
 
 

 
 
 
 
 

Reflex Magnetics Cryptographic 
Library v.1.0  
Security Policy 

 
 

 
FIPS 140-2 

Level 1 

 
 

Version 1.44 

15th May 2007 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 2 

 

©2006-2007 Check Point Software Technologies Ltd. All rights reserved. 
 

 
This document is provided for informational purposes about the structure of the Reflex Magnetics Cryptographic 

Library as it pertains to FIPS 140-2 validation. 
 
 

Any reproduction of this document must include the Copyright notice of Check Point Software Technologies 

Ltd. 
 

Contact: 
 

Check Point Software Technologies Ltd. 
31-33 Priory Park Road 

London NW6 7HP 

United Kingdom 

 
Tel: +44 (0)20 7372 6666 

Fax: +44 (0)20 7372 2507  
 
 

 

Website: http://www.checkpoint.com 
 
 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 3 

 

Document control  
 

 

Document Title 

 

 

Reflex Magnetics Cryptographic Library v1.0  Security Policy 

Version Date Description 

 

0.A 

 

2nd December 2005 

 

First draft for BT review 

 

0.B 

 

21st February 2006 

 

Various revisions after BT meeting 

 

0.C 21st March 2006 

Various revisions after BT review, specifically to 

review Authentication, add Security Rules, more 

Key attributes and new AES driver APIs. 

 

0.D 

 

13th May 2006 

 

Complete SP revision before submission to BT 

 

0.E 

 

20th May 2006 

 

AES driver API added 

 

1.0 

 

30th May 2006 

 

Final updates 

 

1.1 

 

27th July 2006 

 

Modified in accordance to BT evaluation notes 

 

1.11 

 

31st July 2006 

 

Updated version number 

 

1.2 

 

10th August 2006 

 

Updated according to PR 1-6 

1.3 21st August 2006 Updated according to PR3.1, PR5.1, PR6.1 

1.31 
30th August 2006 

Updated according to PR2.1, PR7.0, PR3.2, 

PR6.2, PR8.0 

1.32 6th September 2006 Updated according to PR9, PR11 

1.33 13th September 2006 Updated according to PR11.1 

1.34 14th September 2006 Updated according to PR10.2, PR12.0 

1.38 3rd November 2006 Updated according to PR16, PR17, PR18 

1.39 7th November 2006 Updated according to PR18-PR20 

1.40 10th November 2006 Updated according to PR19.1-PR20.1 

1.41 16th November 2006 Updated according to PR21 

1.42 22nd November 2006 Updated according to PR22 

1.43 14th May 2007 Updated according to PR23 

1.44 15th May 2007 Updated according to PR23.1, logo change 

 

This document may be reproduced or distributed in any form without prior permission 

provided the copyright notice is retained on all copies. 
 

Copyright © 2006-2007 Check Point Software Technologies Ltd.. 
 

All trademarks are acknowledged. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 4 

 

Table of Contents 
 

Document control 3 

Table of Contents 4 

1. Introduction 6 

1.1. Product and FIPS Validation Identification 6 

1.2. Purpose 6 

1.3. References 7 

2. Reflex Magnetics Cryptographic Library v1.0 8 

2.1. Overview 8 

2.2. Cryptographic Module 8 

2.3. Master component list 9 

2.3.1. Hardware Components 9 

2.3.2. Software components 9 

2.4. Module Ports and Interfaces 11 

2.5. Cryptographic Algorithms and Support Functions 11 

2.6. Roles, Services and Authentication 12 

2.7. Physical Security 12 

2.8. Operational Environment 13 

2.8.1. Multiple Concurrent Operator Roles and Services 13 

2.9. Cryptographic Key Management 13 

2.9.1. Key Material 14 

2.9.2. Key Generation 14 

2.9.3. Key Entry and Output 14 

2.9.4. Key Storage 15 

2.9.5. Self Tests 15 

2.9.6. RCL Driver power-up self-tests 15 

2.9.7. RCL DLL power-up tests 16 

2.9.8. Conditional Self Tests 16 

2.10. Design Assurance 17 

2.10.1. Internal versioning of the source code and documentation files. 17 

2.10.2. Versioning used for FIPS validation purposes 17 

2.10.3. Versioning used for library binaries 17 

2.10.4. Configuration list 18 

2.11. Security Rules 18 

2.12. Mitigation of Other Attacks 18 

3. Finite State Machine 20 

3.1. RCL Driver states 20 

3.2. RCL DLL states 21 

3.3. Interaction between RCL DLL and RCL Driver 23 

4. Library API definition 25 

4.1. RCL DLL API description 25 

4.1.1. Cryptographic  Module Self test and status 25 

4.1.2. AES encryption and decryption 25 

4.1.3. AES key wrap 26 

4.1.4. RSA operations 27 

4.1.5. SHA operations 30 

4.1.6. Pseudorandom number generation 31 

4.2. RCL Driver IOCTL API description (user mode) 32 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 5 

 

4.3. RCL Driver kernel mode API description 33 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 6 

 

1. Introduction 

1.1. Product and FIPS Validation Identification 
 

SP Title: Reflex Magnetics Cryptographic Library v1.0 Security Policy 
 

SP Version: Version 1.43 
 

Product Name: Reflex Magnetics Cryptographic Library (RCL) 

 

Product Version: 1.0 
 

FIPS Validation Identification: FIPS 140-2 
Validation Level: 1 

1.2. Purpose 
This is a non-proprietary Cryptographic Module Security Policy for the Reflex Magnetics 

Cryptographic Library v1.0. This Security Policy describes how the Reflex Magnetics 

Cryptographic Library v1.0 meets the Level 1 security requirements of FIPS 140-2. The 

product will be validated on Windows XP Professional SP2; it is also capable of running on 

Microsoft Windows 2000 (and 2003).  

 

This policy was prepared as part of FIPS 140-2 validation of the Reflex Magnetics 

Cryptographic Library v1.0. FIPS 140-2 (Federal Information Processing Standards 

Publication 140-2 – Security Requirements for Cryptographic Modules) details the U.S. 

Government requirements for cryptographic modules. More information about the FIPS 140-

2 standard and validation program is available on the NIST website at 

http://csrc.nist.gov/cryptval/ . 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 7 

 

 

1.3. References 
This document deals only with operations and capabilities of the Reflex Magnetics 

Cryptographic Library v1.0 in the technical terms of a FIPS 140-2 cryptographic module 

security policy.  
 

 
Acronym  

 

 
Definition 

AES Advanced Encryption Standard 

API Application Programming Interface 

CBC Cipher-Block Chaining 

CSP Critical security parameter  

DLL Dynamic Link Library 

FIPS Federal Information Processing Standards 

NIST National Institute of Standards and Technology 

OS Operating System 

RCL Reflex Magnetics Cryptographic Library v1.0 

RCL DLL DLL component of Reflex Magnetics Cryptographic Library 

v1.0 

RCL Driver NT Kernel Driver component of Reflex Magnetics 

Cryptographic Library v1.0 

RNG Random Number Generator 

RSA An algorithm for public-key encryption  

(that takes its initial letters from its ‘inventors’) 

SHA-1 Secure Hash Algorithm 1 

SP Security Policy 

SYS System file (i.e. a kernel mode driver) 

TCB Trusted Control Base 

USB Universal Serial Bus 
Table 1-1: Acronyms used within this Security Policy document 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 8 

 

2. Reflex Magnetics Cryptographic Library v1.0 

2.1. Overview 
The Reflex Magnetics Cryptographic Library v1.0 provides cryptographic support for the 

Check Point Software Technologies Ltd. software products. The Cryptographic Library is used 

to perform various cryptographic services including encryption/decryption with symmetric 

and asymmetric algorithms and pseudo random number generation.  

