
Kernel Mode Cryptographic Primitives Library

Security Policy

for FIPS 140-2 Validation
Microsoft Windows 8

Microsoft Windows Server 2012

Microsoft Windows RT

Microsoft Surface Windows RT

Microsoft Surface Windows 8 Pro

Microsoft Windows Phone 8

Kernel Mode Cryptographic Primitives
Library (CNG.SYS)
DOCUMENT INFORMATION

Version Number 1.1
Updated On July 17, 2013

© 2013 Microsoft. All Rights Reserved Page 1 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2013 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

© 2013 Microsoft. All Rights Reserved Page 2 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://creativecommons.org/licenses/by-nd-nc/1.0/

Kernel Mode Cryptographic Primitives Library

TABLE OF CONTENTS

1 INTRODUCTION .. 7

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ... 8
1.2 BRIEF MODULE DESCRIPTION ... 8
1.3 VALIDATED PLATFORMS ... 8
1.4 CRYPTOGRAPHIC BOUNDARY ... 8

2 SECURITY POLICY .. 9

2.1 FIPS 140-2 APPROVED ALGORITHMS .. 11
2.2 NON-APPROVED ALGORITHMS .. 11
2.3 CRYPTOGRAPHIC BYPASS .. 12
2.4 MACHINE CONFIGURATIONS .. 12

3 OPERATIONAL ENVIRONMENT .. 12

4 INTEGRITY CHAIN OF TRUST .. 12

5 PORTS AND INTERFACES ... 12

5.1 CONTROL INPUT INTERFACE ... 14
5.2 STATUS OUTPUT INTERFACE .. 14
5.3 DATA OUTPUT INTERFACE ... 14
5.4 DATA INPUT INTERFACE .. 14
5.5 NON-SECURITY RELEVANT INTERFACES .. 14
5.5.1 CONFIGURATION ... 14
5.5.2 NON-APPROVED APIS .. 15

6 SPECIFICATION OF ROLES .. 16

6.1 MAINTENANCE ROLES .. 16
6.2 MULTIPLE CONCURRENT INTERACTIVE OPERATORS ... 16
6.3 OPERATOR AUTHENTICATION .. 16
6.4 SHOW STATUS SERVICES ... 16

© 2013 Microsoft. All Rights Reserved Page 3 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

6.5 SELF-TEST SERVICES ... 16
6.6 SERVICE INPUTS / OUTPUTS .. 16

7 SERVICES ... 17

7.1 CRYPTOGRAPHIC MODULE POWER UP AND POWER DOWN .. 17
7.1.1 DRIVERENTRY ... 17
7.1.2 DRIVERUNLOAD .. 17
7.2 ALGORITHM PROVIDERS AND PROPERTIES .. 17
7.2.1 BCRYPTOPENALGORITHMPROVIDER ... 17
7.2.2 BCRYPTCLOSEALGORITHMPROVIDER .. 18
7.2.3 BCRYPTSETPROPERTY .. 18
7.2.4 BCRYPTGETPROPERTY .. 18
7.2.5 BCRYPTFREEBUFFER .. 18
7.3 RANDOM NUMBER GENERATION .. 19
7.3.1 BCRYPTGENRANDOM .. 19
7.3.2 SYSTEMPRNG .. 19
7.3.3 ENTROPYREGISTERSOURCE ... 20
7.3.4 ENTROPYUNREGISTERSOURCE ... 20
7.3.5 ENTROPYPROVIDEDATA .. 20
7.4 KEY AND KEY-PAIR GENERATION .. 20
7.4.1 BCRYPTGENERATESYMMETRICKEY ... 20
7.4.2 BCRYPTGENERATEKEYPAIR ... 21
7.4.3 BCRYPTFINALIZEKEYPAIR .. 21
7.4.4 BCRYPTDUPLICATEKEY ... 21
7.4.5 BCRYPTDESTROYKEY .. 21
7.5 KEY ENTRY AND OUTPUT .. 21
7.5.1 BCRYPTIMPORTKEY ... 21
7.5.2 BCRYPTIMPORTKEYPAIR ... 23
7.5.3 BCRYPTEXPORTKEY ... 23
7.6 ENCRYPTION AND DECRYPTION .. 24
7.6.1 BCRYPTENCRYPT ... 24
7.6.2 BCRYPTDECRYPT ... 25
7.7 HASHING AND MESSAGE AUTHENTICATION .. 27
7.7.1 BCRYPTCREATEHASH ... 27
7.7.2 BCRYPTHASHDATA .. 27
7.7.3 BCRYPTDUPLICATEHASH .. 28
7.7.4 BCRYPTFINISHHASH ... 28
7.7.5 BCRYPTDESTROYHASH ... 28
7.8 SIGNING AND VERIFICATION .. 28
7.8.1 BCRYPTSIGNHASH ... 28

© 2013 Microsoft. All Rights Reserved Page 4 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

7.8.2 BCRYPTVERIFYSIGNATURE .. 29
7.9 SECRET AGREEMENT AND KEY DERIVATION ... 30
7.9.1 BCRYPTSECRETAGREEMENT .. 30
7.9.2 BCRYPTDERIVEKEY .. 30
7.9.3 BCRYPTDESTROYSECRET ... 32
7.9.4 BCRYPTKEYDERIVATION ... 32
7.10 LEGACY COMPATIBILITY INTERFACES .. 33
7.10.1 KEY FORMATTING .. 33
7.10.1.1 FipsDesKey .. 33
7.10.1.2 Fips3Des3Key .. 33
7.10.2 RANDOM NUMBER GENERATION ... 33
7.10.2.1 FipsGenRandom .. 33
7.10.3 DATA ENCRYPTION AND DECRYPTION ... 34
7.10.3.1 FipsDes .. 34
7.10.3.2 Fips3Des .. 34
7.10.3.3 FipsCBC .. 34
7.10.3.4 FipsBlockCBC ... 35
7.10.4 HASHING .. 35
7.10.4.1 FipsSHAInit .. 36
7.10.4.2 FipsSHAUpdate ... 36
7.10.4.3 FipsSHAFinal .. 36
7.10.4.4 FipsHmacSHAInit ... 36
7.10.4.5 FipsHmacSHAUpdate .. 36
7.10.4.6 FipsHmacSHAFinal ... 37
7.10.4.7 HmacMD5Init .. 37
7.10.4.8 HmacMD5Update ... 37
7.10.4.9 HmacMD5Final .. 38
7.11 DEPRECATION .. 38
7.11.1 BIT STRENGTHS OF DH AND ECDH ... 38
7.11.2 SHA-1 ... 38

8 AUTHENTICATION ... 38

9 SECURITY RELEVANT DATA ITEMS ... 38

9.1 ACCESS CONTROL POLICY ... 39
9.2 KEY MATERIAL ... 40
9.3 KEY GENERATION .. 40
9.4 KEY ESTABLISHMENT .. 41
9.4.1 NIST SP 800-132 PASSWORD BASED KEY DERIVATION FUNCTION (PBKDF) ... 41
9.5 KEY ENTRY AND OUTPUT .. 42

© 2013 Microsoft. All Rights Reserved Page 5 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

9.6 KEY STORAGE ... 42
9.7 KEY ARCHIVAL .. 43
9.8 KEY ZEROIZATION .. 43

10 SELF-TESTS .. 43

10.1 POWER-ON SELF-TESTS .. 43
10.2 CONDITIONAL SELF-TESTS ... 44

11 DESIGN ASSURANCE .. 44

12 MITIGATION OF OTHER ATTACKS .. 45

13 ADDITIONAL DETAILS .. 45

14 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 46

14.1 HOW TO VERIFY WINDOWS VERSIONS ... 46
14.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES .. 46

© 2013 Microsoft. All Rights Reserved Page 6 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

1 Introduction
This document specifies the security policy for the Microsoft Kernel Mode Cryptographic Primitives
Library (CNG.SYS) as described in FIPS PUB 140-2.

Microsoft Kernel Mode Cryptographic Primitives Library is a FIPS 140-2 Level 1 compliant, general
purpose, software-based, cryptographic module residing at kernel mode level of the Windows 8,
Windows RT, Windows Server 2012, and Windows Phone 8 operating system. Kernel Mode
Cryptographic Primitives Library (version 6.2.9200) runs as a kernel mode export driver, and provides
cryptographic services, through their documented interfaces, to Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 kernel components.

The Kernel Mode Cryptographic Primitives Library encapsulates several different cryptographic
algorithms in an easy-to-use cryptographic module accessible via the Microsoft CNG (Cryptography,
Next Generation) API. It also supports several cryptographic algorithms accessible via a Fips function
table request IRP (I/O request packet). Windows 8, Windows RT, Windows Server 2012, and Windows
Phone 8 kernel mode components can use general-purpose FIPS 140-2 Level 1 compliant cryptography
in Kernel Mode Cryptographic Primitives Library.

BitLocker and BitLocker to Go are a good example of usage of the Microsoft Kernel Mode Cryptographic
Primitives Library (CNG.SYS). In Figure 1 below, BitLocker functionality is contained in the Full Volume
Encryption module (FVEVOL.SYS), which calls CNG.SYS for the actual cryptographic operations.
FVEVOL.SYS does not implement any cryptographic operations in and of itself. BitLocker uses
FVEVOL.SYS to encrypt/decrypt physical hard drives that are accessed via the MiniPort driver and
Partition Manager. Similarly, Bitlocker to Go uses FVEVOL.SYS to encrypt/decrypt USB storage devices
that are accessed via the USBStor driver and Partition Manager. The FVEVOL.SYS usage of CNG.SYS
cryptographic operations is the same for both BitLocker and BitLocker to Go encrypted volumes.

I/O Manager

File System

Full Volume Encryption
(FVEVOL.SYS)

Partition Manager

MiniPort

Physical
HD

USBStor

USB
device

Kernel Mode
Cryptographic

Primitives Library
(CNG.SYS)

Figure 1 The BitLocker Stack and Microsoft Kernel Mode Cryptographic Primitives Library

© 2013 Microsoft. All Rights Reserved Page 7 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

1.1 List of Cryptographic Module Binary Executables
CNG.SYS – Version 6.2.9200 for Windows 8, Windows RT, Windows Server 2012, and Windows Phone 8

1.2 Brief Module Description
Kernel Mode Cryptographic Primitives Library is the kernel mode export driver for the Cryptography,
Next Generation (CNG) API.

