

Protegrity Cryptographic Module

FIPS 140-2 Non-Proprietary Security Policy

DOCUMENT VERSION – 1.1

DATE – 1/28/2015

Copyright © 2015 Protegrity Corporation. This document can be reproduced and distributed only
whole and intact, including this copyright notice.

FIPS 140-2 Non-Proprietary Security Policy FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 2 of 24

Contents
1 Introduction .. 5

1.1 Summary ... 5

1.2 Purpose of the Security Policy ... 5

1.3 Target Audience .. 5

1.4 Document reference .. 5

1.5 Naming Conventions used in the documentation .. 5

2 Cryptographic Module Specification .. 6

2.1 Description of module .. 6

2.2 Description of modes of operation ... 7

2.3 Cryptographic Module Boundary .. 8

2.4 Hardware Block Diagram .. 9

3 Ports and Interfaces ... 10

4 Roles, Services and authentication .. 11

4.1 Roles ... 11

4.2 Services .. 11

4.3 Operator authentication ... 14

4.4 Mechanism and authentication Strength ... 14

5 Physical security ... 15

6 Operational environment .. 16

6.1 Policy .. 16

6.2 Operational Rules .. 16

7 Cryptographic Key Management .. 17

7.1 Key/CSP Generation .. 17

7.2 Key Entry and Output .. 17

7.3 Key Storage ... 17

7.4 Key Zeroization .. 17

8 Electro Magnetic Interference/Compatibility .. 19

9 Self-tests ... 20

9.1 Integrity test .. 20

9.2 Known-Answer tests .. 20

9.3 On-Demand Tests ... 20

9.4 Error State ... 21

10 Design assurance .. 22

10.1 Configuration Management ... 22

10.2 Delivery and Operation .. 22

11 Mitigation of other attacks .. 23

FIPS 140-2 Non-Proprietary Security Policy FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 3 of 24

12 Abbreviations .. 24

List of figures and tables FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 4 of 24

List of figures and tables

TABLE 1: SECURITY COMPONENTS AND LEVEL 6
TABLE 2: TESTED PLATFORMS 7
FIGURE 1: PHYSICAL BOUNDARY 8
FIGURE 2: HARDWARE BLOCK DIAGRAM 9
TABLE 3: PORTS AND INTERFACES 10
TABLE 4: SERVICES 14
TABLE 5: KEY ZEROIZATION 18
TABLE 6: EMC/EMI COMPATIBILITY 19

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 5 of 24

1 Introduction

1.1 Summary
This document is a non-proprietary Security Policy for the Protegrity Cryptographic
Module. It describes the module and the FIPS 140-2 cryptographic services it provides.
This document also defines the FIPS 140-2 security rules for operating the module.

The Protegrity Cryptographic Module is intended to be used in other Protegrity products
when compliance with FIPS 140-2 security level 1 requirements is required.

1.2 Purpose of the Security Policy
These are the main reasons why a Security Policy document is required:

• It is required for FIPS 140-2 security level 1 validation.

• It allows individuals and organizations to determine whether the Protegrity
Cryptographic Module as implemented satisfies the stated Security Policy.

• It describes the capabilities, protections and access rights provided by the
Protegrity Cryptographic Module that will allow individuals and organizations to
determine whether it satisfies their security requirements.

1.3 Target Audience
This document will be one of many that are submitted as a package for FIPS validation; it
is intended for the following people:

• Developers working on the release.

• The FIPS 140-2 testing lab.

• Cryptographic Module Validation Program (CMVP).

• Consumers.

1.4 Document reference
The enumerated list below shows the documents that are describing the usage guidelines
for the Protegrity Cryptographic module.

• Finite state model

• Security Policy

• API Reference

1.5 Naming Conventions used in the documentation
Within the scope of documentation the Protegrity Cryptographic Module can be
abbreviated as the “Crypto Module” or “Protegrity module” or “Protegrity Crypto module”.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 6 of 24

2 Cryptographic Module Specification
This document is the non-proprietary security policy for the Protegrity Crypto Module and
was prepared as part of the requirements for conformance to Federal Information
Processing Standard (FIPS) 140-2, Level 1.