 

The cryptographic keys which are used in these operations are provided by the client 

applications or generated using the contained pseudo-random number generator. The Reflex 

Magnetics Cryptographic Library does not have the key storage or key management ability, 

this functionality is to be provided by the client application.  

 

For the purposes of FIPS 140-2 validation, Reflex Magnetics Cryptographic Library v.1.0 is 

provided as two binary files: 

 

• dynamic link library rxcrf100.dll (RCL DLL) 

• driver rxaes100.sys (RCL driver) 

 

to be installed and used on a computer running Microsoft Windows operating systems.  

2.2. Cryptographic Module 
The Reflex Magnetics Cryptographic Library v1.0 is classified as a multi-chip standalone 

module for FIPS 140-2 purposes. The cryptographic module is capable of running on any 

commercially available IBM compatible PC running the following list of Operating Systems 

(OS): 

 

• Microsoft Windows XP SP2 

• Microsoft Windows 2000 SP4 

• Microsoft Windows 2003 

 

The module was tested for FIPS 140-2 compliance on a generic PC running Windows XP 

Professional Service Pack 2 configured in the single user mode. 

 

No special configuration is required to operate the module in a FIPS 140-2 mode. The 

module performs only approved cryptographic algorithms and security functions. Therefore 

the module is in the approved mode of operation at all times.  



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 9 

 

 

2.3. Master component list 

2.3.1. Hardware Components 

The following components are to be considered hardware components of the module: 

• PC case 

• CPU 

• RAM 

• ROM 

• CMOS 

• Hard Drives 

• I/O ports 

 
 

RCL executable code is loaded into the Random Access memory (RAM) and executed by a 

Central Processing Unit (CPU). All parameters to the module API must be loaded into RAM 

by a calling process, and data output and status information will also be stored in RAM.  

 

2.3.2. Software components 

The following software components comprise Reflex Magnetics Cryptographic Library v. 1.0: 

• RCL DLL (rxcrf100.dll) is a DLL library containing all cryptographic algorithms 

implementation except AES. For AES encryption the library calls API exposed by 

rxaes100.sys.  

• RCL Driver (rxaes100.sys) is executed as a kernel mode driver and encapsulates 

AES algorithm implementation, accessible by other kernel mode drivers or user mode 

applications. 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 10 

 

 

 

For detailed information about the module API see Library API definition. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 11 

 

 

2.4.  Module Ports and Interfaces 
The Reflex Magnetics Cryptographic Library v1.0 is classified as a multi-chip standalone 

module for FIPS 140-2 purposes. As such, the module’s logical cryptographic boundary 

includes the library (rxcrf100.dll) and driver (rxaes100.sys) binaries.  

 

The physical boundary is a PC running an operating system and the physical ports of the 

module include keyboard port, mouse port, serial ports, parallel ports, monitor ports, 

network port, USB ports and power plug. 
 

The Reflex Magnetics Cryptographic Library v1.0 provides a logical interface via an 

Application Programming Interface (API). The API provided by the module is mapped to the 

FIPS 140-2 logical interfaces: data input, data output, control input, and status output. All of 

these physical interfaces are separated into the logical interfaces from FIPS as described in 

the following table: 
   

FIPS 140-2 

Logical 

Interface 

Physical port 

Module logical interface 

Data Input 

Interface 

Keyboard port, 

network port, 

mouse port, 

USB port 

Parameters passed to the module via API calls 

Data Output 

Interface 

Monitor port, 

network port 

Data returned by the module via the API 

Control Input 

Interface 

n/a API function calls 

 

Status Output 

Interface 

Monitor port, 

network port 

Information returned via API return codes. Return 

code equal to zero indicates a failure. 

Power Interface n/a Does not provide a separate power or maintenance 

access interface beyond the power interface 

provided by the computer Itself 
Table 2-1. FIPS 140-2 logical interfaces 

 

The module performs no communications with the physical ports directly, creates no files 

and does not establish any network connections. All communications between the module 

and the physical ports of the PC are performed by Microsoft Windows operating system and 

a process using the module services. 

 

Detailed description of the APIs used is provided in 4. 

 

2.5. Cryptographic Algorithms and Support Functions 
The following is a list of algorithms used by the module.  
 

 

Algorithm \ Support function 
 

 
Implementation details 

AES in CBC mode (128, 192 & 

256 bit keys) 

FIPS 197 

RSA signature  

 

FIPS 186-2, RSASSA_PKCS1_V1_5 with 1024-

4096 bit keys  

RSA key wrapping PKCS #1 (RSAES-OAEP or RSAES-PKCS-1_5) 

used for key wrapping of symmetric keys, as 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 12 

 

allowed by FIPS 140-2 Annex D. with 1024-

4096 bit keys. 

Key wrapping of AES keys (RFC 

3394) 

FIPS 197 algorithm is used according to 

http://csrc.nist.gov/encryption/kms/key-

wrap.pdf . Wrapped key must be 128, 192 or 

256 bits and therefore is only useful when used 

as part of AES key establishment technique. The 

key establishment technique is not a part of the 

RCL DLL. 

SHA-1, SHA-256, SHA-384, SHA-

512 

FIPS 180-1 

Pseudo-random number 

generation 

ANSI X9.31 Appendix A  

HMAC-SHA1 (used in module 

integrity verification only, not 

available to library users) 

FIPS 198 (with Block size 64 bytes and key 

length 64 bytes or shorter) 

RSA key generation Using ANSI X9.31 Appendix A PRNG (see 2.9.2 

for details) 
Table 2-2. Supported algorithms 

 

Encryption/decryption keys and random number generator internal state are stored in the 

library’s internal data structures, which are not exposed to external access and protected by 

operating system protection mechanisms. When a key or random number generator context 

is set for deletion, the key/generator state is zeroized by overwriting it with 0 bytes to 

ensure it cannot be recovered.  

2.6. Roles, Services and Authentication 
The Reflex Magnetics Cryptographic Library v1.0 provides a number of APIs to access its 

cryptographic services from applications running in both user mode and kernel mode of the 

Windows operating system. Detailed information about the API is present in 4 below. 

 

The library inherits authentication from the Microsoft Windows operating system upon which 

it runs. Microsoft Windows requires authentication from a trusted control base (TCB) before 

a user is able to access system services. Every user that has been authenticated by 

Microsoft Windows is assigned one of the following two roles supported by the library. 

 

User is any entity that can start a process in the operating system and access services of 

the Reflex Magnetics Cryptographic Library. The User role is implicitly selected when a 

process calls any API function in the Reflex Magnetics Cryptographic Library. The User has 

access to all services of Reflex Magnetics Cryptographic Library.  

 

Crypto Officer is any entity that can install the RCL onto the computer system, configure 

the operating system, or access services provided by the RCL. All security services of the 

RCL are available to Crypto Officer. The Crypto Officer has no special access to any keys or 

data. The Crypto Officer role is implicitly selected when installing the Module or configuring 

the operating system. 

