Hitachi Solutions, Ltd.

HIBUN Cryptographic Module for Pre-boot

FIPS 140-2 Security Policy

Level 1 Validation Document Version 1.601/11/2012

1. IN	TRODUCTION	3
1.1.	Purpose	3
1.2.	References	3
1.3.	PACKAGE ORGANIZATION	3
2. CI	RYPTOGRAPHIC MODULE SPECIFICATION	4
2.1.	Overview	4
2.2.	CRYPTOGRAPHIC BOUNDARY	4
2.3.	BLOCK DIAGRAM	5
2.4.	MODULE ORGANIZATION	6
2.5.	ALGORITHMS	7
2.6.	Approved Mode	7
3. CI	RYPTOGRAPHIC MODULE PORTS AND INTERFACES	8
4. R(OLES, SERVICES, AND AUTHENTICATION	8
4.1.	Roles	8
4.2.	Services	9
4.3.	AUTHENTICATION	10
5. PH	HYSICAL SECURITY	10
6. OI	PERATIONAL ENVIRONMENT	10
7. CI	RYPTOGRAPHIC KEY MANAGEMENT	10
7.1.	CSP	11
7.2.	KEY ENTRY AND OUTPUT	11
7.3.	KEY STORAGE	12
7.4.	ZEROIZATION OF KEY MATERIAL	12
8. SE	ELF-TESTS	12
8.1.	Power-Up Self-Tests	12
9. DI	ESIGN ASSURANCE	13
9.1.	Configuration	13
9.2.	Delivery	13
9.3.	GUIDANCE DOCUMENTS	13
10.	MITIGATION OF OTHER ATTACKS	13

1. Introduction

1.1. Purpose

This document provides the cryptographic library module security policy (SP) for the HIBUN Cryptographic Module for Pre-boot from Hitachi Solutions, Ltd. This document describes how the HIBUN Cryptographic Module for Pre-boot meets the level 1 security requirements of FIPS 140-2.

1.2. References

SP Title: HIBUN Cryptographic Module for Pre-boot

FIPS 140-2 Security Policy

SP Version: 1.6

SP Publisher: Hitachi Solutions, Ltd.

SP Published date: 01/11/2012

Cryptographic library module title: HIBUN Cryptographic Module for Pre-boot

Cryptographic library module version: 1.0 Rev. 2

1.3. Package Organization

The HIBUN Cryptographic Module package is comprised of three distinct modules (User-Mode module, Kernel-Mode module, and Pre-boot module). The HIBUN Cryptographic Module package includes the following:

(1) SP

- HIBUN Cryptographic Module for User-Mode FIPS 140-2 Security Policy
- HIBUN Cryptographic Module for Kernel-Mode FIPS 140-2 Security Policy
- HIBUN Cryptographic Module for Pre-boot FIPS 140-2 Security Policy

(2) Guidance documents

- HIBUN Cryptographic Module Guidance
- HIBUN Cryptographic Module API specification

(3) Cryptographic library module

- HIBUN Cryptographic Module for User-Mode
- HIBUN Cryptographic Module for Kernel-Mode
- HIBUN Cryptographic Module for Pre-boot

The executable modules that provide security functions. The document (1) and (2) describes these modules.

This document is HIBUN Cryptographic Module for Pre-boot FIPS 140-2 Security Policy. The

cryptographic library module that this SP describes is HIBUN Cryptographic Module for Pre-boot. For the purposes of this document, "HIBUN Cryptographic Module" is referred to as "HIBUN Cryptographic Module for Pre-boot".

