Websense, Inc.

Websense Crypto Module C Software Version: 1.0

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: I Document Version: 1.1

Prepared for:

Websense, Inc. 10240 Sorrento Valley Road San Diego, California 92121 United States of America

Phone: +1 800 723-1166 Email: <u>info@websense.com</u> <u>http://www.websense.com</u> Prepared by:

Corsec Security, Inc. 13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, Virginia 22033 United States of America

> Phone: +1 703 267-6050 Email: info@corsec.com http://www.corsec.com

Table of Contents

I	ΙΝΤΙ	RODUCTION	3
	1.1	PURPOSE	3
	1.2	References	3
	1.3	Submission Package Organization	3
2	WEE	BSENSE CRYPTO MODULE C	4
	2.1	OVERVIEW	4
	2.2	MODULE SPECIFICATION	5
		2.2.1 Physical Cryptographic Boundary	5
		2.2.2 Logical Cryptographic Boundary	6
	2.3	MODULE INTERFACES	
	2.4	Roles and Services	
		2.4.1 Crypto Officer Role	8
		2.4.2 User Role	9
		2.4.3 Authentication	0
	2.5	Physical Security	0
	2.6	OPERATIONAL ENVIRONMENT	0
	2.7	CRYPTOGRAPHIC KEY MANAGEMENT	0
		2.7.1 Key Generation	3
		2.7.2 Key Entry and Output I	3
		2.7.3 Key/CSP Storage and Zeroization	
	2.8	EMI/EMC	3
	2.9	SELF-TESTSI	3
		2.9.1 Power-Up Self-Tests	4
		2.9.2 Conditional Self-Tests	4
	2.10	MITIGATION OF OTHER ATTACKS	4
3	SEC	URE OPERATIONI	5
	3.1	SECURE MANAGEMENT	5
		3.1.1 Initialization	5
		3.1.2 Management	5
		3.1.3 Zeroization	
	3.2	User Guidance	5
4	ACR	ONYMSI	7

Table of Figures

Figure I – V-Series Appliance Hardware Block Diagram	6
FIGURE 2 – LOGICAL BLOCK DIAGRAM AND CRYPTOGRAPHIC BOUNDARY	7

List of Tables

5
8
8
9
12
17

I.I Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Websense Crypto Module C (Software Version: 1.0) from Websense, Inc. This Security Policy describes how the Websense Crypto Module C meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The Websense Crypto Module C is also referred to in this document as the cryptographic module or the module.

I.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Websense website (<u>http://www.websense.com</u>) contains information on the full line of products from Websense.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

I.3 Submission Package Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Websense. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission Package is proprietary to Websense and is releasable only under appropriate nondisclosure agreements. For access to these documents, please contact Websense.

2.1 Overview

Websense has integrated its portfolio of Web security, email security, and data loss prevention (DLP) solutions into a single, unified, and consolidated offering called TRITON™. The TRITON solution is a highly-flexible and scalable architecture that unifies content analysis, platforms, and security management. Unified content analysis includes real-time threat analysis provided by the Websense Advanced Classification Engine (ACE). Powered by the Websense ThreatSeeker® Network, ACE combines multiple analytic methods to dynamically classify both incoming and outgoing content. The TRITON solution also combines the management and reporting capabilities for Websense Web Security, email security, and DLP technologies into a single interface, providing greater visibility, control, and management capabilities.

Web Security – Websense Web Security Gateway enables businesses to take full advantage of today's social, interactive Web while lowering costs across the enterprise. Based on the Websense TRITON architecture, Web Security Gateway consolidates real-time Web 2.0 security, enterpriseclass DLP, and email security, both in the cloud and on-premises.

Websense Web Security Gateway solutions offer:

- Zero-day and Web 2.0 malware protection 0
- Social networking security 0
- 0 Enterprise-class DLP
- Advanced application and protocol controls 0
- Visibility into encrypted SSL traffic 0
- Reduced bandwidth consumption 0
- Lower total cost of ownership 0
- Data Loss Prevention As a part of Websense TRITON solution, data loss prevention technologies provide a market-leading DLP capabilities designed to secure sensitive information and intellectual property. DLP has the ability to detect and discover sensitive data, stored or in transmission, throughout the network and help prevents loss of data through multiple channels such as email, Web, USB¹ drives, LAN² storage, and printing.