 

RCL does not support a Maintenance role. 

 

There are no audit events nor audit data produced directly by the RCL. 

2.7. Physical Security 
The Reflex Magnetics Cryptographic Library v1.0 is a software module intended for use with 

Microsoft Windows XP, Microsoft Windows 2000 or Microsoft Windows 2003 in single user 

modes on a PC. Since the module is implemented solely in software, the physical security 

section of FIPS 140-2 is not applicable. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 13 

 

2.8. Operational Environment 
The Reflex Magnetics Cryptographic Library is implemented as a loadable module compiled 

into a Windows DLL binary for the implementation of cryptographic primitives, and a 

Windows SYS binary for AES implementation. 
 

The Reflex Magnetics Cryptographic Library v1.0 is comprised of two binary files. A software 

integrity check is run when the binary files are loaded to help ensure that the code has not 

been accidentally or ineptly modified from its validated configuration. 

2.8.1. Multiple Concurrent Operator Roles and Services 

The RCL doesn't allow concurrent operators. 

   

For Security Level 1, the operating system has been restricted to a single operator mode of 

operation, so concurrent operators are explicitly excluded (FIPS 140-2 Sec. 4.6.1).  

 

According to FIPS 140-2 Implementation guidance, when a crypto module is implemented in 

a server environment, the server application is the user of the cryptographic module. The 

server application makes the calls to the cryptographic module. Therefore, the server 

application is the single user of the cryptographic module, even when the server application 

is serving multiple clients. 

 

If multiple processes that use RCL services are started by an operator, every process will 

work with separate independent copy of the RCL DLL which does not communicate to any 

other copy in any way. RCL Driver contains a mutex that ensures that services of the RCL 

Driver are available to only one process at a time. 

 

2.9. Cryptographic Key Management 
The following cryptographic keys are used by Reflex Magnetics Cryptographic Library: 

 

- AES (128, 192 and 256 bits), and created with c_AESCreate API 

- RSA (1024 to 4096 bits) are generated with c_RSAGenerate API or imported using 

c_RSALoad API (both AES-encrypted and plaintext keys are allowed) 

 

The following pseudorandom number generators are available via library interfaces: 

 

- ANSI X9.31-1998 (can be initialized by seed manually, or seed can be generated 

automatically from NT performance data), created with c_RandomCreate method. 

 

Default pseudorandom number generator uses ANSI X9.31-1998 random number generator 

with AES-256.  

 

Seed key and seed are generated by taking first 384 bits of XOR operation on 

pseudorandom 512 bit string returned by CryptGenRandom API provided by the Windows 

operating system’s CryptoAPI library, SHA-512 hash value of various NT performance data 

and optional user-supplied data: 

 

1. NTPERF=collected NT performance data, such as system time, number of running 

processes, process times, memory usage of every process etc. 

2. R=SHA512(NTPERF) XOR CryptGenRandom(64 bytes) XOR OptionalUserData 

3. SEEDKEY= bits 0..255 of R 
4. SEED= bits 256..383 of R 
5. First 128 bits of the SEEDKEY are compared to the first 128 bit of SEED. Random 

number generator fails to initialise if these two values are equal with an appropriate 

status code returned to the calling application. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 14 

 

 

Default library key generator is reseeded automatically every 30 minutes. 

 

SEEDKEY of the Approved RNG is 256 bits and the keys generated by the RCL have from 80 

bits (for RSA-1024) to 256 bits (for AES-256) of security (according to NIST Special 

Publication (SP) 800-57 Part 1, Tables 2-3 in Section 5.6.1 on page 63.).  

 

As key generation uses the approved PRNG, SEEDKEY is of sufficient length, all bits of 

SEEDKEY contain the randomness from the output from Microsoft CryptoAPI random number 

generator, compromising the security of the key generation method (e.g., guessing the seed 

value to initialize the RNG) requires at least as many operations as determining the value of 

the generated key. 

 

Crypto Officers and library users do not have any direct control over the seed and seed key 

values chosen in this process.  

2.9.1. Key Material 

Crypto library uses keys provided by the caller for the following algorithms: AES-128, AES-

192, AES-256 and RSA 1024-4096 bits. 

2.9.2. Key Generation 

The Library generates keys per FIPS requirements, using the Module’s Approved RNG 

(specified in ANSI X9.31–1998, Appendix A) with AES-256 key in CBC mode, in the following 

manner: 
• RSA keys are generated using Module’s Approved RNG (ANSI X9.31–1998, 

Appendix A) using c_RSAGenerate API. Key generation procedures described in 

4.1.2 of the ANSI X9.31 are not followed.  
• AES keys are generated by generate a random string of bytes using either 

c_RandomGet API and passing the generated string to c_AESCreate. Alternatively 

this can be achieved in one call by specifying a NULL key value to c_AESCreate API. 

 

2.9.3. Key Entry and Output 

AES keys can be imported into the Library DLL via c_AESCreate in plain text format by 

calling application providing a RAM address where an octet string of 128, 192 or 256 bits 

long representing an AES key is stored. As keys are not directly imported to the RCL by 

means of typing, error detection codes and duplicate key entry tests are not performed. 

 

When imported, AES key can only be exported from the library if encrypted with an RSA key 

for key transport purposes (c_RSAEncryptKey API). 

 

RSA keys are generated using ANSI X9.31-1998 Appendix A pseudorandom number 

generator via c_RSAGenerate API.  

 

The RSA keys can be exported from the library using c_RSASave interface method with or 

without private key.  When an RSA key is exported with a private key, the export operation 

succeeds only if an AES-128/192/256 key is specified to encrypt the key. 

 

Previously exported keys can be then imported using c_RSALoad method.  

 

Each instance of the RCL DLL is owned by a single operator (the module owner) and all 

secret and private keys are thus associated with the module owner. Each key is assigned a 

unique ID which is returned from c_RSACreate / c_SHACreate / c_AESCreate / 

c_RSADecryptKey API call and is used by other API to uniquely identify a certain instance 

of the key.  



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 15 

 

2.9.4. Key Storage 

RCL keeps all keys in RAM only and does not store them into persistent storage.  

 

While inside the cryptographic module, the keys are protected from unauthorised disclosure, 

modification and substitution using memory protection mechanism of the Microsoft Windows 

XP operating system.  

 

All key copies inside the RCR DLL are destroyed when c_AESDestroy/c_RSADestroy API is 

called. Internal copies of the keys are overwritten with zero bytes at this time.  

 

To prevent a key data leak if a client application fails to destroy the key context with 

c_AESDestroy/c_RSADestroy, the module will automatically zeroize all keys when the 

DLL is unloaded. 

 

HMAC keys used for module integrity check are zeroized when RCL DLL is unloaded from 

memory. RCL DLL is unloaded from memory if module power up self-tests fail or a process 

using the RCL DLL services terminates. 

 

RCL Driver which contains RCL AES implementation does not provide any key storage facility 

between calls. All operations with the AES keys are executed in one call, with an AES key 

and data to be encrypted/decrypted sent to the Driver, with Driver responding with 

encrypted/decrypted data appropriately. The AES key is never stored in the Driver between 

the calls; RCL DLL is responsible for key storage in RAM until it is destroyed by the user.  

