JUNOS-FIPS-L2 Cryptographic Module Security Policy Document Version 1.3

Juniper Networks

January 10, 2007

Copyright Juniper Networks 2007. May be reproduced only in its original entirety [without revision].

Table of Contents

1. Module Overview	
2. Security Level	5
3. Modes of Operation	6
4. Ports and Interfaces	7
5. Identification and Authentication Policy	7
6. Access Control Policy	
Roles and Services Definition of Critical Security Parameters (CSPs) RSA 2048 bit X.509 Certificate Definition of CSPs Modes of Access	
7. Operational Environment	
8. Security Rules	
9. Physical Security Policy	
PHYSICAL SECURITY MECHANISMS	
10. Mitigation of Other Attacks Policy	
11. Definitions and Acronyms	

1. Module Overview

The JUNOS-FIPS-L2 Cryptographic Module is a multi-chip standalone cryptographic module (for Juniper Networks T-Series and M-Series routers - see Table 1 for specifics JUNOS-FIPS-L2 HW P/N Versions and FW Version) that executes JUNOS-FIPS firmware. JUNOS-FIPS is a release of the JUNOS operating system, the first routing operating system designed specifically for the Internet. JUNOS is currently deployed in the largest and fastest-growing networks worldwide. A full suite of industrial-strength routing protocols, flexible policy language, and leading MPLS implementation efficiently scale to large numbers of network interfaces and routes. JUNOS supports the industry's first production-ready GMPLS implementation. The cryptographic module's operational environment is a limited operational environment. The cryptographic boundary is defined as being the face plates of installed RE3s or RE4s along with the internal metal portions of the RE installation cavity, which are provided by the T-Series and M-Series chassis. The internal portions of the T-Series and M-Series chassis are non-removable commercial grade metal and encapsulate all components within the boundary. The module is defined as being the unpopulated T-series and M-series chassis with the inclusion of the two installed RE cards. Figures 1 and 2 are representative of the module boundary; for all configurations, the boundary is denoted by the dotted red box.

Chassis Model Number	HW P/N Version	FW V	ersions
T640	T640BASE Rev A, RE-600 (RE3) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
T640	T640BASE Rev A, RE-1600 (RE4) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
T320	T320BASE Rev A, RE-600 (RE3) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
T320	T320BASE Rev A, RE-1600 (RE4) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
M320	M320BASE Rev A, RE-600 (RE3) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
M320	M320BASE Rev A, RE-1600 (RE4) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
M40e	M40EBASE Rev A, RE-600 (RE3) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7
M40e	M40EBASE Rev A, RE-1600 (RE4) Rev A, DOC-FIPS-140-2-L2-KIT Rev A	7.2R1.7	7.4R1.7

 Table 1 – JUNOS-FIPS-L2 Versions

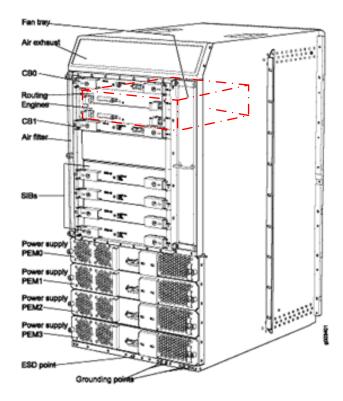


Figure 1 – M320 with RE3 (Note: The dotted line defines the cryptographic boundary)



Figure 2 – Picture of M320 chassis with installed REs

2. Security Level

The cryptographic module, which is a multi-chip standalone embodiment, meets the overall requirements applicable to Level 2 security of FIPS 140-2.