Websense DLP solutions help simplify the task of achieving regulatory compliance by providing capabilities to manage and enforce regulatory requirements. The solutions also unlock the full potential of Web 2.0 applications without the concern for inadvertent or deliberate posting of inappropriate or sensitive data.

Email Security - Websense Email Security Gateway Anywhere provides the next generation of email security with fully integrated enterprise-class DLP, superior malware protection with worldclass Web security analytics, and centralized management of email, data, and Web security across platforms in a single, unified console. When integrated with DLP for email traffic, the solution provides accurate detection of email traffic without complex tuning, maximum performance and resiliency, and superior malware protection using multiple advanced analytics to defend against blended attacks and harmful malware.

The Websense Crypto Module C provides cryptographic and secure communication services for the Websense-developed family of solutions described above. These solutions are deployed on three platforms:

high-performance, pre-configured, security-hardened hardware; •

¹ USB – Universal Serial Bus

² LAN – Local Area Network

Websense Crypto Module C

This document may be freely reproduced and distributed whole and intact including this copyright notice.

- fully-customizable "ready-to-install" software; and
- Websense-hosted services.

The Websense Crypto Module C is validated at the FIPS 140-2 Section levels listed in Table 1 below.

Section	Section Title	Level
I	Cryptographic Module Specification	I
2	Cryptographic Module Ports and Interfaces	I
3	Roles, Services, and Authentication	I
4	Finite State Model	I
5	Physical Security	N/A ³
6	Operational Environment	I
7	Cryptographic Key Management	I
8	EMI/EMC⁴	I
9	Self-tests	I
10	Design Assurance	I
11	Mitigation of Other Attacks	N/A
14	Cryptographic Module Security Policy	I

Table I – Security Level Per FIPS 140-2 Section

2.2 Module Specification

The Websense Crypto Module C is a software module with a multi-chip standalone embodiment. The overall security level of the module is 1. The following sections will define the physical and logical boundary of the module.

2.2.1 Physical Cryptographic Boundary

As a software cryptographic module, there are no physical security mechanisms implemented; the module must rely on the physical characteristics of the host platform. The physical cryptographic boundary of the Websense Crypto Module C is defined by the hard enclosure around the host platform on which it executes. Figure 2 below shows the physical block diagram of the commercial off-the-shelf (COTS) V-Series appliance hardware.

Websense Crypto Module C

© 2012 Websense, Inc.

³ N/A – Not Applicable

⁴ EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

This document may be freely reproduced and distributed whole and intact including this copyright notice.

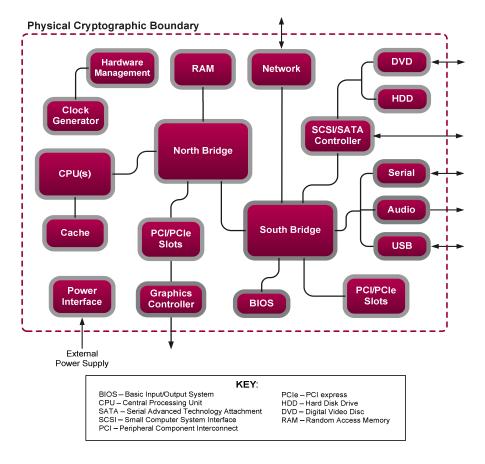


Figure I – V-Series Appliance Hardware Block Diagram

2.2.2 Logical Cryptographic Boundary

Figure 2 below shows a logical block diagram of the module, where "Calling Application" represents any other software/firmware component loaded on the appliance that employs the module's services. The module's logical cryptographic boundary (also illustrated in Figure 2) encompasses all functionality provided by the module as described in this document. The module takes the form of a single shared library that can be called by calling applications to provide cryptographic services.

