
F-Secure Corporation

F-Secure® Kernel Mode Cryptographic
Driver™ for Linux
FIPS 140-2 Validation Security Policy

Author: Alexey Kirichenko

Module version: 1.1.3

Document version:
F-Secure,FSCLM, FSCLM_Linux_kernel_SP.rtf,00000002

Created: May 2006
Last modified: November 2006

Abstract: This document describes the F-Secure® Kernel Mode Cryptographic Driver™ Security
Policy submitted for validation, in accordance with the FIPS publication 140-2, level 1.

F-Secure Kernel Mode Cryptographic Driver Security Policy 2

COPYRIGHT © 2006, F-Secure Corporation. All Rights Reserved.

"F-Secure" is a registered trademark of F-Secure Co rporation and F-Secure product
names and symbols/logos are either trademarks or re gistered trademarks of F-Secure
Corporation. All other product and company names, i f any, are trademarks or
registered trademarks of their respective owners.

This document may be copied without the author’s pe rmission provided that it is
copied in its entirety without any modification .

F-Secure Kernel Mode Cryptographic Driver Security Policy 3

Introduction ...4
Overall Design and Functionality ..5
The Cryptographic Module and Cryptographic Boundary ..6
Roles and Services...7
Key Management...9
Module Interfaces ..11
Self-Testing ...12
List of the API Functions, Operating Modes, Important Technical Considerations..13

F-Secure Kernel Mode Cryptographic Driver Security Policy 4

Introduction

The F-Secure® Kernel Mode Cryptographic Driver™ for Linux kernel (the Module) is a software
module implemented as a shared library (FSCLM.KO). When loaded into computing system memory,
it resides at the kernel mode level of the Linux Operating System and provides an assortment of
cryptographic services that are accessible by other kernel mode drivers through an Application
Programming Interface (API).

In certain cases, it is very important to have access to cryptographic services in the kernel mode. For
instance, file and disk encryption products and implementations of Virtual Private Network (VPN)
concept usually include kernel mode components which make extensive use of cryptographic
functions, such as encryption, hashing, and random bits generation. For such a component,
cryptographic service providers residing in the user mode are of little help because of a significant
performance penalty associated with calling user mode functions from the kernel mode. This penalty is
hardly acceptable in products operating in real time. It is also more error-prone and difficult to use user
mode services from the kernel mode in a secure and reliable way. Therefore, the F-Secure Kernel Mode
Cryptographic Driver, whose high performance API functions can be directly called from other kernel
mode drivers, may bring considerable value to software vendors developing real-time data security
products for Linux Operating System.

The Module was tested for FIPS 140-2 Level 1 requirements on Red Hat Enterprise Linux (RHEL) 4
operating system.

F-Secure Kernel Mode Cryptographic Driver Security Policy 5

Overall Design and Functionality

The Module is designed and implemented to meet the Level 1 requirements of FIPS publication 140-2
when running on a GPC under Linux RHEL 4 operating system.

The Module is written in the “C” programming language. At the source code level, we use nearly an
identical set of source files to build cryptographic libraries for a number of platforms, operating
systems and linkage options. Almost all platform-dependent code is clearly separated into a small
number of platform-specific files. The F-Secure Cryptographic Library for Windows is a dynamically
linked module (DLL) for the user mode level of Windows 2000, Windows 2003, Windows XP,
Windows 98, and Windows ME operating systems, the Solaris version is a shared library (Shared
Object) for Sun Trusted Solaris 8, Solaris 8 and 9 operating systems, the Linux version is a shared
library for Linux RHEL 3 and 4 operating system, the Linux kernel version is a kernel object for Linux
RHEL 4 operating system, the HP-UX version is a shared library for HP-UX 10 and 11 operating
systems, and the AIX version is a shared library for AIX 5 operating system. Other examples of our
cryptographic library “instances” are: kernel mode export driver and statically linked library for
Windows NT/2000/2003/XP; DLL for Pocket PC 2002 and 2003 and Windows Mobile 2005; DLL for
Symbian OS. (Note that only some of these instances were tested and validated for compliance with the
FIPS 140 Level 1 requirements.)