The following section describes the module and how it complies with the FIPS 140-2
standard in each of the required areas.

2.1 Description of module
The Protegrity Crypto module is a software only security level 1 cryptographic module that
provides general-purpose cryptographic services to any application requiring
cryptographic functionality. The Protegrity Crypto module meets the requirements of a
multi-chip standalone module.

The module is shipped as a standalone shared library with an Application Programming
Interface (API) suitable for the C programming language.

The module’s logical boundary is its binary file, which contains the compiled
implementation of all supported functionality.

The module contains the following cryptographic functionality:

• Symmetric key encryption and decryption

• Cryptographic hash function

Security Component Security Level

Cryptographic Module specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of other attacks N/A

Table 1: Security Components and Level

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 7 of 24

The module has been tested on the following platforms:

Module OS and Version Hardware Processor

Protegrity Crypto
Module 1.0

Linux SLES 11 64-bit IBM x3550
model 7978

Intel x86_64

Protegrity Crypto
Module 1.0

Microsoft Windows Server
2008 64-bit

IBM x3550
model 7978

Intel x86_64

Protegrity Crypto
Module 1.0

IBM z/OS 2.1 IBM zEC12 IBM zEC12

Table 2: Tested platforms

2.2 Description of modes of operation
The Protegrity Crypto Module supports a FIPS mode of operation (which is the FIPS
approved mode) and non-FIPS mode of operation. The Crypto Module turns to FIPS mode
of operation after the power-up tests are successfully completed.

In FIPS mode of operation, the Protegrity Crypto Module provides support for the
following FIPS-approved functions:

• AES (CBC mode) encryption/decryption

• TDES (CBC mode) encryption/decryption

• SHA-1 (for integrity check only) message digest

• HMAC-SHA1 message authentication code

If the Protegrity Crypto Module is executed in non-FIPS mode of operation the following
functions are available:

• DTP2-AES (CBC mode) encryption/decryption

• DTP2-TDES (CBC mode) encryption/decryption

• DTP2-HMAC-SHA1 message authentication code

• CUSP-AES (CBC and ECB mode) encryption/decryption

• CUSP-TDES (CBC and ECB mode) encryption/decryption

• AES (ECB mode) encryption/decryption

• TDES (ECB mode) encryption/decryption

• MD5 message digest

• HMAC-MD5 message authentication code

Note: AES and TDES in ECB mode are non-compliant as they have not been CAVS
validated.

See section 10.2 for further instructions on how to set to FIPS mode and non-FIPS mode
during the operation of the Protegrity crypto module.

The description of the non-Approved functions DTP2 and CUSP are given below:

• DTP2

o The DTP2 algorithm is a data type and length preserving symmetric
encryption and decryption algorithm.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 8 of 24

o The DTP2 algorithm is implemented using regular FIPS approved
algorithms, which are:

 AES (key size 128 and 256),

 TDES (key size 168), and

 SHA1.

o The DTP2 algorithm is patented by Protegrity.

o The DTP2 algorithm has not been validated by the CAVP.

• CUSP

o The CUSP algorithm is a data type and length preserving symmetric
encryption and decryption algorithm mainly used in the mainframe (z/OS,
OS390) environment.

o Supported underlying algorithms are: AES key size 128 and 256, TDES key
size 168.

o The CUSP algorithm has not been validated by the CAVP.

No keys or CSP’s are shared in between Approved and Non-Approved modes
of operations.

2.3 Cryptographic Module Boundary
The module is shipped as a stand-alone shared library with an Application Programming
Interface (API) suitable for the C programming language. The logical boundary of the
module is the binary code (shared library) of the Protegrity Crypto Module. The binary’s
name is pty_crypto.plm; the same file name is used for all platforms (O/S and hardware)
but delivered in different package names depending on each target platform.