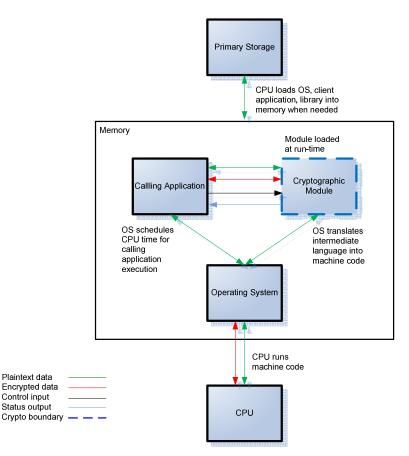


Figure 2 – Logical Block Diagram and Cryptographic Boundary

The cryptographic module is a shared library that provides cryptographic and secure communication services for other applications developed by Websense. In this document, those applications will be referred as the calling application. The module is used by the calling application to provide encryption/decryption, hash verification, hashing, cryptographic key generation, random bit generation, and message authentication functions.

2.3 Module Interfaces

The module's logical interfaces exist at a low level in the software as an Application Programming Interface (API). The module's logical and physical interfaces can be categorized into the following interfaces defined by FIPS 140-2:

- Data input
- Data output
- Control input
- Status output
- Power input

As a software module, the module has no physical characteristics. Thus, the module's manual controls, physical indicators, and physical and electrical characteristics are those of the host platform.

Websense Crypto Module C

The FIPS-defined interfaces map to their physical and logical counterparts as described in Table 2 below.

FIPS 140-2 Interface	Physical Interface	Module Interface (API)		
Data Input	Network/Serial/USB ⁵ port, DVD ⁶ , PCle ⁷ slot	Function calls that accept, as their arguments, data to be used or processed by the module		
Data Output	Network/Serial/USB port, DVD, Graphics/Video port, PCIe slot	Arguments for a function that specify where the result of the function is stored		
Control Input	Network/Serial/USB port, LCD8 button, PCIe slot, System identification button, Power button	Function calls utilized to initiate the module and the function calls used to control the operation of the module.		
Status Output	Network/Serial/USB port, Graphics/Video, LED9 indicators, LCD, PCIe slot	Return values for function calls		
Power Input	Power plug/adapter, Power Switch	Not Applicable		

Table 2 – FIPS Interface Mappings

2.4 Roles and Services

There are two roles in the module that operators may assume: a Crypto Officer role and User role. The Crypto Officer is responsible for managing the module and monitoring the module's status, while the User accesses the services implemented by the module. The available functions are utilized to provide or perform the cryptographic services.

The various services offered by the module are described in Table 3 and Table 4. The Critical Security Parameters (CSPs) used by each service are also listed. Please note that the keys and CSPs listed in the tables use the following notation to indicate the type of access required:

- R Read: The keys and CSPs are read.
- W Write: The keys and CSPs are established, generated, modified, or zeroized.
- X Execute: The keys and CSPs are used within an Approved or Allowed security function or authentication mechanism.

2.4.1 Crypto Officer Role

The Crypto Officer (CO) role is responsible for zeroizing keys and CSPs, executing self-tests, and monitoring status. Descriptions of the services available to the Crypto Officer role are provided in Table 3.

Service	Description	Input	Output	CSP and Type of Access
	Performs integrity check and power-up self-tests	API call parameters	Status	Integrity check HMAC ¹⁰ key – X

⁵ USB – Universal Serial Bus

⁶ DVD – Digital Versatile Disc

⁷ PCIe - Peripheral Component Interconnect Express

⁸ LCD – Liquid Crystal Display

⁹ LED – Light-Emitting Diode

¹⁰ HMAC – (Keyed-) Hash Message Authentication Code

Websense Crypto Module C

Page **8** of 19

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service	Description	Input	Output	CSP and Type of Access
Show status	Returns the current mode of the module	None	Status	None
Run self-tests on demand	Performs power-up self- tests	None	Status	Integrity check HMAC key – X
Zeroize keys	Zeroizes and de-allocates memory containing sensitive data	Reboot command or cycling power	None	AES ¹¹ key – W TDES ¹² key – W HMAC key – W RSA ¹³ private/public key – W DSA ¹⁴ private/public key – W DH ¹⁵ components – W

2.4.2 User Role

The User role can utilize the module's cryptographic functionalities. Descriptions of the services available to the User role are provided in Table 4.