 

It is the user’s responsibility to maintain the security of AES and RSA keys when the keys 

are outside of the crypto module. 

 

2.9.5. Self Tests 

The Reflex Magnetics Cryptographic Library v1.0 performs several power-up self-tests 

during initialisation.  

 

The following functions are critical to the secure operation of the library: 

- AES encryption in CBC mode 

- SHA-1, SHA-256, SHA-384 and SHA-512  

- Generation and validation of RSA signatures 

- Generation of pseudo-random numbers using an Approved PRNG 

- HMAC-SHA1, used internally for module integrity verification 

 

The library performs a self-integrity check to verify the module has not been damaged or 

tampered with. Both RCL Driver and RCL DLL perform their integrity and known answer 

tests. Should any of the components of the library fail test the module will enter error state 

as explained in 3.3. 

 

2.9.6. RCL Driver power-up self-tests 

When the driver is loaded, a number of self-tests are performed. If any of the tests fail, the 

driver switches to “Driver self-test failed” state and returns with an error code 

ACCESS_DENIED in reply to all further requests for its cryptographic services. 

2.9.6.1. Integrity Check  

The code section of the RCL driver contains a 160 bits value of HMAC-SHA1 checksum. The 

key used for HMAC-SHA1 operation is stored in the module itself.  

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 16 

 

During the software integrity self-test, the module first executes HMAC-SHA1 KAT test, then 

calculates HMAC-SHA1 value over the SYS image, excluding the checksum value, and 

compares result to the value stored in the SYS file.  

2.9.6.2. Cryptographic Algorithm Test  

The module performs HMAC-SHA1, AES-128, AES-192 and AES-256 CBC encrypt/decrypt 

Known Answer Tests.  

2.9.7. RCL DLL power-up tests 

When the module is loaded into a process, it switches to “Power Up” state (see 3.2).  

 

At this time the tests described in the following sections are performed. If any of the tests 

fail, module switches to “Self-test failed” state and all further requests to the module will fail 

with an appropriate error code returned. 

 

To verify if power-up tests have been successful, a user can verify the module status output 

interface by executing c_GetStatus API and checking whether returned value equals 

CR_STATUS_READY. 

2.9.7.1. Integrity Check  

The code section of the Rxcrf100.dll driver contains a 160 bits value of HMAC-SHA1 

checksum. The key used for HMAC-SHA1 operation is stored in the module itself. During the 

software integrity self-test, the module the module first executes HMAC-SHA1 KAT test, 

calculates HMAC-SHA1 value over the DLL image, excluding the checksum value, and 

verified to match the value stored in the DLL file.  

 

Please note that HMAC-SHA1 implementation is only used for module integrity verification 

purposes and is not available as service of the RCL library through the library APIs. 

2.9.7.2. Cryptographic Algorithm Test  

The module performs the following Known Answer Tests: 

 

• HMAC-SHA1 (for module integrity verification only) 

• AES-128, AES-192, AES-256 CBC encrypt/decrypt Known Answer Test  

• AES-Wrap encrypt/decrypt KAT (for 128,192 and 256 bit keys) 

• SHA-1, SHA-256, SHA-384, SHA-512 KAT test 

• RSA-1024, RSA-1536, RSA-2048, RSA-3072, RSA-4096 signature verification KAT 

test 

• RSA-1024 key generation  

 

For each algorithm, the tests operate on known values, comparing plaintext, ciphertext, and 

intermediate data to determine whether the algorithms perform in the Approved manner.  

 

A known answer test for the RNG sets all input parameters to specified values and checks 

for a specific output value.  

2.9.8. Conditional Self Tests  

In addition to the initialization self-tests described above, the RCL DLL performs on-going 

tests during execution as described below. If any of these conditional tests fails, the 

corresponding module API returns an appropriate error code.  

2.9.8.1. Pair-wise Consistency Test 

Pairwise consistency test is performed upon each invocation of RSA key generation or when 

a RSA private key is loaded into the library with c_RSALoad API. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 17 

 

 

During the test the Module signs a sample message using the private key and verifies the 

signature using the corresponding public key. Then Module encrypts a message with the 

public key, verifies that the ciphertext differs from the plaintext, decrypts the ciphertext with 

the private key, and verifies that the decrypted value equals the original message.  

2.9.8.2. Continuous Random Number Generator Test  

The Module implements a continuous RNG test (as specified in FIPS 140-2, section 4.9.2) 

that runs each time the Approved RNG is called.  

 

During the test, the previously generated random number is stored as a variable in memory 

(not on persistent media). The variable is protected by standard operating system protection 

mechanisms. As the Module’s RNG consistently generates fewer than 16 bits (typically as 

low as 8 bits), the test runs as follows:  

 

1. It stores the first 128 bits for comparison against the next 128 generated bits.  

2. It compares each subsequently generated 128 bits against the previously generated 128 

bits.  

3. It fails if two compared 128-bit sequences are equal.  

2.10. Design Assurance 
The Reflex Magnetics Cryptographic Library is designed, developed, and deployed in a 

manner that protects its integrity throughout the process. Check Point Software 

Technologies Ltd. uses a secure configuration management system, Microsoft Visual 

SourceSafe 6.0, to ensure the integrity of the Library throughout its development. The 

system stores distinct versions of the Library source code and documentation. 

2.10.1. Internal versioning of the source code and documentation files. 

When a source code or a documentation file is added to Visual SourceSafe, it is 

automatically assigned a unique version number. This version number can be used by 

developers of the module to identify different versions of the source file or to rollback to a 

specific version if necessary. 

2.10.2. Versioning used for FIPS validation purposes 

A FIPS testing laboratory is provided with a number of ZIP files containing the two Library 

binaries, the test application, source code and other supporting documents serving 

validation needs.  

 

The file name of each submitted zip file contains the date, which is used as version 

identifier. All contained files are considered to be of that version.  

 

Testers can use the date/time stamp attribute of individual files inside the zip file to 

determine whether an individual file has been modified.  

 

Documentation files also have a date and revision number on the title page. 

2.10.3. Versioning used for library binaries  

Each public release of the library binary files has a unique version number to allow Library 

users and Crypto Officers to distinguish between different versions of the library. This 

version number is included in the filenames of the library binaries (for version 1.0 the 

filenames will be rxcrf100.dll, rxaes100.sys. 

 

In addition to the public version in the filename, the library binaries have VERSION 

resources, which contain a unique build number of the binary in format 1.0.0.ymmdd. For 

example, 1.0.0.60901 means that the library was compiled on 1st of September 2006. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 18 

 

2.10.4. Configuration list 

Configuration list is provided in a separate document. 

2.11. Security Rules 
The RCL adheres to the following security rules: 

 

• The RCL shall only provide NIST-approved cryptographic algorithms. 

• The RCL shall support two roles: the Cryptographic Officer and the User role. 

• The RCL shall rely on the operating system to provide user authentication and role 

assignment 

• All services implemented within RCL shall be available to both the User and Crypto-

officer roles. 

• The RCL shall not require human intervention to perform power-on self-tests. 

• The RCL shall not support a bypass capability. 

• The RCL shall not support a maintenance role or maintenance interface. 

• The RCL shall inhibit all data output during self-tests, zeroisation and error states. 

