McAfee, Inc.

McAfee Firewall Enterprise 2150F Hardware Part Number: NSA-2150-FWEX-F; Firmware Versions: 7.0.1.03 and 8.2.0

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: 2 Document Version: 0.11

Prepared for:

McAfee, Inc. 3965 Freedom Circle Santa Clara, California 95054 United States of America

Phone: +1 (888) 847-8766 http://www.mcafee.com Prepared by:

Corsec Security, Inc. 13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, Virginia 22033 United States of America

> Phone: +1 (703) 267-6050 http://www.corsec.com

Table of Contents

L	INTRODUCTION4				
	1.1	Purpose	4		
	1.2	References	4		
	1.3	DOCUMENT ORGANIZATION	.4		
2	MCA	AFEE FIREWALL ENTERPRISE 2150F	.5		
	2.1	Overview	5		
	2.2	Module Specification	7		
	2.3	MODULE INTERFACES	.7		
	2.4	Roles and Services	9		
		2.4.1 Crypto-Officer Role	10		
		2.4.2 User Role	12		
		2.4.3 Network User Role	13		
		2.4.4 Authentication Mechanism	13		
	2.5	Physical Security	15		
	2.6	OPERATIONAL ENVIRONMENT	16		
	2.7	CRYPTOGRAPHIC KEY MANAGEMENT	16		
	2.8	SELF-TESTS	23		
		2.8.1 Power-Up Self-Tests	23		
		2.8.2 Conditional Self-Tests	23		
		2.8.3 Critical Functions Self-Test	23		
	2.9	MITIGATION OF OTHER ATTACKS	23		
3	SEC	URE OPERATION	24		
	3.1	CRYPTO-OFFICER GUIDANCE	24		
		3.1.1 Initialization	25		
		3.1.2 Management	33		
		3.1.3 Zeroization	33		
		3.1.4 Disabling FIPS Mode of Operation	33		
	3.2	User Guidance	33		
4	ACR	ONYMS	34		

Table of Figures

- IGURE I – TYPICAL DEPLOYMENT SCENARIO	.5
GURE 2 – MCAFEE FIREWALL ENTERPRISE 2150F	.6
igure 3 – Front Panel Features and Indicators	.8
GURE 4 – HARD DRIVE INDICATORS	.8
igure 5 – Back Panel Features and Indicators	.9
GURE 6 – VELCRO STRIP PLACEMENT ON TOP COVER	26
igure 7 – Velcro Strip Placement in Rear of Chassis	26
GURE 8 – VELCRO STRIP PLACEMENT OVER EXPANSION SLOTS	27
GURE 9 – TAMPER-EVIDENT SEAL APPLICATION POSITION (FRONT BEZEL)	28
IGURE 10 – TAMPER-EVIDENT SEAL APPLICATION POSITION (TOP COVER)	28
IGURE II – TAMPER-EVIDENT SEAL APPLICATION POSITIONS (POWER SUPPLIES)	28
igure 12 – Service Status	31
-igure 13 – Configuring For FIPS	32

List of Tables

TABLE 1 - SECURITY LEVEL PER FIPS 140-2 SECTION	6
TABLE 2 – MCAFEE FIREWALL ENTERPRISE 2150F PORTS AND INTERFACES	.7

McAfee Firewall Enterprise 2150F

Page **2** of 37

© 2012 McAfee, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

TABLE 3 – FIPS 140-2 LOGICAL INTERFACE MAPPINGS	9
TABLE 4 – CRYPTO-OFFICER SERVICES	10
TABLE 5 – USER SERVICES	12
TABLE 6 – NETWORK USER SERVICES	13
TABLE 7 – AUTHENTICATION MECHANISMS EMPLOYED BY THE MODULE	14
TABLE 8 – APPROVED CRYPTOGRAPHIC FUNCTIONS	16
TABLE 9 – NON-APPROVED CRYPTOGRAPHIC FUNCTIONS USED IN FIPS MODE	17
TABLE 10 – SECURITY SERVICES IN NON-APPROVED MODE	18
TABLE II – LIST OF CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS	19
TABLE 12 - SUMMARY OF FIREWALL ENTERPRISE DOCUMENTATION	24
TABLE 13 – REQUIRED KEYS AND CSPS FOR SECURE OPERATION	32
TABLE 14 – ACRONYMS	34

Introduction

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy for the McAfee Firewall Enterprise 2150F from McAfee, Inc. This Security Policy describes how the McAfee Firewall Enterprise 2150F meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module. The McAfee Firewall Enterprise 2150F is referred to in this document as the 2150F, the crypto-module, or the module.

I.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The McAfee corporate website (<u>http://www.mcafee.com</u>) contains information on the full line of products from McAfee.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

I.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Validation Submission Summary document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to McAfee. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to McAfee and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact McAfee.

2.1 Overview

McAfee, Inc. is a global leader in Enterprise Security solutions. The company's comprehensive portfolio of network security products and solutions provides unmatched protection for the enterprise in the most mission-critical and sensitive environments. The McAfee Firewall Enterprise 2150F appliance is created to meet the specific needs of organizations of all types and enable those organizations to reduce costs and mitigate the evolving risks that threaten today's networks and applications.

Consolidating all major perimeter security functions into one system, McAfee's Firewall Enterprise appliances are the strongest self-defending perimeter firewalls in the world. Built with a comprehensive combination of high-speed application proxies, McAfee's TrustedSourceTM reputation-based global intelligence, and signature-based security services, Firewall Enterprise defends networks and Internet-facing applications from all types of malicious threats, both known and unknown.

Figure I – Typical Deployment Scenario

Firewall Enterprise appliances are market-leading, next-generation firewalls that provide application visibility and control even beyond Unified Threat Management (UTM) for multi-layer security – and the highest network performance. Global visibility of dynamic threats is the centerpiece of Firewall Enterprise and one of the key reasons for its superior ability to detect unknown threats along with the known. Firewall Enterprise appliances deliver the best-of-breed in security systems to block attacks, including:

- Viruses
- Worms
- Trojans
- Intrusion attempts
- Spam and phishing tactics
- Cross-site scripting
- Structured Query Language (SQL) injections
- Denial of service (DoS)
- Attacks hiding in encrypted protocols

A Firewall Enterprise appliance is managed using a proprietary graphical user interface (GUI), referred as Admin Console, and a command line management interface. Hundreds of Firewall Enterprise appliances

can be managed centrally using McAfee's Control Center tool. Firewall Enterprise security features include:

- Firewall feature for full application filtering, web application filtering, and Network Address Translation (NAT)
- Authentication using local database, Active Directory, LDAP¹, RADIUS², Windows Domain Authentication, and more
- High Availability (HA)
- Geo-location filtering
- Encrypted application filtering using TLS³ and IPsec⁴ protocols
- Intrusion Prevention System
- Networking and Routing
- Management via Simple Network Management Protocol (SNMP) version 3

Although SNMP v3 can support AES encryption, it does not utilize a FIPS-Approved key generation method; therefore, the module has been designed to block the ability to view or alter critical security parameters (CSPs) through this interface. Also note that the SNMP v3 interface is a management interface for the McAfee Firewall Enterprise 2150F and that no CSPs or user data are transmitted over this interface.