Service	Description	Input	Output	CSP and Type of Access
Generate random number (ANSI16 X9.31)	Returns the specified number of random bits to calling application	API call parameters	Status, random bits	ANSI X9.31 RNG seed – RX ANSI X9.31 seed key – RX
Generate message digest (SHS ¹⁷)	Compute and return a message digest using SHS algorithms	API call parameters, message	Status, hash	None
Generate keyed hash (HMAC)	Compute and return a message authentication code using HMAC SHA-x	API call parameters, key, message	Status, hash	HMAC key – RX
Symmetric encryption	Encrypt plaintext using supplied key and algorithm specification (Triple-DES or AES)	API call parameters, key, plaintext	Status, ciphertext	AES key – RX TDES key – RX
Symmetric decryption	Decrypt ciphertext using supplied key and algorithm specification (TDES or AES)	API call parameters, key, ciphertext	Status, plaintext	AES key – RX TDES key – RX
Generate asymmetric key pair	Generate and return the specified type of asymmetric key pair (RSA or DSA)	API call parameters	Status, key pair	RSA private/public key – W DSA private/public key – W
DH key agreement	Perform key agreement using Diffie-Hellman algorithm	API call parameter	Status, key components	DH components – W
Signature Generation	Generate a signature for the supplied message using the specified key and algorithm (RSA or DSA)	API call parameters, key, message	Status, signature	RSA private key – RX DSA private key – RX

Table 4 – User Services

¹¹ AES – Advanced Encryption Standard
¹² TDES – Triple Data Encryption Standard
¹³ RSA – Rivest, Shamir, Adleman
¹⁴ DSA – Digital Signature Algorithm
¹⁵ DH – Diffie-Hellman
¹⁶ ANSI – American National Standards Institute
¹⁷ SUS – Scourse Hash Standard

¹⁷ SHS – Secure Hash Standard Websense Crypto Module C

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service	Description	Input	Output	CSP and Type of Access
Signature Verification	Verify the signature on the supplied message using the specified key and algorithm (RSA or DSA)	API call parameters, key, signature, message	Status	RSA public key – RX DSA public key – RX

2.4.3 Authentication

The module does not support any authentication mechanism. Operators of the module implicitly assume a role based on the service of the module being invoked. Since all services offered by the module can only be used by either the Crypto Officer or the User, the roles are mutually exclusive. Thus, when the operator invokes a Crypto Officer role service, he implicitly assumes the Crypto Officer role. When the operator invokes a User role service, he implicitly assumes the User role.

2.5 Physical Security

Since this is a software module, the module relies on the target platform (a purpose-built Websense appliance or customer-owned hardware platform) to provide the mechanisms necessary to meet FIPS 140-2 physical security requirements. All components of the target platform will be made of production-grade materials, and all integrated circuits coated with commercial standard passivation.

2.6 Operational Environment

The Websense Crypto Module C was tested and found compliant with the applicable FIPS 140-2 requirements when running on the following operational environments:

- Intel Xeon processor running 64-bit Windows Server 2008 R2
- Intel Xeon processor running 32-bit Red Hat Enterprise Linux (RHEL) 6

All cryptographic keys and CSPs are under the control of OS, which protects the keys and CSPs against unauthorized disclosure, modification, and substitution. The module only allows access to keys and CSPs through its well-defined APIs. The module performs a Software Integrity Test using a FIPS-Approved message authentication code (HMAC SHA-1).

The Websense Crypto Module C, when compiled from the same unmodified source code, is vendoraffirmed to be FIPS 140-2 compliant when running on the following supported operating systems:

- Xen 3.2.0 running on CentOS 5.1
- 32-bit Windows 2008 R2 SP1
- 32-bit Red Hat Enterprise Linux 5.5

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 5 below.