Security Requirements Section	Level
Cryptographic Module Specification	2
Module Ports and Interfaces	2
Roles, Services and Authentication	2
Finite State Model	2
Physical Security	2

Table 2 – Module Security	Level Specification
---------------------------	---------------------

Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

3. Modes of Operation

Approved mode of operation

In FIPS mode, the cryptographic module supports FIPS Approved algorithms as follows:

- DSA with 1024 bit keys for digital signature generation and verification
- RSA with 1024 or 2048 bit keys for digital signature generation and verification
- Triple-DES (three key) for encryption/decryption
- DES for encryption/decryption (transitional phase only valid until May 19, 2007; for use with legacy systems only)
- AES 128, 192, 256 for encryption/decryption
- SHA-1 for hashing
- HMAC-SHA-1

The cryptographic module also supports the following Non-Approved algorithms:

- RSA with 1024 bit keys (key wrapping; key establishment methodology provides 80 bits of encryption strength).
- MD5 for hashing (used during authentication)
- Diffie-Hellman with 1024 bit keys (key agreement; key establishment methodology provides 80 bits of encryption strength)
- Non-Approved RNG (used to seed Approved FIPS 186-2 RNG)

The cryptographic module supports the commercially available TLS, IKE, and SSH protocols for key establishment.

The cryptographic module relies on the implemented deterministic random number generator (DRNG) that is compliant with FIPS 186-2 for generation of all cryptographic keys.

Non-FIPS mode of operation

The cryptographic module does not provide a non-FIPS mode of operation.

4. Ports and Interfaces

The cryptographic module supports the following physical ports provided by the general purpose PC with the following mapping of corresponding logical interfaces:

The cryptographic module supports the following physical ports with the corresponding logical interfaces:

- Ethernet: Data input, Data output, Control Input, Status Outputs
- Serial: Data input, Data output, Control Input, Status Outputs
- Power interface: Power Input

The flow of input and output of data, control and status is managed by the cryptographic module's API.

5. Identification and Authentication Policy

Assumption of roles

The cryptographic module supports six distinct operator roles as follows:

- Crypto-Officer
- FIPS User
- AS2-FIPS PIC
- RE to RE
- IKE Peer
- Protocol Peer

The cryptographic module shall enforce the separation of roles using either identity based or role based operator authentication; the cryptographic module meets Level 2 requirements because identity-based authentication is not enforced for all authorized services.

Role	Type of Authentication	Authentication Data	
FIPS User	Identity-based operator authentication	 Via Console: Username and Password Via TLS: Username and Password Via SSH: Password or RSA signature verification or DSA signature verification 	
	Role Based authentication	• Via RADIUS or TACACS+: pre- shared secret, minimum 10 characters.	
Crypto-Officer	Identity-based operator authentication	 Via Console: Username and Password Via TLS: Username and Password Via SSH: Password or RSA signature verification or DSA signature verification 	
	Role Based authentication	• Via RADIUS or TACACS+: pre- shared secret, minimum 10 characters.	
AS2-FIPS PIC	Identity-based operator authentication	Serial Number (6 bytes) and Password (32 bytes)	
RE to RE	Identity-based operator authentication	Pre-shared keys The RE role will use pre-shared keys for secure communication.	
IKE Peer	Identity-based operator authentication	Uses IKE Pre-shared keys. Uses IKE to establish keys to be used by the PIC for IPSec communication with IPSec clients.	
Protocol PEER	Role Based authentication	 Will use pre-shared keys to send encrypted traffic. Uses TCP/UDP MD5 MAC to only authenticate operator. Alternatively, a manually configured IPSec SA can be used for authentication. 	

 Table 3 – Roles and Required Identification and Authentication

Table 4 – Strengths of Authentication Mechanisms		
Authentication Mechanism	Strength of Mechanism	
Username and Password	The module enforces 10 character passwords (at minimum) chosen from the 96+ human readable ASCII characters.	
	The module enforces a timed access mechanism as follows: The first two failed attempts (assuming 0 time to process) no timed access is enforced. Upon the third attempt the module enforces a 5 second delay. Each failed attempt thereafter results in an additional 5 second delay above the previous (e.g. 4 th failed attempt = 10 second delay, 5 th failed attempt = 15 second delay, 6 th failed attempt = 20 second delay, 7 th failed attempt = 25 second delay).	
	This leads to a maximum of 7 possible attempts in a one minute period for each getty. The best approach for the attacker would be to disconnect after 4 failed attempts, and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing a 0.6 attempts. Thus the probability of a successful random attempt is 1/96^10, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 9/96^10 which is less than 1/100,000.	
RSA Signature	The module supports RSA (1024 or 2048 bit) which have a minimum equivalent computational resistance to attack of either 2^80 or 2^112 depending on the modulus size. Thus the probability of a successful random attempt is 1/2^80 or 1/2^112, which are both less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 5.6e7/2^80 or 5.6e7 / 2^112 which are both less than 1/100,000.	
DSA Signature	The module supports DSA (1024 bit only) which have an equivalent computational resistance to attack of 2^80. Thus the probability of a successful random attempt is 1/ 2^80, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 5.6e7 / 2^80 which is less than 1/100,000.	
AS2-FIPS PIC Password	The module supports 32 byte passwords to authenticate the PIC. Thus the probability of a successful random attempt is $1/255^{32}$, which is less than $1/1$ million. The probability of a success with multiple consecutive attempts in a one minute	

