
SECURITY POLICY

Crypto++™ Library
Versions 5.3.0 [32-bit and 64-bit]

FIPS 140-2 Level 1 Validation

http://www.cryptopp.com

Vendor: Wei Dai

Version Date: 8/7/2007
Revision: 0.8

http://www.cryptopp.com/

8/8/2007

ii

Revision History

Date Revision Description
October 26, 2006 0.1 Copied from version 0.6 of 5.2.3’s security policy. Updated version

numbers, operating systems, and added info about 64-bit variant.
November 23, 2006 0.2 Responded to comments from testing lab.
December 1, 2006 0.3 Added missing I/O ports to Master Component List
February 16, 2007 0.4 Added algorithm certificate numbers
February 22, 2007 0.5 Added note about minimum key size requirements. Updated

reference to SP 800-57.
July 25, 2007 0.6 Made changes in response to CMVP comments.
August 6, 2007 0.7 Added “[32-bit and 64-bit]” to title page.
August 7, 2007 0.8 Made “[32-bit and 64-bit]” a part of module version instead of

module name.

Copyright Notice

© 2007, Wei Dai. All rights reserved.
This document may be copied without the author’s permission provided that it is copied in its
entirety without any modification.

8/8/2007

iii

Table of Contents
1. Introduction... 1

1.1. Purpose.. 1
1.2. Documents .. 1
1.3. Crypto++ Library.. 1
1.4. Changes Between Version 5.2.3 and Version 5.3.0.. 2

2. Module Specification .. 2
2.1. Module .. 2
2.2. Boundary... 2
2.3. Hardware Platform.. 2
2.4. Module Block Diagram... 3
2.5. Software Environment .. 3
2.6. Approved Mode of Operation... 4

3. Module Ports and Interfaces ... 4
4. Roles, Services, and Authentication ... 4

4.1. Roles ... 5
4.2. Services ... 6
4.3. Authentication... 8

5. Finite State Model... 8
6. Physical Security... 8
7. Operational Environment.. 8

7.1. Operating System Requirements... 8
7.2. Module Integrity ... 9
7.3. Other Assumptions.. 9

8. Cryptographic Key Management.. 9
8.1. Key Generation ... 9
8.2. Key Establishment .. 9
8.3. Key Entry and Output ... 10
8.4. Key Storage... 10
8.5. Key Destruction .. 10

9. Self-Tests .. 10
9.1. Power-up Self-tests ... 10
9.2. Conditional Tests .. 11

10. Design Assurance.. 12
10.1. Configuration Management .. 12
10.2. Delivery and Operation... 13
10.3. Guidance Documents .. 13

11. Mitigation of Other Attacks .. 13
12. References... 13
APPENDIX A: Master Components List ... 14

A.1. Hardware Components.. 14
A.2. Software Components ... 15

APPENDIX B: Finite State Model ... 16
B.1. Diagram... 16
B.2. Descriptions... 17
B.3. Transition Conditions and Events ... 18

8/8/2007

1

SECURITY POLICY
FIPS 140-2 LEVEL 1 VALIDATION

CRYPTO++ LIBRARY

1. Introduction

1.1. Purpose
This document specifies the Security Policy for the Crypto++ library. This Security
Policy was produced as part of the Federal Information Processing Standard (FIPS) 140-2
Level 1 validation of the Crypto++ library version 5.3.0 [32-bit and 64-bit]. This
document is non-proprietary.

1.2. Documents
The Crypto++ Security Policy is provided as part of the following submission package:

 Security Policy contains:
 Security Policy
 Master Components List (in Appendix)
 Finite State Model (in Appendix)

 Crypto Officer and User Guide contains:
 Crypto Officer Guide
 User Guide
 Source Code Description (in Appendix)

 API Reference
 Source Code

A Protection Profile is not required or provided as supporting documentation for this
validation.