• The RCL shall use only Approved algorithms for key generation 

• The RCL shall keep all keys and data in memory, without saving them to a persistent 

storage 

• The RCL shall seed its pseudorandom number generation via invoking a noise 

generator specific to the Windows platform. Pseudorandom number generator shall 

be seeded with noise derived from the execution environment such that the noise is 

not predictable. 

• The RCL pseudorandom number generator shall be periodically reseeded with 

unpredictable noise.  

• The RCL shall perform a continuous random number generator test upon each 

invocation of the pseudorandom number generator 

• The RCL shall automatically destroy and wipe from memory all copies of keys, 

pseudo-random generator states and data when no longer needed, or when entering 

“Power Down” state. 

2.12. Mitigation of Other Attacks 
The Reflex Magnetics Cryptographic Library v1.0 does not provide security mechanisms to 

defend against attacks beyond those required by FIPS 140-2 level 1 for monitoring the 

integrity of the Module.  



 
 
 
 
 

Reflex Magnetics Cryptographic 
Library v.1.0 Security Policy 

 
Appendices A, B 

 

 
 

 

 
FIPS 140-2 

Level 1 

 
 

Version 1.44 

15th May 2007 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 20 

 

3. Finite State Machine 
As the cryptographic library is comprised of two separate binary files each exposing a 

separate set of APIs, finite state machines are provided for RCL DLL and RCL driver 

separately.  

 

 

Transitions between states can be automatic or result from user intervention. 

3.1. RCL Driver states 
State Description 

Driver Power Up The Driver Power Up state is entered when operating 

system loader calls the RXAES100.SYS driver entry point 

function DriverEntry() during system boot. 

Driver Power Down The Driver Power Down state is entered when OS kernel 

calls the RXAES100.SYS driver's unload function which was 

set in the DriverUnload field of the DriverObject 

representing RXAES100.SYS during the Power Up state. 

Driver Self-test failure This state is entered any of the driver self-tests (see 2.9.6) 

fail. 

Driver Initialized This state is entered if all driver self-tests succeed. 

Driver Operation Error This state is entered when an error occurs while performing 

a cryptographic operation or loading a key. After reporting 

the error to the calling application via an appropriate error 

code, the driver returns to Initialized state. 

Table 3-1: RCL Driver States 

 

 
 

 Current State Input Output Next State 

1 Driver Power Up Module integrity test fail Self-test failure Driver Self-test 

failure 

1 Driver Power Up Cryptographic tests fail Self-test failure Driver Self-test 

failure 

2 Driver Power Up All self-tests succeeded No output Driver Initialized 

3 Driver Self-test Module unloaded by OS No output Driver Power Down 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 21 

 

failure kernel 

4 Driver Initialized Module unloaded by OS 

kernel 

No output Driver Power Down 

5 Driver Initialized Invalid parameters 

passed to the driver’s 

APIs or an internal error 

occurs. 

Operation 

specific error 

message 

Driver Operation 

Error 

6 Driver Operation 

Error 

Automatic transition No output Driver Initialized 

7 Driver Initialized RCL DLL uninitialised No output Driver Power Up 

8 Driver Initialized RCL DLL self test failed Self-test failure Driver Self-test 

failure 
Table 3-2: RCL Driver State transitions 

3.2. RCL DLL states 
As RCL DLL utilizes services of the RCL Driver, it states are affected by the state of RCL 

Driver state.  

State Description 

Power Up Entered when a client application loads the library DLL into memory.  

Loading Driver Entered when RCL DLL attempts to establish a connection to a RCL 

Driver 

Executing non-AES 

Self-tests 

Entered when RCL DLL executes power-up self-tests 

Executing AES self-

tests 

Entered when RCL DLL has successfully established connection to the 

driver  

Power Down Entered when a client application unloads the DLL from memory. 

Self-test failed Entered when a library power-up self tests fail. Any request to any 

library API with fail with an appropriate error code 

Initialized This state is entered if library has loaded successfully and all self-tests 

have been completed successfully.  

 

In this state, the Module is idle, waiting for an operation from the 

calling application. Successful operations return the Module to this 

state. 

Key Entry This state is entered when a cryptographic context is created with 

c_AESCreate/c_RSACreate/c_SHACreate API.  

Key Initialized This state is entered when a valid cryptographic key is loaded for 

RSA/AES algorithms, or entered automatically for SHA hash algorithm. 

Operation Error This state is entered when an error occurs while performing a 

cryptographic operation or loading a key.  

 

After reporting the error to the calling application via an appropriate 

error code, the module returns to Initialized state. 
Table 3-3: RCL DLL states 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 22 

 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 23 

 

 

 

 Current 

State 

Input Output Next State 

1 Power Up Automatic transition if an error 

occurs during library initialization 

No output Self-test failed 

2 Power Up Automatic transition if library has 

loaded into memory successfully 

No output Executing Self-

tests 

3 Executing 

non AES 

Self-tests 

Automatic transition if RCL DLL 

integrity test fails 

No output Self-tests failed 

3 Executing 

non AES 

Self-tests 

Automatic transition if any of the 

cryptographic tests fails 

No output Self-tests failed 

4 Executing 

non AES 

Self-tests 

Automatic transition if integrity and 

cryptographic tests succeeded 

No output Loading driver 

5 Loading 

Driver 

Automatic transition if a connection 

to a running instance of RCL Driver 

cannot be established or the Driver 

is in invalid state or of incorrect 

version 

No output Self-tests failed 

6 Loading 

Driver 

Automatic transition if RCL Driver is 

running and is in valid state 

No output Executing AES 

Self-tests 

7 Executing 

AES Self-

tests 

Automatic transition if all self tests, 

AES and non-AES succeeded 

No output Initialized 

8 

 

Self-tests 

failed 

DLL is unloaded by client application No output Power Down 

9 Initialized DLL is unloaded by client application No output Power Down 

10 

 

Initialized Automatic transition if driver DLL has 

failed  

Operation 

failed 

Self-tests failed 

10 Initialized c_SelfTest executed by user failed DLL 

initialization 

error 

Self-tests failed 

11 Initialized Algorithm context created with 

c_AESCreate/c_RSACreate/c_SHACr

eate API. 

No output Key entry 

12 Key entry Entered key is valid  Success Key initialized 

13 Key entry Entered key is of invalid length or 

format 

Error specific 

error message 

Initialized 

14 Key 

initialized 

algorithm context destroyed with 

c_AESDestroy/c_RSADestroy/c_SHA

Destroy  

Success Initialized 

15 Key 

initialized 

An error occurs while performing a 

cryptographic operation. 

Operation 

specific error 

message 

Operation Error  

16 Operation 

Error 

Automatic transition No output Key Initialized 

Table 3-4: RCL DLL State Transitions 

3.3. Interaction between RCL DLL and RCL Driver 
In order to provide AES encryption services to a User, RCL DLL translates all calls to RCL 

c_AES* functions to RCL Driver calls. 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 24 

 

RCL DLL establishes a connection to RCL Driver while being in “Loading Driver” state, which 

it automatically enters after being loaded by the library User. If an IOCTL connection to the 

driver cannot be established, driver not running, or in any other state except “Driver power 

up”, or another error occurs, transition to “Self-tests failed” state occurs and all subsequent 

calls to the library will fail. 