Figure 1 shows the boundary of the Protegrity Crypto Module:

FIGURE 1: PHYSICAL BOUNDARY

Protegrity
Crypto Module

Computer - Physical Boundary

Application
API Calls

Shared Library – Logical Boundary
(Not part of
validation scope)

Caller CSPs

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 9 of 24

2.4 Hardware Block Diagram
The physical boundary of the module is the enclosure of the test platform on which the
software module executes. Figure 2 shows the physical boundary of the module and
hardware components of the platforms on which the module executes.

An image of the Protegrity Crypto Module is stored in persistent storage and loaded into
the memory space belonging to the calling application's process when the calling
application loads the shared library the cryptographic module.

FIGURE 2: HARDWARE BLOCK DIAGRAM

RAM Input /
Output
Control

Unit

Clock

CPU

Keyboard

Hard Disk

Mouse

pty_crypto.plm

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 10 of 24

3 Ports and Interfaces
As a software module, it does not have physical ports. Ports and interfaces are interpreted
as the module’s API, which is a logical interface.

Logical Interface Description

Data Input API input parameters

Data Output API output parameters

Control Input API function calls

Status Output API return codes and API return text messages

Table 3: Ports and Interfaces

Control over physical ports is outside of the module’s scope since it is a software module.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 11 of 24

4 Roles, Services and authentication

4.1 Roles
Based on who is interacting with the module and the nature of the interaction, Crypto
Officer Role and User Role are defined for the Module as the following:

• The Crypto-Officer Role is played by the human user who integrates, installs and
configures the Module to work with applications. The tasks performed by the
Crypto-Officer role is detailed in section 10.2

• User Role is played by the calling application that uses the services provided by the
Module as listed in Table 4 in section 4.2.

4.2 Services
Services provided by the Module are requested by the calling application. Cryptographic
keys are provided by the calling application as input parameters. Access to internal
storage of those keys or any other CSP is not allowed.

Service CSP Modes FIPS
Approved?
If yes,
Cert.#

Standard API functions

Service provided via symmetric algorithms

AES encryption
and decryption

128 and 256 bit
keys

CBC #2922,
#2923,
#2926

FIPS 197

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

TDES
encryption and
decryption

Key 1, Key 2
and Key 3 (168
bit key size)

CBC #1735,
#1736,
#1739

SP 800-67

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

Hash function services

SHA-1

N/A N/A #2458,
#2459,
#2462

FIPS 180-4

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 12 of 24

PTY_DecryptCtx

PTY_CleanupCryptoCtx

Message Authentication Code services

HMAC-SHA1

256-bit HMAC
key

N/A #1849,
#1850,
#1853

FIPS 198

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

Other security services

DTP2-AES 128 and 256 bit
keys

CBC No proprietary PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

DTP2-TDES Key 1, Key 2
and Key 3 (168
bit key size)

CBC No proprietary PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

DTP2-HMAC-
SHA1

256-bit HMAC
key

N/A No proprietary PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

CUSP-AES 128 and 256 bit
keys

CBC&
ECB

No proprietary PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 13 of 24

CUSP-TDES Key 1, Key 2
and Key 3 (168
bit key size)

CBC &
ECB

No proprietary PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

AES ECB FIPS 197

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

TDES ECB SP 800-67

PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

MD5 RFC1321 PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

HMAC-MD5 FIPS 198 PTY_Encrypt

PTY_Decrypt

PTY_CreateCryptoCtx

PTY_EncryptCtx

PTY_DecryptCtx

PTY_CleanupCryptoCtx

Other non-security services

Initialization N/A N/A When module is loaded

Set FIPS mode
on/off

N/A N/A PTY_FIPS_SetMode

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 14 of 24

Show status N/A N/A PTY_FIPS_GetState

PTY_FIPS_GetStateInfo

Get current
mode

N/A N/A PTY_FIPS_GetMode

Self-test N/A N/A PTY_FIPS_SelfTest

Get Version N/A N/A PTY_FIPS_GetVersion

Table 4: Services

4.3 Operator authentication
There is no operator authentication; assumption of role is implicit by action.

4.4 Mechanism and authentication Strength
Not applicable.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 15 of 24

5 Physical security
Due to the fact that this is a software module it does not provide with any physical
security.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 16 of 24

6 Operational environment
The Module operates in a modifiable operational environment.

6.1 Policy
The operational environment prevents access by other processes to keys and CSPs during
the time the Protegrity Crypto Module is running. The Module provides a private context
per process for key and CSP storage, which is then destroyed upon request by the
process or when the module is powered off (unloaded).