1.3. Crypto++ Library
Crypto++ is a free open source C++ class library of general-purpose cryptographic
algorithms and schemes. It provides a C++ Application Programming Interface (API) for
cryptographic functionality such as digital signing and verification, encryption and
decryption, hashing, key agreement schemes, key derivation functions, secret sharing,
random number generation, and more. For the purposes of FIPS 140-2 validation,
Crypto++ is provided as a dynamic link library (DLL) running on Microsoft Windows
operating systems. Only the DLL form of the library (cryptopp.dll) compiled by and
provided by the vendor are being considered as a module for the FIPS 140-2 validation
process, while the source code and static library forms of the library are not. The library
may be compiled for a number of platforms and operating systems, including Microsoft
Windows 95/98/ME/NT/2000/XP/2003/Vista, MacOS, Linux, FreeBSD, and other Unix-
type operating systems. However only the Windows DLL version has undergone the
FIPS 140-2 validation process. For more information, please refer to
http://www.cryptopp.com.

http://www.cryptopp.com/

8/8/2007

2

1.4. Changes Between Version 5.2.3 and Version 5.3.0
The following is a summary of changes between version 5.2.3 and version 5.3.0 of the
cryptographic module:

 The build environment was changed to Microsoft Visual C++ 2005.
 A 64-bit variant of the DLL was introduced.
 Countermeasures against AES timing attacks were added.

2. Module Specification
For the purposes of FIPS 140-2 validation, Crypto++ is provided as a dynamic link
library (DLL), cryptopp.dll, running on Microsoft Windows operating systems.
Henceforth, the DLL package of Crypto++ will simply be referred to as the “Crypto++
library” (or for brevity, just “library”).

Two variants of the FIPS-validated DLL are available: a 32-bit variant and a 64-bit
variant. They are compiled from the same source, with the only difference being that the
32-bit variant uses x86 instructions and 32-bit Windows APIs, whereas the 64-bit variant
uses x86-64 instructions and 64-bit Windows APIs. Except where indicated, the
information in this document applies to both the 32-bit variant and the 64-bit variant of
the library.

2.1. Module
In FIPS 140-2 terminology, the Crypto++ library is classified as a multi-chip standalone
Module. The 32-bit variant of the library complies with all FIPS 140-2 level 1 physical
security and operating system requirements on Microsoft Windows XP Professional SP2
in single-user mode. The 64-bit variant of the library complies with all FIPS 140-2 level 1
physical security and operating system requirements on Microsoft Windows Server 2003
x64 SP1 in single-user mode. The Crypto++ source code and compilations of the
Crypto++ source code that have not undergone FIPS validation are not considered FIPS
validated.

The Crypto++ library contains only Approved cryptographic algorithms. Non-Approved
algorithms implemented in the Crypto++ product are not included in the FIPS validated
DLL package. Section 4.2 Services provides a list of implemented Approved algorithms.
The APIs to these functions are exported from the DLL so they can be used by a calling
application.

2.2. Boundary
The physical boundary for the Module is defined as the enclosure of the computer system
on which the functions of the Module execute. The logical boundary contains the
software modules that comprise the Crypto++ library.

2.3. Hardware Platform
For FIPS 140-2 testing, the library was installed and tested on a HP dx5150 Business
Desktop system with:

8/8/2007

3

 Athlon 64 X2 4200+ CPU
 2 GB system RAM (DIMM)
 250 GB hard drive
 Microsoft Windows XP Professional Operating System, SP 2 (operating in single

operator mode)
 Microsoft Windows Server 2003 x64, SP 1 (operating in single operator mode)

The hardware platform enclosure completely surrounds the entire Module. The enclosure
material is standard production-grade material customarily used for this purpose.

2.4. Module Block Diagram
The following block diagram shows the keyboard and mouse ports as physical ports for
data or control input, and the monitor port as the physical port for data and status output.

PHYSICAL LAYER (PC)

H-DISK
MEMORY

(DIMM)

POWER

NETWORK PORT

KEYBOARD PORT

MOUSE PORT

MONITOR PORT

CPU

SYSTEM BUS

I/O
PORTS

Physical Boundary

Crypto++ DLL
Logical Boundary

2.5. Software Environment
The software environment in which the 32-bit variant of the Module was submitted for
validation is the Microsoft Windows XP Professional SP2 operating system. The
software environment in which the 64-bit variant of the Module was submitted for
validation is the Microsoft Windows Server 2003 x64 SP1 operating system.

The execution platform is a standard commercial off-the-shelf (COTS) computing
platform running Microsoft Windows XP Professional SP2 or Microsoft Windows Server
2003 x64 SP1. For level 1 Operating System Security, the software Module remains
compliant with the FIPS 140-2 validation when operating on any general purpose
computer (GPC) running a compatible version of Microsoft Windows since the software
of the Module does not require modification when ported.

Although not officially tested by the FIPS testing laboratory, the 32-bit variant of the
Module can execute (without modification) on Windows 95, 98, ME, NT, 2000, XP,

8/8/2007

4

2003, and Vista, and 64-bit variant of the Module can execute (without modification) on
Windows XP x64, Windows Server 2003 x64, and Windows Vista x64. The library does
not require use of specialized cryptographic hardware.