 

Because RCL DLL and RCL Driver comprise one cryptographic module, in order to inhibit 

data output from either part of the cryptographic module in error states, their error states 

are synchronised an initialisation of the module is performed as follows: 

 

1. RCL Driver is loaded on system startup and switches to "Driver Power Up" state. AES 

services of the driver are not available in this state. 

2. RCL Driver exposes a global event rxAESStatus to signal the state of the Driver to the 

RCL DLL. The RCL DLL checks the status of this event before any data output operation.  

4. RCL DLL performs part of the power up tests and instructs the driver to perform its part 

of the power-up self tests by calling IOCTL_RXAES_SELFTEST API.  

5. RCL DLL establishes a connection to the RCL driver (via driver API documented in 4.2)  

6. RCL DLL verifies the state of the driver by checking the driver state event, created by 

driver at step 2. If the event is set, RCL DLL switches to "Self-test failed" state and inhibits 

the data output. 

7. RCL DLL switches to “Initialized” state, as both DLL and Driver part have been 

successfully initialized and successfully completed power-up tests. 

8. When the RCL DLL unloads, its handle to the RCL Driver closes and the Driver switches 

from "Driver Initialized" back to "Driver Power Up" state. 

 

If an RCL DLL from any process enters the error state, the Driver is informed about this 

situation by IOCTL_RXAES_SELFTEST_FAILED API (see 4.2) and switched to "Driver self-test 

failure" state, signaling rxAESStatus event. The Driver will remain in this state until 

restarted. Correspondingly all further calls requesting services from the RCL DLL will also 

fail, and all instances of RCL DLL will switch to “Self-tests failed” state. 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 25 

 

4. Library API definition 
The RCL API can be divided into three separate sub-APIs for documentation purposes.  

 

The sub-APIs are (see 2.3.2 above for a diagram): 

- RCL DLL API (4.1), to be used by user mode applications. It forwards all AES calls to 

RCL Driver IOCTL API (4.2) 

- RCL Driver IOCTL API (4.2), to be used by the RCL DLL to access AES services of the 

RCL Driver and synchronise status between the Driver and RCL DLL 

- RCL Driver kernel mode API (4.3), to be used by kernel mode applications to access 

driver’s AES services. 

 

All three sub-APIs use the same implementation of AES algorithm in the RCL Driver. 

4.1. RCL DLL API description 
Most RCL DLL API return TRUE if operation has succeeded and FALSE otherwise, with 

GetLastError() Windows API returning a more detailed error code. 

 

A brief description of the API follows. More detailed definition of the interfaces is available in 

crypto.h header file. 

4.1.1. Cryptographic  Module Self test and status 

 
BOOL c_SelfTest ()   

This API can be called by client application to repeat library power-up self tests.  

 

As tests include testing of both non-AES algorithms and AES algorithms implemented in the 

RCL Driver, c_SelfTest API tests both DLL and Driver parts of the RCL. 

 
DWORD c_GetStatus ()   

This API can be called by client application to get status of the library.  

 

The returned states value is used to identify the library state: 

 

CR_STATUS_FAILURE RCL DLL failed to load or self tests failed. 

CR_STATUS_READY RCL DLL is ready 

4.1.2. AES encryption and decryption 

 
BOOL c_AESCreate ( IN const BYTE *pbKey, IN DWORD cbKey, 

IN const BYTE *pbIV, IN DWORD cbIV,  

OUT PCRD_AES *ppAES) 

Create an AES CBC context using the provided key and, optionally, initialization vector. 

cbKey value determines whether AES-128, AES-192 or AES-256 is used. 

 

Parameters 

pbKey AES key. If NULL, the library will generate a random key using a 

default PRNG 

cbKey length of an AES key. Only 128, 192 and 256 bits keys are permitted. 

pbIV/cbIV  initialization vector (16 bytes).  

ppAES pointer to a variable that will receive an AES context handle. This 

handle should be later released with c_AESDestroy call. 

 
BOOL c_AESDestroy ( IN PCRD_AES pAES) 

Destroy AES key context and zeroizes internally stored key and initialization vector. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 26 

 

 

Parameters 

pAES AES context handle to be destroyed.   

 
BOOL c_AESGetIV ( IN PCRD_AES pAES,  

OUT LPBYTE pbIV16bytes) 

Get current value of IV for an AES key in CBC mode. 

 

Parameters 

pAES AES context handle. 

pbIV16bytes A pointer to the buffer that receives 16 bytes initialisation vector. 

 

 
BOOL c_AESSetIV ( IN PCRD_AES pAES,  

 IN LPBYTE pbIV16bytes) 

Set value of IV for an AES key in CBC mode. 

 

Parameters 

pAES AES context handle.   

pbIV16bytes A pointer to the buffer with 16 bytes initialisation vector. 

 

 
BOOL c_AESEncrypt ( IN PCRD_AES pAES, 

IN BOOL bFinal,  

IN OUT LPBYTE pbData,  

IN OUT DWORD *pcbData,  

IN DWORD cbDataBufLen) 

Encrypt data with AES-CBC. 

 

Parameters 

pAES AES context handle.   

bFinal TRUE if this is the last block, FALSE otherwise. 

pbData Pointer to the data to be encrypted.  

pcbData Pointer to DWORD that on input contains a number of plain text bytes 

pointed by pbData, and on output a number of encrypted bytes. 

cbDataBufLen Size of the buffer pointed by pbData. 

 

 
BOOL c_AESDecrypt ( IN PCRD_AES pAES, 

 IN BOOL bFinal,  

 IN OUT LPBYTE pbData,  

 IN OUT DWORD *pcbData) 

Decrypt data with AES-CBC. 

 

Parameters 

pAES AES context handle.   

bFinal TRUE if this is the last block, FALSE otherwise. 

PbData Pointer to the data to be decrypted.  

pcbData Pointer to DWORD that on input contains a number of encrypted bytes 

pointed by pbData, and on output a number of plain text bytes. 

 

4.1.3. AES key wrap 
BOOL c_AESWrap ( IN const BYTE *pbKEK, 

IN DWORD cbKEK,  

IN const BYTE *pbKey,  

IN DWORD cbKey,  

OUT LPBYTE pbWrapped,  



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 27 

 

OUT DWORD *pcbWrapped, 

IN DWORD  cbWrappedBufSize) 

 

Wrap AES key with another AES key, as per http://csrc.nist.gov/encryption/kms/key-

wrap.pdf. 

 

Parameters 

pbKEK/cbKEK AES Key-Encryption-Key, that will be used to wrap another key.   

pbKey/cbKey Key to be wrapped 

pbWrapped Pointer to a memory buffer that will receive the wrapped key 

pcbWrapped Pointer to a DWORD, that will receive a number of bytes copied to 

pbWrapped. 

cbWrappedBufSize Size of the output buffer pointed by pbWrapped. 

 
BOOL c_AESUnwrap ( IN const BYTE *pbKEK,  

 IN DWORD cbKEK,  

 IN const BYTE *pbWrapped,  

 IN DWORD cbWrapped,  

 OUT LPBYTE pbKey,  

 OUT DWORD *pcbKey, 

IN DWORD cbKeyBufSize) 

Unwrap AES key with another AES key, as per http://csrc.nist.gov/encryption/kms/key-

wrap.pdf. 