1.3 Validated Platforms
The Kernel Mode Cryptographic Primitives Library component listed in Section 1.1 was validated using
the following machine configurations:

x86 Microsoft Windows 8 Enterprise – Dell Dimension C521 (AMD Athlon 64 X2 Dual Core)
x64 Microsoft Windows 8 Enterprise – Dell PowerEdge SC430 (Intel Pentium D without AES-NI)
x64-AES-NI Microsoft Windows 8 Enterprise – Intel Client Desktop (Intel Core i7 with AES-NI)
x64 Microsoft Windows Server 2012 – Dell PowerEdge SC430 (Intel Pentium D without AES-NI)
x64-AES-NI Microsoft Windows Server 2012 – Intel Client Desktop (Intel Core i7 with AES-NI)
ARMv7 Thumb-2 Microsoft Windows RT – NVIDIA Tegra 3 Tablet (NVIDIA Tegra 3 Quad-Core)
ARMv7 Thumb-2 Microsoft Windows RT – Qualcomm Tablet (Qualcomm Snapdragon S4)
ARMv7 Thumb-2 Microsoft Windows RT – Microsoft Surface Windows RT (NVIDIA Tegra 3 Quad-
Core)
x64-AES-NI Microsoft Windows 8 Pro – Microsoft Surface Windows 8 Pro (Intel x64 Processor
with AES-NI)
ARMv7 Thumb-2 Microsoft Windows Phone 8 – Windows Phone 8 (Qualcomm Snapdragon S4)

The Kernel Mode Cryptographic Primitives Library maintains FIPS 140-2 validation compliance (according
to FIPS 140-2 PUB Implementation Guidance G.5) on the following platforms:

x86 Microsoft Windows 8
x86 Microsoft Windows 8 Pro

x64 Microsoft Windows 8
x64 Microsoft Windows 8 Pro
x64 Microsoft Windows Server 2012 Datacenter

x64-AES-NI Microsoft Windows 8
x64-AES-NI Microsoft Windows 8 Pro
x64-AES-NI Microsoft Windows Server 2012 Datacenter

1.4 Cryptographic Boundary
The software binary that comprises the cryptographic boundary for Kernel Mode Cryptographic
Primitives Library is CNG.SYS. The crypto boundary is also defined by the enclosure of the computer
system, on which Kernel Mode Cryptographic Primitives Library is to be executed. The physical
configuration of Kernel Mode Cryptographic Primitives Library, as defined in FIPS-140-2, is multi-chip
standalone.

© 2013 Microsoft. All Rights Reserved Page 8 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

2 Security Policy
Kernel Mode Cryptographic Primitives Library operates under several rules that encapsulate its security
policy.

• Kernel Mode Cryptographic Primitives Library is supported on Windows 8, Windows RT,
Windows Server 2012, and Windows Phone 8.

• Kernel Mode Cryptographic Primitives Library operates in FIPS mode of operation only when
used with the FIPS approved version of Windows 8, Windows RT, Windows Server 2012, and
Windows Phone 8 Winload OS Loader (winload.exe) validated to FIPS 140-2 under Cert. #1896
forWindows 8, Windows RT, Windows Server 2012, and Windows Phone 8 operating in FIPS
mode.

• Windows 8, Windows RT, Windows Server 2012, and Windows Phone 8 are operating systems
supporting a “single user” mode where there is only one interactive user during a logon session.

• Kernel Mode Cryptographic Primitives Library is only in its Approved mode of operation when
Windows is booted normally, meaning Debug mode is disabled and Driver Signing enforcement
is enabled.

• Kernel Mode Cryptographic Primitives Library operates in its FIPS mode of operation only when
one of the following DWORD registry values is set to 1:

o HKLM\SYSTEM\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled
o HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Configuration\SelfT

estAlgorithms
• The registry security policy settings can be observed with the regedit tool to determine whether

the module is in FIPS mode.
• All users assume either the User or Cryptographic Officer roles.
• Kernel Mode Cryptographic Primitives Library provides no authentication of users. Roles are

assumed implicitly. The authentication provided by the Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 operating system is not in the scope of the validation.

• All cryptographic services implemented within Kernel Mode Cryptographic Primitives Library are
available to the User and Cryptographic Officer roles.

• In order to invoke the approved mode of operation, the user must call FIPS approved functions.

© 2013 Microsoft. All Rights Reserved Page 9 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The following diagram illustrates the master components of the module:

Figure 2 Master components of cng.sys crypto module

© 2013 Microsoft. All Rights Reserved Page 10 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

2.1 FIPS 140-2 Approved Algorithms
• Kernel Mode Cryptographic Primitives Library implements the following FIPS-140-2 Approved

algorithms.
o SHA-1, SHA-256, SHA-384, SHA-512 hash (Cert. # 1903)
o SHA-1, SHA-256, SHA-384, SHA-512 HMAC (Cert. # 1345)
o Triple-DES (2 key1 and 3 key) in ECB, CBC, CFB8 and CFB64 modes (Cert. # 1387)
o AES-128, AES-192, AES-256 in ECB, CBC, CFB8,CFB128, and CTR modes (Cert. # 2197)
o AES-128, AES-192 and AES-256 in CCM mode (Cert. # 2216)
o AES-128, AES-192 and AES-256 in CMAC mode (Cert. # 2216)
o AES-128, AES-192 and AES-256 in GCM mode (Cert. # 2216,)
o AES-128, AES-192 and AES-256 in GMAC mode (Cert. # 2216)
o FIPS 186-2 RNG (Cert. # 1110)
o FIPS 186-3 RSA (RSASSA-PKCS1-v1_5 and RSASSA-PSS) digital signatures (Cert. # 1134)

and FIPS 186-3 RSA key-pair generation (Cert. # 1133)
o ECDSA with the following NIST curves: P-256, P-384, P-521 (Cert. # 341)
o SP800-90 AES-256 counter mode DRBG (Cert. # 258)
o SP800-90 Dual-EC DRBG (Cert. # 259)
o KAS – SP800-56A (Cert # 36) Diffie-Hellman Key Agreement; key establishment

methodology provides at least 80-bits of encryption strength.
o KAS – SP800-56A (Cert # 36) EC Diffie-Hellman Key Agreement; key establishment

methodology provides between 128 and 256-bits of encryption strength
o SP 800-108 Key Derivation Function (KDF) (Cert. # 3)
o SP 800-132 KDF (also known as PBKDF) (vendor affirmed)

2.2 Non-Approved Algorithms
• Kernel Mode Cryptographic Primitives Library supports the following non-Approved algorithms

allowed for use in FIPS mode.
o AES Key Wrap (AES Cert. # 2197; key wrapping; key establishment methodology

provides between 128 and 256 bits of encryption strength)
• Kernel Mode Cryptographic Primitives Library implements Continuous Random Number

Generator Tests (CRNGT) for the AES-CTR DRBG, Dual-EC DRBG, FIPS 186-2 RNG, and the non-
Approved RNG (entropy pool).

• Kernel Mode Cryptographic Primitives Library also supports the following non FIPS 140-2
approved algorithms, though these algorithms may not be used when operating the modules in
a FIPS compliant manner.

o RSA encrypt/decrypt
o RC2, RC4, MD2, MD4, MD5, HMAC MD52.
o DES in ECB, CBC, CFB8 and CFB64 modes
o Legacy CAPI KDF (proprietary)

1 Two-key Triple-DES is restricted and legacy-use according to NIST SP 800-131A. Users should start
transitioning away from this algorithm to better, stronger choices.
2 Applications may not use any of these non-FIPS algorithms if they need to be FIPS compliant. To
operate the module in a FIPS compliant manner, applications must only use FIPS-approved algorithms.

© 2013 Microsoft. All Rights Reserved Page 11 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

2.3 Cryptographic Bypass
Cryptographic bypass is not supported by Kernel Mode Cryptographic Primitives Library.

2.4 Machine Configurations
Kernel Mode Cryptographic Primitives Library was tested using the machine configurations listed in
Section 1.3 - Validated Platforms.

3 Operational Environment
The operational environment for Kernel Mode Cryptographic Primitives Library is Windows 8, Windows
RT, Windows Server 2012, and Windows Phone 8 running on the hardware listed in Section 1.3 -
Validated Platforms. Kernel Mode Cryptographic Primitives Library services are available to all kernel
mode components, which are part of the Trusted Computing Base (TCB).

4 Integrity Chain of Trust
The Windows OS Loader checks the integrity of Kernel Mode Cryptographic Primitives Library before
starting it. This integrity check is based on the verification of an RSA signature over the binary using a
2048-bit key and a SHA-256 hash (Cert. # 1903), and verifying that the signing certificate chains up to a
known root authority.

5 Ports and Interfaces
As shown in Figure 3, the Kernel Mode Cryptographic Primitives Library module is accessed through one
of four logical interfaces. Kernel applications requiring cryptographic services use the BCrypt or legacy
Fips APIs detailed in Section 6.7. Entropy sources supply random bits to the random number generator
through the entropy APIs. Finally, both kernel mode and user mode random number generators use the
SystemPrng interface to obtain seed material for their PRNGs.

© 2013 Microsoft. All Rights Reserved Page 12 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The following functions are used by Kernel Mode Cryptographic Primitives Library to expose
cryptographic functionality to its callers.

• BCryptCloseAlgorithmProvider
• BCryptCreateHash
• BCryptDecrypt
• BCryptDeriveKey
• BCryptDestroyHash
• BCryptDestroyKey
• BCryptDestroySecret
• BCryptDuplicateHash
• BCryptDuplicateKey
• BCryptEncrypt
• BCryptExportKey
• BCryptFinalizeKeyPair
• BCryptFinishHash
• BCryptFreeBuffer
• BCryptGenerateKeyPair
• BCryptGenerateSymmetricKey
• BCryptGenRandom
• BCryptGetProperty
• BCryptHashData
• BCryptImportKey
• BCryptImportKeyPair

Cng.sys

Entropy source Entropy source

Entropy API

Kernel mode application Kernel or user mode

CNG BCrypt
and legacy
Fips APIs

SystemPrng
interface

Figure 3 Relationship of cng.sys to other system components – cryptographic boundary
shown in gold

© 2013 Microsoft. All Rights Reserved Page 13 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

• BCryptKeyDerivation
• BCryptOpenAlgorithmProvider
• BCryptSecretAgreement
• BCryptSetProperty
• BCryptSignHash
• BCryptVerifySignature
• SystemPrng

The following functions are exposed to entropy sources:

• EntropyRegisterSource
• EntropyUnregisterSource
• EntropyProvideData

Kernel Mode Cryptographic Primitives Library has additional export functions described in subsequent
sections.