2.6. Approved Mode of Operation
No special configuration is required to operate the Module in a FIPS 140-2 mode. The
Module performs only Approved cryptographic algorithms and security functions.
Therefore the Module is in the Approved mode of operation at all times. The list of
implemented Approved security functions are described in Section 4.2 Services.

3. Module Ports and Interfaces
The logical interfaces to the Module consist of a C++ Application Programming
Interface (API) exported by the Crypto++ DLL. The physical interfaces are standard I/O
ports found on a computer for connecting external devices such as monitors and
keyboards. (Note: These external devices are outside the physical boundary of the crypto
Module and are not part of the Crypto++ validation.)

The following table describes the logical interfaces and physical ports in more detail:

Interface Logical Interface Physical Port

Data Input Data passed to the API calls to be used by
the Module.

Standard Input Port (e.g.
Keyboard)

Date Output Data returned from API calls, generated by
the Module

Standard Output Port (e.g.
Monitor)

Control Input Exported API calls N/A

Status Output C++ exceptions and the
GetPowerUpSelfTestStatus() function

Standard Output Port (e.g.
Monitor)

Power N/A Supplied by PC

Data entered into and output from the Module are kept separated throughout the software
of the Module. The software design maintains separation of the Module’s logical paths.
These logical paths are used for output data exiting the Module during functions such as
key generation and zeroization of cryptographic keys and Critical Security Parameters
(CSPs).

The Crypto++ API Reference document identifies separate parameters (objects and
functions) that behave as the Module’s control input and status output.

4. Roles, Services, and Authentication
The Security Policy states the security rules and operations by which the Module
operates. By specifying roles, access controls, services, and security-relevant data items,

8/8/2007

5

the Security Policy defines the data items that operators can access while performing
specific services in specific roles.

4.1. Roles
The Module supports a User role and a Crypto Officer role as defined in FIPS 140-2
standard as follows:

8/8/2007

6

User The User is any entity that can access services provided by the
Module. The User role is implicitly selected when a process calls any
API function in the Module.

Crypto Officer The Crypto Officer is any entity that can install the Module onto the
computer system, configure the operating system, or access services
provided by the Module. The Crypto Officer may access all services,
the same as a User. The Crypto Officer has no special access to any
keys or data. The Crypto Officer role is implicitly selected when
installing the Module or configuring the operating system.

The Module does not support a Maintenance role.

4.2. Services
The following tables provide information about the services available within the Module.
To see the detailed interface descriptions for these services, look up the respective
implementation object class of function in the Crypto++ API Reference.

8/8/2007

7

Version 5.3.0 of the Module provides the following services:
Service Type Algorithm FIPS Implementation Object Class or Function

AES
Certificate #499

FIPS 197 ECB_Mode<AES>, CTR_Mode<AES>,
CBC_Mode<AES>, CFB_FIPS_Mode<AES>,
OFB_Mode<AES>

Triple-DES (2-key)
Certificate #512

FIPS 46-3 ECB_Mode<DES_EDE2>,
CTR_Mode<DES_EDE2>,
CBC_Mode<DES_EDE2>,
CFB_FIPS_Mode<DES_EDE2>,
OFB_Mode<DES_EDE2>

Triple-DES (3-key)
Certificate #512

FIPS 46-3 ECB_Mode<DES_EDE3>,
CTR_Mode<DES_EDE3>,
CBC_Mode<DES_EDE3>,
CFB_FIPS_Mode<DES_EDE3>,
OFB_Mode<DES_EDE3>

Symmetric Cipher

Skipjack
Certificate #17

FIPS 185 ECB_Mode< SKIPJACK>, CTR_Mode<
SKIPJACK>, CBC_Mode< SKIPJACK>,
CFB_FIPS_Mode< SKIPJACK>, OFB_Mode<
SKIPJACK>

RSA Signature
PKCS Variants1

Certificate #216

FIPS 186-2 RSASSA<Padding, Hash>, where Padding can be
PKCS1v15 or PSS, and Hash can be SHA1,
SHA224, SHA256, SHA384, or SHA512

RSA Signature
ISO/ANSI Variant2

Certificate #216

FIPS 186-2 RSASSA_ISO<Hash>, where Hash can be SHA1,
SHA256, SHA384, or SHA512

DSA
Certificate #206

FIPS 186-2 DSA

Digital Signature
and Key Generation

ECDSA
Certificate #49

FIPS 186-2 ECDSA<CurveType, Hash>, where CurveType can
be ECP or EC2N, and Hash can be SHA1, SHA224,
SHA256, SHA384, or SHA512

