shall store and compare 8 octets for the continuous test, and the PRNG shall store and compare 40 octets. Should a test fail, the module shall enter an error state during which no cryptographic operations can be performed, notify the operator of the error by writing to a status register, and the module shall discard the error (the module may send additional notifications to the operator.)

HMACs attached to stored keys defined in Rule 14 shall be verified before use. Should a test fail the stored key will be moved into a BLOCKED state in which it cannot be used.

- 17. The module shall include an upgrade service, whereby new firmware is loaded into the SEP. In this case, the module shall perform an external load test, computing the SHA-512 hash of the entire upgrade package. The result of the hash shall be compared with the ECDSA signed hash provided by the Decru. If the signature is verified, and if the signed hash matches the hash computed by the module, then the module shall boot from the new firmware on subsequent power on. The cryptographic module shall not support the loading or execution of non-trusted code. Loading of any code that is properly signed with ECDSA, but not validated will invalidate the FIPS 140-2 validation. As such, the requirements of Section 4.6 Operational Environment of FIPS 140-2 are not applicable.
- 18. Unless key material is loaded into the module through the secure channel from the System User, the module shall not contain sufficient key material to perform the encrypt data or decrypt data service. In particular, Cryptainer Keys may not be compromised as a result of compromising the physical security of a powered off module.
- 19. Prior to initialization, the module shall allow only the System User to authenticate using ephemeral and default key material. During this session, the only allowed services are:
 - a. services available to the unauthenticated user
 - b. Output random value (in order to reseed the PRNG of the System User)
 - c. *Enter Sys.AKS* (in order to change to a local AKS).
 - d. Fill SEP FIFO

Thereafter, the System User must shut down the session and re-authenticate with the new AKS in order to access the full set of services. Prior to the AKS change, Cluster Officers and Recovery Officers may not authenticate to the module.

4 PHYSICAL SECURITY

The SEP is protected with a hard, opaque tamper evident epoxy coating. With high probability, removal of this coating will destroy the underlying circuitry.

Physical Security	Recommended Frequency of	Inspection/Test Guidance Details
Mechanisms	Inspection/Test	

Table 4.1: Inspection/Testing of physical security mech	

Hard opaque tamper evident epoxy.	Upon installation of device within the host system.	Thoroughly inspect the cryptographic module for any signs of tamper including scratches, gouges and other suspicious marks on the potting. The device is to be physically destroyed in the event that tamper evidence is noted.
---	---	---

5 MITIGATION OF OTHER ATTACKS

No claims are made about the mitigation of other attacks outside of the scope of FIPS 140-2.

Table 5.1:	Mitigation	of other	attacks
------------	------------	----------	---------

Other Attacks	Mitigation Mechanism	Specific Limitations
N/A	N/A	N/A

6 DEFINITIONS AND ACRONYMS

AKEP2	Authentication and Key Exchange Protocol, (version) 2. The module uses AKEP2 for authentication, it does not use AKEP2 for key agreement.
Authentication Key Set (AKS)	A key derivation key, together with an authentication key. The authentication key is used in an AKEP2 protocol, and on success, the key derivation key is used to derive a session key set. This module uses AKEP2 for authentication, it does not use AKEP2 for key agreement.
Client	Refers to an initiator device in a network storage protocol such as NFS.
client data	Data belonging to a client (that may be stored on a remote server).
cluster	A set of DataFort appliances that share data encryption keys in order to provide failover and load balancing.
Cryptainer Key	The key package used to encrypt and sign client data
DataFort	The DataFort platform, with the DCC inserted. The DataFort platform is marketed as a hardware encryption and authenticated device. The SEP is the primary cryptographic service provider for the DataFort.

DataFort platform	Also called "platform". A computer (CPU, memory, motherboard) in which the DCC may be inserted. There is a unique platform per SEP. The platform serves as the primary SEP operator ("System User").
DCC	Decru Crypto Card – a PCI card that houses the SEP together with non cryptographic components such as DDRAM, a battery charger, etc.
Domain Key	A key package used to encrypt and sign CSPs such as Cryptainer Keys.
Ignition Key	A key package used to encrypt and sign the Master Key prior to exporting it to the System User.
Link Key	A key package that is used to encrypt and sign certain exportable Cryptainer Keys.
Master Key	A key package used to encrypt and sign Recovery Policy Keys.
Platform	The section of the DataFort appliance that is outside of the SEP.
quorum	The minimum number of secret shares required to reconstitute the secret that is being shared. Sometimes referred to as a threshold.
Recovery Officer	A System User role that is allowed to recover key material, establish link keys, and establish trust between Cluster Officers.
Recovery Policy Key	A key package used to encrypt and sign Domain Keys.
secret share key	A key package used to encrypt and sign certain Recovery Policy Keys.
SEP	Storage Encryption Processor. The SEP is a multi-chip embedded module whose primary purpose is hardware encryption of data.
Session Key Set	A wrapping key, together with an initial chaining value
System User	Refers to the host machine i.e. DataFort platform.
Wrapping Key	A key consisting of an encryption and an HMAC signature component (i.e. two distinct keys)

7 REFERENCES

AKEP2	M. Bellare and P. Rogaway. <i>Entity Authentication and Key Distribution.</i> <i>Advances in Cryptology - CRYPTO 93</i> , Lecture Notes in Computer Science Vol. 773, D. Stinson, ed., Springer-Verlag, 1994. Available at http://www.cs.ucsd.edu/users/mihir/papers/key-distribution.html
ANSI X9.42	ANSI X9.42-2003. Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography. 2003. Section 7.5.1.
ANSI X9.63	ANSI X9.63-2001. Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography. 2001. Section 5.6.3.
FIPS PUB 140-2	Security Requirements for Cryptographic Modules, 2001 May 25, Change Notice 4, 2002 Dec 03.
FIPS PUB 180-2	Secure Hash Standard (SHS), 2002 August
FIPS PUB 186-2	Digital Signature Standard (DSS), 2000 January 27. Change Notice 1, 2001 October 5.
FIPS PUB 197	Advanced Encryption Standard (AES), 2001 November 26
FIPS PUB 198	The Keyed-Hash Message Authentication Code (HMAC), 2002 March
HAC	<i>Handbook of Applied Cryptography</i> . Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanston. CRC Press, August 2001. Section 12.7.2.