5.1 Control Input Interface
The Control Input Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel
Mode Cryptographic Primitives Library cryptographic export functions enumerated above. Options for
control operations are passed as input parameters to these functions.

5.2 Status Output Interface
The Status Output Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel
Mode Cryptographic Primitives Library export functions. For each function, the status information is
returned to the caller as the return value from the function.

5.3 Data Output Interface
The Data Output Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel Mode
Cryptographic Primitives Library export functions.

5.4 Data Input Interface
The Data Input Interface for Kernel Mode Cryptographic Primitives Library consists of the Kernel Mode
Cryptographic Primitives Library export functions. Data and options are passed to the interface as input
parameters to the Kernel Mode Cryptographic Primitives Library export functions. Data Input is kept
separate from Control Input by passing Data Input in separate parameters from Control Input.

5.5 Non-Security Relevant Interfaces

5.5.1 Configuration
These are not cryptographic functions. They are used to configure cryptographic providers on the
system, and are provided for informational purposes. Please see http://msdn.microsoft.com for details.

© 2013 Microsoft. All Rights Reserved Page 14 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/

Kernel Mode Cryptographic Primitives Library

Function Name Description
BCryptEnumAlgorithms Enumerates the algorithms for a given set of

operations.
BCryptEnumProviders Returns a list of providers for a given algorithm.
BCryptRegisterConfigChangeNotify This API differs slightly between User-Mode and

Kernel-Mode.
BCryptResolveProviders This is the main API in Crypto configuration. It

resolves queries against the set of providers
currently registered on the local system and the
configuration information specified in the machine
and domain configuration tables, returning an
ordered list of references to one or more providers
matching the specified criteria.

BCryptUnregisterConfigChangeNotify This API differs slightly between User-Mode and
Kernel-Mode.

BCryptGetFipsAlgorithmMode Used by applications to determine whether Kernel
Mode Cryptographic Primitives Library is operating
in FIPS mode. Some applications use the value
returned by this API to alter their own behavior,
such as blocking the use of some SSL versions.

5.5.2 Non-approved APIs
The following table lists other non-security relevant or non-approved APIs exported from the crypto
module.

Function Name Description
BCryptDeriveKeyCapi
BCryptDeriveKeyPBKDF2

SslDecryptPacket
SslEncryptPacket
SslExportKey
SslFreeObject
SslImportKey
SslLookupCipherLengths
SslLookupCipherSuiteInfo
SslOpenProvider
SslIncrementProviderReferenceCount
SslDecrementProviderReferenceCount

AppHashComputeFileAttributes

© 2013 Microsoft. All Rights Reserved Page 15 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

6 Specification of Roles
Kernel Mode Cryptographic Primitives Library provides User and Cryptographic Officer roles (as defined
in FIPS 140-2). These roles share all the services implemented in the cryptographic module.

When a kernel mode component requests the crypto module to generate keys, the keys are generated,
used, and deleted as requested. There are no implicit keys associated with a kernel component. Each
kernel component may have numerous keys.

6.1 Maintenance Roles
Maintenance roles are not supported.

6.2 Multiple Concurrent Interactive Operators
There is only one interactive operator in Single User Mode. When run in this configuration, multiple
concurrent interactive operators are not supported.

6.3 Operator Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are
executed.

6.4 Show Status Services
The User and Cryptographic Officer roles have the same Show Status functionality, which is, for each
function, the status information is returned to the caller as the return value from the function.

6.5 Self-Test Services
The User and Cryptographic Officer roles have the same Self-Test functionality, which is described in
Section 10 Self-Tests.

6.6 Service Inputs / Outputs
The User and Cryptographic Officer roles have service inputs and outputs as specified in Section 5 Ports
and Interfaces and Section 7 Services.

© 2013 Microsoft. All Rights Reserved Page 16 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

7 Services
The following list contains all services available to an operator. All services are accessible to both the
User and Crypto Officer roles.

7.1 Cryptographic Module Power Up and Power Down
7.1.1 DriverEntry
Each Windows 8, Windows RT, Windows Server 2012, and Windows Phone 8 driver must have a
standard initialization routine DriverEntry in order to be loaded. The Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 Loader is responsible to call the DriverEntry routine. The DriverEntry
routine must have the following prototype.

NTSTATUS (*PDRIVER_INITIALIZE) (
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath);

The input DriverObject represents the driver within the Windows 8, Windows RT, Windows Server 2012,
and Windows Phone 8 system. Its pointer allows the DriverEntry routine to set an appropriate entry
point for its DriverUnload routine in the driver object.

The RegistryPath input to the DriverEntry routine points to a counted Unicode string that specifies a
path to the driver's registry key \Registry\Machine\System\CurrentControlSet\Services\CNG.

7.1.2 DriverUnload
It is the entry point for the driver's unload routine. The pointer to the routine is set by the DriverEntry
routine in the DriverUnload field of the DriverObject when the driver initializes. An Unload routine is
declared as follows:

VOID (*PDRIVER_UNLOAD) (
IN PDRIVER_OBJECT DriverObject);

When the driver is no longer needed, the Windows 8, Windows RT, Windows Server 2012, and Windows
Phone 8 Kernel is responsible to call the DriverUnload routine of the associated DriverObject.

7.2 Algorithm Providers and Properties

7.2.1 BCryptOpenAlgorithmProvider
NTSTATUS WINAPI BCryptOpenAlgorithmProvider(

BCRYPT_ALG_HANDLE *phAlgorithm,
LPCWSTR pszAlgId,
LPCWSTR pszImplementation,
ULONG dwFlags);

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the
opened algorithm provider, desired algorithm ID input, an optional specific provider name input, and

© 2013 Microsoft. All Rights Reserved Page 17 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

optional flags. This function loads and initializes a CNG provider for a given algorithm, and returns a
handle to the opened algorithm provider on success.

Unless the calling function specifies the name of the provider, the default provider is used.

The calling function must pass the BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC
function with a hash algorithm.

7.2.2 BCryptCloseAlgorithmProvider
NTSTATUS WINAPI BCryptCloseAlgorithmProvider(

BCRYPT_ALG_HANDLE hAlgorithm,
ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider()
function.

7.2.3 BCryptSetProperty
NTSTATUS WINAPI BCryptSetProperty(

BCRYPT_HANDLE hObject,
LPCWSTR pszProperty,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object. The CNG object
is a handle, the property name is a NULL terminated string, and the value of the property is a length-
specified byte string.

7.2.4 BCryptGetProperty
NTSTATUS WINAPI BCryptGetProperty(

BCRYPT_HANDLE hObject,
LPCWSTR pszProperty,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object. The CNG
object is a handle, the property name is a NULL terminated string, and the value of the property is a
length-specified byte string.

7.2.5 BCryptFreeBuffer
VOID WINAPI BCryptFreeBuffer(

PVOID pvBuffer);
Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees
memory that was allocated by such a CNG function.

© 2013 Microsoft. All Rights Reserved Page 18 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

7.3 Random Number Generation
7.3.1 BCryptGenRandom

NTSTATUS WINAPI BCryptGenRandom(
BCRYPT_ALG_HANDLE hAlgorithm,
PUCHAR pbBuffer,
ULONG cbBuffer,
ULONG dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. There are two random number
generation algorithms:

• BCRYPT_RNG_ALGORITHM. This is the AES-256 counter mode based random generator as
defined in SP800-90.

• BCRYPT_RNG_DUAL_EC_ALGORITHM. This is the Dual-EC DRBG based random generator as
defined in SP800-90.

During the function initialization, a seed is obtained from the output of the SystemPrng function. This
provides the necessary entropy for the RNGs available through this function.

7.3.2 SystemPrng
BOOL SystemPrng(

unsigned char *pbRandomData,
size_t cbRandomData);

The SystemPrng() function fills a buffer with random bytes. It generates these bytes by taking the output
of a cascade of two SP800-90 AES-256 counter mode based DRBGs, seeded from the Windows entropy
pool. The Windows entropy pool is populated from the following sources:

• An initial entropy value provided by the Windows OS Loader (Cert. #1896) at boot time.
• The values of the high-resolution CPU cycle counter at times when hardware interrupts are

received.
• Random values gathered from the Trusted Platform Module (TPM), if one is available on the

system.
• Random values gathered by calling the RDRAND CPU instruction, if supported by the CPU.

The Windows RNG infrastructure located in cng.sys continues to gather entropy from these sources
during normal operation, and the DRBG cascade is periodically reseeded with new entropy.

Deterministic random bit generation (DRBG) is implemented in accordance with NIST Special Publication
800-90. Windows generates random bits by taking the output of a cascade of two SP 800-90 AES-256
counter mode based DRBGs in kernel-mode and four cascaded SP 800-90 AES-256 DRBGs in user-mode;
all are seeded from the Windows entropy pool. The entropy pool is populated using the following
values:

• An initial entropy value from a seed file provided to the Windows OS Loader at boot.
• A calculated value based on the high-resolution CPU cycle counter.

© 2013 Microsoft. All Rights Reserved Page 19 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

• Random values gathered periodically from the Trusted Platform Module (TPM), if one is
available on the system.

• Random values gathered periodically by calling the RDRAND CPU instruction, if supported by
the CPU.

7.3.3 EntropyRegisterSource
NTSTATUS EntropyRegisterSource(

ENTROPY_SOURCE_HANDLE * phEntropySource,
ENTROPY_SOURCE_TYPE entropySourceType,

PCWSTR entropySourceName);
This function is used to obtain a handle that can be used to contribute randomness to the Windows
entropy pool. The handle is returned in the phEntropySource parameter. For this function,
entropySource must be set to ENTROPY_SOURCE_TYPE_HIGH_PUSH, and entropySourceName must be
a Unicode string describing the entropy source.

7.3.4 EntropyUnregisterSource
NTSTATUS EntropyRegisterSource(
ENTROPY_SOURCE_HANDLE hEntropySource);

This function is used to destroy a handle created with EntropyRegisterSource().

7.3.5 EntropyProvideData
NTSTATUS EntropyProvideData(

ENTROPY_SOURCE_HANDLE hEntropySource,
PCBYTE pbData,
SIZE_T cbData,
ULONG entropyEstimateInMilliBits);

This function is used to contribute entropy to the Windows entropy pool. hEntropySource must be a
handle returned by an earlier call to EntropyRegisterSource. The caller provides cbData bytes in the
buffer pointed to by pbData, as well as an estimate (in the entropyEstiamteInMilliBits parameter) of how
many millibits of entropy are contained in these bytes.