The Module supports the FIPS approved AES, Triple DES (TDES), SHA-1, HMAC-SHA-1, SHA-256,
and HMAC-SHA-256 algorithms. It also provides non-FIPS approved DES, Blowfish, RC2, MD5,
HMAC-MD5, RIPEMD-160, HMAC-RIPEMD-160, and passphrase-based key derivation (PBKDF2 as
specified in PKCS#5) algorithms. The Module implements a high-quality cryptographically strong
Pseudorandom Number Generator (PRNG), which is compliant with the algorithm specified in
Appendix 3.1 of the FIPS PUB 186-2 document.

Since the cryptographic driver is a software module that runs on a general-purpose computing systems
and does not support asymmetric cryptographic methods, no special effort was taken to mitigate side-
channel attacks, in particular those based on timing and power analysis and fault induction.

All the cryptographic services implemented within the Module are available only to kernel mode
system drivers, which are a part of the operating system Trusted Computer Base (TCB). It is impossible
to access any of the Module services directly from user mode programs. This approach is chosen, in
particular, to reduce the risk of a targeted attack on the Module by malicious code.

Use of an appropriate synchronization technique in the Module helps ensure that it functions correctly
when simultaneously accessed by multiple threads.

F-Secure Kernel Mode Cryptographic Driver Security Policy 6

The Cryptographic Module and Cryptographic Boundary

In FIPS140-2 terms, the Module is a “multi-chip standalone module.” The F-Secure Kernel Mode
Cryptographic Driver for Linux runs as a Kernel Object in any commercially available computing
system under the Linux OS. A “cryptographic boundary” for the Module is defined as those applicable
software and hardware components internal to a host computing system that is running the operating
system.

The OS and the underlying central processing unit (CPU) hardware control access to the non-paged
memory space in such a way that it is accessible only in the kernel mode. Being a kernel mode driver,
the Module resides in the non-paged space. As cryptographic services provided by the Module are
available only to other kernel mode drivers, we immediately see that any data passed between the
Module and its clients can be accessed only in the privileged mode of the OS and never leave the
cryptographic boundary.

The module provides no physical security beyond that of the physical enclosure of a “hosting”
computer system.

The assumption, which we make about the operating environment of the Module, is that it is installed,
initialized and used by following the rules described below in section “Roles and Services.”

The Module was internally tested by the vendor (F-Secure Corporation) on the following computing
platform:

 Hardware: Dell OptiPlex GX 240 Personal Computer system
 Processor: Intel P4 1.6 GHz
 Operating System: RH Enterprise Linux 4 (2.6 kernel)

Additionally, the Module was tested by a CMVP laboratory on the following computing platforms:

 Hardware: Custom PC
 Processor: AMD Athlon(tm) XP 1800+ (1540 MHz)
 Operating System: Linux RHEL 4

F-Secure Kernel Mode Cryptographic Driver Security Policy 7

Roles and Services

The Module implements the following two roles: Crypto Officer role and User role. Since the Module
is validated at security level 1, it does not provide an authentication mechanism. Hence the roles are
assumed implicitly based on the services that are performed.

The two roles are defined per the FIPS140-2 standard as follows:
A User is any entity that can access services implemented in the Module.
A Crypto Officer is any entity that can access services implemented in the Module, install the Module
in a device, and configure the device to ensure proper operating of the Module in the FIPS 140-2 mode
of operation.
There is no Maintenance role.

An operator performing a service within any role can read and write security-relevant data only through
the invocation of a service by means of the Module API.

The following operational rules must be followed by any user of the Module:

1. Virtual memory of the computing system must be configured to reside on a local, not a network,
drive.
2. A special operating system device providing high quality randomness must be present on the
computer. The Module attempts to read data from both the blocking /dev/random device, and the non-
blocking /dev/urandom device to seed its PRNG.

It is a responsibility of the Crypto-Officer to configure the operating system to operate securely and,
whenever it is necessary, to prevent remote login. Note that the Crypto Officer must have
administrative privileges in the computer system being configured.

The services provided by the Module to the User are effectively delivered through the use of
appropriate API calls. In this respect, the same set of services is available to both the User and the
Crypto Officer.

When the OS loader attempts to load the Module into memory, the Module runs an integrity test and a
number of cryptographic functionality self-tests. If all the tests pass successfully, the Module makes a
transition to “User Service” state, where the API calls can be used by other kernel mode drivers to
carry out desired cryptographic services. Otherwise, the Module returns to “Uninitialized” state and the
OS reports failure of the attempt to load it into memory.