The McAfee Firewall Enterprise 2150F is a 2U rack-mountable appliance appropriate for mid- to largesized organizations. A front view of the cryptographic module is shown in Figure 2 below.

Figure 2 – McAfee Firewall Enterprise 2150F

The McAfee Firewall Enterprise 2150F is validated at the FIPS 140-2 Section levels shown in Table 1.

Table I – Securi	ty Level Per FIP	S 140-2 Section
------------------	------------------	-----------------

Section	Section Title	Level		
I	Cryptographic Module Specification	2		
2	Cryptographic Module Ports and Interfaces	2		
3	Roles, Services, and Authentication			
4	Finite State Model	2		
5	Physical Security	2		
6	Operational Environment	N/A		
7	Cryptographic Key Management	2		
8	EMI/EMC ⁵	2		

¹ LDAP – Lightweight Directory Access Protocol

² RADIUS – Remote Authentication Dial-In User Service

³ TLS – Transport Layer Security

⁴ IPsec – Internet Protocol Security

© 2012 McAfee, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

McAfee Firewall Enterprise 2150F

Section	Section Title	Level
9	Self-tests	2
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A

2.2 Module Specification

The McAfee Firewall Enterprise 2150F (Hardware Part Number: NSA-2150-FWEX-F; Firmware Versions: 7.0.1.03 and 8.2.0) is a multi-chip standalone hardware module that meets overall Level 2 FIPS 140-2 requirements. The cryptographic boundary of the 2150F is defined by the hard metal chassis, which surrounds all the hardware and firmware components.

2.3 Module Interfaces

Interfaces on the module can be categorized as the following FIPS 140-2 logical interfaces:

- Data Input Interface
- Data Output Interface
- Control Input interface
- Status Output Interface
- Power Interface

The physical ports and interfaces for the model 2150F are listed in Table 2, and are depicted in Figure 3, Figure 4, and Figure 5.

Table 2 – McAfee	Firewall	Enterprise	2150F	Ports and	Interfaces

Location	Physical Ports
Front Panel	 One (1) Power button One (1) Power LED One (1) NMI button Two (2) USB⁶ ports One (1) VGA⁷ port Two (2) LCD⁸ menu buttons One (1) System identification button Eight (8) Drive-activity LEDs Eight (8) Drive-status LEDs
Back Panel	 One (1) serial connector One (1) VGA port Two (2) USB ports Four (4) 10/100/1000 Ethernet RJ-45 ports One (1) system status indicator LED One (1) system identification button Two (2) power connectors

⁵ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

- ⁶ USB Universal Serial Bus
- ⁷ VGA Video Graphics Array
- ⁸ LCD Liquid Crystal Display

© 2012 McAfee, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

McAfee Firewall Enterprise 2150F

Note the following acronyms used in the figures below:

- NMI Nonmaskable Interrupt
- PCIe Peripheral Component Interconnect Express
- iDRAC6 Integrated DellTM Remote Access Controller 6

- 1. Information tag
- 2. Power-on indicator, power button
- 3. NMI button
- 4. USB connector (2)
- 5. Video connector
- 6. LCD menu buttons

- 7. LCD panel
- 8. System identification button
- 9. Optical drive (optional)
- 10. Hard drives (8)
- 11. Flex bay
- Figure 3 Front Panel Features and Indicators

Figure 4 - Hard Drive Indicators

Figure 5 – Back Panel Features and Indicators

All of these physical interfaces are separated into logical interfaces defined by FIPS 140-2, as described in Table 3.

FIPS 140-2 Interface	McAfee Firewall Enterprise 2150F Physical Port
Data Input	Connectors (Ethernet)
Data Output	Connectors (Ethernet)
Control Input	Buttons (NMI, power, LCD menu, system identification) and connectors (Ethernet, USB, serial)
Status Output	Connectors (video, Ethernet, serial), and LED indicators (power-on, drive activity, drive status, system status)
Power	Connectors (power)

Table 3 - FIPS 140-2 Logical Interface Mappings

Note that a metal bezel is mounted to the chassis front (see Figure 2 above). A lock on the bezel is used to prevent unauthorized access to system peripherals, hard drives, and the control panel. Of the available front panel features and indicators (see Figure 3), only the LCD panel and hard drive LEDs are accessible when the bezel is installed.

2.4 Roles and Services

The module supports role-based authentication. There are three authorized roles in the module that an operator may assume: a Crypto-Officer (CO) role, a User role, and a Network User role.

Please note that the keys and Critical Security Parameters (CSPs) listed in the Services tables below indicate the type of access required:

- **R** (**Read**): The CSP is read
- W (Write): The CSP is established, generated, modified, or zeroized
- X (Execute): The CSP is used within an Approved or Allowed security function or authentication mechanism

2.4.1 Crypto-Officer Role

The Crypto-Officer role performs administrative services on the module, such as initialization, configuration, and monitoring of the module. Before accessing the module for any administrative service, the operator must authenticate to the module. The module offers management interfaces in three ways:

- Administration Console
- Command Line Interface (CLI)
- SNMP v3

The Administration Console (or Admin Console) is the graphical software that runs on a Windows computer within a connected network. Admin Console is McAfee's proprietary GUI management software tool that needs to be installed on a Windows-based workstation. This is the primary management tool. All Admin Console sessions to the module are protected over secure TLS channel. Authentication of the administrator is through a username/password prompt checked against a local password database.

CLI sessions are offered by the module for troubleshooting. The CLI is accessed locally over the serial port, while remote access is via Secure Shell (SSH) session. The CO authenticates to the module using a username and password.

The crypto-module uses the SNMP v3 protocol for remote management, and to provide information about the state and statistics as part of a Network Management System (NMS).

Services provided to the Crypto-Officer are provided in Table 4 below.

Service	Description	Input	Output	CSP and Type of Access
Authenticate to the Admin Console	Used when administrators login to the appliance using the Firewall Enterprise Admin Console	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W Administrative Password - R
Authenticate to the Admin Console using Common Access Card (CAC)	Used when administrators login to the appliance with CAC authentication to access the Firewall Enterprise Admin Console	Command	Status Output	Common Access Card Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W Common Access Card One-Time Password - R
Authenticate to the Admin CLI	Used when administrators login to the appliance using the Firewall Enterprise Admin CLI	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R SSH Session Authentication Key - R/W SSH Session Key - R/W Administrative Password - R

Table 4 – Crypto-Officer Services

.