7.4 Key and Key-Pair Generation
7.4.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE *phKey,
PUCHAR pbKeyObject,
ULONG cbKeyObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

© 2013 Microsoft. All Rights Reserved Page 20 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The BCryptGenerateSymmetricKey() function generates a symmetric key object for use with a symmetric
encryption or key derivation algorithm from a supplied key value. The calling application must specify a
handle to the algorithm provider created with the BCryptOpenAlgorithmProvider() function. The
algorithm specified when the provider was created must support symmetric key encryption or key
derivation.

7.4.2 BCryptGenerateKeyPair
NTSTATUS WINAPI BCryptGenerateKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE *phKey,
ULONG dwLength,
ULONG dwFlags);

The BCryptGenerateKeyPair() function creates an empty public/private key pair. After creating a key
using this function, call the BCryptSetProperty() function to set its properties. The key pair can be used
only after BCryptFinalizeKeyPair() function is called.

7.4.3 BCryptFinalizeKeyPair
NTSTATUS WINAPI BCryptFinalizeKeyPair(

BCRYPT_KEY_HANDLE hKey,
ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation. The key
pair cannot be used until this function has been called. After this function has been called, the
BCryptSetProperty() function can no longer be used for this key.

7.4.4 BCryptDuplicateKey
NTSTATUS WINAPI BCryptDuplicateKey(

BCRYPT_KEY_HANDLE hKey,
BCRYPT_KEY_HANDLE *phNewKey,
PUCHAR pbKeyObject,
ULONG cbKeyObject,
ULONG dwFlags);

The BCryptDuplicateKey() function creates a duplicate of a symmetric key.

7.4.5 BCryptDestroyKey
NTSTATUS WINAPI BCryptDestroyKey(

BCRYPT_KEY_HANDLE hKey);
The BCryptDestroyKey() function destroys a key.

7.5 Key Entry and Output
7.5.1 BCryptImportKey

NTSTATUS WINAPI BCryptImportKey(
BCRYPT_ALG_HANDLE hAlgorithm,

© 2013 Microsoft. All Rights Reserved Page 21 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

BCRYPT_KEY_HANDLE hImportKey,
LPCWSTR pszBlobType,
BCRYPT_KEY_HANDLE *phKey,
PUCHAR pbKeyObject,
ULONG cbKeyObject,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by
calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB that is contained in the pbInput buffer. pszBlobType can be one of BCRYPT_AES_WRAP_KEY_BLOB,
BCRYPT_KEY_DATA_BLOB and BCRYPT_OPAQUE_KEY_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key that is
used in subsequent functions that require a key, such as BCryptEncrypt. This handle must be released
when it is no longer needed by passing it to the BCryptDestroyKey function.

pbKeyObject [out] is a pointer to a buffer that receives the imported key object. The cbKeyObject
parameter contains the size of this buffer. The required size of this buffer can be obtained by calling the
BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of
the key object for the specified algorithm. This memory can only be freed after the phKey key handle is
destroyed.

cbKeyObject [in] is the size, in bytes, of the pbKeyObject buffer.

pbInput [in] is the address of a buffer that contains the key BLOB to import.

The cbInput parameter contains the size of this buffer.

The pszBlobType parameter specifies the type of key BLOB this buffer contains.

cbInput [in] is the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are currently defined, so
this parameter should be zero..

Triple DES keys can be imported into KSECDD.SYS via Fips3Des3Key(). DES3Table struct can be exported
out of KSECDD.SYS via Fips3Des3Key(). DES3Table struct can be imported into KSECDD.SYS via
Fips3Des() or FipsCBC().

© 2013 Microsoft. All Rights Reserved Page 22 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/en-us/seccng/security/bcryptopenalgorithmprovider_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptencrypt_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptdestroykey_func.asp
http://msdn.microsoft.com/library/en-us/seccng/security/bcryptgetproperty_func.asp

Kernel Mode Cryptographic Primitives Library

HMAC keys can be imported into KSECDD.SYS via FipsHmacSHAInit and FipsHmacSHAFinal.

7.5.2 BCryptImportKeyPair
NTSTATUS WINAPI BCryptImportKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE hImportKey,
LPCWSTR pszBlobType,
BCRYPT_KEY_HANDLE *phKey,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

The BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.
hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by
calling the BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB that is contained in the pbInput buffer. This can be one of the following values:
BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_ECCPRIVATE_BLOB,
BCRYPT_ECCPUBLIC_BLOB, BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB,
BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB, LEGACY_DH_PUBLIC_BLOB,
LEGACY_DH_PRIVATE_BLOB, LEGACY_RSAPRIVATE_BLOB, LEGACY_RSAPUBLIC_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key. This
handle is used in subsequent functions that require a key, such as BCryptSignHash. This handle must be
released when it is no longer needed by passing it to the BCryptDestroyKey function.

pbInput [in] is the address of a buffer that contains the key BLOB to import. The cbInput parameter
contains the size of this buffer. The pszBlobType parameter specifies the type of key BLOB this buffer
contains.

cbInput [in] contains the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or the following
value: BCRYPT_NO_KEY_VALIDATION.

7.5.3 BCryptExportKey
NTSTATUS WINAPI BCryptExportKey(

BCRYPT_KEY_HANDLE hKey,
BCRYPT_KEY_HANDLE hExportKey,
LPCWSTR pszBlobType,
PUCHAR pbOutput,
ULONG cbOutput,

© 2013 Microsoft. All Rights Reserved Page 23 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

ULONG *pcbResult,
ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use.
hExportKey [in, out] is not currently used and should be set to NULL.

pszBlobType [in] is a null-terminated Unicode string that contains an identifier that specifies the type of
BLOB to export. This can be one of the following values: BCRYPT_AES_WRAP_KEY_BLOB,
BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB, BCRYPT_ECCPRIVATE_BLOB,
BCRYPT_ECCPUBLIC_BLOB, BCRYPT_KEY_DATA_BLOB, BCRYPT_OPAQUE_KEY_BLOB,
BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB, BCRYPT_RSAPUBLIC_BLOB,
LEGACY_DH_PRIVATE_BLOB, LEGACY_DH_PUBLIC_BLOB, LEGACY_RSAPUBLIC_BLOB.

pbOutput is the address of a buffer that receives the key BLOB. The cbOutput parameter contains the
size of this buffer. If this parameter is NULL, this function will place the required size, in bytes, in the
ULONG pointed to by the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbOutput buffer. If the pbOutput parameter is NULL, this function will place the required size, in bytes,
in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are defined for this
function.

7.6 Encryption and Decryption
7.6.1 BCryptEncrypt

NTSTATUS WINAPI BCryptEncrypt(
BCRYPT_KEY_HANDLE hKey,
PUCHAR pbInput,
ULONG cbInput,
VOID *pPaddingInfo,
PUCHAR pbIV,
ULONG cbIV,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptEncrypt() function encrypts a block of data of given length.
hKey [in, out] is the handle of the key to use to encrypt the data. This handle is obtained from one of the
key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or
BCryptImportKey.

© 2013 Microsoft. All Rights Reserved Page 24 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

pbInput [in] is the address of a buffer that contains the plaintext to be encrypted. The cbInput
parameter contains the size of the plaintext to encrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to encrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It
must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during
encryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of
this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this
function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be
obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This
will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer that will receive the ciphertext produced by this
function. The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size needed for the ciphertext and return the
size in the location pointed to by the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer. This parameter is ignored if the
pbOutput parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the
pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the ciphertext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the
following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the
following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

7.6.2 BCryptDecrypt
NTSTATUS WINAPI BCryptDecrypt(

BCRYPT_KEY_HANDLE hKey,
PUCHAR pbInput,
ULONG cbInput,
VOID *pPaddingInfo,
PUCHAR pbIV,
ULONG cbIV,
PUCHAR pbOutput,

© 2013 Microsoft. All Rights Reserved Page 25 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptDecrypt() function decrypts a block of data of given length.
hKey [in, out] is the handle of the key to use to decrypt the data. This handle is obtained from one of the
key creation functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or
BCryptImportKey.

pbInput [in] is the address of a buffer that contains the ciphertext to be decrypted. The cbInput
parameter contains the size of the ciphertext to decrypt. For more information, see Remarks.

cbInput [in] is the number of bytes in the pbInput buffer to decrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and authenticated encryption modes (i.e. AES-CCM and AES-GCM). It
must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during
decryption. The cbIV parameter contains the size of this buffer. This function will modify the contents of
this buffer. If you need to reuse the IV later, make sure you make a copy of this buffer before calling this
function. This parameter is optional and can be NULL if no IV is used. The required size of the IV can be
obtained by calling the BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This
will provide the size of a block for the algorithm, which is also the size of the IV.

cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer to receive the plaintext produced by this function.
The cbOutput parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size required for the plaintext and return the
size in the location pointed to by the pcbResult parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput
parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable to receive the number of bytes copied to the pbOutput
buffer. If pbOutput is NULL, this receives the size, in bytes, required for the plaintext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the
following value: BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the
following values: BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

© 2013 Microsoft. All Rights Reserved Page 26 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

7.7 Hashing and Message Authentication
7.7.1 BCryptCreateHash

NTSTATUS WINAPI BCryptCreateHash(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_HASH_HANDLE *phHash,
PUCHAR pbHashObject,
ULONG cbHashObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for
HMAC, AES GMAC and AES CMAC.
hAlgorithm [in, out] is the handle of an algorithm provider created by using the
BCryptOpenAlgorithmProvider function. The algorithm that was specified when the provider was
created must support the hash interface.

phHash [out] is a pointer to a BCRYPT_HASH_HANDLE value that receives a handle that represents the
hash object. This handle is used in subsequent hashing functions, such as the BCryptHashData function.
When you have finished using this handle, release it by passing it to the BCryptDestroyHash function.

pbHashObject [out] is a pointer to a buffer that receives the hash object. The cbHashObject parameter
contains the size of this buffer. The required size of this buffer can be obtained by calling the
BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of
the hash object for the specified algorithm. This memory can only be freed after the hash handle is
destroyed.

cbHashObject [in] contains the size, in bytes, of the pbHashObject buffer.

pbSecret [in, optional] is a pointer to a buffer that contains the key to use for the hash. The cbSecret
parameter contains the size of this buffer. If no key should be used with the hash, set this parameter to
NULL. This key only applies to the HMAC, AES GMAC and AES CMAC algorithms.

cbSecret [in, optional] contains the size, in bytes, of the pbSecret buffer. If no key should be used with
the hash, set this parameter to zero.

dwFlags [in] is not currently used and must be zero.