The operating systems segregate user processes into separate process spaces. Each
process space is logically separated from all other processes by the operating system
software and hardware. The module functions entirely within the process space of the
calling application.

The operational environment must be accessed by a single user. No concurrent operators
are allowed.

6.2 Operational Rules
The following rules must be followed in order to operate the Protegrity Crypto Module
securely:

1. The authentication mechanism provided by the operational environment must be
enabled in order to prevent unauthorized users from being able to access system
services.

2. The operational environment must prevent unauthorized reading, writing or
modification of the Protegrity Crypto Module memory space.

3. Communication between the calling application and the cryptographic module to
request services must be performed exclusively through the documented API
functions mentioned in section 4.2.

4. It is the responsibility of the calling application to protect keys sent to the
cryptographic module.

5. It is the responsibility of the calling application to zeroize the crypto contexts
created to request cryptographic services through the corresponding API functions
(see section 7.4).

6. Only one user at a time can access the Operational Environment.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 17 of 24

7 Cryptographic Key Management

7.1 Key/CSP Generation
The Protegrity Crypto Module neither generates keys in general nor performs key
generation for any of its approved algorithms; instead, keys are passed in from clients by
way of the module APIs.

7.2 Key Entry and Output
All CSPs enter the Protegrity Crypto Module's logical boundary as cryptographic algorithm
API parameters in plaintext. They are associated with memory locations and do not
persist across power cycles. The Protegrity Crypto Module does not output intermediate
key generation values or other CSPs.

The Protegrity Crypto Module provides a private context per process for key and CSP
storage.

7.3 Key Storage
The Protegrity Crypto Module does not provide persistent key storage for keys or CSPs
and they also are not stored inside the Protegrity Crypto Module. Instead, pointers to
plaintext keys are passed through the Protegrity Crypto Module and keys/CSPs exist only
in the volatile memory that is assigned to the process within which the Module runs.

7.4 Key Zeroization
Whenever CSPs are de-allocated, zeroization is done using different kernel memory
zeroization APIs, with a value of 0 and a size equal to that of the CSP. The APIs listed in
the table below internally call memset() function for performing zeroization.

Table 5 summarizes details regarding what key management the Module provides.

Key/CSP Name Details Zeroization

128 and 256 bit
AES keys

Accessible by Roles: User,
Crypto Officer

Generation: N/A
Type: Encrypt and decrypt
Entry: API parameter
Output: N/A
Storage: N/A

Zeroization is done internally by the
module when PTY_Encrypt or PTY_Decrypt
is called.

Zeroization is also done when
PTY_CleanupCryptoCtx is called; this
requires the functions
PTY_CreateCryptoCtx and PTY_EncryptCtx
or PTY_DecryptCtx have to be called prior.

TDES 3-Key Accessible by Roles: User,
Crypto Officer

Generation: N/A
Type: Encrypt and decrypt
Entry: API parameter
Output: N/A
Storage: N/A

Zeroization is done internally by the
module when external PTY_Encrypt or
PTY_Decrypt is called.

Zeroization is also done when
PTY_CleanupCryptoCtx is called; this
requires the functions
PTY_CreateCryptoCtx and PTY_EncryptCtx
or PTY_DecryptCtx have to be called prior.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 18 of 24

HMAC Keys Accessible by Roles: User,
Crypto Officer

Generation: N/A
Type: Keyed-Hash Message
Authentication
Entry: API parameter
Output: N/A
Storage: N/A

Zeroization is done internally by the
module when PTY_Encrypt or PTY_Decrypt
is called.

Zeroization is also done when
PTY_CleanupCryptoCtx is called; this
requires the functions
PTY_CreateCryptoCtx and PTY_EncryptCtx
or PTY_DecryptCtx have to be called prior.