Service	Description	Input	Output	CSP and Type of Access
Authenticate to the Admin CLI using Common Access Card (CAC)	Used when administrators login to the appliance with CAC authentication to access the Firewall Enterprise Admin CLI	Command	Status Output	Common Access Card Authentication Keys - R Key Agreement Key - R SSH Session Authentication Key - R/W SSH Session Key - R/W Common Access Card One-Time Password - R
Authenticate to the local console	Used when administrators login to the appliance via the local console	Command	Status Output	Administrator Password - R
Change password	Allows external users to use a browser to change their Firewall Enterprise, SafeWord PremierAccess, or LDAP login password	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W Administrative Password - R/W
Configure cluster communication	Services required to communicate with each other in Firewall Enterprise multi- appliance configurations	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W
Configure and monitor Virtual Private Network (VPN) services	Used to generate and exchange keys for VPN sessions	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W IKE Preshared key - W IPsec Session Key - W IPsec Authentication Key - W
Create and configure bypass mode	Create and monitor IPsec policy table that governs alternating bypass mode	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W
Manage mail services	Used when running 'sendmail' service on a Firewall Enterprise appliance	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/
Manage web filter	Manages configuration with the SmartFilter	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W
Manage Control Center communication	Verifies registration and oversees communication among the Control Center and managed Firewall Enterprise appliances	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W

McAfee Firewall Enterprise 2150F

© 2012 McAfee, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service	Description	Input	Output	CSP and Type of Access
Monitor status on SNMP	Monitors non security relevant status of the module via SNMPv3	Command	Status Output	SNMP v3 Session Key - R
Perform self-tests	Run self-tests on demand via reboot	Command	Status Output	None
Enable FIPS mode	Configures the module in FIPS mode	Command	Status Output	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W
Show status	Allows Crypto- Officer to check whether FIPS mode is enabled	Command	Status Output	None
Zeroize	Zeroizes the module to the factory default state	None	None	Common Access Card Authentication keys - R/W Firewall Authentication public/private keys - R/W Peer public keys - R/W Local CA public/private keys - R/W IKE Preshared Key - R/W IPsec Session Authentication Key - R/W Administrator Passwords - R/W SSL CA key (v8.2.0 only) - R/W SSL Server Certificate key (v8.2.0 only) - R/W

2.4.2 User Role

Users employ the services of the modules for establishing VPN^9 or TLS connections via Ethernet port. Access to these services requires the operator to first authenticate to the module. Descriptions of the services available to the Users are provided in the table below.

Table 5 – User Services

Service	Description	Input	Output	CSP and Type of Access
Establish an authenticated TLS connection	Establish a TLS connection (requires operator authentication)	Command	Secure TLS session established	Firewall Authentication Keys - R Key Agreement Key - R TLS Session Authentication Key - R/W TLS Session Key - R/W SSL CA key (v8.2.0 only) - R SSL Server Certificate key (v8.2.0 only) - R
Establish a VPN connection	Establish a VPN connection over IPsec tunnel	Command	Secure VPN tunnel established	Firewall Authentication Keys - R Key Agreement Key - R IKE Session Authentication Key - W IKE Session Key - W IKE Preshared Key - R IPsec Session Key - R/W IPsec Authentication Key - R/W

2.4.3 Network User Role

The Network User role is defined as users within the secured network who have been given access to the device by a security policy rule granted by the Crypto-Officer. Network users communicate via plaintext connections (bypass). The Network User role does not require authentication.

Table 6 lists all the services that are available to the Network User role.

Table 6 – Network User Services

Service	Description	Input	Output	CSP and Type of Access
Establish a plaintext connection	Establish a plaintext connection	Command	Traffic in plaintext	None

2.4.4 Authentication Mechanism

The module employs the authentication methods described in Table 7 to authenticate Crypto-Officers and Users.

.

Role	Type of Authentication	Authentication Strength
Crypto-Officer	Password	Passwords are required to be at least 8 characters long. The password requirement is enforced by the Security Policy. The maximum password length is 64 characters. Case-sensitive alphanumeric characters and special characters can be used with repetition, which gives a total of 94 characters to choose from. The chance of a random attempt falsely succeeding is 1:948, or 1: 6,095,689,385,410,816.
		This would require about 60,956,893,854 attempts in one minute to raise the random attempt success rate to more than 1:100,000. The fastest connection supported by the module is I Gbps. Hence, at most 60,000,000,000 bits of data (1000 × $10^6 \times 60$ seconds, or 6×10^{10}) can be transmitted in one minute. At that rate and assuming no overhead, a maximum of 812,759 attempts can be transmitted over the connection in one minute. The maximum number of attempts that this connection can support is less than the amount required per minute to achieve a 1:100,000 chance of a random attempt falsely succeeding.
	Common Access Card	One-time passwords are required to be at least 8 characters long. The password requirement is enforced by the Security Policy. The maximum password length is 128 characters. The password consists of a modified base-64 alphabet, which gives a total of 64 characters to choose from. With the possibility of using repeating characters, the chance of a random attempt falsely succeeding is 1:64 ⁸ , or 1:281,474,976,710,656.
		This would require about 2,814,749,767 attempts in one minute to raise the random attempt success rate to more than 1:100,000. The fastest connection supported by the module is I Gbps. Hence, at most 60,000,000,000 bits of data (1000 × $10^6 \times 60$ seconds, or 6×10^{10}) can be transmitted in one minute. At that rate, and assuming no overhead, a maximum of only 937,500,000 8-character passwords can be transmitted over the connection in one minute. The maximum number of attempts that this connection can support is less than the amount required per minute to achieve a 1:100,000 chance of a random attempt falsely succeeding.

Role	Type of Authentication	Authentication Strength
User	Password, Certificate, or IP Address	Passwords are required to be at least 8 characters long. The password requirement is enforced by the Security Policy. The maximum password length is 64 characters. Case-sensitive alphanumeric characters and special characters can be used with repetition, which gives a total of 94 characters to choose from. The chance of a random attempt falsely succeeding is 1:948, or 1: 6,095,689,385,410,816.
		This would require about 60,956,893,854 attempts in one minute to raise the random attempt success rate to more than 1:100,000. The fastest connection supported by the module is 1 Gbps. Hence, at most 60,000,000,000 bits of data (1000 × $10^6 \times 60$ seconds, or 6×10^{10}) can be transmitted in one minute. At that rate and assuming no overhead, a maximum of 812,759 attempts can be transmitted over the connection in one minute. The maximum number of attempts that this connection can support is less than the amount required per minute to achieve a 1:100,000 chance of a random attempt falsely succeeding.
		Certificates used as part of TLS, SSH, and IKE ¹⁰ /IPsec are at a minimum 1024 bits. The chance of a random attempt falsely succeeding is $1:2^{80}$, or $1:120,893 \times 10^{24}$.
		The fastest network connection supported by the module is 1000 Mbps. Hence, at most 60,000,000,000 bits of data (1000 \times 10 ⁶ \times 60 seconds, or 6 \times 10 ¹⁰) can be transmitted in one minute. The passwords are sent to the module via security protocols IPsec, TLS, and SSH. These protocols provide strong encryption (AES 128-bit key at minimum, providing 128 bits of security) and require large computational and transmission capability. The probability that a random attempt will succeed or a false acceptance will occur is less than 1:2 ¹²⁸ \times 84 ⁴ .