2. Cryptographic Module Specification

2.1. Overview

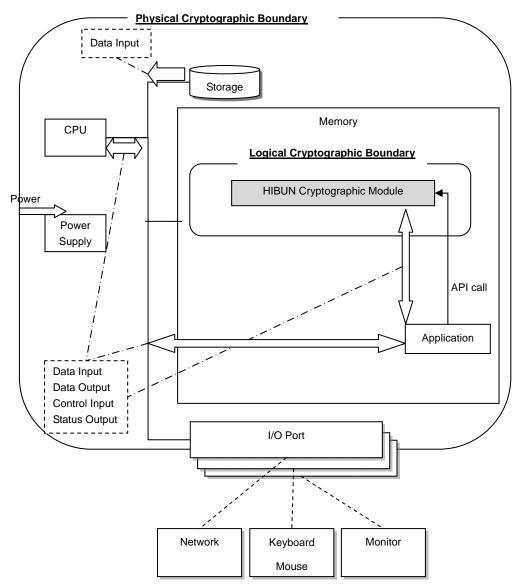
The HIBUN Cryptographic Module is a software module which resides on a general purpose computer, and is a cryptographic library module which meets the level 1 security requirements of FIPS 140-2. The HIBUN Cryptographic Module meets each of the security requirements as shown in the Table 1.

Table 1: Security Level Specification

Security Requirements Section	Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

HIBUN Cryptographic Module is classified as a multi-chip standalone module, and provides symmetric key cipher, message digest, message authentication of the security functions approved by FIPS 140-2. The security functions are provided via the Application Programming Interface (API) to applications.

For the purposes of this document, "cryptographic library module" is referred to as "HIBUN Cryptographic Module".


2.2. Cryptographic Boundary

The physical cryptographic boundary for the cryptographic library module is defined as the enclosure of the computer on which the cryptographic library module runs.

The logical cryptographic boundary for the cryptographic library module is defined as the whole cryptographic library module functions.

2.3. Block Diagram

A block diagram of the cryptographic library module is shown in Figure 1. Figure 1 shows the cryptographic boundaries and I/O ports.

The cryptographic library module does not input data from Operating System or output data to Operating System.

I/O ports include followings:

- Input physical ports: keyboard port, mouse port, network port
- Output physical ports: monitor port, network port

Figure 1: Block Diagram of the Cryptographic Boundary

2.4. Module Organization

Figure 2 shows the module organization of the cryptographic library module. The cryptographic library module provides security functions to applications running on Pre-boot 16-bit as in Figure 2. In Figure 2, each arrow indicates the relationship between the cryptographic library module and calling applications.

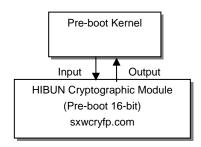


Figure 2: Relations between the HIBUN Cryptographic Module and OS

2.5. Algorithms

The cryptographic library module provides symmetric key cipher, message digest, message authentication of the security functions approved by FIPS 140-2. Table 2 shows the FIPS 140-2 approved security functions provided by the cryptographic library module.

Table 2: Approved Algorithms

Service	Algorithm	Mode	FIPS140-2	Publication	Algorithm
			Approved		Certificate
					Number
Symmetric	AES	ECB, CBC,	Yes	FIPS 197	1779
Cipher	Encrypt/Decrypt	CFB 8 bit,			
	(128 bit)	CFB 128 bit,			
		OFB			
	AES	ECB, CBC,	Yes	FIPS 197	
	Encrypt/Decrypt	CFB 8 bit,			
	(192 bit)	CFB 128 bit,			
		OFB			
	AES	ECB, CBC,	Yes	FIPS 197	
	Encrypt/Decrypt	CFB 8 bit,			
	(256 bit)	CFB 128 bit,			
		OFB			
Message Digest	SHA-224	N/A	Yes	FIPS 180-3	1561
	SHA-256	N/A	Yes	FIPS 180-3	
Message	HMAC-SHA224	N/A	Yes	FIPS 198	1044
Authentication	HMAC-SHA256	N/A	Yes	FIPS 198	

2.6. Approved Mode

The cryptographic library module implements only FIPS 140-2 approved security functions. The

cryptographic library module runs in a FIPS 140-2 approved mode using following steps:

- (1) Install the cryptographic library module and the application into the boot sector.
- (2) The application loads the cryptographic library module into memory.
- (3) The application calls the Load_Module service at the first address of the module, and gets the addresses of services. The cryptographic library module performs power-up self-tests in the Load_Module service.
- (4) The application calls services in the cryptographic library module.