 

Parameters 

pbKEK/cbKEK AES Key-Encryption-Key, that will be used to unwrap another key.   

pbWrapped Pointer to a buffer containing a wrapped key 

cbWrapped Size of the wrapped key 

pbKey Pointer to a memory buffer that will receive the unwrapped key 

pcbKey Pointer to a DWORD, that will receive a number of bytes copied to 

pbKey. 

cbKeyBufSize Size of the output buffer pointed by pbKey. 

 

 

4.1.4. RSA operations 
BOOL c_RSACreate ( IN DWORD dwFlags, 

OUT PCRD_RSA *ppRSA) 

Create an RSA key handle. 

 

Parameters 

dwFlags Flags that currently only affect encryption operations, not 

signature/verification operations. CR_RSA_OAEP to use encryption in 

OAEP mode, 0 – PKCS #1 mode. 

ppRSA Pointer to a RSA context. 

 
BOOL c_RSAReset ( IN PCRD_RSA pRSA) 

Reset all RSA key parameters and zeroize any public or private key used. 

 

Parameters 

pRSA RSA key context. 

 
BOOL c_RSADestroy ( IN PCRD_RSA pRSA) 

Destroy and zeroize RSA key. 

 

Parameters 

pRSA RSA key context to be destroyed. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 28 

 

 
BOOL c_RSAGetKeyHash ( IN PCRD_RSA pRSA,  

OUT LPBYTE hash20bytes) 

Get RSA public key SHA-1 hash, as a unique identifier of the used key. 

 

Parameters 

pRSA RSA key context. 

hash20bytes Pointer to a buffer that will receive a public key hash of the RSA key. 

 
BOOL c_RSAGenerate ( IN PCRD_RSA pRSA,  

IN PCRD_RNG pRNG,  

IN DWORD dwLength) 

Generate RSA private and public key pairs using the provided random number generator (or 

default X9.31 generator initialized from NT performance data). Pairwise consistency test is 

performed on the generated key. 

 

Parameters 

pRSA RSA key context. 

pRNG RNG generator context (received from c_RandomCreate). Can be 

NULL to use default RNG. 

dwLength Key length, in bits, of the key to be generated. 

 

 
BOOL c_RSASign ( IN PCRD_RSA pRSA,  

IN const BYTE *pbHash,  

IN DWORD cbHash,  

OUT LPBYTE pbSignature,  

OUT DWORD *pcbSignature,  

IN DWORD cbSignatureBufLen) 

Sign data with RSA private key according to PKCS #1 v.1.5. 

 

Parameters 

pRSA RSA key context. 

pbHash Pointer to SHA-1/SHA-256/SHA-384/SHA-512 hash  

cbHash Size of the hash pointed by pbHash in bytes. 

pbSignature Pointer to a variable that will receive a produced signature. 

pcbSignature Pointer to a variable that will receive a length of the produced 

signature, in bytes. 

cbSignatureBufLen Size of the buffer pointed by pbSignature. 

 

 
BOOL c_RSAVerify ( IN PCRD_RSA pRSA,  

 IN const BYTE *pbHash,  

 IN DWORD cbHash,  

 IN const BYTE *pbSignature,  

 IN DWORD cbSignature) 

Verify RSA signature.  

 

Parameters 

pRSA RSA key context. 

pbHash Pointer to SHA-1/SHA-256/SHA-384/SHA-512 hash  

cbHash Size of the hash pointed by pbHash in bytes. 

pbSignature Pointer to a signature. 

cbSignature Length of the signature, in bytes. 

 

 
BOOL c_RSAEncrypt ( IN PCRD_RSA pRSA,  

IN OUT LPBYTE pbData,  



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 29 

 

IN OUT DWORD *pcbData,  

IN DWORD cbBufLen ) 

Wrap a symmetric key with RSA public key. 

 

Parameters 

pRSA RSA key context. 

pbData Pointer to a first byte of the symmetric key to be encrypted  

pcbData On input, the number of bytes in the symmetric key. On output, the 

number of encrypted bytes.  

cbBufLen  Length of the buffer pointed by pbData.  

 

 
BOOL c_RSADecrypt ( IN PCRD_RSA pRSA, 

 IN OUT LPBYTE pbData,  

 IN OUT DWORD *pcbData) 

Unwrap an encrypted symmetric key with RSA private key. 

 

Parameters 

pRSA RSA key context. 

pbData Pointer to a first byte of the symmetric key to be decrypted 

pcbData On input, the number of encrypted data. On output, the number of 

bytes in the decrypted key.  

 
BOOL c_RSAEncryptKey( IN PCRD_RSA pRSA, 

IN PCRD_AES pAES, 

OUT LPBYTE pbData, 

OUT DWORD* pcbData, 

IN DWORD cbBufLen); 

 

Encrypt an AES key with RSA public key (key transport). 

 

Because RSA encrypted data size does not depend on the size of the input data, 

 
DWORD size=0; 

c_RSAEncryptKey(pRSA,0,&size,0); 

 

may be used to estimate the required encrypted buffer size. 

 

Parameters 

pRSA  RSA key handle. 

pAES AES key handle, to be encrypted with RSA 

pbData pointer to the buffer to place encrypted data. Can be NULL to 

estimate required output buffer size 

pcbData size of the encrypted blob 

cbBufLen  size of buffer pointed by pbData. 

 
BOOL c_RSADecryptKey( IN PCRD_RSA pRSA,  

IN LPBYTE pbData, 

IN DWORD cbData, 

OUT PCRD_AES *ppAES) 

Decrypt an AES key, previously encrypted with c_RSAEncryptKey API. 

 

Parameters 

pRSA  RSA key handle. 

pbData pointer to encrypted key data. 

cbData on input - size of encrypted data in the buffer 

ppAES pointer to an AES key handle. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 30 

 

 

 

 
BOOL c_RSASave ( IN PCRD_RSA pRSA,  

 IN PCRD_AES pAES, 

 IN DWORD dwFlags,  

 OUT PBYTE pbData,  

 OUT PDWORD pcbData,  

 IN DWORD cbBufLen) 

Save RSA key to a memory blob, with or without private key. 

 

Parameters 

pRSA RSA key context. 

pAES AES key context, to encrypt the exported key. Cannot be 0 if 

CR_RSA_SAVE_PRIVATEKEY flag is specified. 

dwFlags 0 to export public key only, CR_RSA_SAVE_PRIVATEKEY to export 

both RSA public and private keys. 

pbData Buffer to receive the exported key. 

pcbData The number of bytes copied to buffer pointed by pbData. 

cbBufLen Size of the buffer pointed by pbData. 

 
BOOL c_RSALoad ( IN PCRD_RSA pRSA, 

IN PCRD_AES pAES,  

 IN DWORD dwFlags, 

 IN const BYTE *pbData,  

IN DWORD cbData) 

Load RSA key from a memory blob, with or without private key. 

 

Parameters 

pRSA RSA key context. 

pAES AES key context that will be used to decrypt the key blob, if 

encrypted. 

dwFlags Reserved, must be 0. 

pbData Buffer that contain the key, previously exported with c_RSASave. 

cbData Size of the buffer pointed by pbData. 

 
DWORD c_RSAIsValid ( IN PCRD_RSA pRSA) 

Verify that RSA key is valid. Return value is: 

 

• 0 if the key is not valid. 