7.7.2 BCryptHashData
NTSTATUS WINAPI BCryptHashData(

BCRYPT_HASH_HANDLE hHash,
PUCHAR pbInput,
ULONG cbInput,
ULONG dwFlags);

© 2013 Microsoft. All Rights Reserved Page 27 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash()
function to finalize the hashing operation to get the hash result.

7.7.3 BCryptDuplicateHash
NTSTATUS WINAPI BCryptDuplicateHash(

BCRYPT_HASH_HANDLE hHash,
BCRYPT_HASH_HANDLE *phNewHash,
PUCHAR pbHashObject,
ULONG cbHashObject,
ULONG dwFlags);

The BCryptDuplicateHash()function duplicates an existing hash object. The duplicate hash object
contains all state and data that was hashed to the point of duplication.

7.7.4 BCryptFinishHash
NTSTATUS WINAPI BCryptFinishHash(

BCRYPT_HASH_HANDLE hHash,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG dwFlags);

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to
BCryptHashData() function.

7.7.5 BCryptDestroyHash
NTSTATUS WINAPI BCryptDestroyHash(

BCRYPT_HASH_HANDLE hHash);
The BCryptDestroyHash() function destroys a hash object.

7.8 Signing and Verification
7.8.1 BCryptSignHash

NTSTATUS WINAPI BCryptSignHash(
BCRYPT_KEY_HANDLE hKey,
VOID *pPaddingInfo,
PUCHAR pbInput,
ULONG cbInput,
PUCHAR pbOutput,
ULONG cbOutput,
ULONG *pcbResult,
ULONG dwFlags);

The BCryptSignHash() function creates a signature of a hash value.
hKey [in] is the handle of the key to use to sign the hash.

© 2013 Microsoft. All Rights Reserved Page 28 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and must be NULL otherwise.

pbInput [in] is a pointer to a buffer that contains the hash value to sign. The cbInput parameter contains
the size of this buffer.

cbInput [in] is the number of bytes in the pbInput buffer to sign.

pbOutput [out] is the address of a buffer to receive the signature produced by this function. The
cbOutput parameter contains the size of this buffer. If this parameter is NULL, this function will calculate
the size required for the signature and return the size in the location pointed to by the pcbResult
parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput
parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the
pbOutput buffer. If pbOutput is NULL, this receives the size, in bytes, required for the signature.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends
on the type of key specified by the hKey parameter. If the key is a symmetric key, this parameter is not
used and should be set to zero. If the key is an asymmetric key, this can be one of the following values:
BCRYPT_PAD_PKCS1, BCRYPT_PAD_PSS.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is currently deprecated
for digital signature generation and will be disallowed after the end of 2013. SHA-1 is currently legacy-
use for digital signature verification.

7.8.2 BCryptVerifySignature
NTSTATUS WINAPI BCryptVerifySignature(

BCRYPT_KEY_HANDLE hKey,
VOID *pPaddingInfo,
PUCHAR pbHash,
ULONG cbHash,
PUCHAR pbSignature,
ULONG cbSignature,
ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash.
hKey [in] is the handle of the key to use to decrypt the signature. This must be an identical key or the
public key portion of the key pair used to sign the data with the BCryptSignHash function.

© 2013 Microsoft. All Rights Reserved Page 29 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/en-us/seccng/security/bcryptsignhash_func.asp

Kernel Mode Cryptographic Primitives Library

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type
of structure this parameter points to depends on the value of the dwFlags parameter. This parameter is
only used with asymmetric keys and must be NULL otherwise.

pbHash [in] is the address of a buffer that contains the hash of the data. The cbHash parameter contains
the size of this buffer.

cbHash [in] is the size, in bytes, of the pbHash buffer.

pbSignature [in] is the address of a buffer that contains the signed hash of the data. The BCryptSignHash
function is used to create the signature. The cbSignature parameter contains the size of this buffer.

cbSignature [in] is the size, in bytes, of the pbSignature buffer. The BCryptSignHash function is used to
create the signature.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is currently deprecated
for digital signature generation and will be disallowed after the end of 2013. SHA-1 is currently legacy-
use for digital signature verification.

7.9 Secret Agreement and Key Derivation
7.9.1 BCryptSecretAgreement

NTSTATUS WINAPI BCryptSecretAgreement(
BCRYPT_KEY_HANDLE hPrivKey,
BCRYPT_KEY_HANDLE hPubKey,
BCRYPT_SECRET_HANDLE *phAgreedSecret,
ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public
key. This function is used with Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) algorithms.
hPrivKey [in] The handle of the private key to use to create the secret agreement value.

hPubKey [in] The handle of the public key to use to create the secret agreement value.

phSecret [out] A pointer to a BCRYPT_SECRET_HANDLE that receives a handle that represents the secret
agreement value. This handle must be released by passing it to the BCryptDestroySecret function when
it is no longer needed.

dwFlags [in] A set of flags that modify the behavior of this function. This must be zero.

7.9.2 BCryptDeriveKey
NTSTATUS WINAPI BCryptDeriveKey(

BCRYPT_SECRET_HANDLE hSharedSecret,
LPCWSTR pwszKDF,
BCryptBufferDesc *pParameterList,
PUCHAR pbDerivedKey,
ULONG cbDerivedKey,

© 2013 Microsoft. All Rights Reserved Page 30 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

ULONG *pcbResult,
ULONG dwFlags);

The BCryptDeriveKey() function derives a key from a secret agreement value.
hSharedSecret [in, optional] is the secret agreement handle to create the key from. This handle is
obtained from the BCryptSecretAgreement function.

pwszKDF [in] is a pointer to a null-terminated Unicode string that contains an object identifier (OID) that
identifies the key derivation function (KDF) to use to derive the key. This can be one of the following
strings: BCRYPT_KDF_HASH (parameters in pParameterList: KDF_HASH_ALGORITHM,
KDF_SECRET_PREPEND, KDF_SECRET_APPEND), BCRYPT_KDF_HMAC (parameters in pParameterList:
KDF_HASH_ALGORITHM, KDF_HMAC_KEY, KDF_SECRET_PREPEND, KDF_SECRET_APPEND),
BCRYPT_KDF_TLS_PRF (parameters in pParameterList: KDF_TLS_PRF_LABEL, KDF_TLS_PRF_SEED) ,
BCRYPT_KDF_SP80056A_CONCAT (parameters in pParameterList: KDF_ALGORITHMID,
KDF_PARTYUINFO, KDF_PARTYVINFO, KDF_SUPPPUBINFO, KDF_SUPPPRIVINFO).

pParameterList [in, optional] is the address of a BCryptBufferDesc structure that contains the KDF
parameters. This parameter is optional and can be NULL if it is not needed.

Note: When supporting a key agreement scheme that requires a nonce, BCryptDeriveKey uses
whichever nonce is supplied by the caller in the BCryptBufferDesc. Examples of the nonce types are
found in Section 5.4 of http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-
56A_Revision1_Mar08-2007.pdf

When using a nonce, a random nonce should be used. And then if the random nonce is used, the
entropy (amount of randomness) of the nonce and the security strength of the DRBG has to be at least
one half of the minimum required bit length of the subgroup order.

For example:

for KAS FFC, entropy of nonce must be 80 bits for FA, 112 bits for FB, 128 bits for FC.

for KAS ECC, entropy of the nonce must be 128 bits for EC, 182 for ED, 256 for EF.

pbDerivedKey [out, optional] is the address of a buffer that receives the key. The cbDerivedKey
parameter contains the size of this buffer. If this parameter is NULL, this function will place the required
size, in bytes, in the ULONG pointed to by the pcbResult parameter.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,
in bytes, in the ULONG pointed to by this parameter.

© 2013 Microsoft. All Rights Reserved Page 31 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

Kernel Mode Cryptographic Primitives Library

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or
KDF_USE_SECRET_AS_HMAC_KEY_FLAG. The KDF_USE_SECRET_AS_HMAC_KEY_FLAG value must only
be used when pwszKDF is equal to BCRYPT_KDF_HMAC. It indicates that the secret will also be used as
the HMAC key. If this flag is used, the KDF_HMAC_KEY parameter must not be specified in
pParameterList.

7.9.3 BCryptDestroySecret
NTSTATUS WINAPI BCryptDestroySecret(

BCRYPT_SECRET_HANDLE hSecret);
The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the
BCryptSecretAgreement() function.

7.9.4 BCryptKeyDerivation
NTSTATUS WINAPI BCryptKeyDerivation(

 In BCRYPT_KEY_HANDLE hKey,
 _In_opt_ BCryptBufferDesc *pParameterList,
 _Out_writes_bytes_to_(cbDerivedKey, *pcbResult) PUCHAR pbDerivedKey,
 In ULONG cbDerivedKey,
 Out ULONG *pcbResult,
 In ULONG dwFlags);

The BCryptKeyDerivation() function executes a Key Derivation Function (KDF) on a key generated with
BCryptGenerateSymmetricKey() function. It differs from the BCryptDeriveKey() function in that it does
not require a secret agreement step to create a shared secret.

hKey [in] is a handle to a key created with the BCryptGenerateSymmetricKey function.

pParameterList [in] is the algorithm-specific parameter list for the selected KDF.

pbDerivedKey [out] is the address of a buffer that receives the key. The cbDerivedKey parameter
contains the size of this buffer.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the
pbDerivedKey buffer. If the pbDerivedKey parameter is NULL, this function will place the required size,
in bytes, in the ULONG pointed to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This must be zero.

© 2013 Microsoft. All Rights Reserved Page 32 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

7.10 Legacy Compatibility Interfaces
The Kernel Mode Cryptographic Primitives Library driver provides an additional set of interfaces for
compatibility with legacy software written for previous versions of Windows. These interfaces are
described in this section.

These legacy interfaces are not exported by the Kernel Mode Cryptographic Primitives Library driver. A
kernel mode user of the Kernel Mode Cryptographic Primitives Library driver must be able to reference
these functions before using them. The user needs to acquire the table of pointers to the legacy
functions from the Kernel Mode Cryptographic Primitives Library driver. The user accomplishes the table
acquisition by building a Fips function table request IRP (I/O request packet) and then sending the IRP to
the Kernel Mode Cryptographic Primitives Library diver via the IoCallDriver function. Further
information on IRP and IoCallDriver can be found on Microsoft Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 Driver Development Kit.

7.10.1 Key Formatting
The following functions provide interfaces to the Kernel Mode Cryptographic Primitives Library module’s
key formatting functions.