Table 4 –	Strengths	of Authentication	Mechanisms
I UDIC I	Suciens	or requiremented	

	period is 4,940,716 /255^32 which is less than 1/100,000.
RE to RE Pre-shared keys	The module uses 160 bit HMAC keys for RE to RE authentication. Thus the probability of a successful random attempt is 1/2^160, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 54,347,880 /2^160 which is less than 1/100,000.
IKE Pre-shared keys	The module uses 160 bit HMAC keys for RE to RE authentication. Thus the probability of a successful random attempt is 1/ (2^160), which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 54,347,880 /(2^160) which is less than 1/100,000.
Protocol Peer Pre-shared keys	The module supports TCP-MD5 with a 128 bit pre-shared key. Thus the probability of a successful random attempt is 1/ (2^128), which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one minute period is 54,347,880 / (2^128) which is less than 1/100,000.

6. Access Control Policy

Roles and Services

Table 5 – Services Authorized for Roles	
Role	Authorized Services
User: Configures and monitors the router via the console, SSH, or TLS.	 <u>Configuration Management:</u> This service allows the User to configure the router. <u>Router Control:</u> This service allows the user to modify the state of the router. (Example: Shutdown, reboot) <u>Status Checks:</u> This service will allow the user to get the current status of the router. <u>SSH:</u> This service provides encrypted login via the SSH protocol. <u>TLS:</u> This service provides encrypted login via the TLS protocol. <u>Console Access:</u> This service provides direct login access via the console.

Cryptographic-Officer: Configures and monitors the RE via the console, SSH, or TLS. Also has permissions to view and edit secrets within the RE.	 <u>Configuration Management:</u> This service allows the CO to configure the router. <u>Router Control:</u> This service allows the user to modify the state of the router. (Example: Shutdown, reboot) <u>Status Checks:</u> This service will allow the user to get the current status of the router. <u>Zeroize:</u> This service allows the user to zeroize the configuration (all CSPs) within the module. <u>Load New Software:</u> This service allows the verification and loading of new software into the router. <u>SSH:</u> This service provides encrypted login via the SSH protocol. <u>TLS:</u> This service provides encrypted login via the TLS protocol. <u>Console Access:</u> This service provides direct login access via the console.
AS2-FIPS PIC	 <u>Receives SAs:</u> Allows the PIC to receive the SAs associated with a particular IPSec tunnel <u>Secure IPC Tunnel:</u> Allows the PIC to communicate with the RE using a secure tunnel.
RE to RE The RE role is able to communicate with other RE's to enable failover capabilities.	 <u>Configuration Management:</u> Allows propagation of configuration database to the backup RE. <u>Router Control:</u> Allows the Master RE to control the state of the backup RE. <u>Status Checks:</u> This service will allow the user to get the current status of the router (Ports, Number of Packet, Up Time, etc.) <u>Secure Transport:</u> Allows the Master RE to communicate with the Backup RE using a secure IPSEC connection.
IKE Peer This role performs IKE	• <u>Key Agreement:</u> Allows the negotiation of keys for use with an IPSec tunnel.

negotiation with the RE. The IKE peer will create SAs for the AS2-FIPS PIC to use when using IPSec with a VPN client in cyberspace.	
Protocol PEER This role allows remote router to communicate with the RE via standard networking protocols. The	 <u>Mutual Authentication:</u> Allows validating a known protocol peer. <u>Protocol Exchange:</u> Allows the peers to communicate using an agreed upon protocol.
supported routing protocols (BGP, ISIS, LDP, MSDP, OSPF, RIP2, RSVP, VRRP, NTP) authenticate peers to each other for purpose of updating routing tables.	 <u>Secure Protocol Transport:</u> Allows IPSec connection between Protocol Peer and router. <u>SNMPv3:</u> Allows the Protocol peer to use SNMPv3 on the router. Note that the cryptography supported by SNMPV3 has only been implemented to support the underlying protocol; no security attributes are attributed to the SNMPV3 functionality.