The Module provides the following FIPS-approved services:
1. Cryptographic data hashing using FIPS PUB 180-2 SHA-1 and SHA-256.
2. Symmetric data encryption and decryption using FIPS PUB 197 AES and FIPS PUB 46-2 TDES.
3. Random number generation using a software-based algorithm as specified in FIPS 186-2, Digital
Signature Standard (DSS), Appendix 3.1.
4. MAC computation and verification using FIPS PUB 198 HMAC-SHA-1 and HMAC-SHA-256
algorithms (when key size is at least half of the algorithm output size).

F-Secure Kernel Mode Cryptographic Driver Security Policy 8

Other non-approved services provided by the Module include:
5. Cryptographic data hashing using MD5 and RIPEMD-160 algorithms.
6. MAC computation and verification using HMAC-MD5 and HMAC- RIPEMD-160 algorithms.
7. Symmetric data encryption and decryption using Blowfish and RC2 block ciphers.
8. Passphrase-based key derivation (PBKDF2 as specified in PKCS#5) algorithm.
9. Symmetric data encryption and decryption using DES.

Non-FIPS-approved services cannot be selected if the Module is operating in accordance with FIPS
140-2, that is, in the FIPS mode of operation. The exception to this is the Passphrase-based key
derivation service based on the FIPS-approved SHA-1 hash function and HMAC-SHA-1 algorithm.
This service provides functionality that is not properly covered by any of the FIPS-approved algorithms
at present time. DES is also available as a non-approved service while the Module is in FIPS mode.

We note that the client must ensure that keys derived with PBKDF2 are only used for authentication
purposes while in the FIPS mode. Such keys cannot be used for symmetric encryption/decryption when
the Module is in the FIPS mode of operation. The client is also responsible for excluding any use of
DES encryption/decryption while in FIPS mode.

F-Secure Kernel Mode Cryptographic Driver Security Policy 9

Key Management

The Module implements a number of functions that are either used internally or exposed in the API to
meet the FIPS140-2 Level 1 requirements for Key Management.

Key Generation

Keys for symmetric ciphers and HMAC algorithms can be generated by simply requesting the PRNG
implemented in the Module to produce a desired number of bytes. The PRNG employs a FIPS-
approved algorithm as specified in FIPS 186-2, Digital Signature Standard (DSS), Appendix 3.1. No
other RNGs are used by the Module.

Intermediate key generation values are never output from the Module.

Key Distribution and Storage

All keys are processed, stored, and used in the Module only on behalf of and for immediate use by its
clients, which all belong to TCB and run in the system process.
Since the current version of the Module does not support any public key methods, there is no easy way
to use it for electronic key distribution in the frames of a NIST-approved key distribution protocol or
for implementing standard key exchange protocols.
If, nevertheless, someone wants to use the Module API for implementing a key distribution/exchange
algorithm, it is their responsibility to ensure FIPS 140-2 compliance of protocols and algorithms they
implement.

The Module does not provide long-term cryptographic key storage.

Zeroization of Keys

Keys and critical security parameters in the Module can be divided into two groups: those used by the
Module internally and the ones that actually belong to its clients.

The Module takes care of zeroizing all its internal keys and critical security parameters (such as the
PRNG internal state or various pre-computed values): (1) when those are not needed any more, (2)
when the OS loader calls the Module’s “unload” function, and (3) when the Module enters the error
state. Also, as a precaution, the PRNG internal state gets overwritten when the Module processes an
unregistration request of its last client.

For the other group, when a client requests the Module to destroy a data object containing keys or
critical security parameters, the Module always zeroizes all such data objects prior to freeing their
memory. Also, when a client calls the “client unregistration” function, provided by the Module API,
the Module zeroizes and frees memory of all data objects which are allocated and left unfreed by the
client. Finally, the Module performs so-called “objects clean-up at exit.” If the OS loader calls the
Module’s “unload” function, we check if there are any objects (like cipher or HMAC contexts)
allocated and not freed by any of the clients, and we zeroize and free all such objects. This is especially

F-Secure Kernel Mode Cryptographic Driver Security Policy 10

important if a fatal error occurs in the Module, or some of the clients do not have a chance to take
proper care of cleaning up objects possibly containing secret information.

Protection of Keys

We rely on the OS memory management mechanism to ensure that process space of the system
process, including its memory, cannot be accessed by any other process. Keys created within or passed
into the Module for one user are not accessible to any other user via the Module. It is a responsibility of
its clients to protect keys exported from the Module and validate keys passed into the Module.