7.10.1.1 FipsDesKey
VOID FipsDesKey(

DESTable * pDesTable,
UCHAR * pbKey)

Note that DES cannot be used in FIPS mode. Nevertheless, this interface is documented here for
completeness. The FipsDesKey function formats a DES cryptographic session key into the form of a
DESTable struct. It fills in the DESTable struct with the decrypt and encrypt key expansions. Its second
parameter points to the DES key of DES_BLOCKLEN (8) bytes. FipsDesKey zeroizes its copy of the key
before returning to the caller.

7.10.1.2 Fips3Des3Key
VOID Fips3Des3Key(

DES3TABLE * pDES3Table,
UCHAR * pbKey)

The Fips3Des3Key function formats a Triple DES cryptographic session key into the form of a DES3Table
struct. It fills in the DES3Table struct with the decrypt and encrypt key expansions. Its second parameter
points to the Triple DES key of 3 * DES_BLOCKLEN (24) bytes. Fips3Des3Key zeroizes its copy of the key
before returning to the caller.

7.10.2 Random Number Generation
7.10.2.1 FipsGenRandom

BOOL FIPSGenRandom(
IN OUT UCHAR *pb,
IN ULONG cb);

© 2013 Microsoft. All Rights Reserved Page 33 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The FipsGenRandom function fills the buffer pb with cb random bytes produced using a FIPS 140-2
compliant random number generation algorithm. The algorithm is the SHS based RNG from FIPS 186-2.
Internally, the function compares each 160 bits of the buffer with the next 160 bits. If they are the
same, the function returns FALSE. The caller may optionally specify the initial 160 bits in the pb buffer
for the initiation of the comparison. This initial 160 bit sequence is used only for the comparison
algorithm and it is not intended as caller supplied random seed.
The seed sources are enumerated in the BCryptGenRandom() function description.

7.10.3 Data Encryption and Decryption
The following functions provide interfaces to the Kernel Mode Cryptographic Primitives Library module’s
data encryption and decryption functions.

7.10.3.1 FipsDes
VOID FipsDes(

UCHAR * pbOut,
UCHAR * pbIn,
void * pKey,
int iOp)

Note that DES cannot be used in FIPS mode. Nevertheless, this interface is documented here for
completeness. The FipsDes function encrypts or decrypts the input buffer pbIn using DES, putting the
result into the output buffer pbOut. The operation (encryption or decryption) is specified with the iOp
parameter. The pKey is a DESTable struct pointer returned by the FipsDesKey function. FipsDes zeroizes
its copy of the DESTable struct before returning to the caller.

7.10.3.2 Fips3Des
VOID Fips3Des(

UCHAR * pbIn,
UCHAR * pbOut,
void * pKey,
int op)

The Fips3Des function encrypts or decrypts the input buffer pbIn using Triple DES, putting the result into
the output buffer pbOut. The operation (encryption or decryption) is specified with the op parameter.
The pkey is a DES3Table struct returned by the Fips3Des3Key function. Fips3Des zeroizes its copy of the
DES3Table struct before returning to the caller.

7.10.3.3 FipsCBC
BOOL FipsCBC(

ULONG EncryptionType,
BYTE * output,
BYTE * input,
void * keyTable,

© 2013 Microsoft. All Rights Reserved Page 34 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

int op,
BYTE * feedback)

Note that DES cannot be used in FIPS mode. Nevertheless, the DES encryption type is documented here
for completeness. The FipsCBC function encrypts or decrypts the input buffer input using CBC mode,
putting the result into the output buffer output. The encryption algorithm (DES or Triple DES) to be
used is specified with the EncryptionType parameter. The operation (encryption or decryption) is
specified with the op parameter.

If the EncryptionType parameter specifies Triple DES, the keyTable is a DES3Table struct returned by the
Fips3Des3Key function. If the EncryptionType parameter specifies DES, the keyTable is a DESTable struct
returned by the FipsDesKey function.

This function encrypts just one block at a time and assumes that the caller knows the algorithm block
length and the buffers are of the correct length. Every time when the function is called, it zeroizes its
copy of the DES3Table or DESTable struct before returning to the caller.

7.10.3.4 FipsBlockCBC
BOOL FipsBlockCBC(

ULONG EncryptionType,
BYTE * output,
BYTE * input,
ULONG length,
void * keyTable,
int op,
BYTE * feedback)

Note that DES cannot be used in FIPS mode. Nevertheless, the DES encryption type is documented here
for completeness. Same as FipsCBC, the FipsBlockCBC function encrypts or decrypts the input buffer
input using CBC mode, putting the result into the output buffer output. The encryption algorithm (DES
or Triple DES) to be used is specified with the EncryptionType parameter. The operation (encryption or
decryption) is specified with the op parameter.

If the EncryptionType parameter specifies Triple DES, the keyTable is a DES3Table struct returned by the
Fips3Des3Key function. If the EncryptionType parameter specifies DES, the keyTable is a DESTable struct
returned by the FipsDesKey function.

This function can encrypt/decrypt more than one block at a time. The caller specifies the length in bytes
of the input buffer in the “length” parameter. So the input/output buffer length is the arithmetic
product of the number of blocks in the input/output buffer and the block length (8 bytes). When the
length is 8 (i.e. one block of input buffer), FipsBlockCBC is the same as FipsCBC.

Every time when the function is called, it zeroizes its copy of the DES3Table or DESTable struct before
returning to the caller.

7.10.4 Hashing

© 2013 Microsoft. All Rights Reserved Page 35 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The following functions provide interfaces to the Kernel Mode Cryptographic Primitives Library module’s
hashing functions.

7.10.4.1 FipsSHAInit
void FipsSHAInit(

A_SHA_CTX * hash_context)
The FipsSHAInit function initiates the hashing of a stream of data. The output hash_context is used in
subsequent hash functions.

7.10.4.2 FipsSHAUpdate
void FipsSHAUpdate(

A_SHA_CTX * hash_context,
UCHAR * pb,
unsigned int cb)

The FipsSHAUpdate function adds data pb of size cb to a specified hash object associated with the
context hash_context. This function can be called multiple times to compute the hash on long data
streams or discontinuous data streams. The FipsSHAFinal function must be called before retrieving the
hash value.

7.10.4.3 FipsSHAFinal
void FipsSHAFinal (

A_SHA_CTX * hash_context,
unsigned char [A_SHA_DIGEST_LEN] hash)

The FipsSHAFinal function computes the final hash of the data entered by the FipsSHAUpdate function.
The hash is an array char of size A_SHA_DIGEST_LEN (20 bytes).

7.10.4.4 FipsHmacSHAInit
void FipsSHAInit(

A_SHA_CTX * pShaCtx
UCHAR * pKey,
unsigned int cbKey)

The FipsHmacSHAInit function initiates the HMAC hashing of a stream of data, with an input key
provided via the pKey parameter. The size of the input key is specified in the cbKey parameter. If the
key size is greater than 64 bytes, the key is hashed to a new key of size 20 bytes using SHA-1. The input
key is EOR’ed with the ipad as required in the HMAC FIPS. The output pShaCtx is used in subsequent
HMAC hashing functions. Every time when the function is called, it zeroizes its copy of the pKey before
returning to the caller.

7.10.4.5 FipsHmacSHAUpdate
void FipsSHAUpdate(

A_SHA_CTX * pShaCtx,
UCHAR * pb,
unsigned int cb)

© 2013 Microsoft. All Rights Reserved Page 36 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

The FipsHmacSHAUpdate function adds data pb of size cb to a specified HMAC hashing object associated
with the context pShaCtx. This function can be called multiple times to compute the HMAC hash on long
data streams or discontinuous data streams. The FipsHmacSHAFinal function must be called before
retrieving the final HMAC hash value.

7.10.4.6 FipsHmacSHAFinal
void FipsHmacSHAFinal (

A_SHA_CTX * pShaCtx,
UCHAR * pKey,
unsigned int cbKey,
UCHAR * hash)

The FipsHmacSHAFinal function computes the final HMAC hash of the data entered by the
FipsHmacSHAUpdate function, with an input key provided via the pKey parameter. The size of the input
key is specified in the cbKey parameter. If the key size is greater than 64 bytes, the key is hashed to a
new key of size 20 bytes using SHA-1. The input key is EOR’ed with the opad as required in the HMAC
FIPS. It is the caller’s responsibility to make sure that the input key used in FipsHmacSHAFinal is the
same as the input key used in FipsHmacSHAInit. The final HMAC hash is an array char of size
A_SHA_DIGEST_LEN (20 bytes). Every time when the function is called, it zeroizes its copy of the pKey
before returning to the caller.

7.10.4.7 HmacMD5Init
void HmacMD5Init(

MD5_CTX * pMD5Ctx,
UCHAR * pKey,
unsigned int cbKey)

Note that HMAC-MD5 cannot be used in FIPS mode. Nevertheless, this interface is documented here for
completeness. The HmacMD5Init function initiates the HMAC hashing of a stream of data, with an input
key provided via the pKey parameter. The size of the input key is specified in the cbKey parameter. If
the key size is greater than 64 bytes, the key is hashed to a new key of size 16 bytes using MD5 as
required in the HMAC FIPS. The input key is EOR’ed with the ipad. The output pMD5Ctx is used in
subsequent HMAC hashing functions. Every time when the function is called, it zeroizes its copy of the
pKey before returning to the caller.

7.10.4.8 HmacMD5Update
void HmacMD5Update(

MD5_CTX * pMD5Ctx,
UCHAR * pb,
unsigned int cb)

Note that HMAC-MD5 cannot be used in FIPS mode. Nevertheless, this interface is documented here for
completeness. The HmacMD5Update function adds data pb of size cb to a specified HMAC hashing
object associated with the context pMD5Ctx. This function can be called multiple times to compute the

© 2013 Microsoft. All Rights Reserved Page 37 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

HMAC hash on long data streams or discontinuous data streams. The HmacMD5Update function must
be called before retrieving the final HMAC hash value.

7.10.4.9 HmacMD5Final
void HmacMD5Final(

MD5_CTX *pMD5Ctx,
UCHAR *pKey,
unsigned int cbKey,
UCHAR *pHash)

Note that HMAC-MD5 cannot be used in FIPS mode. Nevertheless, this interface is documented here for
completeness. The HmacMD5Final function computes the final HMAC hash of the data entered by the
HmacMD5Update function, with an input key provided via the pKey parameter. The size of the input
key is specified in the cbKey parameter. If the key size is greater than 64 bytes, the key is hashed to a
new key of size 16 bytes using MD5. The input key is EOR’ed with the opad as required in the HMAC
FIPS. It is the caller’s responsibility to make sure that the input key used in HmacMD5Final is the same
as the input key used in HmacMD5Init. The final HMAC hash is an array char of size A_ MD5DIGESTLEN
(16 bytes). Every time when the function is called, it zeroises its copy of the pKey before returning to
the caller.