Unauthenticated Services:

The cryptographic module supports the following unauthenticated services:

- PIC Software Image Load: Downloads PIC software image to PIC.
- Receive Service Set Configuration: Allows the PIC to receive service set configuration database.
- Show status: This service provides the current status of the cryptographic module.
- Self-tests: This service executes the suite of self-tests required by FIPS 140-2.
- Routing Protocols: Unauthenticated routing protocols (e.g. TCP, UDP)
- SNMP Traps (Status)

Definition of Critical Security Parameters (CSPs)

	Description
CSP	Description
SSH Private Host Key	1 st time SSH is configured the key is generated. RSA, DSA. Used to Identify the host.
SSH Session Key	Session keys used with SSH, TDES (3key), AES 128, 192, 256, HMAC-SHA-1 key (160), DH Private Key 1024
TLS Host Certificate, Private Portion	X.509 Certificates for TLS for authentication. RSA or DSA
TLS Session Parameters	Session keys used with TLS, TDES (2 or 3 key), AES 128, 192, 256, HMAC-SHA-1; Pre-master Secret
User Authentication Key	HMAC-SHA-1 Key
	Used to authenticate users to the module.
CO Authentication Key	HMAC-SHA-1 Key
	Used to authenticate COs to the module.
IPSec SAs	Session keys used within IPSec.
	TDES (3 key), HMAC-SHA-1
IKE Session Parameters	Nonces, DH Private Key 1024 bit keys, TDES, HMAC-SHA-1, used within IKE
Secure IPC (Internal) Session Key	TDES (3Key)
	Used to communicate securely between the RE and the PIC
RE to RE Authentication Key	HMAC Key (Manual IPSecSA)
	160 bit key with 96 bit truncated MAC.
RE to RE Encryption Key	TDES key (Manual IPSec SA)
Protocol Peer Authentication Keys	<i>TCP-MD5 key to authenticate the routing peer role</i> <i>for the following protocols:</i>
	BGP, ISIS, LDP, MSDP, OSPF, RIP2, RSVP, VRRP, NTP, APSCP

Table 6 – Table of CSPs

CSP	Description
ASPIC password	32 byte password
RADIUS shared secret	Used to authenticate COs and Users (10 chars minimum)
	This includes the Authentication Data Block
TACACS+ shared secret	Used to authenticate COs and Users (10 chars minimum)
	This includes the Authentication Data Block
Manual SA for PIC	Entered into the RE, which is then passed over to the PIC for use by PIC with IPSEC

Definition of Public Keys

Кеу	Description/Usage
SSH Public Host Key	1 st time SSH is configured the key is generated. RSA (1024 or 2048 bit), DSA. Identify the host.
TLS Host Certificate, Public Portion	X.509 Certificates for TLS for authentication. RSA (1024 or 2048 bit) or DSA
User Authentication Public Keys	Used to authenticate users to the module. RSA (1024 or 2048bit) or DSA
CO Authentication Public Keys	Used to authenticate CO to the module. RSA (1024 or 2048 bit) or DSA
JuniperRootCA	RSA 2048 bit X.509 Certificate
	Used to verify the validity of the Juniper Image at software load and also at runtime for integrity.
EngineeringCA	RSA 2048 bit X.509 Certificate
	Used to verify the validity of the Juniper Image at software load and also at runtime for integrity.