Websense Crypto Module C

Table 5 – FIPS-Approved Algorithm Implementations

Algorithm	Certificate Number					
Symmetric Key Algorithm						
AES ¹⁸ - ECB ¹⁹ , CBC ²⁰ , CFB8 ²¹ , CFB128 and OFB ²² modes (128,192, 256 bits)	1931					
Triple-DES ²³ - ECB, CBC, CFB8 and OFB modes (two- and three-key)	1257					
Asymmetric Key Algorithm						
RSA ²⁴ (ANSI X9.31) key generation (1024, 1536, 2048, 3072, 4096 bits) and signature generation/verification (1024, 1536, 2048, 3072, 4096 bits)	997					
RSA (PKCS ²⁵ #1.5) signature generation/verification (1024, 1536, 2048, 3072, 4096 bits)	997					
RSA (PSS ²⁶) signature generation/verification (1024, 1536, 2048, 3072, 4096 bits)	997					
DSA ²⁷ signature generation/verification (1024 bits)	614					
Secure Hashing Algorithm (SHA)						
SHA ²⁸ -1, SHA-224, SHA-256, SHA-384, SHA-512	1696					
Message Authentication Code (MAC)						
HMAC ²⁹ using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	1165					
Pseudo Random Number Generation (PRNG)						
ANSI ³⁰ X9.31 Appendix A.2.4 PRNG	1016					

NOTE: The following security functions have been deemed "deprecated" or "restricted" by NIST. Please refer to NIST Special Publication 800-131A for further details.

- two-key Triple DES for encryption
- ANSI X9.31 PRNG
- key lengths providing no more than 80 bits of security strength for digital signature generation

Additionally, the module utilizes the following non-compliant and non-FIPS-Approved algorithm implementations:

- AES-CFB1 (non-compliant)
- Elliptic Curve Diffie-Hellman (non-compliant)
- Elliptic Curve DSA (non-compliant)
- Diffie-Hellman (non-compliant) key agreement; key establishment methodology provides between 80 and 219 bits of encryption strength

The module supports the critical security parameters listed below in Table 6. Please note that the "Input" and "Output" columns in Table 6 are in reference to the module's logical boundary. Keys that enter and exit the module via an API call parameter are in plaintext.

Websense Crypto Module C

© 2012 Websense, Inc.

Page II of 19

This document may be freely reproduced and distributed whole and intact including this copyright notice.

¹⁸ AES – Advanced Encryption Standard

¹⁹ ECB – Electronic Codebook

²⁰ CBC – Cipher-Block Chaining

²¹ CFB – Cipher Feedback

²² OFB – Output Feedback

²³ DES – Data Encryption Standard

²⁴ RSA – Rivest Shamir Adleman

 ²⁵ PKCS – Public-Key Cryptography Standards
²⁶ PSS – Probabilistic Signature Scheme

 ²⁷ DSA – Digital Signature Algorithm

²⁸ SHA – Secure Hash Algorithm

²⁹ HMAC – Hash Message Authentication Code

³⁰ ANSI – American National Standards Institute

CSP/Key	CSP/Key Type	Input	Output	Storage	Zeroization	Use
HMAC key (Integrity check)	HMAC key	Never	Never	In module binary	N/A	Software integrity check
AES key	AES128, 192, 256-bit key	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Encryption, decryption
TDES key	TDES 112, 168-bit key	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Encryption, decryption
HMAC key	HMAC key	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Message Authentication with SHS
RSA private key	RSA 1024, 1536, 2048, 3072, 4096-	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Signature generation, decryption
	bit key	Internally generated	Output electronically in plaintext			Used by calling application
RSA public key	RSA 1024, 1536, 2048, 3072, 4096-	Input electronically in plaintext	Never	in volatile or ho	Power cycle or host reboot	Signature verification, encryption
	bit key	Internally generated	Output electronically in plaintext			Used by calling application
DSA private key	DSA 1024-bit key	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Signature generation
		Internally generated	Output electronically in plaintext			Used by calling application
DSA public key	DSA 1024-bit key	Input electronically in plaintext	Never	Plaintext in volatile memory	Power cycle or host reboot	Signature verification
		Internally generated	Output electronically in plaintext			Used by calling application
DH public components	Public components of DH protocol	Internally generated	Output electronically in plaintext	Plaintext in volatile memory	Power cycle or host reboot	Used by calling application