7.11 Deprecation

7.11.1 Bit Strengths of DH and ECDH
Through the year 2010, implementations of DH and ECDH were allowed to have an acceptable bit
strength of at least 80 bits of security (for DH at least 1024 bits and for ECDH at least 160 bits). From
2011 through 2013, 80 bits of security strength is considered deprecated, and will be disallowed starting
January 1, 2014. On that date, only security strength of at least 112 bits will be acceptable. ECDH uses
curve sizes of at least 256 bits (that means it has at least 128 bits of security strength), so that is
acceptable. However, DH has a range of 1024 to 4096 and that will change to 2048 to 4096 after 2013.

7.11.2 SHA-1
From 2011 through 2013, SHA-1 can be used in a deprecated mode for use in digital signature
generation. On Jan. 1, 2014, SHA-1 will no longer be allowed for digital signature generation, and it will
be allowed for legacy use only for digital signature verification.

8 Authentication
See Section 6.3 Operator Authentication.

9 Security Relevant Data Items
The Kernel Mode Cryptographic Primitives Library crypto module manages the following security
relevant data items.

© 2013 Microsoft. All Rights Reserved Page 38 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

Security Relevant Data Item Description
Symmetric encryption/decryption keys Keys used for AES or TDEA encryption/decryption.
HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384,

and HMAC-SHA512
Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures
Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures
Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures
Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures
AES-CTR DRBG Seed A secret value maintained internal to the module that

provides the seed material for AES-CTR DRBG output
AES-CTR DRBG Entropy Input A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
AES-CTR DRBG V A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
AES-CTR DRBG key A secret value maintained internal to the module that

provides the entropy material for AES-CTR DRBG output
DUAL EC DRBG Seed A secret value maintained internal to the module that

provides the seed material for DUAL EC DRBG output
DUAL EC DRBG Entropy Input A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output
DUAL EC DRBG V A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output
DUAL EC DRBG key A secret value maintained internal to the module that

provides the entropy material for DUAL EC DRBG output
DH Private and Public values Private and public values used for Diffie-Hellman key

establishment.
ECDH Private and Public values Private and public values used for EC Diffie-Hellman key

establishment.
FIPS 186-2 RNG Seed and Seed Key Secret values maintained internal to the module that

provide the necessary seed and entropy material for the
FIPS 186-2 RNG.

9.1 Access Control Policy
The Kernel Mode Cryptographic Primitives Library crypto module allows controlled access to the security
relevant data items contained within it. The following table defines the access that a service has to
each. The permissions are categorized as a set of four separate permissions: read (r), write (w), execute
(x), delete (d). If no permission is listed, the service has no access to the item. The User and
Cryptographic Officer roles have the same access to keys so roles are not distinguished in the table.

© 2013 Microsoft. All Rights Reserved Page 39 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

Kernel Mode Cryptographic Primitives
Library crypto module

Service Access Policy

Sy
m

m
et

ric

en
cr

yp
tio

n/
de

cr
yp

tio
n

ke
ys

H
M

AC
 k

ey
s

EC
D

SA
 p

ub
lic

 k
ey

s

EC
D

SA
 P

riv
at

e
ke

ys

RS
A

Pu
bl

ic
 K

ey
s

RS
A

Pr
iv

at
e

Ke
ys

D
H

 P
ub

lic
 a

nd
 P

riv
at

e
va

lu
es

EC
D

H
 P

ub
lic

 a
nd

 P
riv

at
e

va
lu

es

RN
G

 &
 D

RB
G

 S
ee

ds
/S

ee
d

Ke
ys

Cryptographic Module Power Up and
Power Down

Key Formatting w

Random Number Generation x

Data Encryption and Decryption x

Hashing wx

Acquiring a Table of Pointers to FipsXXX
Functions

Algorithm Providers and Properties

Key and Key-Pair Generation wd wd wd wd wd wd wd wd x

Key Entry and Output rw rw rw rw rw rw rw rw

Signing and Verification x x x x x

Secret Agreement and Key Derivation x x x

9.2 Key Material
When Kernel Mode Cryptographic Primitives Library is loaded in the Windows 8, Windows RT, Windows
Server 2012, and Windows Phone 8 Operating System kernel, no keys exist within it. A kernel module is
responsible for importing keys into Kernel Mode Cryptographic Primitives Library or using Kernel Mode
Cryptographic Primitives Library’s functions to generate keys.

9.3 Key Generation
Kernel Mode Cryptographic Primitives Library can create and use keys for the following algorithms: RSA,
DH, ECDH, ECDSA, RC2, RC4, DES, Triple-DES, AES, and HMAC. However, RC2, RC4, and DES cannot be
used in FIPS mode.

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and
BCryptGenerateKeyPair() functions. Random data generated by the BCryptGenRandom() function is
provided to BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple-DES, AES,

© 2013 Microsoft. All Rights Reserved Page 40 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

RSA, ECDSA, DH, and ECDH keys and key-pairs are generated following the techniques given in SP 800-
56A (Section 5.8.1).

The module generates cryptographic keys whose strengths are modified by available entropy.

9.4 Key Establishment
Kernel Mode Cryptographic Primitives Library can use FIPS approved Diffie-Hellman key agreement (DH),
Elliptic Curve Diffie-Hellman key agreement (ECDH), RSA key transport and manual methods to establish
keys. Alternatively, the module can also use Approved KDFs to derive key material from a specified
secret value or password.

Kernel Mode Cryptographic Primitives Library can use the following FIPS approved key derivation
functions (KDF) from the common secret that is established during the execution of DH and ECDH key
agreement algorithms:

• BCRYPT_KDF_SP80056A_CONCAT. This KDF supports the Concatenation KDF as specified in SP
800-56A (Section 5.8.1).

• BCRYPT_KDF_HASH. This KDF supports FIPS approved SP800-56A (Section 5.8), X9.63, and X9.42
key derivation.

• BCRYPT_KDF_HMAC. This KDF supports the IPsec IKEv1 key derivation that is non-Approved but
is an allowed legacy implementation in FIPS mode when used to establish keys for IKEv1 as per
scenario 4 of IG D.8.

• BCRYPT_KDF_TLS_PRF. This KDF supports the SSLv3.1 and TLSv1.0 key derivation that is non-
Approved but is an allowed legacy implementation in FIPS mode when used to establish keys for
SSLv3.1 or TLSv1.0 as specified in as per scenario 4 of IG D.8.

Kernel Mode Cryptographic Primitives Library can use the following FIPS approved key derivation
functions (KDF) from a key handle created from a specified secret or password:

• BCRYPT_SP800108_CTR_HMAC_ALGORITHM. This KDF supports the counter-mode variant of
the KDF specified in SP 800-108 (Section 5.1) with HMAC as the underlying PRF.

• BCRYPT_SP80056A_CONCAT_ALGORITHM. This KDF supports the Concatenation KDF as
specified in SP 800-56A (Section 5.8.1).

• BCRYPT_PBKDF2_ALGORITHM. This KDF supports the Password Based Key Derivation Function
specified in SP 800-132 (Section 5.3).

• BCRYPT_CAPI_KDF_ALGORITHM. This KDF supports the proprietary KDF described at
http://msdn.microsoft.com/library/windows/desktop/aa379916.aspx
Note that this KDF cannot be used in FIPS mode.

9.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)
There are two (2) options presented in NIST SP 800-132, pages 8 – 10, that are used to derive the Data
Proection Key (DPK) from the Master Key. With the Kernel Mode Cryptographic Primitives Library, it is
up to the caller to select the option to generate/protect the DPK. For example, DPAPI uses option
2a. Kernel Mode Cryptographic Primitives Library provides all the building blocks for the caller to select
the desired option.

© 2013 Microsoft. All Rights Reserved Page 41 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://msdn.microsoft.com/library/windows/desktop/aa379916.aspx

Kernel Mode Cryptographic Primitives Library

The Kernel Mode Cryptographic Primitives Library supports the following HMAC hash functions as
parameters for PBKDF:

• SHA-1 HMAC
• SHA-256 HMAC
• SHA-384 HMAC
• SHA-512 HMAC

Keys derived from passwords, as shown in SP 800-132, may only be used in storage applications. In
order to run in a FIPS approved manner, it is up to the user and application to pick strong passwords and
use them only for storage applications. The password/passphrase length is enforced by the caller of the
PBKDF interfaces and not the cryptographic module. In order to run in a FIPS approved manner, the
password must be chosen in accordance with the guidelines in NIST SP 800-63 Electronic Authentication
Guideline and SP 800-118 DRAFT Guide to Enterprise Password Management. The upper bound for the
probability of having the password guessed at random is to be computed following the SP 800-63 and SP
800-118 guidelines. The decision for the minimum length of a password used for key derivation is to be
based on the SP 800-63 and SP 800-118 guidelines.

9.5 Key Entry and Output
Keys can be both exported and imported out of and into Kernel Mode Cryptographic Primitives Library
via BCryptExportKey(), BCryptImportKey(), and BCryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric
public key via BCryptSecretAgreement() and BCryptDeriveKey() functions.

Triple DES keys can be imported into Kernel Mode Cryptographic Primitives Library via Fips3Des3Key().
DES3Table struct can be exported out of Kernel Mode Cryptographic Primitives Library via
Fips3Des3Key(). DES3Table struct can be imported into Kernel Mode Cryptographic Primitives Library
via Fips3Des() or FipsCBC().

HMAC keys can be imported into Kernel Mode Cryptographic Primitives Library via FipsHmacSHAInit and
FipsHmacSHAFinal.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,
BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BCryptExportKey() is not allowed in
FIPS mode.

9.6 Key Storage
Kernel Mode Cryptographic Primitives Library does not provide persistent storage of keys.

© 2013 Microsoft. All Rights Reserved Page 42 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

9.7 Key Archival
Kernel Mode Cryptographic Primitives Library does not directly archive cryptographic keys. A user may
choose to export a cryptographic key (cf. “Key Entry and Output” above), but management of the secure
archival of that key is the responsibility of the user. All key copies inside Kernel Mode Cryptographic
Primitives Library are destroyed and their memory location zeroized after used. It is the caller’s
responsibility to maintain the security of Triple DES and HMAC keys when the keys are outside Kernel
Mode Cryptographic Primitives Library.

9.8 Key Zeroization
All keys are destroyed and their memory location zeroized when the operator calls BCryptDestroyKey()
or BCryptDestroySecret() on that key handle.