Message Digest SHA
Certificate #569

FIPS 180-2 SHA1, SHA224, SHA256, SHA384, or SHA512

CBC-MAC/Triple-
DES

FIPS 113 CBC_MAC<DES_EDE2>,
CBC_MAC<DES_EDE3>

Message
Authentication

HMAC-SHA
Certificate #253

FIPS 198 HMAC<Hash>, where and Hash can be SHA1,
SHA224, SHA256, SHA384, or SHA512

Random Number
Generator

ANSI X9.31-1998 -
Appendix A

Certificate #279

----- AutoSeededX917RNG<DES_EDE3>3

Diffie-Hellman
Key Agreement

----- DHKey Establishment

RSA Key Transport ----- RSAES<OAEP<SHA1> >

Self-Test N/A DoPowerUpSelfTestOther Functions

Self-Test Status N/A GetPowerUpSelfTestStatus

1 Specified in PKCS #1 version 2.1 as RSASSA-PKCS1-v1_5 and RSASSA-PSS.
2 Specified in ANSI X9.31-1998.
3 The RNG is seeded using the CryptGenRandom API provided by the Windows operating system’s
CryptoAPI library.

8/8/2007

8

The following table identifies CSPs and types of available access for the supported
services.

Service Cryptographic Keys and CSPs Type(s) of Access (e.g., RWE)
ANSI X9.31-1998 - Appendix A Random
Number Generation

Seed value, seed key, random
number

No operator access to the seed,
which is generated internally.
RW access to the random
number.

AES, Triple-DES, Skipjack Encryption and
Decryption

Secret key RW

RSA, DSA, ECDSA Signing Private key RW
RSA, DSA, ECDSA Verification Public Key RW
RSA Key Transport, DH Key Agreement Private and Public Keys RW
SHA Hashing Hash RW
CBC-MAC/Triple-DES, HMAC-SHA
Generation

Secret key and hash RW

There are presently no FIPS Approved asymmetric key establishment techniques.

4.3. Authentication
Within the constraints of FIPS 140-2 level 1, the Module does not directly implement
User authentication; it depends on the operating system for operator authentication.

5. Finite State Model
See “APPENDIX B: Finite State Model”.

6. Physical Security
The Module was tested while executing on a standard Intel-compatible personal
computer platform. This platform (and other Intel compatible platforms) and the
executing software comprise a multi-chip standalone Module that includes standard,
production grade components, standard passivation, and an enclosure of production grade
strength, meeting all FIPS 140-2 level 1 physical security requirements.

7. Operational Environment

7.1. Operating System Requirements
Each user process in the operating system has its own virtual address space with its own
copy of the executable code. When a process loads the Crypto++ DLL (Module), it maps
the Module into its own virtual address space and then calls the DLL’s exported
functions. The Module uses and allocates memory from the virtual address space of the
calling process.

The Module is completely independent and in its own process. The Module itself does
not communicate with other processes, for example, using any operating system inter-
process communication mechanisms. So no other process can access private and secret
keys or other CSPs.

The Module is restricted to a Single Operator Mode of Operation, per FIPS 140-2
requirements. The operating system is responsible for multitasking operations so that

8/8/2007

9

other processes cannot intervene when the Module is active at a particular instance in
time.

7.2. Module Integrity
The security of the Module does not depend on secrecy of the code contained in the
Module. Being open source, the library’s code is accessible to all. However, the integrity
of the validated Module is verified through the self-tests described in Section 9 “Self-
Tests”. These tests limit opportunities for keys or other CSPs to be disclosed
inadvertently.

7.3. Other Assumptions
Proper FIPS configuration and usage of the Module requires following instructions in the
Crypto Officer Guide and User Guide, and following the rules described in Section 4
“Roles, Services, and Authentication”.

8. Cryptographic Key Management
All keys in the Module may be either imported into the Module or internally generated
using the Module’s random number generator (RNG). The Module itself keeps these keys
in memory only and does not store them in persistent media.

8.1. Key Generation
The Module generates keys per FIPS requirements, using the Module’s Approved RNG
(specified in ANSI X9.31–1998, Appendix A), in the following manner:

 DSA keys are generated according to procedures described in FIPS 186-2.

 ECDSA keys are generated according to procedures described in ANSI X9.62.

 For RSA keys, the Approved RNG is used to generate the private prime factors p
and q.