3. Cryptographic Module Ports and Interfaces

The cryptographic library module provides logical interfaces via APIs. Table 3 shows the mapping of the FIPS 140-2 logical interfaces, physical ports, and APIs provided by the cryptographic library module.

Table 3: Interfaces

FIPS140-2 Logical	Physical ports	Module Mapping		
Interfaces				
Data Input Interface	Keyboard port, mouse port, network	Parameters passed to the		
	port, etc.	module via the API		
Data Output Interface	Monitor port, network port, etc.	Data returned by the module via		
		the API		
Control Input Interface	Keyboard port, mouse port, network	Control input through the API		
	port, etc.	and the API function calls		
Status Output Interface	Monitor port, network port, etc.	Information returned via the		
		API		

4. Roles, Services, and Authentication

4.1. Roles

The cryptographic library module supports crypto officer role and user role.

In the crypto officer role, the crypto officer can install the cryptographic library module. In the user role, the user can use the cryptographic library module installed by crypto officer.

Table 4 shows description of each role.

Table 4: Roles

Role	Description
Crypto officer (CO)	The administrator who installs or uninstalls the module (CO can use
	the same services as the user role)
	- The crypto officer role is implicitly assumed when the application
	requests installation or uninstallation of the module.
User	General user who uses the module
	- The user role is implicitly assumed when the application requests
	services implemented by the module.

4.2. Services

The cryptographic library module provides the services shown in Table 5.

Table 5: Services Provided by the Cryptographic Library Module

Type	Algorithm	Description	Service		Exported to
			Name	Description	Pre-boot
					16-bit
Symmetric	AES	Encrypt/	aes_create	Create AES	CO/User
Cipher		decrypt data		instance	
		using AES	aes_init	Initialize AES	CO/User
		algorithm		instance	
			aes_encrypt_	Complete AES	CO/User
			term	encryption	
			aes_decrypt_	Complete AES	CO/User
			term	decryption	
			aes_mode	Set AES mode	CO/User
			aes_encrypt	AES data	CO/User
				encryption	
			aes_decrypt	AES data	CO/User
				decryption	
			aes_destroy	Destroy AES	CO/User
				instance	
Message	SHA-2	Generate	shs_init	Create SHA	CO/User
Digest		message		instance	
		digests			

			shs_term	Destroy SHA	CO/User
				instance	
			shs_update	Get hash	CO/User
Message	HMAC	Generate	hmac_init	Create HMAC	CO/User
Authentication		MAC values		instance	
			hmac_term	Destroy HMAC	CO/User
				instance	
			hmac_update	Get HMAC	CO/User
				value	
Show Status	-	Get result	Get_Status	Get status	CO/User
		of status			
Load Module	-	Load	Load_Module	Create module	CO/User
		module		instance	
Unload	-	Unload	Unload_Module	Change to	CO/User
Module		module		unload status	

4.3. Authentication

The cryptographic library module does not support any authentication for CO or user. The level 1 security requirements of FIPS 140-2 do not require any authentication mechanism for CO or user.

Physical Security

Since the cryptographic library module is one of the software modules residing on a general purpose computer, the physical security shall be provided by the computer the cryptographic library module is running on. Therefore the physical security requirement of the cryptographic library module is not applicable.

Operational Environment

The cryptographic library module is tested and validated to the level 1 security requirements of FIPS 140-2 using following operational environment:

- Pre-boot 16-bit

7. Cryptographic Key Management

Table 6 shows the critical security parameters (CSPs) in each algorithm used by the cryptographic library module. The "Input or Generate" column specifies whether the CSP is provided to the cryptographic library module or the cryptographic library module generates the CSP. The "Access

Type" column specifies how the cryptographic library module accesses the CSP.