Table 6 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

 $$\circsin c\circsin c\ci$

CSP/Key	CSP/Key Type	Input	Output	Storage	Zeroization	Use
DH private component	Private exponent of DH protocol	Internally generated	Never	Plaintext in volatile memory	Power cycle or host reboot	Used by calling application
ANSI X9.31 PRNG seed	I 28-bit random value	Initialized by the module from an external NDRNG ³¹	Never	Plaintext in volatile memory	Power cycle or host reboot	Generate random number
ANSI X9.31 PRNG seed key	AES 256-bit key	Initialized by the module from an external NDRNG	Never	Plaintext in volatile memory	Power cycle or host reboot	Generate random number

2.7.1 Key Generation

The module uses an ANSI X9.31 Appendix A.2.4 PRNG implementation to generate cryptographic keys. This PRNG is FIPS-Approved (as shown in Annex C to FIPS PUB 140-2). The module also supports the generation of the DSA, RSA, and Diffie-Hellman (DH) public/private keys using the RSA key generation function specified in ANSI X9.31.

2.7.2 Key Entry and Output

The cryptographic module itself does not support key entry or key output. However, keys are passed to the module as parameters from the applications resident on the host platform via the exposed APIs. Similarly, keys and CSPs exit the module in plaintext via the well-defined exported APIs.

2.7.3 Key/CSP Storage and Zeroization

As a software module, the module does not provide for the persistent storage of keys and CSPs. Keys and CSPs stored in RAM can be zeroized by a power cycle or a host platform reboot. Additionally, symmetric, asymmetric, and HMAC keys are either provided by or delivered to the calling process, and are subsequently destroyed by the module at the completion of the API call. The ANSI X9.31 PRNG seed and seed key are stored in RAM until the module is uninitialized by a host platform reboot or power cycle.

The key zeroization techniques used for clearing volatile memory, once invoked, take effect immediately, and do not allow sufficient time to compromise any plaintext secret and private keys and CSPs stored by the module.

2.8 EMI/EMC

The Websense Crypto Module C is a software module. Therefore, the only electromagnetic interference produced is that of the host platform on which the module resides and executes. FIPS 140-2 requires that the host platforms on which FIPS 140-2 testing is performed meet the Federal Communications Commission (FCC) EMI and EMC requirements for business use as defined in Subpart B, Class A of FCC 47 Code of Federal Regulations Part 15. The V-Series Appliance hardware meets these FCC requirements.

2.9 Self-Tests

The Websense Crypto Module C performs a set of self-tests upon power-up and conditionally during operation as required in FIPS 140-2.

Websense Crypto Module C

© 2012 Websense, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

³¹ NDRNG - Non-Deterministic Random Number Generator

2.9.1 Power-Up Self-Tests

The module performs the following self-tests at power-up:

- Software integrity test using HMAC SHA-1
- Known Answer Tests (KATs) for:
 - o AES
 - Triple-DES
 - o SHA-1
 - HMAC SHA-1
 - HMAC SHA-224
 - HMAC SHA-256
 - HMAC SHA-384
 - HMAC SHA-512
 - RSA (sign/verify)
 - o PRNG
- Pairwise Consistency Tests for:
 - o DSA

2.9.2 Conditional Self-Tests

The module performs the following conditional self-tests:

- Continuous RNG test
- DSA Pairwise Consistency test
- RSA Pairwise Consistency test

If any self-test fails, the module will enter a critical error state, during which cryptographic functionality and all data output is inhibited. To clear the error state, the CO must reboot the host platform.

2.10 Mitigation of Other Attacks

This section is not applicable. The modules do not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

The Websense Crypto Module C meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in its FIPS-Approved mode of operation. Section 3.1 below provides guidance to the Crypto Officer for managing the module.

3.1 Secure Management

The Websense Crypto Module C is built in one of two forms, depending on the target operational environment. For Windows-based environments, the module is built as a dynamic-link library (.dll); for Linux-based environments, it is built as a shared object (.so). However, operation of the module is the same across both environments.