 The remaining keys (AES, Triple-DES, CBC-MAC/Triple-DES, Skipjack,
HMAC-SHA) are generated using the Module’s Approved RNG (by generating a
random octet string of suitable size).

Intermediate key generation values are not output from the Module during the key
generation process. The Crypto++ API header files (rsa.h, dsa.h, and rng.h) provide more
information on key formats and structures.

8.2. Key Establishment
In the absence of a FIPS-approved asymmetric key establishment method (Annex D to
FIPS 140-2), the CMVP allows the following commercially available methods to be used
in FIPS Approved mode of operation: RSA Key Transport and Diffie-Hellman (DH) Key
Agreement. Crypto++ provides APIs for the calling application to use these algorithms.

Crypto++ does not place any restrictions on RSA and DH key lengths, and it is the
Crypto Officer’s responsibility to choose sufficient key lengths for RSA and/or DH in

8/8/2007

10

order to adequately protect symmetric keys during key establishment. NIST Special
Publication 800-57 contains Table 2, which compares security strengths of symmetric
and asymmetric algorithms at various key lengths. This table should be used to choose an
RSA or DH key length for a given symmetric key length.

In addition, CMVP has made the following minimum key size requirements:

 After May 19, 2007, all keys must have a minimum of 80 bits of security strength.
 After 2010, all keys must have a minimum of 112 bits of security strength.
 After 2030, all keys must have a minimum of 128 bits of security strength.

8.3. Key Entry and Output
Keys are entered into and output from the Module in plaintext form through the C++
API. The Module also provides APIs for a calling application to wrap keys for output
using RSA key transport. APIs are also provided for a calling application to sign and
verify signatures on keys, or create certificates for keys.

The module generates seeds and seed keys of its random number generator using the
CryptGenRandom API provided by the Windows operating system’s CryptoAPI library.
Neither Users nor Crypto Officers have any direct control over generation and entry of
these seeds and seed keys.

8.4. Key Storage
The Module does not store or archive keys in any persistent storage media.

8.5. Key Destruction
The Module stores keys while they are in use in memory only. When the C++ object that
encapsulates a key is destroyed, the Module automatically zeroizes the key.

It is possible that the operating system may swap memory that contains keys to disk. To
zeroize those keys, the User must wipe the swap files. One way to accomplish this is to
reformat the hard drive(s) containing the swap file.

9. Self-Tests
The Crypto++ library implements both power-up and conditional self-tests to ensure
proper operation of the Approved cryptographic algorithms and security functions.

9.1. Power-up Self-tests
When the Crypto++ DLL is loaded into a process, it performs a suite of power-up self-
tests to ensure the integrity and correct operation of the cryptographic services. The self-
tests always run automatically when the DLL is loaded, and do not require any inputs
from or actions by the operator. If any self-test fails, the Module enters an error state and
prevents any cryptographic operation from being performed. “APPENDIX B: Finite State
Model” provides detail of the state transitions. This section describes the power-up self-
tests implemented by the Module.

8/8/2007

11

9.1.1. Cryptographic Algorithm Test
The Module performs known answer tests for AES, Triple-DES, Skipjack, SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512, HMAC-SHA1, PKCS #1 1.5 variant of RSA
Signature, and ISO/ANSI variants of RSA Signature. For each algorithm, the tests
operate on known values, comparing plaintext, ciphertext (or hash, MAC or signature),
and intermediate data to determine whether the algorithms perform in the Approved
manner. A known answer test for the RNG sets all input parameters to specified values
and checks for a specific output value.

9.1.2. Software Integrity Check
The HMAC hash is pre-computed by the vendor and stored with in the read-only data
section of the DLL in order to be verified. During the software integrity self-test, the
value is recomputed by applying an HMAC over the DLL image, excluding the stored
HMAC value in the DLL. The value is then compared to the stored value in the DLL for
verification.

9.1.3. Pair-wise Consistency Test
The Module performs pair-wise consistency tests on DSA, ECDSA, and the PSS variant
of RSA Signature as described in Section 9.2.1. In contrast to the conditional testing, this
power-up self-test verifies the operations on fixed (hard-coded) key pairs. (Since the
output of the PKCS #1 1.5 and PSS variants of RSA Signature algorithm are
deterministic, they are tested as part of the known answer test described in Section 9.1.1.)

9.1.4. On-Demand Self-test
The Module exports an API routine, DoPowerUpSelfTest, which can be called to initiate
the self-tests on demand. Minimally, Users can manually initiate the power up self-tests
by resetting (restarting) the application.