The Module takes care of never exposing its own internal keys and critical security parameters outside,
and of zeroizing those prior to exiting or freeing corresponding portions of memory. In particular, we
mention the PRNG state and intermediate generation values, whose disclosure or modification may
compromise the security of the Module.

All dynamic memory allocations in the Module are made from the non-paged pool to ensure that blocks
containing confidential data never get paged by the OS.

List of Keys stored in the module

Following keys are stored in the Module:

1. Keys for symmetric encryption/decryption algorithms:

a. DES key
b. Triple DES key
c. AES key
d. Blowfish key
e. RC2 key

2. Keys for HMAC methods:
a. HMAC-SHA-1 key
b. HMAC-SHA-256 key
c. HMAC-MD5 key
d. HMAC-RIPEMD-160 key

4. Key for self-integrity test:
a. HMAC-SHA-1 key

Out of the above keys, only the HMAC-SHA-1 key used for the self-integrity test is stored across
power cycles. The rest of the keys are ephemeral keys, which are zeroized before the Module exits.

F-Secure Kernel Mode Cryptographic Driver Security Policy 11

Module Interfaces

Being a software module, the F-Secure Kernel Mode Cryptographic Driver defines its interfaces in
terms of the API that it provides. We define Data Input Interface as all those API calls that accept, as
their arguments, data to be used or processed by the Module. The API calls that return, by means of
return value or arguments of appropriate types, data generated or otherwise processed by the Module to
the caller constitute Data Output Interface. Control Input Interface is comprised of the call used to
initiate the Module and the API calls used to control the operation of the Module. Finally, Status
Output Interface is defined as the API calls, which provide information about the status of the Module.

F-Secure Kernel Mode Cryptographic Driver Security Policy 12

Self-Testing

The F-Secure Kernel Mode Cryptographic Driver implements a number of self-tests to check proper
functioning of the Module. This includes power-up self-tests (which are also callable on-demand) and
conditional self-tests.

Power-up Self-Testing

When the Module starts loading into memory, power-up self-testing is initiated automatically. It is
comprised of the software integrity test and known answer tests of cryptographic algorithms. If any of
the tests fail, the Module returns to “Uninitialized” state and the OS reports failure of the attempt to
load it into memory.
The following known answer tests are implemented in the Module:
· AES KAT
· DES KAT
· TDES KAT
· Blowfish KAT
· SHA-1 KAT
· SHA-256 KAT
· HMAC-SHA-1 KAT
· MD5 KAT
· PRNG KAT
· PRNG Statistical Tests

The software integrity test computes DAC value by applying the HMAC-SHA-1 method, FIPS 198, to
data of all the relevant sections of disk image of the Module. The test fails if the DAC value computed
on the disk image of the Module does not match the original value computed on the Module by a
special utility at the vendor’s site (F-Secure Corporation) and stored in a special place inside the
Module.

On-Demand Self-Testing

The Module exports an API routine, “fsclm_Selftest”, which can be called to initiate the power-up self-
tests. If any of the tests fail, the Module enters the error state. This error state is unrecoverable; upon
entering it, the Module stops providing cryptographic services to the client.

Conditional Self-Testing

This includes continuous PRNG testing. The very first output block generated by the PRNG is never
used for any purpose other than initiating the continuous PRNG test, which compares every newly
generated block with the previously generated block. The test fails if the newly generated PRNG output
block matches the previously generated block. In such a case, the Module enters the unrecoverable
error state.

F-Secure Kernel Mode Cryptographic Driver Security Policy 13

List of the API Functions, Operating Modes, Important Technical Considerations

In this section, we briefly describe the services that the Module provides and related security and usage
considerations. In order to guarantee secure and robust functioning of the Module, it is important that
the clients follow our recommendations as fully and precisely as possible.

The following list presents the Module API functions split into a number of groups in accordance with
their functionality.