The following paragraphs describe the steps necessary to ensure that the Websense Crypto Module C is running in its FIPS-Approved manner.

3.1.1 Initialization

When the module is installed and initialized, the module is considered to be running in its FIPS-Approved mode of operation. This is achieved by calling a single initialization function *FIPS_mode_set()*. Upon initialization of the module, the module requires no set-up and runs its power-up self-tests which includes software integrity test that checks the integrity of the module by using an HMAC SHA-1 digest. If the integrity check succeeds, then the module performs power-up self-tests. If the module passes all the self-tests the function returns a value of "1", which indicates that the module is in a FIPS-Approved mode of operation, or the function returns "0" that indicates failure of the tests.

Power-up self-tests can also be performed on demand by cycling the power on the host platform, by calling the function *FIPS_selftest()*, or by reinitializing the module by using the *FIPS_mode_set()* function.

3.1.2 Management

Since the Crypto Officer cannot directly interact with the module, no specific management activities are required to ensure that the module runs securely; the module only executes in a FIPS-Approved mode of operation. If any irregular activity is noticed or the module is consistently reporting errors, then Websense, Inc. Customer Support should be contacted.

3.1.3 Zeroization

The module does not persistently store any key or CSPs. All ephemeral keys used by the module are zeroized upon session termination. All keys can be zeroized by power cycling or rebooting the host platform.

3.2 User Guidance

As the module also allows access to cryptographic services that are not FIPS-Approved or that provide less than the minimum NIST-recommended encryption strength, it is the responsibility of the calling application developer to ensure that only appropriate algorithms, key sizes, and key establishment techniques are applied. Users are responsible for using only the services that are listed in Table 4 above. Any use of the Websense Crypto Module C with non-FIPS-Approved cryptographic services or keys that provide less than 80 bits of encryption strength constitutes a departure from this Security Policy, and results in the module not being in its Approved mode of operation.

Websense Crypto Module C

Although the User does not have any ability to modify the configuration of the module, they should notify the Crypto Officer if any irregular activity is noticed.

This section defines the acronyms used in this document.

Table	7 – Acron	yms
-------	-----------	-----

Acronym	Definition
ACE	Advanced Classification Engine
AES	Advanced Encryption Standard
ANSI	American National Standards Institute
ΑΡΙ	Application Programming Interface
BIOS	Basic Input/Output System
СВС	Cipher Block Chaining
CFB	Cipher Feedback
СМУР	Cryptographic Module Validation Program
СО	Crypto Officer
СОТЅ	Commercial Off-The-Shelf
CPU	Central Processing Unit
CSEC	Communications Security Establishment Canada
CSP	Critical Security Parameter
DES	Data Encryption Standard
DH	Diffie-Hellman
DLP	Data Loss Prevention
DSA	Digital Signature Algorithm
DVD	Digital Video Disc
ECB	Electronic Code Book
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FCC	Federal Communications Commission
FIPS	Federal Information Processing Standard
FTP	File Transfer Protocol
HDD	Hard Disk Drive
НМАС	(Keyed-) Hash Message Authentication Code
НТТР	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
КАТ	Known Answer Test
LAN	Local Area Network

© 2012 Websense, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice.

Acronym	Definition
NDRNG	Non-Deterministic Random Number Generator
NIST	National Institute of Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
OS	Operating System
PCle	Peripheral Component Interconnect Express
PKCS	Public-Key Cryptography Standards
PRNG	Pseudo Random Number Generator
PSS	Probabilistic Signature Scheme
RAM	Random Access Memory
RHEL	Red Hat Enterprise Linux
RNG	Random Number Generator
RSA	Rivest Shamir and Adleman
SCSI	Small Computer System Interface
SHA	Secure Hash Algorithm
SSL	Secure Socket Layer
ТСР	Transmission Control Protocol
TDES	Triple Data Encryption Standard
URL	Uniform Resource Locator
USB	Universal Serial Bus

Prepared by: **Corsec Security, Inc.**

13135 Lee Jackson Memorial Highway, Suite 220 Fairfax, VA 22033 United States of America

> Phone: +1 703 267-6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>