9.2. Conditional Tests
In addition to the power-up self-tests described above, the Module performs on-going
tests during execution as described below. If any of these conditional tests fails, the
Module throws an exception.

9.2.1. Pair-wise Consistency Test
The Module runs a pair-wise consistency test (as specified in FIPS 140-2, section 4.9.2)
each time an asymmetric key pair is generated. For the signature keys (i.e., DSA,
ECDSA, RSA signature), the Module signs a message using the private key and verifies
the signature using the corresponding public key. For key transport keys (i.e., RSA
encryption), the Module encrypts a message with the public key, verifies that the
ciphertext differs from the plaintext, decrypts the ciphertext with the private key, and
verifies that the decrypted value equals the original message. For key agreement keys
(i.e., DH), the Module creates a second compatible keypair, performs both sides of the
key agreement algorithm, and verifies that the resulting secret keys are equal.

8/8/2007

12

9.2.2. Continuous Random Number Generator Test
The Module implements a continuous RNG test (as specified in FIPS 140-2, section
4.9.2) that runs each time the Approved RNG is called.

During the test, the previously generated random number is stored as a variable in
memory (not on persistent media). The variable is protected by standard operating system
protection mechanisms. As the Module’s RNG consistently generates fewer than 16 bits
(typically as low as 8 bits), the test runs as follows:

1. It stores the first 128 bits for comparison against the next 128 generated bits.

2. It compares each subsequently generated 128 bits against the previously generated
128 bits.

3. It fails if two compared 128-bit sequences are equal.

10. Design Assurance
The Module is designed, developed, and deployed in a manner that protects its integrity
throughout the process. Guidance is provided to Crypto Officers and Users of the
Module.

10.1. Configuration Management

10.1.1. Source Code Management System
The vendor uses a secure configuration management system, Concurrent Versions
System (CVS), to ensure the integrity of the Module throughout its development. The
system stores distinct versions of the Module’s source code. While in storage, files are
protected against unauthorized modification, using OpenSSH’s public-key authentication
mechanism. Currently, only Wei Dai is allowed modification access to the source files.

10.1.2. Versioning
Internal. Whenever a new version of a file is stored in the configuration management
system, it is labeled with a unique version number. These version numbers are used
internally to allow developers to roll back to previous versions of a Module, if necessary.
These internally managed version numbers are not seen by end-users.

FIPS Testing. A FIPS testing laboratory is provided with a zip file containing the
Crypto++ DLL, the test application, source code and other supporting documents serving
evaluation needs. The file name of each submitted zip container file contains the date and
time stamp. All contained files are considered to be of that version. Evaluators can use
the date/time stamp attribute of individual files to determine whether an individual file
has been modified. Documentation files will have a date and revision number on the title
page.

User Delivery. Each public release of the product carries a unique product version
number. This allows users to distinguish the validated product from other product
versions. The product uses a conventional version numbering scheme (for example
“version 5.3.0”) in which major releases are noted by incrementing the unit digit and

8/8/2007

13

minor updates to a release are noted by incrementing the decimal digit(s). A change log
available with each product version describes the associated changes made for that
release.

10.2. Delivery and Operation
The Source Code Description and Crypto++ API Reference documents provide more
information on the design and implementation of the Module.

In addition to understanding the versioning information provided in the previous section,
application developers should ensure that the proper version of the Module is delivered
by verifying a Pretty Good Privacy (PGP) signature on the Crypto++ DLL. The Crypto
Officer Guide explains how to verify the signature on the library. The following
fingerprint4 identifies the PGP (2048-bit RSA) public key that is used to sign the library:

F1F2 7D64 0CAA 3C65 763D 2508 F190 1AEB 0454 9843

For the purposes of FIPS 140-2 validation, Crypto++ is provided as a dynamic link
library (DLL) running on Microsoft Windows operating systems. Only the DLL form of
the library (cryptopp.dll) compiled by and provided by the vendor are being considered as
a module for the FIPS 140-2 validation process, while the source code and static library
forms of the library are not.

10.3. Guidance Documents
The Crypto Officer Guide instructs Crypto Officers to properly install, configure, and
maintain the Module. The User Guide and Crypto++ API Reference explain the proper
and complete use of the library’s Approved cryptographic services and functions.

11. Mitigation of Other Attacks
The Module does not provide security mechanisms to defend against attacks beyond
those required by FIPS 140-2 level 1 for monitoring the integrity of the Module.