2.5 Physical Security

The McAfee Firewall Enterprise 2150F is a multi-chip standalone cryptographic module. The module is contained in a hard metal chassis which is defined as the cryptographic boundary of the module. The module's chassis is opaque within the visible spectrum. The enclosure of the module has been designed to satisfy Level 2 physical security requirements. There are a limited set of ventilation holes provided in the case that, when coupled with the installation of opacity baffles, obscure the internal components of the module. Tamper-evident seals are applied to the case to provide physical evidence of attempts to remove the chassis cover or front bezel. Additionally, the tamper-evident seals must be inspected periodically for tamper evidence. The placement of the opacity baffles and tamper-evident seals can be found in Secure Operation section of this document.

The 2150F system has been tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (i.e., for business use).

¹⁰ IKE – Internet Key Exchange

McAfee Firewall Enterprise 2150F

2.6 Operational Environment

The operational environment requirements do not apply to the McAfee Firewall Enterprise 2150F, because the module does not provide a general-purpose operating system (OS) to the user. The OS has limited operational environment and only the module's custom written image can be run on the system. The module provides a method to update the firmware in the module with a new version. This method involves downloading a digitally signed firmware update to the module.

2.7 Cryptographic Key Management

The module implements three firmware cryptographic libraries to offer secure networking protocols and cryptographic functionalities. The firmware libraries for MFE v7.0.1.03 are:

- Cryptographic Library for SecureOS® (CLSOS) Version 7.0.1.01 for 32-bit systems
- CLSOS Version 7.0.1.01 for 64-bit systems
- Kernel CLSOS (KCLSOS) Version 7.0.1.01

The firmware libraries for MFE v8.2 are:

- CLSOS Version 7.0.1.01 for 32-bit systems
- CLSOS Version 7.0.1.01 for 64-bit systems
- KCLSOS Version 8.2

Cryptographic functions offered by the libraries in FIPS mode of operation (and their associated algorithm implementation certificate numbers) are listed in Table 8.

Approved Cryptographic Function	CLSOS 64-bit	CLSOS 32-bit	KCLSOS 7.0.1.01	KCLSOS 8.2
Symmetric Key				
Advanced Encryption Standard (AES) 128/192/256-bit in CBC ¹¹ , ECB ¹² , OFB ¹³ , CFB128 ¹⁴ modes	972	973	-	-
AES 128/192/256-bit in CBC, ECB modes	-	-	974	1833
Triple Data Encryption Standard (DES) 2- and 3-key options in CBC, ECB, OFB, CFB64 modes	765	766	-	-
Triple-DES 2- and 3-key options in CBC mode	-	-	767	1185
Asymmetric Key				
RSA ¹⁵ PKCS ¹⁶ #1 sign/verify: 1024/1536/2048/3072/4096-bit	469	470	-	-
RSA ANSI X9.31 key generation: 1024/1536/2048/3072/4096-bit	469	470	-	-

Table 8 – Approved Cryptographic Functions

¹¹ CBC – Cipher-Block Chaining

McAfee Firewall Enterprise 2150F

© 2012 McAfee, Inc.

¹² ECB – Electronic Codebook

¹³ OFB – Output Feedback

 ¹⁴ CFB128 – 128-bit Cipher Feedback
 ¹⁵ RSA – Rivest, Shamir, and Adleman

 ¹⁶ PKCS – Public Key Cryptography Standard

Page 17 of 37

Approved Cryptographic Function	CLSOS 64-bit	CLSOS 32-bit	KCLSOS 7.0.1.01	KCLSOS 8.2		
Digital Signature Algorithm (DSA) signature verification: 1024-bit	338	339	-	-		
Secure Hash Standard						
SHA ¹⁷ -1, SHA-256, SHA-384, and SHA-512	941	942	943	1612		
Message Authentication						
HMAC ¹⁸ using SHA-1, SHA-256, SHA-384, and SHA-512	544	545	546	1086		
Random Number Generators (RNG)						
ANSI ¹⁹ X9.31 Appendix A.2.4 PRNG	549	550	551	964		

NOTE: As of December 31, 2010, the following algorithms listed in the table above are considered "deprecated". For details regarding algorithm deprecation, please refer to NIST Special Publication 800-131A.

- Encryption using 2-key Triple DES
- Random number generation using ANSI X9.31-1998
- Digital signature generation using SHA-1
- Digital signature verification using 1024-bit DSA
- Digital signature generation/verification using 1024-bit RSA
- HMAC generation and verification using key lengths less than 112 bits

Non-FIPS-Approved ryptographic functions offered by the libraries in FIPS mode of operation are listed in Table 9.

Table 9 – Non-Approved Cryptographic Functions Used in FIPS Mode

Cryptographic Function	CLSOS 64-bit	CLSOS 32-bit	KCLSOS 7.0.1.01	KCLSOS 8.2
Diffie-Hellman (DH): 1024 and 2048 bits ²⁰ (key agreement)	implemented	implemented	-	-
RSA encrypt/decrypt ²¹ (key transport): 1024/1536/2048/3072/4096-bit	implemented	implemented	-	-

NOTE: As of December 31, 2010, the following algorithms listed in the table above are considered "deprecated". For details regarding algorithm deprecation, please refer to NIST Special Publication 800-131A.

- 1024-bit Diffie-Hellman key agreement
- 1024-bit RSA key transport

While in non-Approved mode, the module offers or uses both non-compliant and non-Approved cryptographic functions. These algorithms are implemented in the CLSOS firmware. Table 10 lists the security services offered by the module while in non-Approved mode, and the cryptographic functions that provide those services.

© 2012 McAfee, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

¹⁷ SHA – Secure Hash Algorithm

¹⁸ HMAC – (Keyed-)Hash Message Authentication Code

¹⁹ ANSI – American National Standards Institute

²⁰ Caveat: Diffie-Hellman (key agreement; key establishment methodology provides 80 or 112 bits of encryption strength)

²¹ Caveat: RSA (key wrapping; key establishment methodology provides between 80 and 150 bits of encryption strength)

McAfee Firewall Enterprise 2150F

Socurity Sorvico	Cryptographic Function			
Security Service	Non-Compliant	Non-Approved		
Symmetric encryption/decryption	AESTriple-DES	 CAST²²-128 DES RC2 RC4 		
Digital signing	DSARSA	-		
Hashing	• SHA	MD2MD5		
Message authentication	• HMAC	-		
Random number generation	ANSI X9.31 RNG	-		
Key agreement	 Diffie-Hellman Elliptic Curve Diffie- Hellman 	-		

Table 10 – Security Services in Non-Approved Mode

 $^{^{\}rm 22}\,\rm CAST-Carlisle$ Adams and Stafford Tavares

.

The module supports the CSPs listed below in Table 11.