• 1 if the public key is available and key can be used for c_RSAEncrypt/c_RSAVerify 

operations. 

• 2 if private key is available and key can be used for all operations. 

 

Parameters 

pRSA RSA key context. 

 

4.1.5. SHA operations  
BOOL c_SHACreate ( IN DWORD cbSize,  

 IN PCRD_SHA *ppSHA) 

Create a SHA hash. 

Parameters 

cbSize Length of the SHA hash in bytes (20,32,48,64). 

ppSHA Pointer to a variable to receive a hash context handle. 

 
BOOL c_SHAUpdate ( IN PCRD_SHA pSHA,  



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 31 

 

 IN const BYTE *pbData,  

IN DWORD cbData) 

Hash data with SHA. 

 

Parameters 

pSHA Hash context 

pbData/cbData Data to be hashed 

 
DWORD c_SHAFinal ( IN PCRD_SHA pSHA,  

IN BYTE *pbData,  

IN DWORD cbDataBufLen) 

Finalize SHA hash and retrieve hash value. Returns number of bytes copied to pbData buffer 

or 0 if an error occurs. 

 

Parameters 

pSHA Hash context 

pbData Pointer to the buffer to receive a final hash value. c_SHAGetSize can 

be used to determine the number of bytes. 

cbDataBufLen Size of the buffer in bytes. 

 

 
DWORD c_SHAGetSize( IN PCRD_SHA pSHA) 

Get size of the hash value in bytes. 

 

Parameters 

pSHA Hash context. 

 

 
BOOL c_SHADestroy ( IN PCRD_SHA pSHA) 

Destroy SHA hash. 

 

Parameters 

pSHA Hash context to be destroyed. 

 

4.1.6. Pseudorandom number generation 
BOOL c_RandomCreate ( IN DWORD dwFlags,  

IN LPBYTE pbData,  

IN DWORD cbData,  

OUT PCRD_RNG *ppRng) 

Create and initialize a pseudorandom number generator.  

 

Parameters 

dwFlags 0 – create a default ANSI X9.31 Appendix A RNG, initialized from NT 

performance data. If pbData/cbData are non zero, the contents of the 

buffer pointed by pbData will be XOR-ed with the NT perfomance data 

and CryptoAPI CryptGenRandom API output . 

 1 - CR_RNG_ANSI931 create an ANSI X9.31 Appendix A RNG, 

initialized by the SEED pointed by pbData/cbData 

pbData/cbData See above. 

ppRNG Pointer to a variable that receives the RNG handle. 

 

 
BOOL c_RandomGet ( IN PCRD_RNG pRng,  

OUT LPBYTE pbData,  

IN DWORD cbData) 

Generate pseudorandom data. 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 32 

 

 

Parameters 

pRNG RNG handle. May be NULL to use default generator. 

pbData/cbData Buffer to receive the generated pseudo-random data. 

 

 
BOOL c_RandomDestroy ( PCRD_RNG pRng) 

Destroy pseudorandom number generator. 

 

Parameters 

pRNG RNG handle.  

4.2. RCL Driver IOCTL API description (user mode) 
RCL Driver user mode API can be accessed by user mode clients, including RCL DLL, for AES 

CBC encryption/decryption. Calling the driver API does not affect driver internal state, all 

state information is passed through API parameters. 

 

This API is accessed through DeviceIoControl Windows API calls to device \\.\rxAES with 

the following control codes (notation is simplified, see rxAesAPI.h and rxAesCommon.h for 

the exact definitions). 

 
BOOL IOCTL_RXAES_VERSION (DWORD *pdwVersion) 

Return installed AES driver version. Current version is 0x0100. 

 
BOOL IOCTL_DNP_AES_INITSUCCESS() 

Instructs the Driver that DLL has executed its part of power-up tests to execute its part of 

the power up tests. 

 
BOOL IOCTL_DNP_AES_INITFAILED() 

Informs the driver that user mode part of the library entered an error state and therefore 

the driver must also enter error state. 

 
BOOL IOCTL_DNP_AES_INIT (  IN PAES_INIT paesInit,  

OUT PAES_CONTEXT paescontext) 

Convert AES_INIT structure containing a variable-length AES key to AES_CONTEXT 

structure with AES key schedules (FIPS 197, paragraph 5.2 Key Expansion). 

 
BOOL IOCTL_DNP_AES_ENCRYPT (  IN OUT PAES_CONTEXT paescontext, 

IN OUT BYTE *pbBuffer,  

DWORD cbBufferSize) 

Encrypt the passed block with an AES key context, previously obtained through 

IOCTL_DNP_AES_INIT. 

 

Passed block length must be a multiple of 16. 

 
BOOL IOCTL_DNP_AES_DECRYPT (  IN OUT PAES_CONTEXT paescontext, 

IN OUT BYTE *pbBuffer,  

DWORD cbBufferSize) 

Decrypt the passed block with an AES key context, previously obtained through 

IOCTL_DNP_AES_INIT. 

 

Passed block length must be a multiple of 16. 

 

If the API function succeeds, the returned value is non-zero. In case of failure the returned 

value is zero and the calling application must handle the error appropriately. 

 

 



 

Reflex Magnetics Cryptographic Library v.1.0 Security Policy Page 33 

 

4.3. RCL Driver kernel mode API description  
RCL driver kernel mode API can be accessed by kernel mode clients for AES CBC 

encryption/decryption.   

 

In order to use this API a kernel mode user of the RXAES100.SYS driver must be able to 

reference the API functions before using them. This is accomplished by building a function 

table request irp (I/O request packet) and then sending the irp to the driver via the 

IoCallDriver function. Further information on irp and IoCallDriver can be found on Microsoft 

Windows XP Driver Development Kit. 

 

Calling the driver API does not affect driver internal state, all state information is passed 

through API parameters. 

 

If the API function succeeds, the returned value is non-zero. In case of failure the returned 

value is zero and the calling application must handle the error appropriately. 

 

 
int rxaes_set_key( IN const BYTE in_key[],  

IN const ULONG n_bytes,  

IN const int fType,  

OUT AES_CRYPTO_CONTEXT *cx); 

Expands provided variable-length AES key to AES_CRYPTO_CONTEXT structure with AES 

key schedules (FIPS 197, paragraph 5.2 Key Expansion). 

 

fType parameter indicates whether encryption (1) or decryption (2) or both (3) will be 

required. 
 

int rxaes_BlockEncrypt( const BYTE *pbInput,  

BYTE *pbOutput,  

int cbLength,  

BYTE *pbIv,  

AES_CRYPTO_CONTEXT *cx); 

Encrypt cbLength (must be a multiply of 16) bytes pointed by pbInput with the provided key 

and initialization vector (16 bytes), and store the result to the buffer pointed by pbOutput 

parameter. 

 

pbOutput may be equal to pbInput for in-place encryption. 
 

int rxaes_BlockDecrypt( const BYTE *pbInput,  

BYTE *pbOutput,  

int cbLength,  

BYTE *pbIv,  

AES_CRYPTO_CONTEXT *cx); 

Decrypt cbLength (must be a multiply of 16) bytes pointed by pbInput with the provided key 

and initialization vector (16 bytes), and store the result to the buffer pointed by pbOutput 

parameter. 

 

pbOutput may be equal to pbInput for in-place decryption. 
 

 