Mode of operation and Information functions

fsclm_GetModuleVersion
This routine provides the callers with the Module version information.

fsclm_GetModuleMode
This routine returns the current mode of operation of the Module.
The F-Secure Kernel Mode Cryptographic Driver supports two modes of operation: FIPS 140 mode
and non-FIPS mode. Only FIPS-approved algorithms are available to the caller in FIPS 140 mode. Any
attempt to use non-FIPS-approved algorithms in FIPS 140 mode results in an appropriate error code
returned by the Module. It is a responsibility of client application developers to design their products in
such a way that they function properly in the both modes of operation. We recommend avoiding
schemes and protocols, which are based on non-selectable non-FIPS-approved algorithms in any part.

fsclm_SetModuleMode
This routine sets the mode of operation of the Module. The two options are:
FSCLM_MODE_NONFIPS - all methods included in the Module are available to the caller;
FSCLM_MODE_FIPS140 - only FIPS-approved methods are available to the caller.
Use of "fsclm_SetModuleMode" makes it easy to ensure that non-FIPS-approved algorithms are
unavailable, no matter what cryptographic services the client application requests from the Module.

fsclm_GetModuleStatus
This routine returns the current status of the Module. There are five states defined in the Module Finite
State Machine (FSM):
FSCLM_STATUS_UNINITIALIZED
FSCLM_STATUS_SELF_TESTING
FSCLM_STATUS_USER_SERVICE
FSCLM_STATUS_UNLOADING
FSCLM_STATUS_ERROR

fsclm_GetErrorCode
This function returns "fatal" error code if the Module is in the error state, or
FSCLM_ERROR_FATAL_NONE otherwise.

F-Secure Kernel Mode Cryptographic Driver Security Policy 14

Symmetric encryption functions

The Module implements a number of symmetric ciphers, including FIPS-approved AES and TDES
modes. In the code, we use a layered approach based on the internal “cipher API”, which makes it very
easy to exclude existing or add new ciphers if desired. The cipher modes of operation are implemented
as a generic layer, so each newly included cipher can immediately be used in any of the supported
modes. (The Module supports the standard ECB, CBC, CFB, and OFB modes as well as Counter and
IWEC modes.)

All the encryption and decryption functions support “in-place” operations, which means that the same
buffer may be used as both source and destination parameters.

fsclm_CipherInfo
Provides information about the specified cipher. This makes it possible to learn if the cipher is
supported by the Module, if it is FIPS-approved, and what key and block sizes are supported for it.

fsclm_CipherAlloc
Allocates and initializes the cipher context object for the specified cipher in the specified mode of
operation and with the specified key. Any allocated cipher object must eventually be freed by calling
"fsclm_CipherFree". The Module takes care of never exposing contents of cipher objects outside and of
proper zeroizing their memory when appropriate.

fsclm_CipherFree
Zeroizes and frees the memory of the specified cipher object. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_CipherReset
This resets the given cipher object so that it would look like a newly allocated and initialized one. The
"reset" operation also zeroizes all remnants of the previous processing.

fsclm_CipherEncrypt
This encrypts the given input buffer and writes the resulting ciphertext to the given output buffer.
Encryption mode and other parameters are taken from the given cipher context object.

fsclm_CipherDecrypt
This decrypts the given input buffer and writes the resulting plaintext to the given output buffer. Mode
of operation and other parameters are taken from the given cipher context object.

fsclm_CipherEncryptIV
This encrypts the given input buffer and writes the resulting ciphertext to the given output buffer. The
only difference between this routine and "fsclm_CipherEncrypt" is that the latter takes IV/counter
information from the cipher object and updates it appropriately, while the former uses "iv" value passed
to it as a parameter and updates that value (leaving IV/counter information in the cipher object intact).

fsclm_CipherDecryptIV
This decrypts the given input buffer and writes the resulting plaintext to the given output buffer. The
only difference between this routine and "fsclm_CipherDecrypt" is that the latter takes IV/counter

F-Secure Kernel Mode Cryptographic Driver Security Policy 15

information from the cipher object and updates it appropriately, while the former uses "iv" value passed
to it as a parameter and updates that value (leaving IV/counter information in the cipher object intact).

fsclm_CipherSetIV
This sets encryption or decryption IV/counter value in the specified cipher object. This value will then
be used for the subsequent encryption ("fsclm_CipherEncrypt") or decryption ("fsclm_CipherDecrypt")
operation respectively.
Note that the same cipher object can be used for both encryption and decryption operations, thus we
maintain separate encryption and decryption IV/counter information in the cipher object.

fsclm_CipherGetIV
This copies the current encryption or decryption IV/counter value in the specified cipher object to the
caller-supplied buffer.

fsclm_CipherComputeIV
Certain modes of operation of block ciphers make use of counter value. In such modes, processing of a
particular block of input depends on the initial value of counter and index (or offset) of the block. (Two
examples supported by the Module are Counter and IWEC modes.) If you want to perform encryption
or decryption operation starting with the n-th block, you would need to know the corresponding counter
value, and this is what this routine helps you do: given the initial counter value and the block index, it
computes and writes to the caller-supplied buffer the counter value for the block.
Note that counter-based modes provide you with a random read-write access to large streams of
encrypted data, the property that CBC, CFB, and OFB modes do not enjoy.