Table II – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

Key/CSP	Кеу/CSP Туре	Generation / Input	Output	Storage	Zeroization	Use
SNMPv3 Session Key	AES 128-bit CFB key	Internally generated using a non-compliant method	Never exits the module	Resides in volatile memory in plaintext	Power cycle or session termination	Provides secured channel for SNMPv3 management
Common Access Card Authentication keys	RSA 1024/2048-bit keys or DSA 1024/2048-bit keys	Imported electronically in plaintext	Never exits the module	Stored in plaintext on the hard disk	Erasing the system image	Common Access Card Authentication for generation of one-time password
Firewall Authentication public/private keys	RSA 1024/2048/4096-bit keys or DSA 1024-bit keys	Internally generated or imported electronically in plaintext via local management port	Encrypted form over Network port or local management port in plaintext	Stored in plaintext on the hard disk	Erasing the system image	 Peer Authentication of TLS, IKE, and SSH sessions Audit log signing
Peer public keys	RSA 1024/2048/4096-bit keys or DSA 1024-bit keys	Imported electronically in plaintext during handshake protocol	Never exit the module	Stored in plaintext on the hard disk	Erasing the system image	Peer Authentication for TLS, SSH, and IKE sessions
Local CA ²³ public/private keys	RSA 1024/2048/4096-bit keys or DSA 1024-bit keys	Internally generated	Public key certificate exported electronically in plaintext via local management port	Stored in plaintext on the hard disk	Erasing the system image	Local signing of firewall certificates and establish trusted point in peer entity
Key Establishment keys	Diffie-Hellman 1024/2048- bit keys, RSA 1024/1536/2048/3072/4096 -bit keys	Internally generated	Public exponent electronically in plaintext, private component not exported	Resides in volatile memory in plaintext	Power cycle or session termination	Key exchange/agreement for TLS, IKE/IPsec and SSH sessions

²³ CA – Certificate Authority

McAfee Firewall Enterprise 2150F

•

Key/CSP	Кеу/СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
TLS Session Authentication Key	HMAC SHA-I key	Internally generated	Never exits the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data authentication for TLS sessions
TLS Session Key	Triple-DES, AES-128, AES- 256	Internally generated	Never exits the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data encryption/decryption for TLS sessions
IKE Session Authentication Key	HMAC SHA-1 key	Internally generated	Never exists the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data authentication for IKE sessions
IKE Session Key	Triple-DES, AES-128, AES- 256	Internally generated	Never exits the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data encryption/decryption for IKE sessions
IKE Preshared Key	Triple-DES, AES-128, AES- 256	 Imported in encrypted form over network port or local management port in plaintext Manually entered 	Never exits the module	Stored in plaintext on the hard disk	Erasing the system image	Data encryption/decryption for IKE sessions
IPsec Session Authentication Key	HMAC SHA-I key	 Imported in encrypted form over network port or local management port in plaintext Internally generated Manually entered 	Never exits the module	 Stored in plaintext on the hard disk Resides in volatile memory 	Power cycle	Data authentication for IPsec sessions
IPsec Session Key	Triple-DES, AES-128, AES- 256	Internally generated	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Data encryption/decryption for IPsec sessions

•

Key/CSP	Кеу/CSP Туре	Generation / Input	Output	Storage	Zeroization	Use
IPsec Preshared Session Key	Triple-DES, AES-128, AES- 256	 Imported in encrypted form over network port or local management port in plaintext Manually entered 	Exported electronically in plaintext	Stored in plaintext on the hard disk	Power cycle	Data encryption/decryption for IPsec sessions
SSH Session Authentication Key	HMAC-SHA1 key	Internally generated	Never exists the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data authentication for SSH sessions
SSH Session Key	Triple-DES, AES-128, AES- 256	Internally generated	Never exists the module	Resides in volatile memory in plaintext	Power cycle or session termination	Data encryption/decryption for SSH sessions
Package Distribution Public Key	DSA 1024-bit public key	Externally generated and hard coded in the image	Never exits the module	Hard coded in plaintext	Erasing the system image	Verifies the signature associated with a firewall update package
License Management Public Key	DSA 1024-bit public key	Externally generated and hard coded in the image	Never exits the module	Hard coded in plaintext	Erasing the system image	Verifies the signature associated with a firewall license
Administrator Passwords	PIN	Manually or electronically imported	Never exits the module	Stored on the hard disk through one-way hash obscurement	Erasing the system image	Standard Unix authentication for administrator login
Common Access Card one-time password	8-character (minimum) ASCII string	Internally generated; Manually or electronically imported	Exported electronically in encrypted form over TLS	Resides in volatile memory inside the CAC Warder process	Password expiration, session termination, or power cycle	Common Access Card authentication for administrator login
32-bit CLSOS X9.31 PRNG seed	16 bytes of seed value	Internally generated by KCLSOS ANSI X9.31 PRNG	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number
32-bit CLSOS ANSI X9.31 PRNG key	AES-256	Internally generated by KCLSOS ANSI X9.31 PRNG	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number

•

Key/CSP	Кеу/СЅР Туре	Generation / Input	Output	Storage	Zeroization	Use
64-bit CLSOS ANSI X9.31 PRNG seed	16 bytes of seed value	Internally generated by KCLSOS ANSI X9.31 PRNG	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number
64-bit CLSOS ANSI X9.31 PRNG key	AES-256	Internally generated by KCLSOS ANSI X9.31 PRNG	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number
KCLSOS ANSI X9.31 PRNG seed	16 bytes of seed value	Internally generated from entropy sources	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number
KCLSOS ANSI X9.31 PRNG key	AES-256	Internally generated from entropy sources	Never exits the module	Resides in volatile memory in plaintext	Power cycle	Generates FIPS-Approved random number
SSL CA key (v8.2.0 only)	RSA 1024/2048-bit key or DSA 1024/2048-bit key	Internally generated	Exported electronically in ciphertext via network port or in plaintext via local management port	Stored in plaintext on the hard disk	Erasing the system image	Signing temporary server certificates for TLS re- encryption
SSL Server Certificate key (v8.2.0 only)	RSA 1024/2048-bit key or DSA 1024/2048-bit key	Internally generated or imported electronically in plaintext via local management port	Exported electronically in ciphertext via network port or in plaintext via local management port	Stored in plaintext on the hard disk	Erasing the system image	Peer authentication for TLS sessions (TLS re-encryption)

2.8 Self-Tests

2.8.1 Power-Up Self-Tests

The 2150F performs the following self-tests at power-up:

- Firmware integrity check using SHA-1 Error Detection Code (EDC)
- Cryptographic algorithm tests
 - AES Known Answer Test (KAT)
 - o Triple-DES KAT
 - o SHA-1 KAT, SHA-256 KAT, SHA-384 KAT, and SHA-512 KAT
 - o HMAC KAT with SHA-1, SHA-256, SHA-384, and SHA-512
 - o RSA KAT for sign/verify and encrypt/decrypt
 - DSA pairwise consistency check
 - ANSI X9.31 Appendix A.2.4 PRNG KAT for all implementations

If any of the tests listed above fails to perform successfully, the module enters into a critical error state where all cryptographic operations and output of any data is prohibited. An error message is logged for the CO to review and requires action on the Crypto-Officer's part to clear the error state.

2.8.2 Conditional Self-Tests

The McAfee Firewall Enterprise 2150F performs the following conditional self-tests:

- Continuous RNG Test (CRNGT) for all ANSI X9.31 implementations
- RSA pairwise consistency test upon generation of an RSA keypair
- DSA pairwise consistency test upon generation of an DSA keypair
- Manual key entry test
- Bypass test using SHA-1
- Firmware Load Test using DSA signature verification

Failure of the Bypass test or the CRNGT on the applicable KCLSOS PRNG implementation leads the module to a critical error state. Failure of any other conditional test listed above leads the module to a soft error state and logs an error message.