12. References
For more information about the Crypto++ library, please visit the product website at
http://www.cryptopp.com. The following documents were used to support validation of
the Crypto++ library.

[1] National Institute of Standards and Technology, Security Requirements for
Cryptographic Modules. FIPS 140-2, 25 May, 2001.

[2] National Institute of Standards and Technology, Derived Test Requirements for FIPS
PUB 140-2, Security Requirements for Cryptographic Modules, Draft, November 15,
2001.

[3] FIPS 197 Advanced Encryption Standard (AES)

4 A fingerprint is a SHA1 hash of a public key. It uniquely identifies the key and is easier for humans to
read than the public key value that is much longer.

http://www.cryptopp.com/
http://csrc.nist.gov/cryptval/des.htm

8/8/2007

14

[4] FIPS 46-3 Data Encryption Standard (DES)

[5] National Institute of Standards and Technology, Digital Signature Standard (DSS),
FIPS 186-2, October 5, 2001.

[6] American Bankers Association, Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA), ANSI X9.31-1998.

[7] American Bankers Association, Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-1998.

[8] National Institute of Standards and Technology, Secure Hash Standard, FIPS 180-2,
August 1, 2002.

[9] National Institute of Standards and Technology, Keyed-Hash Message Authentication
Code (HMAC) FIPS 198, issued March 6, 2002.

[10] RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 2.1, June 14,
2002.

[11] National Institute of Standards and Technology, Recommendation for Key
Management – Part 1: General, FIPS 800-57, May, 2006.

APPENDIX A: Master Components List

The Crypto++ library is software that is intended to operate as part of an application on a
personal computer platform under the Windows® XP Professional SP2 or Windows
Server 2003 x64 SP1 operating system.5 The Module includes the validated Crypto++
DLL and the hardware elements of the personal computer platform. Neither the operating
system nor the calling application is a component of the Module.

A.1. Hardware Components
The following listed hardware elements are components of the Module. The components
are standard production-quality integrated circuits or components designed to meet
commercial-grade specifications for power, temperature, reliability, shock, vibration, and
so on.

 The PC enclosure

 The central processing unit (CPU)

 The hard drive

 Memory

 DVD-ROM drive

 Keyboard, mouse, monitor, and network ports

5 See Section 2.5 Software Environment for other qualified operating systems.

8/8/2007

15

A.2. Software Components
The following listed software elements are components of the Module.

 The Crypto++ DLL, version 5.3.0 [32-bit and 64-bit]

The Source Code Description lists all the software Modules that make up the Crypto++
DLL.

8/8/2007

16

APPENDIX B: Finite State Model

This section describes the finite state model of the Crypto++ library. The Module can be
in only one state at a time. State transitions are driven by various software events or
actions.

Crypto Officer operations are outside the scope of this state model.

B.1. Diagram

Not Loaded

LoadedLoad Failure

Initialized Self-Test
Error

1 2

3

5

7 8 9

Self-Test
Error

Exception
Handling

Operation
Error

Exception
Handling

6

12 13

10

11

Uncaught
Exception

Application
Exit 15

4

14

8/8/2007

17

B.2. Descriptions

B.2.1. Not Loaded
The Module is in the Not Loaded state when it has not been loaded into memory. The Not
Loaded state corresponds to the Power-Off state defined in FIPS 140-2.

B.2.2. Loaded
The Loaded state corresponds to the Power-On state defined in FIPS 140-2.

In the Loaded state, the Module is running but the power-on self-test has not yet run. The
Module immediately runs the power-on self-test and automatically transitions to the next
state. If the self-test runs successfully, the Module transitions to the Initialized state. On
self-test failure, the Module transitions to the Self-Test Error state.

B.2.3. Load Failure
The Module enters the Load Failure state for any load failure such as file not found,
incorrect parameter passed or other error.

B.2.4. Self-Test Error
The Module enters the Self-Test Error state if any self-test fails, setting a global self-test
error flag. This flag lets the application detect the Self-Test Error state and handle the
error, performing (for instance) a graceful program termination if that is the appropriate
action.

If the application does not check the flag and tries to perform a cryptographic operation,
an exception is thrown and the Module enters the Self-Test Exception Handling state.

B.2.5. Initialized
The Module enters the Initialized state after all self-tests pass. In this state, the Module is
idle, waiting for an operation from the calling application. Successful operations return
the Module to this state.

B.2.6. Operation Error Exception Handling
The Module enters the Operation Error Exception Handling state by throwing a C++
exception after any security operation fails. In this state the calling application may
attempt to catch the exception. If the exception is caught, then the Module transitions
back to the Initialized state. Otherwise the Module transitions to the Uncaught Exception
state.