fsclm_CipherEncryptBuffer
This routine performs one-pass encryption of a given buffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API calls to save the application developer effort. This call is
equivalent to the following sequence:
 fsclm_CipherAlloc
 fsclm_CipherEncryptIV
 fsclm_CipherFree

fsclm_CipherDecryptBuffer
This routine performs one-pass decryption of a given buffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API calls to save the application developer effort. This call is
equivalent to the following sequence:
 fsclm_CipherAlloc
 fsclm_CipherDecryptIV
 fsclm_CipherFree

F-Secure Kernel Mode Cryptographic Driver Security Policy 16

Hash functions

The Module currently implements FIPS-approved SHA-1 and SHA-256, and non-FIPS-approved MD5
and RIPEMD-160 hash functions. In the code, we use a layered approach based on the internal “hash
API”, which makes it very easy to exclude existing or add new hash functions if desired.

fsclm_HashInfo
Provides information about the specified hash function. This makes it possible to learn if the hash
function is supported by the Module, if it is FIPS-approved, and what its output (digest) and block sizes
are.

fsclm_HashAlloc
Allocates and initializes the hash context object for the specified hash function. Any allocated hash
object must eventually be freed by calling "fsclm_HashFree".
Hash objects may contain confidential information. The Module takes care of never exposing contents
of hash objects outside and of proper zeroizing their memory when appropriate.

fsclm_HashFree
Zeroizes and frees the memory of the specified hash object. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HashReset
This resets the given hash context object so that it would look like a newly allocated and initialized
one. It is useful when you want to use the same hash function for computing hash values (also called
digests) of multiple data blocks.
The "reset" operation also zeroizes all remnants of the previous processing.

fsclm_HashUpdate
This updates the given hash context with the given input.
When you need to compute digest of a data stream which comes in a number of portions (or when you
want to split a very long stream in a number of pieces), you can simply feed such portions to
"fsclm_HashUpdate" one by one. The resulting digest value will be identical to what you would get if
passing the entire stream as a single buffer.
Note that in order to obtain digest value of your data, any sequence of calls to "fsclm_HashUpdate"
must eventually be followed by a call to "fsclm_HashFinal".

fsclm_HashFinal
This function completes computation of hash value of a data stream, which has been processed by calls
to "fsclm_HashUpdate" function. The resulting digest is written to a caller-supplied buffer.
Note that after "fsclm_HashFinal" has been called for a hash object, the object should not be used for
any further operations until you call "fsclm_HashReset" for it. After resetting, you may start
computation of hash value for a new data stream.

fsclm_HashOfBuffer
This routine computes digest of a given buffer, which can be a useful shortcut in certain cases. It
encapsulates a number of other API calls to save the application developer effort. This call is
equivalent to the following sequence:

F-Secure Kernel Mode Cryptographic Driver Security Policy 17

 fsclm_HashAlloc
 fsclm_HashUpdate
 fsclm_HashFinal
 fsclm_HashFree

F-Secure Kernel Mode Cryptographic Driver Security Policy 18

HMAC functions

The Module clients can use HMAC methods based on any hash function that is implemented in the
Module. By specifying the ID of a hash function of your choice, you fully specify the HMAC
algorithm that you want to use. To obtain information about parameters of a particular HMAC
algorithm, simply call "fsclm_HashInfo" for the corresponding hash function.

fsclm_HMACAlloc
Allocates and initializes the context object for the HMAC algorithm based on the specified hash
function, and with the specified key. Any allocated HMAC object must eventually be freed by calling
"fsclm_HMACFree".
The Module takes care of never exposing contents of HMAC objects outside and of proper zeroizing
their memory when appropriate.

fsclm_HMACFree
Zeroizes and frees the memory of the specified HMAC object. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HMACReset
This resets the given HMAC context object so that it would look like a newly allocated and initialized
one. It is useful when you want to use the same HMAC function, possibly with a different key, for
computing message authentication code (MAC) values of multiple data blocks.
The "reset" operation also zeroizes all remnants of the previous processing.