256-bit HMAC
Key for module
integrity check

Accessible by Roles: Crypto
Officer

Generation: N/A
Type: Keyed-Hash Message
Authentication
Entry: API parameter
Output: N/A
Storage: Module Binary

Zeroization not required per FIPS 140-2 IG
7.4

Table 5: Key Zeroization

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 19 of 24

8 Electro Magnetic Interference/Compatibility
Testing Platform Product Name / Model EMI / EMC information

IBM IBM System x3550 (Type 7978) Compliant to part 15 of FCC
rules, according to “IBM System
x3550 type 7978 Installation
guide1”:

“This equipment has been
tested and found to comply with
the limits for a Class A digital
device, pursuant to Part 15 of
the FCC Rules.”

IBM zEC12 Compliant to part 15 of FCC
rules, according to “zEnterprise
EC12 Installation Manual for
Physical Planning 2827 All
Models2”:

“This equipment has been
tested and found to comply with
the limits for a Class A digital
device, pursuant to Part 15 of
the FCC Rules”.

Table 6: EMC/EMI Compatibility

1 See page 80 in Appendix B of IBM System x3550 type 7978 Installation guide.
2 See page 146 in Appendix G of zEnterprise EC12 Installation Manual for Physical Planning 2827 All
Models (IBM Edition: GC28-6914-01)

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 20 of 24

9 Self-tests
The Protegrity Crypto Module performs power up self-tests that are executed
automatically without requiring any operator intervention when the module gets loaded
into the address space of the calling application. While the module is performing the
power-up tests no other functions are available and all output is inhibited.

If the power up self-tests fail, the module is set to the ERROR state. If the tests pass, the
module is set to FIPS mode and cryptographic services are available. The result of the
power-up tests can be obtained by calling the function PTY_FIPS_GetState(), which
provides the status indicator (status output interface).

9.1 Integrity test
During the software build process, the Protegrity Crypto Module is used to compute a
HMAC-SHA-1 message authentication code (MAC) of the Module binary. The MAC is then
stored within the Module, except on the z/OS mainframe platform, where the MAC is
stored in a separate file.

During process of loading the Protegrity Crypto Module, the HMAC-SHA-1 MAC of the
binary is computed again and compared to the original MAC calculated for the module. If
the comparison passes, the Module is loaded and the known-answer tests are run; if all
tests pass, the Module enters the FIPS-Approved mode. If any of the known-answer tests
fail, error messages are returned to the calling application, the module is set in an ERROR
state and no further operations are allowed.

9.2 Known-Answer tests
Once the integrity test passes, the Protegrity Crypto Module performs the following
known-answer tests (also referred to cryptographic algorithm tests):

• AES Encryption/Decryption tested separately for CBC mode.

• Triple-DES Encryption/Decryption tested separately for CBC mode.

• HMAC-SHA1

• SHA1

If the values calculated and the known answers do not match then the module will be set
in an ERROR state and no further operations are allowed.

9.3 On-Demand Tests
On-Demand tests can be invoked by calling the specific API function for self-test -
PTY_FIPS_SelfTest. This will only run the Known-Answer tests. The Integrity test will be
executed only during power up self-tests.

While the module is performing the on-demand self-tests no other functions are available
and all output is inhibited.

If all Known-Answer tests pass, the function will return a successful code and the module
will remain in the current state. If any of the test fails, the function will return an error
code and the module will transition to the Error state.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 21 of 24

9.4 Error State
The cryptographic module transitions to the ERROR state when the self-tests fail
(executed either during power-up tests or requested on-demand). During the ERROR
state, all output is inhibited and cryptographic operations are no longer allowed. The only
services allowed in the ERROR state are ‘Get Version’, ‘Show Status’ and ‘Get current
Mode’. The module needs to be reloaded in order to recover from the ERROR state.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 22 of 24

10 Design assurance

10.1 Configuration Management
Protegrity manages and records all source code and documentation by using the Apache
Subversion version control system – http://subversion.apache.org/

Access to the Subversion repository is granted or denied by the server administrator
based on company and team policy.