Table 6: CSP

Type	Algorithm	Service	CSP	Input or Generate	Access Type
Symmetric Cipher	AES	aes_create	Secret Key	Input	Read
		aes_init	N/A	N/A	N/A
		aes_encrypt_	Secret Key	Input	Read
		term			
		aes_decrypt_	Secret Key	Input	Read
		term			
		aes_mode	N/A	N/A	N/A
		aes_encrypt	Secret Key	Input	Read
		aes_decrypt	Secret Key	Input	Read
		aes_destroy	Secret Key	Input	Write
Message Digest	SHA-2	shs_init	N/A	N/A	N/A
		shs_term	N/A	N/A	N/A
		shs_update	N/A	N/A	N/A
Message	HMAC	hmac_init	Secret Key	Input	Read
Authentication		hmac_term	Secret Key	Input	Read/Write
		hmac_	Secret Key	Input	Read
		update			
Show Status	-	Get_Status	N/A	N/A	N/A
Load Module	-	Load_	N/A	N/A	N/A
		Module			
Unload Module	-	Unload_	N/A	N/A	N/A
		Module			

7.1. CSP

The CSP which cryptographic library module manages is shown in the Table 6.

7.2. Key Entry and Output

Cryptographic keys are passed to the cryptographic library module via the APIs (logical interfaces) from a calling application, which is outside of the logical boundary of cryptographic library module. The cryptographic library module passes no cryptographic keys.

7.3. Key Storage

The cryptographic library module stores no keys.

7.4. Zeroization of Key Material

The cryptographic library module performs zeroization of the CSP when the CSP is no longer used. The cryptographic library module zeroizes the CSP at:

- aes_destroy performed (Encryption key)
- hmac_term performed (Encryption key)
- An internal error in the cryptographic library module (Encryption key)

Self-Tests

The cryptographic library module implements both power-up self-tests as required by FIPS140-2. Table 7 shows the tests that the cryptographic library module performs.

Type Algorithm Test method Power-Up Conditional **Self-Tests** Self-Tests Algorithm Testing **AES Known Answer Test** Yes N/A SHA-2 **Known Answer Test** N/A Yes **HMAC** Known Answer Test Yes N/A **Integrity Testing** HMAC-SHA256 Known Answer Test N/A Yes

Table 7: Self-Tests

Note: The Algorithm Testing of SHA-2 is tested as a part of the Algorithm Testing of HMAC.

8.1. Power-Up Self-Tests

Power-up self-tests are performed automatically when the cryptographic library module is loaded. To perform power-up self tests on demand, unload and load again the cryptographic library module. The result of the power-up self-tests is output via the status output interface. If the power-up self-tests, including integrity testing, failed, the status output interface (Get_Status()) returns state of power-up error. The indicator is SXDCRYFP_STATUS_POWERUPERROR.

When the power-up self-tests fail, the cryptographic library module enters an error state where no API calls are permitted except the following: Get_Status(), Load_Module(), Unload_Module(). To recover the cryptographic library module from the error state, it is required to perform Load_Module service again.

Design Assurance

9.1. Configuration

The items related to the designing and development of the cryptographic library module include the following:

- Source code
- Cryptographic library module
- SP
- Guidance documents
- Other design documents

Microsoft Visual SourceSafe¹ (VSS) is used to provide configuration management to all the items above. VSS is a version control system by Microsoft. Each version of the item in VSS database is labeled uniquely. The items in VSS database are access controlled and modification is permitted to authorized developers only.

9.2. Delivery

The cryptographic library module and the guidance documents are delivered on a CD-ROM. The SP is also available on the FIPS 140-2 Validation List web site.

9.3. Guidance Documents

The crypto officer guidance in the HIBUN Cryptographic Module Guidance describes how to obtain the module, how to verify the integrity of the module, and how to install the module. The user guidance in the HIBUN Cryptographic Module Guidance and the HIBUN Cryptographic Module API specification describe how to use the services provided by the cryptographic library module.

10. Mitigation of Other Attacks

The module does not contain security mechanisms to mitigate other attacks.

Visual SourceSafe is a registered trademark of Microsoft Corporation in the United States and/or other countries.