2.8.3 Critical Functions Self-Test

The McAfee Firewall Enterprise 2150F performs the following critical functions self-test at power-up:

• License Verification check

2.9 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 2 requirements for this validation.

The McAfee Firewall Enterprise 2150F meets Level 2 requirements for FIPS 140-2. The sections below describe how to place and keep the module in FIPS-Approved mode of operation. The use of any interfaces and services not documented herein are prohibited and considered in violation of this Security Policy, and shall result in the non-compliant operation of the module.

3.1 Crypto-Officer Guidance

The Crypto-Officer is responsible for initialization and security-relevant configuration and management of the module. Please see McAfee's Administration Guide for more information on configuring and maintaining the module. The Crypto-Officer receives the module from the vendor via trusted delivery services (UPS, FedEx, etc.). The shipment should contain the following:

- McAfee Firewall Enterprise 2150F appliance
- Media and Documents
- Activation Certificate
- Setup Guide
- Port Identification Guide
- Management Tools CD²⁴
- Secure Firewall Installation Media USB drive (for appliances without a CD-ROM ²⁵ drive)
- Power cord
- Rack mount kit

The Crypto-Officer is responsible for the proper initial setup of the Admin Console Management Tool software and the 2150F. Setup of the Admin Console Tool software is done by installing the software on an appropriate Windows® workstation. For appliance setup, the Crypto-Officer receives the FIPS Kit separately, also via trusted delivery service. The FIPS Kit (part number SAC-2150F-FIPS-KT) includes the FIPS Kit instructions, Velcro strips, opacity baffles, a new warranty seal, and tamper-evident seals.

When you install the Management Tool, a link to the documents page is added to the "Start" menu of the computer. To view the Secure Firewall documents on the McAfee web site, select

Start > Programs > McAfee > Firewall Enterprise > Online Manuals

Table 12 provides a list of available Firewall Enterprise documents.

Document	Description
Secure Firewall Setup Guide	Leads through the initial firewall configuration.
Secure Firewall Administration Guide	Complete administration information on all firewall functions and features.
Secure Firewall Control Center Setup Guide	Leads through the initial Control Center configuration.
Secure Firewall Control Center Administration Guide	Complete administration information on all Control Center functions and features. This guide is supplemented by the Secure Firewall Administration Guide.

Table 12 – Summary of Firewall Enterprise Documentation

²⁴ CD – Compact Disc

²⁵ CD-ROM – Compact Disc – Read-Only Memory

Document	Description
Common Access Card Configuration Guide	Describes how to configure Department of Defense Common Access Card authentication for Admin Console, Telnet, and SSH on McAfee® Firewall Enterprise. It also describes login procedures.
Online help	Online help is built into Secure Firewall Management Tools programs. The Quick Start Wizard provides help for each configuration window. The Admin Console program provides help for each window, as well as comprehensive topic-based help. Note: A browser with a pop-up blocker turned on, must allow blocked content to view the Secure Firewall help.

Additional product manuals, configuration-specific application notes, and the KnowledgeBase are available at http://mysupport.mcafee.com.

3.1.1 Initialization

The Crypto-Officer is responsible for initialization and security-relevant configuration and management activities for the module through the management interfaces. Installation and configuration instructions for the module can also be found in the Secure Firewall Setup Guide, Secure Firewall Administration Guide, and this FIPS 140-2 Security Policy. The initial Administration account, including username and password for login authentication to the module, is created during the startup configuration using the Quick Start Wizard.

The Crypto-Officer must perform five activities to ensure that the module is running in an approved FIPS mode of operation:

- Install opacity baffles
- Apply tamper-evident seals •
- Modify the BIOS²⁶ •
- Confirm the firmware version •
- Set FIPS mode enforcement

3.1.1.1 **Installing Opacity Baffles**

The CO must place five (5) opacity baffles over the ventilation holes as described in the instructions provided below. Access to inside of the module is necessary to install the opacity baffles; therefore this step must be completed before applying the tamper-evident seals.

Before beginning to install the opacity baffles, it is important to protect against electrostatic discharge (ESD). Because of the need to access the inside of the module, the CO must prevent electrostatic damage to inner components as well as personal injury. Follow these precautionary procedures to prevent against ESD:

- Do not remove components from their antistatic packing material until you are ready to install them in the appliance. Just before unwrapping the antistatic package, discharge static electricity from your body by touching the power supply or any unpainted metal surface on the appliance chassis
- Handle all electrostatic sensitive components in a static-safe area. If possible, use antistatic floor • pads and workbench pads
- Discharge static electricity from your body before you touch any electronic components •

Follow these instructions to securely install the opacity baffles:

1. Turn off the appliance and disconnect all cords and cables

²⁶ BIOS - Basic Input/Output System McAfee Firewall Enterprise 2150F

^{© 2012} McAfee, Inc.

- a. Use the Admin Console to "Halt System" and turn off the appliance
- b. Disconnect the appliance and all attached devices from their electrical outlets
- c. Press the power button to ground the system
- d. Unplug all network cables from the appliance
- 2. Remove the front bezel (if applicable) and top cover of the appliance. **Note:** this will break the McAfee warranty seal. This seal will be replaced after installing the opacity baffles.
 - a. Rotate the latch release lock counter clockwise to unlock the top cover
 - b. Lift up on the latch and slide the cover back
 - c. Grasp the cover on both sides and lift away from the system
- 3. Install one opacity baffle on the cover vents
 - a. Turn the cover upside down
 - b. Apply three adhesive Velcro strips around the inside edges of the vent (Figure 6). **Note:** do not apply an adhesive Velcro strip to the outside edge of the cover
 - c. Apply the opacity baffle to the Velcro strips

Figure 6 – Velcro Strip Placement on Top Cover

- 4. Inside the chassis, remove each expansion card (remember to follow ESD guidance above)
 - a. Open the expansion card latch
 - b. Grasp the card by its edges and carefully remove it from the expansion slot
 - Install one opacity baffle to the rear of the appliance
 - a. Apply the adhesive Velcro strips to the inside of the rear of the chassis as highlighted in Figure 7
 - b. Apply the form-fitted opacity baffle to the Velcro strips

Figure 7 – Velcro Strip Placement in Rear of Chassis

- 6. Install one opacity baffle on each of three expansion slot covers
 - a. Apply two adhesive Velcro strips to each expansion slot cover as highlighted in Figure 8
 - b. Apply form-fitted opacity baffles to the Velcro strips

McAfee Firewall Enterprise 2150F

5.

Figure 8 – Velcro Strip Placement over Expansion Slots

- 7. Finish installation of opacity baffles
 - a. Re-install the expansion cards
 - b. Re-attach the appliance cover
 - c. Apply the replacement McAfee warranty seal over the previously broken seal
 - d. Connect all cords and cables
 - e. Turn on the appliance
 - f. Attach the front bezel to the appliance and lock it (turning the release clock clockwise)

3.1.1.2 Applying Tamper-Evident Seals

The CO must place four (4) tamper-evident seals on the module as described in the information provided below. The module ships with more than the required number of tamper-evident seals; the Crypto-Officer is responsible for securing and controlling any and all unused seals.