10.2 Delivery and Operation
The Crypto module is delivered in a package for each target platform:

• PtyCrypto_Linux_x64_1.0.0.1.tgz
• PtyCrypto_Windows_x64_1.0.0.1.zip
• PtyCrypto_zOS_Mainframe_1.0.0.1.tgz

The Crypto module (pty_crypto.plm) is delivered in binary form as a pre-compiled shared
library. The deliverables also include C-header files and the fingerprint calculated for the
Crypto module (only for the z/OS mainframe platform).

When a Crypto Officer receives the module delivered in .tgz or .zip file, he shall follow the
instructions provided in the Crypto Officer User Guidance to unzip it in an appropriate
subdirectory and install the module, then follow the API reference documentation to
integrate it into applications.

Version of the Crypto module is provided in the package name. The version of the Crypto
module can be also obtained programmatically using the PTY_FIPS_GetVersion() function.

The Crypto module is automatically initialized when it is loaded, whereby a series of self-
tests are run on the module. The tests include examining the integrity of the shared
library and the correct operation of the cryptographic algorithms. If all tests are
successful then the module is set to be in FIPS mode. If any of the tests fail the module
will be disabled and no cryptographic services can be utilized. To recover from the error
state the module has to be reloaded.

The PTY_FIPS_GetState() function can be used to return the current status of the
cryptographic module. The calling application must invoke this function to verify that the
Crypto module has been loaded successfully and is fully operational.
The Crypto module can be set to FIPS mode or non-FIPS mode using the
PTY_FIPS_SetMode(mode) function (mode=1 for FIPS mode, mode=0 for non-FIPS
mode). The PTY_FIPS_GetMode() function can be used to obtain the current mode of the
module (FIPS mode, non-FIPS mode).

At any point in time the user can run a self-test by invoking the PTY_FIPS_SelfTest()
function. This will test the correct operation of the cryptographic algorithms. If any of the
tests fail the module will be disabled and no cryptographic services can be run. To recover
from the error state the module has to be reloaded.

http://subversion.apache.org/

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 23 of 24

11 Mitigation of other attacks
No other attacks are mitigated.

 FIPS 140-2 Security Policy

1/28/2015 Copyright © 2015 Protegrity Corporation page 24 of 24

12 Abbreviations
AES Advanced Encryption Specification

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CUSP Cryptographic Unit Service Provider mode of
encryption (IBM)

CO Crypto Officer

CSP Critical Security Parameter

DES Data Encryption Standard

DTP2 Data Type Preserving encryption version 2

FSM Finite State Model

HMAC Hash Message Authentication Code

KAT Known Answer Test

MAC Message Authentication Code

NIST National Institute of Science and Technology

O/S Operating System

PLM Protegrity Load Module, i.e. a shared library
like an .so file on a Unix environment or .dll
in a windows environment

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDES Triple DES

	Protegrity Cryptographic Module
	FIPS 140-2 Non-Proprietary Security Policy
	List of figures and tables
	1 Introduction
	1.1 Summary
	1.2 Purpose of the Security Policy
	1.3 Target Audience
	1.4 Document reference
	1.5 Naming Conventions used in the documentation

	2 Cryptographic Module Specification
	2.1 Description of module
	2.2 Description of modes of operation
	2.3 Cryptographic Module Boundary
	2.4 Hardware Block Diagram

	3 Ports and Interfaces
	4 Roles, Services and authentication
	4.1 Roles
	4.2 Services
	4.3 Operator authentication
	4.4 Mechanism and authentication Strength

	5 Physical security
	6 Operational environment
	6.1 Policy
	6.2 Operational Rules

	7 Cryptographic Key Management
	7.1 Key/CSP Generation
	7.2 Key Entry and Output
	7.3 Key Storage
	7.4 Key Zeroization

	8 Electro Magnetic Interference/Compatibility
	9 Self-tests
	9.1 Integrity test
	9.2 Known-Answer tests
	9.3 On-Demand Tests
	9.4 Error State

	10 Design assurance
	10.1 Configuration Management
	10.2 Delivery and Operation

	11 Mitigation of other attacks
	12 Abbreviations