fsclm_HMACUpdate
This updates the given HMAC context with the given input.
When you need to compute MAC of a data stream which comes in a number of portions (or when you
want to split a very long stream in a number of pieces), you can simply feed such portions to
"fsclm_HMACUpdate" one by one. The resulting MAC value will be identical to what you would get
if passing the entire stream as a single buffer.
Note that in order to obtain MAC value of your data, any sequence of calls to "fsclm_HMACUpdate"
must eventually be followed by a call to "fsclm_HMACFinal".

fsclm_HMACFinal
This function completes computation of MAC value of a data stream, which has been processed by
calls to "fsclm_HMACUpdate" function. The resulting MAC is written to a caller-supplied buffer.
Note that after "fsclm_HMACFinal" has been called for an HMAC object, the object should not be
used for any further operations until you call "fsclm_HMACReset" for it. After resetting, you may start
computation of MAC value for a new data stream (possibly using a different key).

fsclm_HMACOfBuffer
This routine computes MAC value of a given buffer, which can be a useful shortcut in certain cases. It
encapsulates a number of other API calls to save the application developer effort. This call is
equivalent to the following sequence:
 fsclm_HMACAlloc
 fsclm_HMACUpdate
 fsclm_HMACFinal

F-Secure Kernel Mode Cryptographic Driver Security Policy 19

 fsclm_HMACFree

F-Secure Kernel Mode Cryptographic Driver Security Policy 20

PRNG functions

The PRNG implemented in the Module is based on hybrid architecture. It uses a one-way output
function on top of the well-known “entropy pool” scheme. The design is FIPS-compliant as the output
algorithm is the one specified in Section 3.1, Appendix 3 of FIPS PUB 186-2 document, with the
function G constructed from the SHA-1 as specified in Section 3.3, Appendix 3 of the same document.

The PRNG is initialized when the Module gets loaded into memory. During the initialization phase,
various system and hardware parameters and statistics are collected and mixed in the PRNG pool with
the SHA-1 transform function to achieve a good diffusion of “entropy” bits. Seeding/reseeding code for
each supported platform resides in the respective platform-specific source file.

fsclm_PrngDeepPoll
Invokes platform-specific “deep” polling for entropy (i.e., hard-to-predict bits) to achieve good-quality
seeding of the PRNG. This deep polling gets called automatically occasionally during the entire
lifetime of the Module. Also, the function is called at the PRNG initialization time.
The main purpose of this function is to help maintain the PRNG pool in a state, which is infeasible to
guess for the adversary.

fsclm_PrngAddNoise
This exclusive-ORs bytes from the given buffer with the PRNG pool content and serves the purpose of
adding unpredictability to the PRNG state. (We leave it up to the client whether to use this function or
not as the automatic PRNG seeding in the Module should be good enough to prevent the adversary
from guessing the PRNG state or any of the output values.)
The exclusive-OR operation cannot force the PRNG in a weaker state because it obviously cannot
reduce the pool data entropy.

fsclm_PrngMixPool
Mixes (i.e., cryptographically processes) the PRNG pool. The mixing operation is based on the SHA-1
transform function. It provides good “entropy” diffusion and is irreversible.
This function gets called automatically at the initialization time and then regularly during the entire
lifetime of the Module.

fsclm_PrngGetBytes
This routine writes to the caller-supplied buffer the requested number of PRNG-produced bytes.
Although what the generated bytes will be used for is entirely up to the caller, we recommend calling
this function if you need to generate:
- any keying material (in both symmetric and asymmetric settings)
- IV or initial counter values used in many popular methods (e.g., modes of operation of block ciphers)
- padding bytes for various cryptographic schemes
- random nonces and challenges required in many cryptographic protocols (e.g., authentication
protocols)
- salts to be combined with passphrases in passphrase-based key derivation algorithms
- random values for probabilistic cryptographic algorithms (e.g., signing with DSA)

We stress that it is a responsibility of the client to protect bytes provided by the Module PRNG (in
particular, from being exposed to the adversary).

F-Secure Kernel Mode Cryptographic Driver Security Policy 21

fsclm_PrngGetParameters
Fills in the fields of a caller-supplied structure with the current values of the PRNG object parameters.
The function that sets the PRNG parameters, “fsclm_PrngSetParameters”, is unavailable in the API of
the F-Secure Kernel Mode Cryptographic Driver for the time being. This is mostly due to the fact that
in the kernel mode, a single instance of the Module may serve to multiple callers – kernel mode drivers,
so the PRNG object is shared between all the callers.