B.2.7. Self-Test Error Exception Handling
The Module enters the Self-Test Error Exception Handling state by throwing a C++
exception when the calling application attempts to perform a security operation while the

8/8/2007

18

Module is in the Self-Test Error state. In this state, the calling application may attempt to
catch the exception. If the exception is caught, the Module transitions back to the Self-
Test Error state. Otherwise the Module transitions to the Uncaught Exception state.

B.2.8. Uncaught Exception
The Module enters the Uncaught Exception state when the calling application fails to
catch the C++ exception thrown by the Module when it entered the Operation Error
Exception Handling state or the Self-Test Error Exception Handling state. In this state,
the Module throws the exception up the stack until it is caught and handled by a higher
layer in the stack or it is not caught and the program exits.

B.2.9. Application Exit
The Module enters the Application Exit state when the user exits the application normally
from the Initialized state. Abnormal conditions causing transitions to this state are
uncaught exceptions, and self-test errors.

B.3. Transition Conditions and Events
This section describes the conditions or events that cause transitions (numbered) in the
State Diagram.

1. Load fails due to file not found error, incorrect parameter, or other error.
2. Load succeeds.
3. Self-test succeeds. This transition occurs when all self-tests pass.
4. Self-test fails. This transition occurs when any self-test fails.
5. User operation succeeds.
6. User exits application.
7. User operation failure due to invalid key, algorithm parameters, or other error.

Exception thrown.
8. User operation exception caught.
9. Self-test error exception caught.
10. Operation attempted while in Self-Test error state. Exception thrown.
11. Self-test error flag detected. Program terminates.
12. User operation exception not caught.
13. Self-test error exception not caught.
14. Automatic Transition. Program terminates.
15. Automatic Transition. Program unloaded from memory.

8/8/2007

19

Current State Input Output Next State
1 Not Loaded Load Failure Load Failure Error Message Load Failure
2 Not Loaded Load Success Load Success Message Loaded
3 Loaded Run self-test automatically. Self-Test Success Initialized
4 Loaded Run self-test automatically. Self-Test Failure Self-Test Error
5 Initialized Cryptographic operation Operation success Initialized
6 Initialized User exits program Operation success Application Exit
7 Initialized Cryptographic operation Operation failure Exception Handling
8 Operation Error

ExceptionHandling
Catch exception Exception caught Initialized

9 Self-Test Error Exception
Handling

Catch exception Exception caught Self-Test Error

10 Self-Test Error Attempt Cryptographic
operation

Throw Exception Self-Test Exception
Handling

11 Self-Test Error Check Self-Test Error Flag Error flag detected Application Exit
12 Operation Error

ExceptionHandling
Not catch exception Exception not caught Uncaught Exception

13 Self-Test Error Exception
Handling

Not catch exception Exception not caught Uncaught Exception

14 Uncaught Exception Automatic transition No output Application Exit
15 Application Exit Automatic transition Application and crypto

Module unloaded from
memory

Not Loaded

	Introduction
	Purpose
	Documents
	Crypto++ Library
	Changes Between Version 5.2.3 and Version 5.3.0

	Module Specification
	Module
	Boundary
	Hardware Platform
	Module Block Diagram
	Software Environment
	Approved Mode of Operation

	Module Ports and Interfaces
	Roles, Services, and Authentication
	Roles
	Services
	Service

	Authentication

	Finite State Model
	Physical Security
	Operational Environment
	Operating System Requirements
	Module Integrity
	Other Assumptions

	Cryptographic Key Management
	Key Generation
	Key Establishment
	Key Entry and Output
	Key Storage
	Key Destruction

	Self-Tests
	Power-up Self-tests
	Cryptographic Algorithm Test
	Software Integrity Check
	Pair-wise Consistency Test
	On-Demand Self-test

	Conditional Tests
	Pair-wise Consistency Test
	Continuous Random Number Generator Test

	Design Assurance
	Configuration Management
	Source Code Management System
	Versioning

	Delivery and Operation
	Guidance Documents

	Mitigation of Other Attacks
	References
	Master Components List
	Hardware Components
	Software Components

	Finite State Model
	Diagram
	Descriptions
	Not Loaded
	Loaded
	Load Failure
	Self-Test Error
	Initialized
	Operation Error Exception Handling
	Self-Test Error Exception Handling
	Uncaught Exception
	Application Exit

	Transition Conditions and Events