Table 7 – Table of Public Keys

Key	Description/Usage
PackageCA	RSA 2048 bit X.509 Certificate
	Used to verify the validity of the Juniper Image at software load and also at runtime for integrity.
PackageProduction	RSA 2048 bit X.509 Certificate
	Certificate that holds the public key of signing key that was used to generate all the signatures used on the packages and signature lists.
<i>RE RSA Verify Key (Public Authentication key)</i>	RSA 1024 bit sent to the PIC to sign data to allow the PIC authenticate to RE by have the PIC sign data that is verified by the RE
PIC RSA Verify (Public Authentication) Key	RSA 1024 bit key to allow the RE to authenticate to the PIC by signing data and having the PIC verify the signature.
PIC RSA Encrypt Key	RSA 1024 bit used to encrypt the TDES session key.
RE RSA Encrypt Key	RSA 1024 bit sent to the PIC; note that the PIC never uses this key
DH Public Keys	Used within IKE and SSH for key establishment

Definition of CSPs Modes of Access

Table 8 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as follows:

Role		Service	Cryptographic Keys and				
со	User	RE	ASPIC	IKE Peer	Prot. Peer		CSPs Access Operation R=Read, W=Write, D=Delete
х						Configuration Management	All CSPs (R , W , D)
	х					Configuration Management	No access to CSPs
		Х				Configuration Management	All CSPs (R , W)

Table 8 – CSP Access Rights within Roles & Services

Х	Х	Х				Router Control	No access to CSPs
Х	Х	Х				Status Checks	No access to CSPs
Х						Zeroize	All CSPs (D)
			Х			Receives SAs	Relevant IPSec SAs (R)
				Х		Key Agreement	IPSec SAs (R)
					Х	Mutual Authentication	Relevant Authentication data: (R)
					x	Protocol Exchange (OSPF, VRRP, etc)	No access to CSPs
Х						Load New Software	No access to CSPs
Х	Х					SSH	SSH session key (R)
Х	Х					TLS	TLS session parameters (R)
Х	Х					Console Access	CO Authentication Key, User Authentication Key (R)
		х	х			Secure IPC Tunnel	Secure IPC (Internal) Session Key (R)
		х				Secure transport	RE to RE Encryption Key, RE to RE Authentication Key (R)
					x	Secure Protocol transport	Protocol Peer Authentication Keys R

7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the cryptographic module is a limited operational environment.

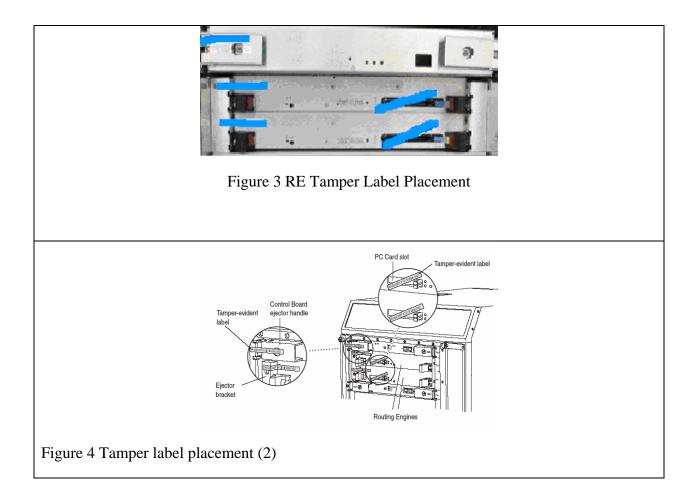
8. Security Rules

The cryptographic module's design corresponds to the cryptographic module's security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 2 module.

- 1. The cryptographic module shall provide six distinct operator roles. These are the FIPS User role, the Cryptographic-Officer role, RE Role, PIC Role, IKE Peer Role, and Protocol Peer.
- 2. The cryptographic module shall support both role-based and identity based authentication mechanisms.