All Triple DES key copies, their associated DESTable and DES3Table struct copies, and HMAC key copies
inside Kernel Mode Cryptographic Primitives Library are destroyed and their memory location zeroized
after they have been used in Fips3Des or FipsCBC.

10 Self-Tests

10.1 Power-On Self-Tests
Kernel Mode Cryptographic Primitives Library automatically performs the following power-on (startup)
self-tests upon loading of the CNG.SYS driver through its default entry point (DriverEntry).

• HMAC-SHA-1 Known Answer Test
• HMAC-SHA-256 and HMAC-SHA-512 Known Answer Tests
• Triple-DES encrypt/decrypt ECB Known Answer Test
• AES-128 encrypt/decrypt EBC Known Answer Test
• AES-128 encrypt/decrypt CBC Known Answer Test
• AES-128 CMAC Known Answer Test
• AES-128 encrypt/decrypt CCM Known Answer Test
• AES-128 encrypt/decrypt GCM Known Answer Test
• SP 800-108 KDF Known Answer Test
• SP 800-132 PBKDF Known Answer Test
• RSA Known Answer Test
• ECDSA sign/verify test on P256 curve
• ECDH secret agreement Known Answer Test on P256 curve
• SP800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)
• SP800-90 AES-256 counter mode DRBG Known Answer Tests (instantiate, generate and reseed)
• SP800-90 Dual-EC DRBG Known Answer Tests (instantiate, generate and reseed)
• FIPS 186-2 RNG Known Answer Test

In all cases for any failure of a power-on (startup) self-test, the Kernel Mode Cryptographic Primitives
Library module will not load and status will be returned. The only way to recover from the failure of a

© 2013 Microsoft. All Rights Reserved Page 43 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library

power-on (startup) self-test is for the kernel to attempt to invoke DriverEntry, which will rerun the self-
tests, and will only succeed if the self-tests pass.

10.2 Conditional Self-Tests
Kernel Mode Cryptographic Primitives Library performs pair-wise consistency checks upon each
invocation of RSA, ECDH, and ECDSA key-pair generation and import as defined in FIPS 140-2. SP 800-
56A conditional self-tests are also performed. A continuous RNG test (CRNGT) is used for the random
number generators of this cryptographic module. All approved and non-approved RNGs have a CRNGT.
The SP 800-90 DRBGs have health tests. A pair-wise consistency test is done for Diffie-Hellman. If the
conditional self-test fails, the module will not load and status will be returned. If the status is not
STATUS_SUCCESS, then that is the indicator a conditional self-test failed.

11 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the
overall Windows 8, Windows RT, and Windows Server 2012 operating system secure installation,
configuration, and startup procedures. After the operating system has been installed, it must be
configured by enabling the "System cryptography: Use FIPS compliant algorithms for encryption,
hashing, and signing" policy setting followed by restarting the system. This procedure is all the crypto
officer and user behavior necessary for the secure operation of this cryptographic module.

Windows Phone 8 does not use the same installation, configuration, and startup procedures as the
Windows operating system on a computer, but rather, is securely installed and configured by the
cellular telephone carrier.

The procedures required for maintaining security while distributing and delivering versions of a
cryptographic module to authorized operators are:

1. The secure distribution method is via the physical medium for product installation delivered by
Microsoft Corporation, which is a DVD in the case of Windows 8 and Windows Server 2012. In
the case of Windows RT, Surface Windows RT, Surface Windows 8 Pro, and Windows Phone 8,
the cryptographic module is already installed at the factory and is only distributed with the
hardware.

2. An inspection of authenticity of the physical medium can be made by following the guidance at
this Microsoft web site: http://www.microsoft.com/en-us/howtotell/default.aspx

3. The installed version of Windows 8, Windows RT, and Windows Server 2012 must be verified to
match the version that was validated. See Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows
Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the
metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL
ensures that the client is communicating with the real server and so prevents a spoof server from
sending the client harmful requests. The version and digital signature of new cryptographic module

© 2013 Microsoft. All Rights Reserved Page 44 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://www.microsoft.com/en-us/howtotell/default.aspx

Kernel Mode Cryptographic Primitives Library

releases must be verified to match the version that was validated. See Appendix A for details on how to
do this.

12 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Algorithm Protected
Against

Mitigation Comments

SHA1 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

SHA2 Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

3DES Timing
Analysis
Attack

Constant Time Implementation

AES Timing
Analysis
Attack

Constant Time Implementation

 Cache Attack Memory Access pattern is
independent of any
confidential data

Protected Against Cache
attacks only when used with
AES NI

13 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

http://windows.microsoft.com

For more information about FIPS 140 evaluations of Microsoft products, please see:

http://technet.microsoft.com/en-us/library/cc750357.aspx

© 2013 Microsoft. All Rights Reserved Page 45 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

http://windows.microsoft.com/
http://technet.microsoft.com/en-us/library/cc750357.aspx

Kernel Mode Cryptographic Primitives Library

14 Appendix A – How to Verify Windows Versions and Digital Signatures

14.1 How to Verify Windows Versions
The installed version of Windows 8, Windows RT, and Windows Server 2012 must be verified to match
the version that was validated using one of the following methods:

1. The ver command
a. From Start, open the Search charm.
b. In the search field type "cmd" and press the Enter key.
c. The command window will open with a "C:\>" prompt.
d. At the prompt, type "ver" and press the Enter key.
e. You should see the answer "Microsoft Windows [Version 6.2.9200]".

2. The systeminfo command
a. From Start, open the Search charm.
b. In the search field type "cmd" and press the Enter key.
c. The command window will open with a "C:\>" prompt.
d. At the prompt, type "systeminfo" and press the Enter key.
e. Wait for the information to be loaded by the tool.
f. Near the top of the output, you should see:

OS Name: Microsoft Windows 8 Enterprise
OS Version: 6.2.9200 N/A Build 9200
OS Manufacturer: Microsoft Corporation

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

14.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital
signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: x.x.xxxx.xxxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true then the digital signature has been verified.

© 2013 Microsoft. All Rights Reserved Page 46 of 46
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

	1 Introduction
	1.1 List of Cryptographic Module Binary Executables
	1.2 Brief Module Description
	1.3 Validated Platforms
	1.4 Cryptographic Boundary

	2 Security Policy
	2.1 FIPS 140-2 Approved Algorithms
	2.2 Non-Approved Algorithms
	2.3 Cryptographic Bypass
	2.4 Machine Configurations

	3 Operational Environment
	4 Integrity Chain of Trust
	5 Ports and Interfaces
	5.1 Control Input Interface
	5.2 Status Output Interface
	5.3 Data Output Interface
	5.4 Data Input Interface
	5.5 Non-Security Relevant Interfaces
	5.5.1 Configuration
	5.5.2 Non-approved APIs

	6 Specification of Roles
	6.1 Maintenance Roles
	6.2 Multiple Concurrent Interactive Operators
	6.3 Operator Authentication
	6.4 Show Status Services
	6.5 Self-Test Services
	6.6 Service Inputs / Outputs
	6.7

	7 Services
	7.1 Cryptographic Module Power Up and Power Down
	7.1.1 DriverEntry
	7.1.2 DriverUnload

	7.2 Algorithm Providers and Properties
	7.2.1 BCryptOpenAlgorithmProvider
	7.2.2 BCryptCloseAlgorithmProvider
	7.2.3 BCryptSetProperty
	7.2.4 BCryptGetProperty
	7.2.5 BCryptFreeBuffer

	7.3 Random Number Generation
	7.3.1 BCryptGenRandom
	7.3.2 SystemPrng
	7.3.3 EntropyRegisterSource
	7.3.4 EntropyUnregisterSource
	7.3.5 EntropyProvideData

	7.4 Key and Key-Pair Generation
	7.4.1 BCryptGenerateSymmetricKey
	7.4.2 BCryptGenerateKeyPair
	7.4.3 BCryptFinalizeKeyPair
	7.4.4 BCryptDuplicateKey
	7.4.5 BCryptDestroyKey

	7.5 Key Entry and Output
	7.5.1 BCryptImportKey
	7.5.2 BCryptImportKeyPair
	7.5.3 BCryptExportKey

	7.6 Encryption and Decryption
	7.6.1 BCryptEncrypt
	7.6.2 BCryptDecrypt

	7.7 Hashing and Message Authentication
	7.7.1 BCryptCreateHash
	7.7.2 BCryptHashData
	7.7.3 BCryptDuplicateHash
	7.7.4 BCryptFinishHash
	7.7.5 BCryptDestroyHash

	7.8 Signing and Verification
	7.8.1 BCryptSignHash
	7.8.2 BCryptVerifySignature

	7.9 Secret Agreement and Key Derivation
	7.9.1 BCryptSecretAgreement
	7.9.2 BCryptDeriveKey
	7.9.3 BCryptDestroySecret
	7.9.4 BCryptKeyDerivation

	7.10 Legacy Compatibility Interfaces
	7.10.1 Key Formatting
	7.10.1.1 FipsDesKey
	7.10.1.2 Fips3Des3Key

	7.10.2 Random Number Generation
	7.10.2.1 FipsGenRandom

	7.10.3 Data Encryption and Decryption
	7.10.3.1 FipsDes
	7.10.3.2 Fips3Des
	7.10.3.3 FipsCBC
	7.10.3.4 FipsBlockCBC

	7.10.4 Hashing
	7.10.4.1 FipsSHAInit
	7.10.4.2 FipsSHAUpdate
	7.10.4.3 FipsSHAFinal
	7.10.4.4 FipsHmacSHAInit
	7.10.4.5 FipsHmacSHAUpdate
	7.10.4.6 FipsHmacSHAFinal
	7.10.4.7 HmacMD5Init
	7.10.4.8 HmacMD5Update
	7.10.4.9 HmacMD5Final

	7.11 Deprecation
	7.11.1 Bit Strengths of DH and ECDH
	7.11.2 SHA-1

	8 Authentication
	9 Security Relevant Data Items
	9.1 Access Control Policy
	9.2 Key Material
	9.3 Key Generation
	9.4 Key Establishment
	9.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)

	9.5 Key Entry and Output
	9.6 Key Storage
	9.7 Key Archival
	9.8 Key Zeroization

	10 Self-Tests
	10.1 Power-On Self-Tests
	10.2 Conditional Self-Tests

	11 Design Assurance
	12 Mitigation of Other Attacks
	13 Additional Details
	14 Appendix A – How to Verify Windows Versions and Digital Signatures
	14.1 How to Verify Windows Versions
	14.2 How to Verify Windows Digital Signatures