The module has the following removable components:

- a front bezel, which covers the removable hard drives
- a top panel, which can expose internal components when removed
- dual power supplies on the rear panel

To apply the seals, the appliance surfaces and front bezel must first be cleaned with isopropyl alcohol in the area where the tamper-evident seals will be placed. Prior to affixing the seals, the front bezel must be attached. The seals must be placed on the appliance as indicated by the red circles shown in the figures below. Instructions to place the seals to secure the bezel and top panel are as follows:

- 1. To secure the front bezel, place a tamper-evident seal on the front bezel such that the seal overlaps the front bezel and metal cover at the top of the chassis (see Figure 9).
- 2. To secure the top panel, place a tamper-evident seal on the top cover such that the seal is affixed to both the top cover and side of the chassis (see Figure 10).

Figure 9 – Tamper-Evident Seal Application Position (Front Bezel)

Figure 10 – Tamper-Evident Seal Application Position (Top Cover)

3. To secure the power supplies, place tamper-evident seals on the power supplies such that the seals are affixed to where the power supplies and the chassis meet (see Figure 11). Please note that the application of the seals to the power supply vents will not affect the power supplies operation or service life.

Figure 11 - Tamper-Evident Seal Application Positions (Power Supplies)

After the seals are placed as instructed above, the module can be powered up and the Crypto-Officer may proceed with initial configuration.

3.1.1.3 Modifying the BIOS

Enter the module's System Setup program to enforce the following module usage policies:

- Booting the module from any device other than the FIPS-enabled hard drive is prohibited.
- Only authenticated operators are allowed to enter the System Setup program.

Additionally, since the module's power button is not accessible, the AC Power Recovery setting must be modified. Follow the instructions below to update the BIOS settings (requires the connection of a monitor and keyboard):

- 1. From the command line, restart the firewall.
- 2. When the F2 = System Setup menu line appears in the upper right corner of the screen, press the $\langle F2 \rangle$ key. The BIOS window appears.
- 3. To disable other bootable devices:
 - a. Select **Boot Sequence** and then press <Enter>.
 - b. Verify that the hard drive is enabled. If necessary, use the space bar to enable the hard drive.
 - c. Select all other devices and use the space bar to disable them.
 - d. Press <Esc> to return to the main BIOS menu. Note: PXE²⁷ booting on Ethernet devices is not allowed. If PXE booting is enabled on an onboard NIC²⁸, select **Integrated Devices**, select the appropriate NIC, and use the right arrow to select **Enabled** (do <u>not</u> select **Enabled** with **PXE**).
- 4. To create a password for accessing the System Setup program and set the power recovery option:
 - a. Select **System Security** and then press <Enter>.
 - b. Select Setup Password and then press <Enter>.
 - c. Enter a password and a confirmation and then press <Enter>.
 - d. Select **AC Power Recovery** and then press <Enter>.
 - e. Use the space bar to set AC Power Recovery to "On".
 - f. Press <Esc> to return to the main BIOS menu.
- 5. Press <Esc>, select **Save Changes and Exit**, and then press <Enter>. The firewall will then complete its startup process.

3.1.1.4 Confirming the Firmware Version

The cryptographic module requires that proper firmware version be installed. While some models may have the correct version pre-installed, others may require upgrading. To check if the module is currently running the correct version, the Crypto-Officer must open the GUI-based Admin Console provided with the module. Under the software management and manage packages table, the Crypto-Officer can see which firmware upgrade has been installed along with their versions. If the installed version requires to be upgraded to a validated version, please follow the steps below.

• <u>Upgrading to 7.0.1.03</u>

To perform the upgrade to version **7.0.1.03**, the Crypto-Officer must first check the firmware to ensure they are running version **7.0.1.02**. If this version is not running, the Crypto-Officer must first take measures to upgrade the module to **7.0.1.02**. If required, this upgrade can be performed through Admin Console. If the module is being newly-built from the onboard virtual disk, then the Crypto-Officer will first need to set up the network configuration and enable the admin account with a new password.

To upgrade from **7.0.1.02** to **7.0.1.03**, the Crypto-Officer must:

1. Under "Software Management / Manage Packages" table, select "70103".

²⁷ PXE – Preboot Execution Environment

²⁸ NIC – Network Interface Card

McAfee Firewall Enterprise 2150F

- 2. Select download.
- 3. Select install.
- 4. Verify that the "Manage Packages" tab states that "70103" is installed.
- Upgrading to 8.2.0

To perform the upgrade to version **8.2.0**, the Crypto-Officer must first check the firmware to ensure they are running version **8.1.2**. If this version is not running, the Crypto-Officer must first take measures to upgrade the module to **8.1.2**. If required, this upgrade can be performed through Admin Console. If the module is being newly-built from the onboard virtual disk, then the Crypto-Officer will first need to set up the network configuration and enable the admin account with a new password.

To upgrade from **8.1.2** to **8.2.0**, the Crypto-Officer must:

- 1. Under "Software Management / Manage Packages" table, select "8.2.0".
- 2. Select download.
- 3. Select install.
- 4. Verify that the "Manage Packages" tab states that "8.2.0" is installed.

3.1.1.5 Setting FIPS Mode Enforcement

Before enforcing FIPS on the module, the Admin Console CO must check that no non-FIPS-Approved service is running on the module. To view the services that are currently used in enabled rules, select "**Monitor / Service Status**". The Service Status window appears as shown in Figure 12 below. If the window lists any non-FIPS-Approved protocols (such as telnet as shown below), then those protocols must be disabled before the module is considered to be in an approved FIPS mode of operation.

Secure Firewall (Sidewinder) Adm	nin Console Al	DMIN CONSOLE PRE	-RELEASE: g_141, FIREWALL PRE	RELEASE: MAIN-g_134	
File Tools Help					
🗏 🗎 🤊 🎜 💽 🔞	Server: rose Are	a: Service Status			
📕 Firewalls	🤹 🗐 e 🛽	Find:		Service status as of Fri Nov 7	09:27:47 2008 🖉
- Eluster	-				
- Robert - Robert	Status 🛆	Service	Burbs	Ports	Active Rule:
🖨 😭 Monitor	<u></u>	Admin Console	🖏 external, ha, internal	9003/tcp	Admin Console
- Audit Viewing	4	dns	🐴 external, ha, internal	53/tcp, 53/udp	dnsp all to ha resolvers, d
Audit Management Eirewall Policy Report	4	https	internal	443/tcp	Internet Services, httpsoi
IPS Attack Responses	4	nss	Firewall, external, ha, internal		
- 🧃 System Responses	6	ssod	🜗 external, ha, internal	8111/tcp	Passport
Service Status		telnetd	🚯 external, ha, internal	23/tcp	telnet
Maintenance tokelau rose106 swdev	4				
			Ticket:		.:

Figure 12 – Service Status

The process to enable FIPS mode is provided below:

- 1. Under **"Policy/Application Defenses/ Defenses/HTTPS"**, disable all non-Approved versions of SSL, leaving only TLS 1.0 operational.
- 2. Under "Maintenance / Certificate Management", ensure that the certificates only use FIPS-Approved cryptographic algorithms.
- 3. Select "**Maintenance / FIPS**". The FIPS check box appears in the right pane (shown in Figure 13).
- 4. Select "Enforce U.S. Federal Information Processing Standard".
- 5. Save the configuration change.
- 6. Select "**Maintenance / System Shutdown**" to reboot the firewall to the Operational kernel to activate the change.