- 3. Authentication of identity to an authorized role is required for all services that modify, disclose, or substitute CSPs, use Approved security functions, or otherwise affect the security of the cryptographic module.
- 4. The cryptographic module shall perform the following tests:
 - Power up tests
 - A. Cryptographic algorithm tests
 - i. DES CBC KAT
 - ii. TDES CBC KAT
 - iii. AES CBC KAT
 - iv. AES CFB KAT
 - v. SHA-1 KAT
 - vi. HMAC-SHA-1 KAT
 - vii. RSA pairwise consistency test (sign/verify & encrypt/decrypt)
 - viii. DSA pairwise consistency test (sign/verify)
 - ix. FIPS 186-2 DRNG KAT
 - B. Firmware integrity test:
 - i. RSA digital signature verification (PKCS1.5, 2048 bit key, SHA-1) and SHA-1 hash verification
 - C. Critical functions tests
 - i. Verification of Limited Environment
 - ii. Verification of Integrity of Optional Packages
 - Conditional tests
 - A. Pairwise consistency tests
 - i. RSA pairwise consistency test (sign/verify & encrypt/decrypt)
 - ii. DSA pairwise consistency test (sign/verify)
 - B. Firmware load test: RSA digital signature verification (2048 bit key)
 - C. Manual key entry test: duplicate key entries test
 - D. Continuous random number generator test: performed on the Approved FIPS 186-2, Appendix 3.1 DRNG, and on a non-Approved RNG that is used to seed the Approved DRNG.
 - E. Bypass test is not applicable.

- 6. At any time the cryptographic module is in an idle state, the operator shall be capable of commanding the module to perform the power-up self-test by power cycling the module.
- 7. Prior to each use, the internal RNG shall be tested using the continuous random number generation conditional test.
- 8. Data output shall be inhibited during key generation, self-tests, zeroization, and error states.
- 9. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 10. The module shall support concurrent operators.
- 11. The FIPS module is a combination of Routing Engine and Juniper Router Platform Chassis in which the RE is installed. The Routing Engine must be installed on one of the approved chassis as listed above per Juniper installation guidance. The installation shall include the placement of tamper labels installed in specific locations on the module.


9. Physical Security Policy

Physical Security Mechanisms

JUNOS-FIPS-L2's physical embodiment is that of a multi-chip standalone device that meets Level 2 physical security requirements. The module is completely enclosed in a nickel or clear zinc coated cold rolled steel and plated steel and brushed aluminum. The cryptographic boundary does not have any gaps or openings what so ever. There are no ventilation holes, gaps, slits, cracks, slots, crevices, etc. that would allow observation of any kind to any component contained within the physically contiguous cryptographic boundary. Tamper evident seals are used to provide evidence in the case that the module was physically tampered with.

Physical Security	Recommended Frequency of	Inspection/Test Guidance
Mechanisms	Inspection/Test	Details
Tamper Labels, opaque metal enclosure.	Upon receipt of the module and per security policy of end user.	Labels should be free of any tamper evidence.

Table 9 – Inspection/Testing of Physical Security Mechanisms

10. Mitigation of Other Attacks Policy

The module has not been designed to mitigate attacks, which are outside of the scope of FIPS 140-2.

Table 10 –	Mitigation	of Other	Attacks
-------------------	------------	----------	---------

Other Attacks	Mitigation Mechanism	Specific Limitations
N/A	N/A	N/A

11. Definitions and Acronyms

ACRONYM DESCRIPTION

AES	Advanced Encryption Standard
DES	Data Encryption Standard
DRNG	Deterministic Random Number Generator (aka. Pseudo Random Number Generator)
DSA	Digital Signature Algorithm
EMC	Electro-Magnetic Compatibility
EMI	Electro-Magnetic Interference
FIPS	Federal Information Processing Standard
GMPLS	General Multi-protocol Label Switching
HMAC-SHA-1	Keyed-Hash Message Authentication Code
IKE	Internet Key Exchange Protocol
IPSEC	Internet Protocol Security
MD5	Message Digest 5
MPLS	Multi-protocol Label Switching
PIC	Physical Interface Card
RADIUS	Remote Authentication Dial-In User Service
RE	Routing Engine
RSA	Public-key encryption technology developed by RSA Data Security, Inc. The acronym stands for Rivest, Shamir, and Adelman.
SHA-1	Secure Hash Algorithms
SSH	Secure Shell
SSL	Secure Sockets Layer
TACACS	Terminal Access Controller Access Control System
ТСР	Transmission Control Protocol
TDES	Triple - Data Encryption Standard
TLS	Transport Layer Security
UDP	User Datagram Protocols