F-Secure Kernel Mode Cryptographic Driver Security Policy 22

Client registration functions

fsclm_RegisterCaller
Prior to using any of the cryptographic services provided by the Module, the clients must register to the
Module. Successful registration results in a “reference” token returned to the client. That token should
then be passed as a parameter to almost all the API functions the client calls. (A small number of
information functions do not have the “caller reference” argument and can be used without registering.)

fsclm_UnregisterCaller
When the client does not need the Module services any longer, it must call the unregistration function.
Such a call results in freeing the memory associated with the client. All cryptographic objects allocated
and not freed by the client will be zeroized and freed by the Module. This helps ensure no confidential
data will be left in memory.
We strongly recommend to our clients to ensure they eventually unregister with the Module. (Note that
it may be insufficient to simply put the unregistration function in the "unload" function of your driver,
as the latter function does not get called by the OS loader when the system is about to be shut down.
Thus, you may want to process "system shutdown" notification sent by the OS to take your chance to
unregister.)
The unregistration routine is always available to the client, even if the Module is in the error state. In
fact, we recommend calling it as soon as you found out that the Module had entered the error state.

F-Secure Kernel Mode Cryptographic Driver Security Policy 23

Other functions

fsclm_Selftest
Calling this routine makes the Module run a number of self-tests. This on-demand self-testing includes
self-integrity test, Known Answer Tests of cryptographic algorithms, and, optionally, the set of PRNG
statistical tests (as specified in the FIPS 140-2 document). If any of the tests fail, the Module enters the
error state, which means that its cryptographic services become unavailable to the clients. To use the
services again, the user will need to restart the Module.

fsclm_DeriveSymmetricKey
This routine implements the passphrase-based key derivation function specified in PKCS#5 (PBKDF2).
The implementation uses HMAC-SHA1 as a PRF.
The two main goals of this key derivation algorithm are:
- preventing the adversary from compiling a universal dictionary of passphrases and precomputing the
corresponding keys (achieved by using so-called “salt”, whose presence in the algorithm results in a
very large number of keys that correspond to each passphrase)
- making exhaustive search attacks much more computationally expensive, which is especially
important in the case of “weak” passphrases (achieved by iterating the key derivation function many
times and recursively)
We stress that it is a responsibility of the client to protect keys derived by this routine (in particular,
from being exposed to the adversary). This is a non-Approved service.

fsclm_OverwriteMemory
This function can be used for overwriting a given block of memory with a bit stream that enjoys good
statistical properties (i.e., appears as a Binary Symmetric Source output).
We use it internally to overwrite portions of memory that may contain confidential data.
Also, this function can (and should !) be used instead of the PRNG to produce random-looking bits
when we do not care about “cryptographic quality”. A typical example is generating “witnesses” for
probabilistic primality testing.

fsclm_GetBase64Length
Clients should call this routine prior to calling “fsclm_EncodeBase64” to determine size of the buffer
that Base64 encoded data will be written to. Values of the encoding option arguments passed to
“fsclm_GetBase64Length” must be identical to the ones subsequently passed to
“fsclm_EncodeBase64”.

fsclm_EncodeBase64
Given an input buffer, this routine encodes the data in Base64 format. The client can specify desired
line length and ending for the encoded byte stream.

fsclm_DecodeBase64
This routine transforms a given Base64 encoded byte stream to the original (raw) form.

Detailed description of the Module API can be found in the Module public header file, FSCLM.H.

F-Secure Kernel Mode Cryptographic Driver Security Policy 24

We conclude this section by listing a number of recommendations aimed at helping the Module clients
avoid security-related and technical problems when implementing data security products.

- Prior to freeing any memory blocks that may contain critical security parameters or other

confidential data, take care of zeroizing them properly. When you free an object allocated by the
Module (for example, a symmetric cipher context) by calling an appropriate FSCLM API function,
the Module zeroizes the object memory. The client applications are responsible for zeroizing any
other memory blocks, in particular, those intermediate variables containing keying or otherwise
confidential data.

- It is a responsibility of the clients to ensure they work with cryptographic objects allocated by the

Module in a multi-threading safe way. Please keep in mind that the Module provides no
synchronisation for accessing such objects concurrently by multiple threads of the client
applications.

- All dynamically allocated memory blocks that may contain critical security parameters or other

confidential data should be allocated from the non-paged pool. We follow this rule in the Module
code as this is the best way to ensure that blocks containing confidential data never get paged by the
OS.