Figure 13 – Configuring For FIPS

Whether the module has been upgraded to a validated firmware version from an earlier firmware, or shipped with a validated firmware version already present, it is required to delete and recreate all required cryptographic keys and CSPs necessary for the module's secure operation. The keys and CSPs existing on the module were generated outside of FIPS mode of operation, and they must now be re-created for use in FIPS mode. The CO must replace the keys and CSPs listed in Table 13.

Services	Cryptographic Keys/CSPs
Admin Console (TLS)	Firewall Certificate/private key
Control Center (TLS)	Firewall Certificate/private key
HTTPS ²⁹ Decryption (TLS)	Firewall Certificate/private key
TrustedSource (TLS)	Firewall Certificate/private key
Firewall Cluster Management (TLS)	Firewall Certificate/private key Local CA/private key
Passport Authentication (TLS)	Firewall Certificate/private key
IPsec/IKE certificate authentication	Firewall Certificate/private key
Audit log signing	Firewall Certificate/private key
SSH server	Firewall Certificate/private key
Administrator Passwords	Firewall Certificate/private key

Table 13 – Required Keys and CSPs for Secure Operation

The module is now operating in the FIPS-Approved mode of operation.

© 2012 McAfee, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

²⁹ HTTPS – Hypertext Transfer Protocol Secure

McAfee Firewall Enterprise 2150F

3.1.2 Management

The module can run in two different modes: FIPS-Approved and non-FIPS-Approved. While in a FIPS-Approved mode, only FIPS-Approved and Allowed algorithms may be used. Non-FIPS-Approved services are disabled in FIPS mode of operation. The Crypto-Officer is able to monitor and configure the module via the web interface (GUI over TLS), SSH, serial port, or VGA port. Detailed instructions to monitor and troubleshoot the systems are provided in the Secure Firewall Administration Guide. The Crypto-Officer should monitor the module's status regularly for FIPS mode of operation and active bypass mode. The CO also monitor that only FIPS approved algorithms as listed in Table 8 are being used for TLS and SSH sessions.

The show status for FIPS mode of operation can be invoked by checking if the checkbox, shown in Figure 13, is checked. The show status service as it pertains to bypass is shown in the GUI under **VPN Definitions** and the module column. For the CLI, the Crypto-Officer may enter "**cf ipsec q type=bypass**" to get a listing of the existing bypass rules.

If any irregular activity is noticed or the module is consistently reporting errors, then McAfee customer support should be contacted.

3.1.3 Zeroization

In order to zeroize the module of all keys and CSPs, it is necessary to first rebuild the module's image essentially wiping out all data from the module. Once a factory reset has been performed, there will be some default keys and CSPs which were setup as part of the renewal process. These keys must be recreated as per the instructions found in Table 13. Failure to recreate these keys will result in a non-compliant module.

For more information about resetting the module to a factory default, please consult the documentation that shipped with the module.

3.1.4 Disabling FIPS Mode of Operation

To take the module out of FIPS mode of operation, the Crypto-Officer must zeroize the CSPs as described in section 3.1.3 of this document. FIPS mode can be disabled from Admin Console window:

- 1. Select "Maintenance / FIPS". The FIPS check box appears in the right pane.
- 2. Unselect "Enforce U.S. Federal Information Processing Standard" (shown in Figure 13).
- 3. Save the configuration change.
- 4. Select "**Maintenance / System Shutdown**" and reboot the firewall to the Operational kernel to activate the change.

3.2 User Guidance

When using key establishment protocols (RSA and DH) in the FIPS-Approved mode, the User is responsible for selecting a key size that provides the appropriate level of key strength for the key being transported.

This section describes the acronyms used throughout the document.

Table 14 – Acronyms

Acronym	Definition
AES	Advanced Encryption Standard
ANSI	American National Standards Institute
BIOS	Basic Input/Output System
CAC	Common Access Card
CAST	Carlisle Adams and Stafford Tavares
CBC	Cipher-Block Chaining
CD	Compact Disc
CD-ROM	Compact Disc – Read-Only Memory
CFB	Cipher Feedback
CLI	Command Line Interface
CLSOS	Cryptographic Library for SecureOS
СМУР	Cryptographic Module Validation Program
СО	Crypto-Officer
CRNGT	Continuous Random Number Generator Test
CSEC	Communications Security Establishment Canada
CSP	Critical Security Parameter
DES	Digital Encryption Standard
DH	Diffie-Hellman
DoS	Denial of Service
DSA	Digital Signature Algorithm
ECB	Electronic Codebook
EDC	Error Detection Code
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
FIPS	Federal Information Processing Standard
GUI	Graphical User Interface
НА	High Availability
HMAC	(Keyed-) Hash Message Authentication Code
HTTP	Hypertext Transfer Protocol

McAfee Firewall Enterprise 2150F

Page **34** of 37

© 2012 McAfee, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. .

Acronym	Definition
HTTPS	Hypertext Transfer Protocol Secure
iDRAC6	Integrated Dell™ Remote Access Controller 6
IKE	Internet Key Exchange
IP	Internet Protocol
IPsec	Internet Protocol Security
КАТ	Known Answer Test
KCLSOS	Kernel Cryptographic Library for SecureOS
LCD	Liquid Crystal Display
LDAP	Lightweight Directory Access Protocol
LED	Light Emitting Diode
MAC	Message Authentication Code
MD	Message Digest
NAT	Network Address Translation
NIST	National Institute of Standards and Technology
NMI	Nonmaskable Interrupt
NMS	Network Management System
OFB	Output Feedback
OS	Operating System
PCle	Peripheral Component Interconnect Express
PKCS	Public Key Cryptography Standard
PRNG	Pseudo Random Number Generator
RADIUS	Remote Authentication Dial-In User Service
RC	Rivest Cipher
RNG	Random Number Generator
RSA	Rivest Shamir and Adleman
SHA	Secure Hash Algorithm
SNMP	Simple Network Management Protocol
SQL	Structured Query Language
SSH	Secure Shell
SSL	Secure Sockets Layer
TLS	Transport Layer Security
USB	Universal Serial Bus
UTM	Unified Threat Management
VGA	Video Graphics Array

McAfee Firewall Enterprise 2150F

Page **35** of 37

© 2012 McAfee, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. .

Acronym	Definition
VPN	Virtual Private Network

Prepared by: **Corsec Security, Inc.**

13135 Lee Jackson Memorial Hwy, Suite 220 Fairfax, VA 22033 United States of America

> Phone: +1 (703) 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>